
GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES

MAURICIO G.C. RESENDE AND CELSO C. RIBEIRO

Abstract. GRASP is a multi-start metaheuristic for combinatorial problems,
in which each iteration consists basically of two phases: construction and local
search. The construction phase builds a feasible solution, whose neighborhood
is investigated until a local minimum is found during the local search phase.
The best overall solution is kept as the result. In this chapter, we first describe
the basic components of GRASP. Successful implementation techniques and
parameter tuning strategies are discussed and illustrated by numerical results
obtained for different applications. Enhanced or alternative solution construc-
tion mechanisms and techniques to speed up the search are also described:
Reactive GRASP, cost perturbations, bias functions, memory and learning,
local search on partially constructed solutions, hashing, and filtering. We also
discuss in detail implementation strategies of memory-based intensification and
post-optimization techniques using path-relinking. Hybridizations with other
metaheuristics, parallelization strategies, and applications are also reviewed.

1. Introduction

We consider in this chapter a combinatorial optimization problem, defined by a
finite ground set E = {1, . . . , n}, a set of feasible solutions F ⊆ 2E, and an objective
function f : 2E → �

. In the minimization version, we search an optimal solution
S∗ ∈ F such that f(S∗) ≤ f(S), ∀S ∈ F . The ground set E, the cost function
f , and the set of feasible solutions F are defined for each specific problem. For
instance, in the case of the traveling salesman problem, the ground set E is that of
all edges connecting the cities to be visited, f(S) is the sum of the costs of all edges
e ∈ S, and F is formed by all egde subsets that determine a Hamiltonian cycle.

The GRASP (Greedy Randomized Adaptive Search Procedure) metaheuristic
[38, 39] is a multi-start or iterative process, in which each iteration consists of two
phases: construction and local search. The construction phase builds a feasible
solution, whose neighborhood is investigated until a local minimum is found during
the local search phase. The best overall solution is kept as the result. An extensive
survey of the literature is given in [44]. The pseudo-code in Figure 1 illustrates the
main blocks of a GRASP procedure for minimization, in which Max Iterations

iterations are performed and Seed is used as the initial seed for the pseudorandom
number generator.

Figure 2 illustrates the construction phase with its pseudo-code. At each itera-
tion of this phase, let the set of candidate elements be formed by all elements that
can be incorporated to the partial solution under construction without destroying
feasibility. The selection of the next element for incorporation is determined by
the evaluation of all candidate elements according to a greedy evaluation function.

Date: August 29, 2002.
AT&T Labs Research Technical Report TD-53RSJY, version 2. To appear in State of the Art

Handbook in Metaheuristics, F. Glover and G. Kochenberger, eds., Kluwer, 2002.

1



2 M.G.C. RESENDE AND C.C. RIBEIRO

procedure GRASP(Max Iterations,Seed)
1 Read Input();
2 for k = 1, . . . , Max Iterations do
3 Solution← Greedy Randomized Construction(Seed);
4 Solution← Local Search(Solution);
5 Update Solution(Solution,Best Solution);
6 end;
7 return Best Solution;
end GRASP.

Figure 1. Pseudo-code of the GRASP metaheuristic.

This greedy function usually represents the incremental increase in the cost func-
tion due to the incorporation of this element into the solution under construction.
The evaluation of the elements by this function leads to the creation of a restricted
candidate list (RCL) formed by the best elements, i.e. those whose incorporation
to the current partial solution results in the smallest incremental costs (this is the
greedy aspect of the algorithm). The element to be incorporated into the partial
solution is randomly selected from those in the RCL (this is the probabilistic aspect
of the heuristic). Once the selected element is incorporated to the partial solution,
the candidate list is updated and the incremental costs are reevaluated (this is the
adaptive aspect of the heuristic). This strategy is similar to the semi-greedy heuris-
tic proposed by Hart and Shogan [55], which is also a multi-start approach based
on greedy randomized constructions, but without local search.

procedure Greedy Randomized Construction(Seed)
1 Solution← ∅;
2 Evaluate the incremental costs of the candidate elements;
3 while Solution is not a complete solution do
4 Build the restricted candidate list (RCL);
5 Select an element s from the RCL at random;
6 Solution← Solution∪ {s};
7 Reevaluate the incremental costs;
8 end;
9 return Solution;
end Greedy Randomized Construction.

Figure 2. Pseudo-code of the construction phase.

The solutions generated by a greedy randomized construction are not necessarily
optimal, even with respect to simple neighborhoods. The local search phase usually
improves the constructed solution. A local search algorithm works in an iterative
fashion by successively replacing the current solution by a better solution in the
neighborhood of the current solution. It terminates when no better solution is found
in the neighborhood. The pseudo-code of a basic local search algorithm starting
from the solution Solution constructed in the first phase and using a neighborhood
N is given in Figure 2.



GRASP 3

procedure Local Search(Solution)
1 while Solution is not locally optimal do
2 Find s′ ∈ N(Solution) with f(s′) < f(Solution);
3 Solution← s′;
4 end;
5 return Solution;
end Local Search.

Figure 3. Pseudo-code of the local search phase.

The effectiveness of a local search procedure depends on several aspects, such
as the neighborhood structure, the neighborhood search technique, the fast eval-
uation of the cost function of the neighbors, and the starting solution itself. The
construction phase plays a very important role with respect to this last aspect,
building high-quality starting solutions for the local search. Simple neighborhoods
are usually used. The neighborhood search may be implemented using either a best-
improving or a first-improving strategy. In the case of the best-improving strategy,
all neighbors are investigated and the current solution is replaced by the best neigh-
bor. In the case of a first-improving strategy, the current solution moves to the first
neighbor whose cost function value is smaller than that of the current solution. In
practice, we observed on many applications that quite often both strategies lead to
the same final solution, but in smaller computation times when the first-improving
strategy is used. We also observed that premature convergence to a non-global
local minimum is more likely to occur with a best-improving strategy.

2. Construction of the restricted candidate list

An especially appealing characteristic of GRASP is the ease with which it can
be implemented. Few parameters need to be set and tuned. Therefore, develop-
ment can focus on implementing efficient data structures to assure quick iterations.
GRASP has two main parameters: one related to the stopping criterion and another
to the quality of the elements in the restricted candidate list.

The stopping criterion used in the pseudo-code described in Figure 1 is deter-
mined by the number Max Iterations of iterations. Although the probability of
finding a new solution improving the currently best decreases with the number of
iterations, the quality of the best solution found may only improve with the latter.
Since the computation time does not vary much from iteration to iteration, the
total computation time is predictable and increases linearly with the number of
iterations. Consequently, the larger the number of iterations, the larger will be the
computation time and the better will be the solution found.

For the construction of the RCL used in the first phase we consider, without
loss of generality, a minimization problem as the one formulated in Section 1. We
denote by c(e) the incremental cost associated with the incorporation of element
e ∈ E into the solution under construction. At any GRASP iteration, let cmin and
cmax be, respectively, the smallest and the largest incremental costs.

The restricted candidate list RCL is made up of elements e ∈ E with the best
(i.e., the smallest) incremental costs c(e). This list can be limited either by the
number of elements (cardinality-based) or by their quality (value-based). In the
first case, it is made up of the p elements with the best incremental costs, where



4 M.G.C. RESENDE AND C.C. RIBEIRO

p is a parameter. In this chapter, the RCL is associated with a threshold param-
eter α ∈ [0, 1]. The restricted candidate list is formed by all “feasible” elements
e ∈ E which can be inserted into the partial solution under construction with-
out destroying feasibility and whose quality is superior to the threshold value, i.e.,
c(e) ∈ [cmin, cmin + α(cmax − cmin)]. The case α = 0 corresponds to a pure greedy
algorithm, while α = 1 is equivalent to a random construction. The pseudo code in
Figure 4 is a refinement of the greedy randomized contruction pseudo-code shown
in Figure 2. It shows that the parameter α controls the amounts of greediness and
randomness in the algorithm.

procedure Greedy Randomized Construction(α, Seed)
1 Solution← ∅;
2 Initialize the candidate set: C ← E;
3 Evaluate the incremental cost c(e) for all e ∈ C;
4 while C 6= ∅ do
5 cmin ← min{c(e) | e ∈ C};
6 cmax ← max{c(e) | e ∈ C};
7 RCL← {e ∈ C | c(e) ≤ cmin + α(cmax − cmin)};
8 Select an element s from the RCL at random;
9 Solution← Solution∪ {s};
10 Update the candidate set C;
11 Reevaluate the incremental costs c(e) for all e ∈ C;
12 end;
13 return Solution;
end Greedy Randomized Construction.

Figure 4. Refined pseudo-code of the construction phase.

