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ABSTRACT. One of the main reasons in forming a sensor network is to combine the infor-
mation seen from different sensors to produce a single integrated picture that is an accurate
representation of the scene of interest. An often overlooked problem in network design is
the proper registration of the sensors in the network. Sensor registration can be seen as
the process of removing (accounting for) non-random errors, or biases, in the sensor data.
Without properly accounting for these errors, the quality of the composite picture can, and
oftentimes does, degrade. In this paper, we present an approach for solving the sensor
registration problem, based on a new continuous meta-heuristic, when not all data is seen
by all sensors, and the correspondence of data seen by the different sensors is not known
a priori. Considering a real problem from the defense industry, we show this approach
performs better than other approaches in the literature.

1. INTRODUCTION

In today’s technology-driven environment, it is becoming more and more common for
disparate sensors to view the same scene, or at least a partial overlap of the same scene.
Military examples abound from the areas of missile defense, situation awareness, and co-
operating unmanned aerial vehicles (UAVs). Medical imaging and adverse drug reaction
prediction are examples of two non-military areas where more than one sensor is receiving
information of the same scene. In military situations, oftentimes the data each sensor infers
from the scene is passed over communication links, either directly to other sensors viewing
the scene, or to a central ‘processor.’ Hence, these sensors form a sensor network.

In either case (sensors communicating directly, or to a central processor), with multiple
views of the same scene available, there lies the ability to gain a more precise representa-
tion of the scene than any one sensor could provide alone, by combining, or ‘fusing’, the
information each sensor infers from its view. Examples include combining kinematic track
states to reduce the uncertainty of the kinematic parameters, adding an identification label
to a kinematic track, and determining the number of objects of interest in the particular
scene. However, it is of the utmost importance that this fusion be done correctly.

One necessary pre-requisite for fusing data from multiple views of the same scene is to
remove sensor registration1 errors. These errors come in two forms: random and system-
atic. The random errors arise from detection and track processing techniques [2, 3], and at
the fusion stage, these errors generally cannot be reduced. On the other hand, it is imper-
ative that systematic errors be removed before data fusion occurs. The systematic errors
arise from a number of sources, namely sensor calibration offset [5], platform flexure [5],
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sensor perspective offset [1, 2, 15, 7, 6, 11, 13], sensor internal clock errors [7, 6], and
coordinate transformations [14, 7, 1, 2, 13, 11, 6]. Sensor registration is the process by
which these systematic errors are removed. Without properly accounting for these system-
atic registration errors, the composite representation of the scene has the potential to be
less precise then any one individual sensor’s view, thus defeating the purpose of a sensor
network.

Algorithms for sensor registration fall into two main categories. The first class deter-
mines the systematic error assuming the association of the data across the sensors is known.
Techniques for this class