GRASP may be viewed as a repetitive sampling technique. Each iteration pro-
duces a sample solution from an unknown distribution, whose mean and variance
are functions of the restrictive nature of the RCL. For example, if the RCL is re-
stricted to a single element, then the same solution will be produced at all iterations.
The variance of the distribution will be zero and the mean will be equal to the value
of the greedy solution. If the RCL is allowed to have more elements, then many
different solutions will be produced, implying a larger variance. Since greediness
plays a smaller role in this case, the mean solution value should be worse. However,
the value of the best solution found outperforms the mean value and very often
is optimal. The histograms in Figure 5 illustrate this situation on an instance of
MAXSAT with 100 variables and 850 clauses, depicting results obtained with 1000
independent constructions using the first phase of the GRASP described in [83, 84].
Since this is a maximization problem, the purely greedy construction corresponds
to α = 1, whereas the random construction occurs with α = 0. We notice that when
the value of α increases from 0 to 1, the mean solution value increases towards the
purely greedy solution value, while the variance approaches zero.

For each value of α, we present in Figure 6 histograms with the results obtained
by applying local search to each of the 1000 constructed solutions. Figure 7 sum-
marizes the overall results of this experiment in terms of solution diversity, solution
quality, and computation time. We first observe that the larger the variance of the



GRASP 5

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

(a) RCL parameter alpha = 0.0 (random

construction)

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

(b) RCL parameter alpha = 0.2

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

(c) RCL parameter alpha = 0.4

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

(d) RCL parameter alpha = 0.6

0

100

200

300

400

500

600

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

(e) RCL parameter alpha = 0.8

0

200

400

600

800

1000

405000 410000 415000 420000 425000 430000 435000

oc
cu

rr
en

ce
s

cost of constructed solution

(f) RCL parameter alpha = 1.0 (greedy con-

struction)

Figure 5. Distribution of construction phase solution values as a
function of the RCL parameter α (1000 repetitions were recorded
for each value of α).



6 M.G.C. RESENDE AND C.C. RIBEIRO

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

(a) RCL parameter alpha = 0.0 (random)

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

(b) RCL parameter alpha = 0.2

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

(c) RCL parameter alpha = 0.4

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

(d) RCL parameter alpha = 0.6

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

(e) RCL parameter alpha = 0.8

0

50

100

150

200

250

300

437000 438000 439000 440000 441000 442000 443000 444000 445000

oc
cu

rr
en

ce
s

cost of local optimal solution

(f) RCL parameter alpha = 1.0 (greedy)

Figure 6. Distribution of local search phase solution values as a
function of the RCL parameter α (1000 repetitions for each value
of α).



GRASP 7

solution values obtained in the construction phase, the larger is the variance of the
overall solution values, as shown in the top graph. The graph in the middle illus-
trates the relationship between the variance of the solution values and the average
solution values, and how this affects the best solution found. It is unlikely that
GRASP will find an optimal solution if the average solution value is low, even if
there is a large variance in the overall solution values, such as is the case for α = 0.
On the other hand, if there is little variance in the overall solution values, it is also
unlikely that GRASP will find an optimal solution, even if the average solution is
high, as is the case for α = 1. What often leads to good solutions are relatively
high average solution values in the presence of a relatively large variance, such as
is the case for α = 0.8. The middle graph also shows that the distance between
the average solution value and the value of the best solution found increases as
the construction phase moves from more greedy to more random. This causes the
average time taken by the local search to increase, as shown in the graph in the
bottom. Very often, many GRASP solutions are generated in the same amount of
time required for the local optimization procedure to converge from a single random
start.

These results are illustrated in Table 1 and Figure 8, for another instance of
MAXSAT where 1000 iterations were run. For each value of α ranging from 0
(purely random construction) to 1 (purely greedy construction), we give in Table 1
the average Hamming distance between each solution built at the end of the con-
struction phase and the corresponding local optimum obtained after local search,
the average number of moves from the first to the latter, the local search time in
seconds, and the total processing time in seconds. Figure 8 summarizes the values
observed for the total processing time and the local search time. We notice that
both time measures considerably decrease as α tends to 1, approaching the purely
greedy choice. In particular, we observe that the average local search time taken by
α = 0 (purely random) is approximately 2.5 times that taken in the case α = 0.9
(almost greedy). In this example, two to three greedily constructed solutions can be
investigated in the same time needed to apply local search to one single randomly
constructed solution. The appropriate choice of the value of the RCL parameter α
is clearly critical and relevant to achieve a good balance between computation time
and solution quality.

Prais and Ribeiro [77] have shown that using a single fixed value for the value of
RCL parameter α very often hinders finding a high-quality solution, which eventu-
ally could be found if another value was used. They proposed an extension of the
basic GRASP procedure, which they call Reactive GRASP, in which the parameter
α is self-tuned and its value is periodically modifed according with the quality of the
solutions obtained recently. In particular, computational experiments on the prob-
lem of traffic assignment in communication satellites [78] have shown that Reactive
GRASP found better solutions than the basic algorithm for many test instances.
These results motivated the study of the behavior of GRASP for different strategies
for the variation of the value of the RCL parameter α:

(R) α self tuned according with the Reactive GRASP procedure;
(E) α randomly chosen from a uniform discrete probability distribution;
(H) α randomly chosen from a decreasing non-uniform discrete probability distri-

bution; and
(F) fixed value of α, close to the purely greedy choice.



8 M.G.C. RESENDE AND C.C. RIBEIRO

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.2 0.4 0.6 0.8 1

st
an

da
rd

 d
ev

ia
tio

n

construction phase
overall value

415000

420000

425000

430000

435000

440000

445000

0 0.2 0.4 0.6 0.8 1

so
lu

tio
n 

va
lu

e

best constructed solution value
avg constructed solution value

5

10

15

20

25

30

35

40

45

0 0.2 0.4 0.6 0.8 1

tim
e 

(s
ec

on
ds

) f
or

 1
00

0 
ite

ra
tio

ns

RCL parameter alpha

Figure 7. Standard deviation of the solution values found, best
and average solution values found, and total processing time as a
function of the RCL parameter α (1000 repetitions were recorded
for each value of α).



GRASP 9

Table 1. Average number of moves and local search time as a
function of the RCL parameter α.

α avg. distance avg. moves local search time (s) total time (s)
0.0 12.487 12.373 18.083 23.378
0.1 10.787 10.709 15.842 20.801
0.2 10.242 10.166 15.127 19.830
0.3 9.777 9.721 14.511 18.806
0.4 9.003 8.957 13.489 17.139
0.5 8.241 8.189 12.494 15.375
0.6 7.389 7.341 11.338 13.482
0.7 6.452 6.436 10.098 11.720
0.8 5.667 5.643 9.094 10.441
0.9 4.697 4.691 7.753 8.941
1.0 2.733 2.733 5.118 6.235

5

10

15

20

0 0.2 0.4 0.6 0.8 1

tim
e 

(s
ec

on
ds

) f
or

 1
00

0 
ite

ra
tio

ns

RCL parameter alpha

total CPU time

local search CPU time

Figure 8. Total CPU time and local search CPU time as a func-
tion of the RCL parameter α (1000 repetitions for each value of
α).

We summarize the results obtained by the experiments reported in [76, 77].
These four strategies were incorporated into the GRASP procedures developed
for four different optimization problems: (P-1) matrix decomposition for traffic
assignment in communication satellite [78], (P-2) set covering [38], (P-3) weighted
MAX-SAT [83, 84], and (P-4) graph planarization [85, 87]. Let Ψ = {α1, . . . , αm}
be the set of possible values for the parameter α for the first three strategies. The
strategy for choosing and self-tuning the value of α in the case of the Reactive
GRASP procedure (R) is described later in Section 3. In the case of the strategy
based on using the discrete uniform distribution (E), all choice probabilities are
equal to 1/m. The third case corresponds to the a hybrid strategy (H), in which
we typically consider p(α = 0.1) = 0.5, p(α = 0.2) = 0.25, p(α = 0.3) = 0.125,
p(α = 0.4) = 0.03, p(α = 0.5) = 0.03, p(α = 0.6) = 0.03, p(α = 0.7) = 0.01,
p(α = 0.8) = 0.01, p(α = 0.9) = 0.01, and p(α = 1.0) = 0.005. Finally, in the last



10 M.G.C. RESENDE AND C.C. RIBEIRO

strategy (F), the value of α is fixed as recommended in the original reference where
this parameter was tuned for each problem. A subset of the literature instances
was considered for each class of test problems. The results reported in [77] are
summarized in Table 2. For each problem, we first list the number of instances
considered. Next, for each strategy, we give the number of times it found the best
solution (hits), as well as the average CPU time (in seconds) on an IBM 9672 model
R34. The number of iterations was fixed at 10,000.

Table 2. Computational results for different strategies for the
variation of parameter α.

R E H F

Problem Total hits time hits time hits time hits time

P-1 36 34 579.0 35 358.2 32 612.6 24 642.8
P-2 7 7 1346.8 6 1352.0 6 668.2 5 500.7
P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2
P-4 37 28 6363.1 21 7292.9 24 6326.5 19 5972.0

Total 124 91 85 78 59

Strategy (F) presented the shortest average computation times for three out the
four problem types. It was also the one with the least variability in the constructed
solutions and, in consequence, found the best solution the fewest times. The reactive
strategy (R) is the one which most often found the best solutions, however, at the
cost of computation times that are longer than those of some of the other strategies.
The high number of hits observed by strategy (E) also illustrates the effectiveness
of strategies based on the variation of the RCL parameter.

3. Alternative construction mechanisms

One possible shortcoming of the standard GRASP framework is the indepen-
dence of its iterations, i.e., the fact that it does not learn from the history of solu-
tions found in previous iterations. This is so because the basic algorithm discards
information about any solution encountered that does not improve the incumbent.
Information gathered from good solutions can be used to implement memory-based
procedures to influence the construction phase, by modifying the selection proba-
bilities associated with each element of the RCL. In this section, we consider en-
hancements and alternative techniques for the construction phase of GRASP. They
include Reactive GRASP, cost perturbations in place of randomized selection, bias
functions, memory and learning, and local search on partially constructed solutions.

3.1. Reactive GRASP. A first possible strategy to incorporate a learning mech-
anism in the memoryless construction phase of the basic GRASP is the Reactive
GRASP procedure introduced in Section 2. In this case, the value of the RCL pa-
rameter α is not fixed, but instead is selected at each iteration from a discrete set of
possible values. This selection is guided by the solution values found along the pre-
vious iterations. One way to accomplish this is to use the rule proposed in [78]. Let
Ψ = {α1, . . . , αm} be the set of possible values for α. The probabilities associated
with the choice of each value are all initially made equal to pi = 1/m, i = 1, . . . ,m.
Furthermore, let z∗ be the incumbent solution and let Ai be the average value of
all solutions found using α = αi, i = 1, . . . ,m. The selection probabilities are peri-
odically reevaluated by taking pi = qi/

∑m
j=1 qj , with qi = z∗/Ai for i = 1, . . . ,m.



GRASP 11

The value of qi will be larger for values of α = αi leading to the best solutions on
average. Larger values of qi correspond to more suitable values for the parameter α.
The probabilities associated with these more appropriate values will then increase
when they are reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms of
robustness and solution quality, due to greater diversification and less reliance on
parameter tuning. In addition to the applications in [76, 77, 78], this approach has
been used in power system transmission network planning [20] and in a capacitated
location problem [29].

3.2. Cost perturbations. The idea of introducing some noise into the original
costs is similar to that in the so-called “noising method” of Charon and Hudry [25,
26]. It adds more flexibility into algorithm design and may be even more effec-
tive than the greedy randomized construction of the basic GRASP procedure, in
circumstances where the construction algorithms are not very sensitive to random-
ization. This is indeed the case for the shortest-path heuristic of Takahashi and
Matsuyama [95], used as one of the main building blocks of the construction phase
of the hybrid GRASP procedure proposed by Ribeiro et al. [90] for the Steiner
problem in graphs. Another situation where cost perturbations can be effective
appears when no greedy algorithm is available for straight randomization. This
happens to be the case of the hybrid GRASP developed by Canuto et al. [22] for
the prize-collecting Steiner tree problem, which makes use of the primal-dual algo-
rithm of Goemans and Williamson [52] to build initial solutions using perturbed
costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described
in [22], a new solution is built at each iteration using node prizes updated by a
perturbation function, according to the structure of the current solution. Two
different prize perturbation schemes are used:

• Perturbation by eliminations: To enforce search diversification, the primal-
dual algorithm used in the construction phase is driven to build a new solu-
tion without some of the nodes appearing in the solution constructed in the
previous iteration. This is done by changing to zero the prizes of some per-
sistent nodes, which appeared in the last solution built and remained at the
end of the local search. A parameter α controls the fraction of the persistent
nodes whose prizes are temporarily set to zero.

• Perturbation by prize changes: Another strategy to enforce the primal-dual
algorithm to build different, but still good solutions, consists in introducing
some noise into the node prizes, similarly to what is proposed in [25, 26], so as
to change the objective function. For each node i, a perturbation factor β(i) is
randomly generated in the interval [1−a, 1+a], where a is an implementation
parameter. The prize associated with node i is temporarily changed to π(i) =
π(i) · β(i), where π(i) is its original prize.

The cost perturbation methods used in the GRASP for the minimum Steiner tree
problem described in [90] incorporate learning mechanisms associated with inten-
sification and diversification strategies, originally proposed in the context of tabu
search. Let we denote the weight of edge e. Three distinct weight randomization
methods (D, I , U) are applied. At a given GRASP iteration i, the modified weight
wie of each edge e is randomly selected from a uniform distribution between we and



12 M.G.C. RESENDE AND C.C. RIBEIRO

ri(e) · we, where the coefficient ri(e) depends on the selected weight randomiza-
tion method applied at iteration i. Let ti−1(e) be the number of locally optimal
solutions in which edge e appeared, after i − 1 iterations of the hybrid GRASP
procedure have been performed. Clearly, 0 ≤ ti−1(e) ≤ i− 1. Table 3 displays how
the coefficients ri(e) are computed by each randomization method.

Table 3. Maximum randomization coefficients.

Method ri(e)
D 1.25 + 0.75 · ti−1(e)/(i− 1)
I 2− 0.75 · ti−1(e)/(i− 1)
U 2

In method D, values of the coefficients ri(e) are larger for edges which appeared
more frequently in previously found local optima. This scheme leads to a diversi-
fication strategy, since more frequently used edges are likely to be penalized with
stronger augmentations. Contrarily, method I is an intensification strategy penal-
izing less frequent edges with larger coefficients ri(e). Finally, the third random-
ization method U uses a uniform penalization strategy, independent of frequency
information. The original weights without any penalization are used in the first
three iterations, combined with three different construction heuristics. The weight
randomization methods are then cyclically applied, one at each of the remaining
iterations, starting with method I , next D, then U , then I again, and so on. The
alternation between diversifying (method D) and intensifying (method I) itera-
tions characterizes a strategic oscillation approach [49]. The experimental results
reported in [90] show that the strategy combining these three perturbation methods
is more robust than any of them used isolated, leading to the best overall results
on a quite broad mix of test instances with different characteristics. The hybrid
GRASP with path-relinking using this cost perturbation strategy is among the most
effective heuristics currently available for the Steiner problem in graphs.

3.3. Bias functions. In the construction procedure of the basic GRASP, the next
element to be introduced in the solution is chosen at random from the candidates in
the RCL. The elements of the RCL are assigned equal probabilities of being chosen.
However, any probability distribution can be used to bias the selection toward some
particular candidates. Another construction mechanism was proposed by Bresina
[21], where a family of such probability distributions is introduced. They are based
on the rank r(σ) assigned to each candidate element σ, according to its value of
the greedy function. Several bias functions are introduced, such as:

• random bias: bias(r) = 1;
• linear bias: bias(r) = 1/r;
• log bias: bias(r) = log−1(r + 1);
• exponential bias: bias(r) = e−r; and
• polynomial bias of order n: bias(r) = r−n.

Let r(σ) denote the rank of element σ and let bias(r(σ)) be one of the bias
function defined above. Once these values have been evaluated for all elements of
the RCL, the probability π(σ) of selecting element σ is

π(σ) =
bias(r(σ))∑

σ′∈RCL bias(r(σ′))
.(1)



GRASP 13

The evaluation of these bias functions may be restricted to the elements of the
RCL. Bresina’s selection procedure restricted to elements of the RCL was used in
[19]. Note that the standard GRASP uses a random bias function.

3.4. Intelligent construction: memory and learning. Fleurent and Glover
[46] observed that the basic GRASP does not use long-term memory (informa-
tion gathered in previous iterations) and proposed a long-term memory scheme
to address this issue in multi-start heuristics. Long-term memory is one of the
fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used in the construction
phase. To become an elite solution, a solution must be either better than the best
member of the pool, or better than its worst member and sufficiently different from
the other solutions in the pool. For example, one can count identical solution vector
components and set a threshold for rejection.

A strongly determined variable is one that cannot be changed without eroding
the objective or changing significantly other variables. A consistent variable is one
that receives a particular value in a large portion of the elite solution set. Let
I(e) be a measure of the strongly determined and consistent features of solution
element e ∈ E. Then, I(e) becomes larger as e appears more often in the pool
of elite solutions. The intensity function I(e) is used in the construction phase as
follows. Recall that c(e) is the greedy function, i.e. the incremental cost associated
with the incorporation of element e ∈ E into the solution under construction. Let
K(e) = F (c(e), I(e)) be a function of the greedy and the intensification functions.
For example, K(e) = λc(e) + I(e). The intensification scheme biases selection from
the RCL to those elements e ∈ E with a high value of K(e) by setting its selection
probability to be p(e) = K(e)/

∑
s∈RCL K(s).

The function K(e) can vary with time by changing the value of λ, e.g. initially
λ may be set to a large value that is decreased when diversification is called for.
Procedures for changing the value of λ are given by Fleurent and Glover [46] and
Binato et al. [19].

3.5. POP in construction. The Proximate Optimality Principle (POP) is based
on the idea that “good solutions at one level are likely to be found ‘close to’ good
solutions at an adjacent level” [50]. Fleurent and Glover [46] provided a GRASP in-
terpretation of this principle. They suggested that imperfections introduced during
steps of GRASP construction can be “ironed-out” by applying local search during
(and not only at the end of) the GRASP construction phase.

Because of efficiency considerations, a practical implementation of POP to GRASP
is to apply local search during a few points in the construction phase and not during
each construction iteration. In Binato et al. [19], local search is applied after 40%
and 80% of the construction moves have been taken, as well as at the end of the
construction phase.

4. Path-relinking

Path-relinking is another enhancement to the basic GRASP procedure, leading to
significant improvements in solution quality. Path-relinking was originally proposed
by Glover [48] as an intensification strategy exploring trajectories connecting elite
solutions obtained by tabu search or scatter search [49, 50, 51]. Starting from one or
more elite solutions, paths in the solution space leading towards other elite solutions



14 M.G.C. RESENDE AND C.C. RIBEIRO

are generated and explored in the search for better solutions. This is accomplished
by selecting moves that introduce attributes contained in the guiding solutions.
Path-relinking may be viewed as a strategy that seeks to incorporate attributes of
high quality solutions, by favoring these attributes in the selected moves.

The use of path-relinking within a GRASP procedure, as an intensification strat-
egy applied to each locally optimal solution, was first proposed by Laguna and
Mart́ı [62]. It was followed by several extensions, improvements, and successful
applications [4, 22, 86, 90]. Two basic strategies are used:

• path-relinking is applied as a post-optimization step to all pairs of elite solu-
tions; and

• path-relinking is applied as an intensification strategy to each local optimum
obtained after the local search phase.

Applying path-relinking as an intensification strategy to each local optimum seems
to be more effective than simply using it as a post-optimization step. In this
context, path-relinking is applied to pairs (x1, x2) of solutions, where x1 is the
locally optimal solution obtained after local search and x2 is one of a few elite
solutions randomly chosen from a pool with a limited number Max Elite of elite
solutions found along the search. The pool is originally empty. Each locally optimal
solution obtained by local search is considered as a candidate to be inserted into the
pool if it is sufficiently different from every other solution currently in the pool. If
the pool already has Max Elite solutions and the candidate is better than the worst
of them, then the former replaces the latter. If the pool is not full, the candidate
is simply inserted.

The algorithm starts by computing the symmetric difference ∆(x1, x2) between
x1 and x2, resulting in the set of moves which should be applied to one of them
(the initial solution) to reach the other (the guiding solution). Starting from the
initial solution, the best move from ∆(x1, x2) still not performed is applied to the
current solution, until the guiding solution is attained. The best solution found
along this trajectory is also considered as a candidate for insertion in the pool and
the incumbent is updated. Several alternatives have been considered and combined
in recent implementations:

• do not apply path-relinking at every GRASP iteration, but only periodically;
• explore two different trajectories, using first x1, then x2 as the initial solution;
• explore only one trajectory, starting from either x1 or x2; and
• do not follow the full trajectory, but instead only part of it (truncated path-

relinking).

All these alternatives involve the trade-offs between computation time and solution
quality. Ribeiro et al. [90] observed that exploring two different trajectories for
each pair (x1, x2) takes approximately twice the time needed to explore only one
of them, with very marginal improvements in solution quality. They have also
observed that if only one trajectory is to be investigated, better solutions are found
when path-relinking starts from the best among x1 and x2. Since the neighborhood
of the initial solution is much more carefully explored than that of the guiding one,
starting from the best of them gives the algorithm a better chance to investigate in
more detail the neighborhood of the most promising solution. For the same reason,
the best solutions are usually found closer to the initial solution than to the guiding
solution, allowing pruning the relinking trajectory before the latter is reached.



GRASP 15

Detailed computational results illustrating the trade-offs between these strate-
gies for the problem of routing private virtual circuits in frame-relay services are
reported by Resende and Ribeiro [86]. In this case, the set of moves corresponding
to the symmetric difference ∆(x1, x2) between any pair (x1, x2) of solutions is the
subset of private virtual circuits routed through different routes (i.e., using different
edges) in x1 and x2. We summarize below some of these results, obtained on an
SGI Challenge computer (with 28 196-MHz MIPS R10000 processors) with 7.6 Gb
of memory. We considered four variants of the GRASP and path-relinking schemes
previously discussed:

• G: This variant is a pure GRASP with no path-relinking.
• GPRf: This variant adds to G a one-way (forward) path-relinking starting from

a locally optimal solution and using a randomly selected elite solution as the
guiding solution.

• GPRb: This variant adds to G a one way (backwards) path-relinking starting
from a randomly selected elite solution and using a locally optimal solution
as the guiding solution.

• GPRfb: This variant combines GPRf and GPRb, performing path-relinking in
both directions.

These variants are evaluated and compared in terms of their tradeoffs between
computation time and solution quality.

To study the effect of path-relinking on GRASP, we compared the four variants
on two instances: att and fr750a, see [86] for details. Two hundred independent
runs for each variant were performed for each problem. Execution was terminated
when a solution of value less than or equal to a given parameter value look4 was
found. The sub-optimal values chosen for this parameter were such that the slowest
variant could terminate in a reasonable amount of computation time. Empirical
probability distributions for the time to target solution value are plotted in Figures 9
and 10. To plot the empirical distribution for each algorithm and each instance,
we associate with the i-th smallest running time ti a probability pi = (i− 1

2 )/200,
and plot the points zi = (ti, pi), for i = 1, . . . , 200. Due to the time taken by the
pure GRASP procedure, we limited its plot in Figure 10 to 60 points.

These plots show a similar relative behavior of the four variants on the two
instances. Since instance fr750a is harder for all variants and the associated com-
putation times are longer, its plot is more discerning. For a given computation
time, the probability of finding a solution at least as good as the target value in-
creases from G to GPRf, from GPRf to GPRfb, and from GPRfb to GPRb. For example,
there is a 9.25% probability for GPRfb to find a target solution value in less than
100 seconds, while this probability increases to 28.75% for GPRb. For G, there is
a 8.33% probability of finding a target solution value within 2000 seconds, while
for GPRf this probability increases to 65.25%. GPRb finds a target solution value
in at most 129 seconds with 50% probability. For the same probability, this time
increases to 172, 1727, and 10933 seconds, respectively, for variants GPRfb, GPRf,
and G. In accordance with these results, variant GPRb, which does path-relinking
backwards from an elite solution to a locally optimal solution, seems to be the most
effective, confirming the preliminary findings reported in [90]. To further illustrate
the behavior of GRASP and path-relinking, we depict in Figure 11 four plots rep-
resenting the behavior of variant GPRb (GRASP with backwards path-relinking) on
instance att with the variation of the target solution value. As before, 200 runs



16 M.G.C. RESENDE AND C.C. RIBEIRO

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 1 10 100 1000

pr
ob

ab
ili

ty

time to target value

G
GPRf

GPRb
GPRfb

Figure 9. Empirical distributions of time to target solution value
for GRASP, GRASP with forward path-relinking, GRASP with
backwards path-relinking, and GRASP with back and forward
path-relinking for instance att.

were performed for each target value decreasing from 126,600 to 126,000 by steps
of 200. A similar behavior was observed for all other variants, with or without
path-relinking, as well as for other instances and classes of test problems.

As a final experiment, once again we made use of the different GRASP vari-
ants for the problem of routing private virtual circuits to illustrate the effect of
path-relinking in improving the solutions obtained by a pure GRASP approach,
with only the construction and local search phases. This experiment was also per-
formed using the same SGI Challenge computer (with 28 196-MHz MIPS R10000
processors) with 7.6 Gb of memory. For each of ten different seeds, we ran twice
each variant for instance att, enforcing two different time limits: 10 seconds and
100 seconds of processing time. The numerical results are reported in Table 4.
For each variant and for each time limit, we give the average and the best solu-
tion values over the ten runs. We first note that both versions with backwards
path-relinking performed systematically better, since they found better solutions
for both time limits. Variants GPRb (GRASP with backwards path-relinking) and
GPRfb (GRASP with path-relinking in both directions) showed similar behaviors,
as it could be anticipated from the empirical probability distributions depicted in
Figure 9. Variant GPRb obtained better results (in terms of both the average and
the best solution values found) within the time limit of 10 seconds, while variant
GPRfb performed better for the time limit of 100 seconds. In the first case, GPRb
found the best solution among the two variants in seven runs, while GPRfb did bet-
ter for only two runs. However, when the time limit was increased to 100 seconds,
GPRb found the best solutions in four runs, while GPRfb did better for five runs.



GRASP 17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000 1e+06

pr
ob

ab
ili

ty

time to target value

G
GPRf
GPRb

GPRfb

Figure 10. Empirical distributions of time to target solution
value for GRASP, GRASP with forward path-relinking, GRASP
with backwards path-relinking, and GRASP with back and forward
path-relinking for instance fr750a.

Table 4. Solution values within fixed time limits over ten runs
for instance att.

10 seconds 100 seconds
Variant best average best average
GPR 126602.883 126694.666 126227.678 126558.293
GPRf 126301.118 126578.323 126082.790 126228.798
GPRb 125960.336 126281.156 125665.785 125882.605
GPRfb 125961.118 126306.736 125646.460 125850.396

Path-relinking is a quite effective strategy to introduce memory in GRASP, lead-
ing to very robust implementations. The results reported above can be further il-
lustrated by those obtained with the hybrid GRASP with path-relinking algorithm
for the Steiner problem in graphs described in [90], which in particular improved
the best known solutions for 33 out of the 41 still open problems in series i640 of
the SteinLib repository [99] on May 1st, 2001.

5. Extensions

In this section, we comment on some extensions, implementation strategies, and
hybrids of GRASP.

The use of hashing tables to avoid cycling in conjunction with tabu search was
proposed by Woodruff and Zemel [100]. A similar approach was later explored by



18 M.G.C. RESENDE AND C.C. RIBEIRO

Figure 11. Empirical distributions of time to target solution
value for GRASP with backwards path-relinking for instance att

and different target values (look4).

Ribeiro et al. [88] in their tabu search algorithm for query optimization in relational
databases. In the context of GRASP implementations, hashing tables were first
used by Martins et al. [66] in their multineighborhood heuristic for the Steiner
problem in graphs, to avoid the application of local search to solutions already
visited in previous iterations.

Filtering strategies have also been used to speed up the iterations of GRASP, see
e.g. [40, 66, 78]. In these cases, local search is not applied to all solutions obtained
at the end of the construction phase, but instead only to some promising unvisited
solutions, defined by a threshold with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-
struction phase. Local search stops at the first local optimum. On the other hand,
strategies such as VNS (Variable Neighborhood Search), proposed by Hansen and
Mladenović [54, 69], rely almost entirely on the randomization of the local search
to escape from local optima. With respect to this issue, GRASP and variable
neighborhood strategies may be considered as complementary and potentially ca-
pable of leading to effective hybrid methods. A first attempt in this direction was
done by Martins et al. [66]. The construction phase of their hybrid heuristic for
the Steiner problem in graphs follows the greedy randomized strategy of GRASP,
while the local search phase makes use of two different neighborhood structures
as a VND procedure [54, 69]. Their heuristic was later improved by Ribeiro et
al. [90], one of the key components of the new algorithm being another strategy
for the exploration of different neighborhoods. Ribeiro and Souza [89] also com-
bined GRASP with VND in a hybrid heuristic for the degree-constrained minimum
spanning tree problem. Festa et al. [45] studied different variants and combinations



GRASP 19

of GRASP and VNS for the MAX-CUT problem, finding and improving the best
known solutions for some open instances from the literature.

GRASP has also been used in conjunction with genetic algorithms. Basically, the
greedy randomized strategy used in the construction phase of a GRASP is applied
to generate the initial population for a genetic algorithm. We may cite e.g. the
genetic algorithm of Ahuja et al. [3] for the quadratic assignment problem, which
makes use of the GRASP proposed by Li et al. [63] to create the initial population
of solutions. A similar approach was used by Armony et al. [11], with the initial
population made up by both randomly generated solutions and those built by a
GRASP.

The hybridization of GRASP with tabu search was first studied by Laguna and
González-Velarde [61]. Delmaire et al. [29] considered two approaches. In the
first, GRASP is applied as a powerful diversification strategy in the context of a
tabu search procedure. The second approach is an implementation of the Reac-
tive GRASP algorithm presented in Section 3.1, in which the local search phase is
strengthened by tabu search. Results reported for the capacitated location problem
show that the hybrid approaches perform better than the isolated methods previ-
ously used. Two two-stage heuristics are proposed in [1] for solving the multi-floor
facility layout problem. GRASP/TS applies a GRASP to find the initial layout and
tabu search to refine it.

6. Parallel GRASP

Even though parallelism is not yet systematically used to speed up or to improve
the effectiveness of metaheuristics, parallel implementations are very robust and
abound in the literature; see e.g. Cung et al. [27] for a recent survey.

Most parallel implementations of GRASP follow the multiple-walk independent
thread strategy, based on the distribution of the iterations over the processors [6,
7, 40, 63, 65, 67, 70, 73, 74]. In general, each search thread has to perform
Max Iterations/p iterations, where p and Max Iterations are, respectively, the
number of processors and the total number of iterations. Each processor has a copy
of the sequential algorithm, a copy of the problem data, and an independent seed to
generate its own pseudorandom number sequence. To avoid that the processors find
the same solutions, each of them must use a different sequence of pseudorandom
numbers. A single global variable is required to store the best solution found over
all processors. One of the processors acts as the master, reading and distributing
problem data, generating the seeds which will be used by the pseudorandom num-
ber generators at each processor, distributing the iterations, and collecting the best
solution found by each processor. Since the iterations are completely independent
and very little information is exchanged, linear speedups are easily obtained pro-
vided that no major load imbalance problems occur. The iterations may be evenly
distributed over the processors or according with their demands, to improve load
balancing.

Martins et al. [67] implemented a parallel GRASP for the Steiner problem in
graphs. Parallelization is achieved by the distribution of 512 iterations over the
processors, with the value of the RCL parameter α randomly chosen in the interval
[0.0, 0.3] at each iteration. The algorithm was implemented in C on an IBM SP-
2 machine with 32 processors, using the MPI library for communication. The
60 problems from series C, D, and E of the OR-Library [18] have been used for



20 M.G.C. RESENDE AND C.C. RIBEIRO

the computational experiments. The parallel implementation obtained 45 optimal
solutions over the 60 test instances. The relative deviation with respect to the
optimal value was never larger than 4%. Almost-linear speedups observed for 2, 4,
8, and 16 processors with respect to the sequential implementation are illustrated
in Figure 12.

1

2

3

4

5

6

7

8

9

1 2 4 6 8 10 12 14 16

sp
ee

du
p

number of processors

Series C
Series D
Series E

Figure 12. Average speedups on 2, 4, 8, and 16 processors.

Path-relinking may also be used in conjunction with parallel implementations of
GRASP. In the case of the multiple-walk independent-thread implementation de-
scribed by Aiex et al. [4] for the 3-index assignment problem, each processor applies
path-relinking to pairs of elite solutions stored in a local pool. Computational re-
sults using MPI on an SGI Challenge computer with 28 R10000 processors showed
linear speedups.

Alvim and Ribeiro [6, 7] have shown that multiple-walk independent-thread ap-
proaches for the parallelization of GRASP may benefit much from load balancing
techniques, whenever heterogeneous processors are used or if the parallel machine is
simultaneously shared by several users. In this case, almost-linear speedups may be
obtained with a heterogeneous distribution of the iterations over the p processors in
q ≥ p packets. Each processor starts performing one packet of dMax Iterations/qe
iterations and informs the master when it finishes its packet of iterations. The mas-
ter stops the execution of each slave processor when there are no more iterations to
be performed and collects the best solution found. Faster or less loaded processors
will perform more iterations than the others. In the case of the parallel GRASP
implemented for the problem of traffic assignment described in [78], this dynamic
load balancing strategy allowed reductions in the elapsed times of up to 15% with
respect to the times observed for the static strategy, in which the iterations were
uniformly distributed over the processors.



GRASP 21

The efficiency of multiple-walk independent-thread parallel implementations of
metaheuristics, based on running multiple copies of the same sequential algorithm,
has been addressed by some authors. A given target value τ for the objective
function is broadcasted to all processors which independently execute the sequen-
tial algorithm. All processors halt immediately after one of them finds a solution
with value at least as good as τ . The speedup is given by the ratio between the
times needed to find a solution with value at least as good as τ , using respectively
the sequential algorithm and the parallel implementation with p processors. Some
care is needed to ensure that no two iterations start with identical random num-
ber generator seeds. These speedups are linear for a number of metaheuristics,
including simulated annealing [31, 71]; iterated local search algorithms for the trav-
eling salesman problem [33]; tabu search, provided that the search starts from a
local optimum [17, 94]; and WalkSAT [93] on hard random 3-SAT problems [56].
This observation can be explained if the random variable time to find a solution
within some target value is exponentially distributed, as indicated by the following
proposition [98]:
Proposition 1: Let Pρ(t) be the probability of not having found a given target

solution value in t time units with ρ independent processes. If P1(t) = e−t/λ with
λ ∈ IR+, corresponding to an exponential distribution, then Pρ(t) = e−ρt/λ.

This proposition follows from the definition of the exponential distribution. It
implies that the probability 1 − e−ρt/λ of finding a solution within a given target
value in time ρt with a sequential algorithm is equal to the probability of finding a
solution at least as good as that in time t using ρ independent parallel processors.
Hence, it is possible to achieve linear speedups in the time to find a solution within
a target value by multiple independent processors. An analogous proposition can
be stated for a two parameter (shifted) exponential distribution:
Proposition 2: Let Pρ(t) be the probability of not having found a given target solu-

tion value in t time units with ρ independent processors. If P1(t) = e−(t−µ)/λ with
λ ∈ IR+ and µ ∈ IR+, corresponding to a two parameter exponential distribution,
then Pρ(t) = e−ρ(t−µ)/λ.

Analogously, this proposition follows from the definition of the two-parameter
exponential distribution. It implies that the probability of finding a solution within
a given target value in time ρt with a sequential algorithm is equal to 1−e−(ρt−µ)/λ,
while the probability of finding a solution at least as good as that in time t using ρ
independent parallel processors is 1− e−ρ(t−µ)/λ. If µ = 0, then both probabilities
are equal and correspond to the non-shifted exponential distribution. Furthermore,
if ρµ� λ, then the two probabilities are approximately equal and it is possible to
approximately achieve linear speedups in the time to find a solution within a target
value using multiple independent processors.

Aiex et al. [5] have shown experimentally that the solution times for GRASP also
have this property, showing that they fit a two-parameter exponential distribution.
Figure 13 illustrates this result, depicting the superimposed empirical and theoret-
ical distributions observed for one of the cases studied along the computational ex-
periments reported by the authors, which involved 2400 runs of GRASP procedures
for each of five different problems: maximum independent set [40, 81], quadratic
assignment [63, 82], graph planarization [85, 87], maximum weighted satisfiabil-
ity [84], and maximum covering [79]. The same result still holds when GRASP is
implemented in conjunction with a post-optimization path-relinking procedure [4].



22 M.G.C. RESENDE AND C.C. RIBEIRO

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

pr
ob

ab
ili

ty

time to target value (seconds)

Empirical distribution
Theoretical distribution

Figure 13. Superimposed empirical and theoretical distributions
(times to target values measured in seconds on an SGI Challenge
computer with 28 processors).

In the case of multiple-walk cooperative-thread strategies, the search threads run-
ning in parallel exchange and share information collected along the trajectories
they investigate. One expects not only to speed up the convergence to the best
solution but, also, to find better solutions than independent-thread strategies. The
most difficult aspect to be set up is the determination of the nature of the infor-
mation to be shared or exchanged to improve the search, without taking too much
additional memory or time to be collected. Cooperative-thread strategies may be
implemented using path-relinking, by combining elite solutions stored in a central
pool with the local optima found by each processor at the end of each GRASP
iteration. Canuto et al. [22] used path-relinking to implement a parallel GRASP
for the prize-collecting Steiner tree problem. Their strategy is truly cooperative,
since pairs of elite solutions from a centralized unique central pool are distributed
to the processors which perform path-relinking in parallel. Computational results
obtained with an MPI implementation running on a cluster of 32 400-MHz Pen-
tium II processors showed linear speedups, further illustrating the effectiveness of
path-relinking procedures used in conjunction with GRASP to improve the quality
of the solutions found by the latter.

7. Applications

The first application of GRASP described in the literature concerns the set
covering problem [38]. The reader is referred to Festa and Resende [44] for an
annotated bibliography of GRASP and its applications. We conclude this chapter



GRASP 23

by summarizing below some references focusing the main applications of GRASP
to problems in different areas:

• routing [9, 12, 16, 24, 59];
• logic [30, 74, 80, 83];
• covering and partition [8, 10, 38, 47, 53];
• location [1, 29, 57, 96, 97];
• minimum Steiner tree [23, 65, 66, 67, 90];
• optimization in graphs [2, 40, 60, 72, 79, 85, 87];
• assignment [37, 46, 63, 64, 68, 70, 73, 75, 78];
• timetabling, scheduling, and manufacturing [13, 14, 15, 19, 28, 32, 34, 35, 36,

41, 42, 58, 91, 92, 101];
• transportation [9, 34, 37];
• power systems [20];
• telecommunications [2, 11, 57, 64, 78, 79, 86];
• graph and map drawing [43, 62, 85, 87]; and
• VLSI [8], among other areas of application.

8. Concluding remarks

The results described in this chapter reflect successful applications of GRASP
to a large number of classical combinatorial optimization problems, as well as to
those that arise in real-world situations in different areas of business, science, and
technology.

We underscore the simplicity of implementation of GRASP, which makes use of
simple building blocks: solution construction procedures and local search methods,
which often are readily available. Contrary to what occurs with other metaheuris-
tics, such as tabu search or genetic algorithms, which use a large number of param-
eters in their implementations, the basic version of GRASP requires the adjustment
of a single parameter.

Recent developments, presented in this chapter, show that different extensions to
the basic procedure allow further improvement to the solutions found by GRASP.
Among these, we highlight: reactive GRASP, which automates the adjustments of
the restricted candidate list parameter; variable neighborhoods, which permit accel-
erated and intensified local search; and path-relinking, which beyond allowing the
implementation of intensification strategies based on the memory of elite solutions,
opens the way for development of very effective cooperative parallel strategies.

These and other extensions make up a set of tools that can be added to sim-
pler heuristics to find better-quality solutions. To illustrate the effect of additional
extensions on solution quality, Figure 14 shows some results obtained for the prize-
collecting Steiner tree problem, as discussed in [22]. We consider the 40 instances
of series C. The lower curve represents the results obtained exclusively with the
primal-dual constructive algorithm (GW) of Goemans and Williamson [52]. The
second curve shows the quality of the solutions produced with an additional lo-
cal search (GW+LS), corresponding to the first iteration of GRASP. The third
curve is associated with the results obtained after 500 iterations of GRASP with
path-relinking (GRASP+PR). Finally, the top curve shows the results found by
the complete algorithm, using variable neighborhood search as a post-optimization
procedure (GRASP+PR+VNS). For a given relative deviation with respect to the



24 M.G.C. RESENDE AND C.C. RIBEIRO

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

cu
m

ul
at

iv
e 

nu
m

be
r o

f i
ns

ta
nc

es

deviation from the optimal value (%)

GW
It. Impr.
LS+PR

VNS

Figure 14. Performance of GW and successive variants of local
search for Series C problems.

optimal value, each curve indicates the number of instances for which the corre-
sponding algorithm found a solution within that quality range. For example, we
observe that the number of optimal solutions found goes from six, using only the
constructive algorithm, to a total of 36, using the complete algorithm described
in [22]. The largest relative deviation with respect to the optimal value decreases
from 36.4% in the first case, to only 1.1% for the complete algorithm. It is easy to
see the contribution made by each additional extension.

Parallel implementations of GRASP are quite robust and lead to linear speedups
both in independent and cooperative strategies. Cooperative strategies are based
on the collaboration between processors using path-relinking and a global pool of
elite solutions. This allows the use of more processors to find better solutions in
less computation time.

References

[1] S. Abdinnour-Helm and S.W. Hadley. Tabu search based heuristics for multi-floor facility
layout. International Journal of Production Research, 38:365–383, 2000.

[2] J. Abello, P.M. Pardalos, and M.G.C. Resende. On maximum clique problems in very large
graphs. In J. Abello and J. Vitter, editors, External Memory Algorithms and Visualization,
volume 50 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
pages 199–130. American Mathematical Society, 1999.

[3] R.K. Ahuja, J.B. Orlin, and A. Tiwari. A greedy genetic algorithm for the quadratic assign-
ment problem. Computers and Operations Research, 27:917–934, 2000.

[4] R.M. Aiex, M.G.C. Resende, P.M. Pardalos, and G. Toraldo. GRASP with path-relinking
for the three-index assignment problem. Technical report, AT&T Labs-Research, 2000.

[5] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution time in
GRASP: An experimental investigation. Journal of Heuristics, 8:343–373, 2002.



GRASP 25

[6] A.C. Alvim. Parallelization strategies for the metaheuristic GRASP. Master’s thesis, De-
partment of Computer Science, Catholic University of Rio de Janeiro, Brazil, 1998. In Por-
tuguese.

[7] A.C. Alvim and C.C. Ribeiro. Load balancing for the parallelization of the GRASP meta-
heuristic. In Proceedings of the X Brazilian Symposium on Computer Architecture, pages
279–282, Búzios, 1998. In Portuguese.

[8] S. Areibi and A. Vannelli. A GRASP clustering technique for circuit partitioning. In J. Gu
and P.M. Pardalos, editors, Satisfiability Problems, volume 35 of DIMACS Series on Dis-
crete Mathematics and Theoretical Computer Science, pages 711–724. American Mathemat-
ical Society, 1997.

[9] M.F. Argüello, J.F. Bard, and G. Yu. A GRASP for aircraft routing in response to ground-
ings and delays. Journal of Combinatorial Optimization, 1:211–228, 1997.

[10] M.F. Argüello, T.A. Feo, and O. Goldschmidt. Randomized methods for the number parti-
tioning problem. Computers and Operations Research, 23:103–111, 1996.

[11] M. Armony, J.C. Klincewicz, H. Luss, and M.B. Rosenwein. Design of stacked self-healing
rings using a genetic algorithm. Journal of Heuristics, 6:85–105, 2000.

[12] J.B. Atkinson. A greedy randomised search heuristic for time-constrained vehicle scheduling
and the incorporation of a learning strategy. Journal of the Operatinal Research Society,
49:700–708, 1998.

[13] J.F. Bard and T.A. Feo. Operations sequencing in discrete parts manufacturing. Manage-
ment Science, 35:249–255, 1989.

[14] J.F. Bard and T.A. Feo. An algorithm for the manufacturing equipment selection problem.
IIE Transactions, 23:83–92, 1991.

[15] J.F. Bard, T.A. Feo, and S. Holland. A GRASP for scheduling printed wiring board assembly.
IIE Transactions, 28:155–165, 1996.

[16] J.F. Bard, L. Huang, P. Jaillet, and M. Dror. A decomposition approach to the inventory
routing problem with satellite facilities. Transportation Science, 32:189–203, 1998.

[17] R. Battiti and G. Tecchiolli. Parallel biased search for combinatorial optimization: Genetic
algorithms and tabu. Microprocessors and Microsystems, 16:351–367, 1992.

[18] J.E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal of the
Operational Research Society, 41:1069–1072, 1990.

[19] S. Binato, W.J. Hery, D. Loewenstern, and M.G.C. Resende. A GRASP for job shop sched-
uling. In C.C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages
59–79. Kluwer Academic Publishers, 2002.

[20] S. Binato and G.C. Oliveira. A reactive GRASP for transmission network expansion plan-
ning. In C.C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages
81–100. Kluwer Academic Publishers, 2002.

[21] J.L. Bresina. Heuristic-biased stochastic sampling. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 271–278, Portland, 1996.

[22] S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations for the
prize-collecting Steiner tree problem in graphs. Networks, 38:50–58, 2001.

[23] S.A. Canuto, C.C. Ribeiro, and M.G.C. Resende. Local search with perturbations for the
prize-collecting Steiner tree problem. In Extended Abstracts of the Third Metaheuristics
International Conference, pages 115–119, Angra dos Reis, July 1999.

[24] C. Carreto and B. Baker. A GRASP interactive approach to the vehicle routing problem with
backhauls. In C.C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics,
pages 185–199. Kluwer Academic Publishers, 2002.

[25] I. Charon and O. Hudry. The noising method: A new method for combinatorial optimization.
Operations Research Letters, 14:133–137, 1993.

[26] I. Charon and O. Hudry. The noising methods: A survey. In C.C. Ribeiro and C.C. Ribeiro,
editors, Essays and Surveys in Metaheuristics, pages 245–261. Kluwer Academic Publishers,
2002.

[27] V.-D. Cung, S.L. Martins, C.C. Ribeiro, and C. Roucairol. Strategies for the parallel imple-
mentation of metaheuristics. In C.C. Ribeiro and C.C. Ribeiro, editors, Essays and Surveys
in Metaheuristics, pages 263–308. Kluwer Academic Publishers, 2002.

[28] P. De, J.B. Ghosj, and C.E. Wells. Solving a generalized model for con due date assignment
and sequencing. International Journal of Production Economics, 34:179–185, 1994.



26 M.G.C. RESENDE AND C.C. RIBEIRO

[29] H. Delmaire, J.A. Dı́az, E. Fernández, and M. Ortega. Reactive GRASP and Tabu Search
based heuristics for the single source capacitated plant location problem. INFOR, 37:194–
225, 1999.

[30] A.S. Deshpande and E. Triantaphyllou. A greedy randomized adaptive search procedure
(GRASP) for inferring logical clauses from examples in polynomial time and some extensions.
Mathematical Computer Modelling, 27:75–99, 1998.

[31] N. Dodd. Slow annealing versus multiple fast annealing runs: An empirical investigation.
Parallel Computing, 16:269–272, 1990.

[32] A. Drexl and F. Salewski. Distribution requirements and compactness constraints in school
timetabling. European Journal of Operational Research, 102:193–214, 1997.

[33] H.T. Eikelder, M. Verhoeven, T. Vossen, and E. Aarts. A probabilistic analysis of local
search. In I. Osman and J. Kelly, editors, Metaheuristics: Theory and Applications, pages
605–618. Kluwer Academic Publishers, 1996.

[34] T.A. Feo and J.F. Bard. Flight scheduling and maintenance base planning. Management

Science, 35:1415–1432, 1989.
[35] T.A. Feo and J.F. Bard. The cutting path and tool selection problem in computer-aided

process planning. Journal of Manufacturing Systems, 8:17–26, 1989.
[36] T.A. Feo, J.F. Bard, and S. Holland. Facility-wide planning and scheduling of printed wiring

board assembly. Operations Research, 43:219–230, 1995.
[37] T.A. Feo and J.L. González-Velarde. The intermodal trailer assignment problem: Models,

algorithms, and heuristics. Transportation Science, 29:330–341, 1995.
[38] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set

covering problem. Operations Research Letters, 8:67–71, 1989.
[39] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of

Global Optimization, 6:109–133, 1995.
[40] T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search procedure

for maximum independent set. Operations Research, 42:860–878, 1994.
[41] T.A. Feo, K. Sarathy, and J. McGahan. A GRASP for single machine scheduling with

sequence dependent setup costs and linear delay penalties. Computers and Operations Re-
search, 23:881–895, 1996.

[42] T.A. Feo, K. Venkatraman, and J.F. Bard. A GRASP for a difficult single machine scheduling
problem. Computers and Operations Research, 18:635–643, 1991.

[43] E. Fernández and R. Mart́ı. GRASP for seam drawing in mosaicking of aerial photographic
maps. Journal of Heuristics, 5:181–197, 1999.

[44] P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C.C. Ribeiro and
P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 325–367. Kluwer Academic
Publishers, 2002.

[45] P. Festa, M.G.C. Resende, P. Pardalos, and C.C. Ribeiro. GRASP and VNS for Max-Cut. In
Extended Abstracts of the Fourth Metaheuristics International Conference, pages 371–376,
Porto, July 2001.

[46] C. Fleurent and F. Glover. Improved constructive multistart strategies for the quadratic
assignment problem using adaptive memory. INFORMS Journal on Computing, 11:198–
204, 1999.

[47] J.B. Ghosh. Computatinal aspects of the maximum diversity problem. Operations Research
Letters, 19:175–181, 1996.

[48] F. Glover. Tabu search and adaptive memory programing – Advances, applications and chal-
lenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, Interfaces in Computer
Science and Operations Research, pages 1–75. Kluwer, 1996.

[49] F. Glover. Multi-start and strategic oscillation methods – Principles to exploit adaptive
memory. In M. Laguna and J.L. Gonzáles-Velarde, editors, Computing Tools for Modeling,
Optimization and Simulation: Interfaces in Computer Science and Operations Research,
pages 1–24. Kluwer, 2000.

[50] F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.
[51] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path relinking.

Control and Cybernetics, 39:653–684, 2000.
[52] M.X. Goemans and D.P. Williamson. The primal dual method for approximation algorithms

and its application to network design problems. In D. Hochbaum, editor, Approximation
algorithms for NP-hard problems, pages 144–191. PWS Publishing Co., 1996.



GRASP 27

[53] P.L. Hammer and D.J. Rader, Jr. Maximally disjoint solutions of the set covering problem.
Journal of Heuristics, 7:131–144, 2001.

[54] P. Hansen and N. Mladenović. Developments of variable neighborhood search. In C.C.
Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 415–439.
Kluwer Academic Publishers, 2002.

[55] J.P. Hart and A.W. Shogan. Semi-greedy heuristics: An empirical study. Operations Re-
search Letters, 6:107–114, 1987.

[56] H. Hoos and T. Stützle. Towards a characterisation of the behaviour of stochastic local
search algorithms for SAT. Artificial Intelligence, 112:213–232, 1999.

[57] J.G. Klincewicz. Avoiding local optima in the p-hub location problem using tabu search and
GRASP. Annals of Operations Research, 40:283–302, 1992.

[58] J.G. Klincewicz and A. Rajan. Using GRASP to solve the component grouping problem.
Naval Research Logistics, 41:893–912, 1994.

[59] G. Kontoravdis and J.F. Bard. A GRASP for the vehicle routing problem with time windows.

ORSA Journal on Computing, 7:10–23, 1995.
[60] M. Laguna, T.A. Feo, and H.C. Elrod. A greedy randomized adaptive search procedure for

the two-partition problem. Operations Research, 42:677–687, 1994.
[61] M. Laguna and J.L. González-Velarde. A search heuristic for just-in-time scheduling in

parallel machines. Journal of Intelligent Manufacturing, 2:253–260, 1991.
[62] M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line crossing min-

imization. INFORMS Journal on Computing, 11:44–52, 1999.
[63] Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search proce-

dure for the quadratic assignment problem. In P.M. Pardalos and H. Wolkowicz, editors,
Quadratic Assignment and Related Problems, volume 16 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, pages 237–261. American Mathematical
Society, 1994.

[64] X. Liu, P.M. Pardalos, S. Rajasekaran, and M.G.C. Resende. A GRASP for frequency as-
signment in mobile radio networks. In B.R. Badrinath, F. Hsu, P.M. Pardalos, and S. Rajase-
jaran, editors, Mobile Networks and Computing, volume 52 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, pages 195–201. American Mathematical
Society, 2000.

[65] S.L. Martins, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Greedy randomized adap-
tive search procedures for the steiner problem in graphs. In P.M. Pardalos, S. Rajasejaran,
and J. Rolim, editors, Randomization Methods in Algorithmic Design, volume 43 of DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science, pages 133–145.
American Mathematical Society, 1999.

[66] S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P. Pardalos. A parallel GRASP for the
Steiner tree problem in graphs using a hybrid local search strategy. Journal of Global Opti-
mization, 17:267–283, 2000.

[67] S.L. Martins, C.C. Ribeiro, and M.C. Souza. A parallel GRASP for the Steiner problem
in graphs. In A. Ferreira and J. Rolim, editors, Proceedings of IRREGULAR’98 – 5th
International Symposium on Solving Irregularly Structured Problems in Parallel, volume
1457 of Lecture Notes in Computer Science, pages 285–297. Springer-Verlag, 1998.

[68] T. Mavridou, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A GRASP for the bi-
quadratic assignment problem. European Journal of Operational Research, 105:613–621,
1998.

[69] N. Mladenović and P. Hansen. Variable neighborhood search. Computers and Operations
Research, 24:1097–1100, 1997.

[70] R.A. Murphey, P.M. Pardalos, and L.S. Pitsoulis. A parallel GRASP for the data associa-
tion multidimensional assignment problem. In P.M. Pardalos, editor, Parallel Processing of
Discrete Problems, volume 106 of The IMA Volumes in Mathematics and Its Applications,
pages 159–180. Springer-Verlag, 1998.

[71] L. Osborne and B. Gillett. A comparison of two simulated annealing algorithms applied to
the directed Steiner problem on networks. ORSA Journal on Computing, 3:213–225, 1991.

[72] P. M. Pardalos, T. Qian, and M. G. C. Resende. A greedy randomized adaptive search
procedure for the feedback vertex set problem. Journal of Combinatorial Optimization,
2:399–412, 1999.



28 M.G.C. RESENDE AND C.C. RIBEIRO

[73] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP implementation for
the quadratic assignment problem. In A. Ferreira and J. Rolim, editors, Parallel Algorithms
for Irregularly Structured Problems – Irregular’94, pages 115–133. Kluwer Academic Pub-
lishers, 1995.

[74] P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP for MAX-SAT prob-
lems. Lecture Notes in Computer Science, 1184:575–585, 1996.

[75] L.S. Pitsoulis, P.M. Pardalos, and D.W. Hearn. Approximate solutions to the turbine bal-
ancing problem. European Journal of Operational Research, 130:147–155, 2001.

[76] M. Prais and C.C. Ribeiro. Parameter variation in GRASP implementations. In Extended
Abstracts of the Third Metaheuristics International Conference, pages 375–380, Angra dos
Reis, July 1999.

[77] M. Prais and C.C. Ribeiro. Parameter variation in GRASP procedures. Investigación Op-
erativa, 9:1–20, 2000.

[78] M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decomposition

problem in TDMA traffic assignment. INFORMS Journal on Computing, 12:164–176, 2000.
[79] M.G.C. Resende. Computing approximate solutions of the maximum covering problem using

GRASP. Journal of Heuristics, 4:161–171, 1998.
[80] M.G.C. Resende and T.A. Feo. A GRASP for satisfiability. In D.S. Johnson and M.A. Trick,

editors, Cliques, Coloring, and Satisfiability: The Second DIMACS Implementation Chal-
lenge, volume 26 of DIMACS Series on Discrete Mathematics and Theoretical Computer
Science, pages 499–520. American Mathematical Society, 1996.

[81] M.G.C. Resende, T.A. Feo, and S.H. Smith. Algorithm 787: Fortran subroutines for approx-
imate solution of maximum independent set problems using GRASP. ACM Trans. Math.
Software, 24:386–394, 1998.

[82] M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: Fortran subroutines for approx-
imate solution of dense quadratic assignment problems using GRASP. ACM Transactions
on Mathematical Software, 22:104–118, 1996.

[83] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of weighted MAX-
SAT problems using GRASP. In J. Gu and P.M. Pardalos, editors, Satisfiability Problems,
volume 35 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
pages 393–405. American Mathematical Society, 1997.

[84] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Fortran subroutines for computing ap-
proximate solutions of MAX-SAT problems using GRASP. Discrete Applied Mathematics,
100:95–113, 2000.

[85] M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarization. Networks, 29:173–
189, 1997.

[86] M.G.C. Resende and C.C. Ribeiro. A GRASP with path-relinking for private virtual circuit
routing. Technical report, AT&T Labs Research, 2001.

[87] C.C. Ribeiro and M.G.C. Resende. Algorithm 797: Fortran subroutines for approximate so-
lution of graph planarization problems using GRASP. ACM Transactions on Mathematical
Software, 25:342–352, 1999.

[88] C.C. Ribeiro, C.D. Ribeiro, and R.S. Lanzelotte. Query optimization in distributed relational
databases. Journal of Heuristics, 3:5–23, 1997.

[89] C.C. Ribeiro and M.C. Souza. Variable neighborhood search for the degree constrained
minimum spanning tree problem. Discrete Applied Mathematics, 118:43–54, 2002.

[90] C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with perturbations for the
Steiner problem in graphs. INFORMS Journal on Computing, 14:228–246, 2002.

[91] R.Z. Ŕıos-Mercado and J.F. Bard. Heuristics for the flow line problem with setup costs.
European Journal of Operational Research, pages 76–98, 1998.

[92] R.Z. Ŕıos-Mercado and J.F. Bard. An enhanced TSP-based heuristic for makespan mini-
mization in a flow shop with setup costs. Journal of Heuristics, 5:57–74, 1999.

[93] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving local search. In Proceed-
ings of the Twelfth National Conference on Artificial Intelligence, pages 337–343, Seattle,
1994. MIT Press.

[94] E. Taillard. Robust taboo search for the quadratic assignment problem. Parallel Computing,
7:443–455, 1991.

[95] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs.
Mathematica Japonica, 24:573–577, 1980.



GRASP 29

[96] T.L. Urban. Solution procedures for the dynamic facility layout problem. Annals of Opera-
tions Research, pages 323–342, 1998.

[97] T.L. Urban, W.-C. Chiang, and R.A. Russel. The integrated machine allocation and layout
problem. International Journal of Production Research, pages 2913–2930, 2000.

[98] M.G.A. Verhoeven and E.H.L. Aarts. Parallel local search. Journal of Heuristics, 1:43–65,
1995.

[99] S. Voss, A. Martin, and T. Koch. Steinlib testdata library. Online document at
http://elib.zib.de/steinlib/steinlib.html, last visited on May 1st, 2001.

[100] D.L. Woodruff and E. Zemel. Hashing vectors for tabu search. Annals of Operations Re-
search, 41:123–137, 1993.

[101] J. Yen, M. Carlsson, M. Chang, J.M. Garcia, and H. Nguyen. Constraint solving for inkjet
print mask design. Journal of Imaging Science and Technology, 44:391–397, 2000.

(M.G.C. Resende) Internet and Network Systems Research, AT&T Labs Research, 180
Park Avenue, Room C241, Florham Park, NJ 07932 USA.

E-mail address, M.G.C. Resende: mgcr@research.att.com

(C.C. Ribeiro) Department of Computer Science, Catholic University of Rio de Janeiro,
r. Marquês de São Vicente, 225, Rio de Janeiro, RJ 22453-900 Brazil

E-mail address, C.C. Ribeiro: celso@inf.puc-rio.br


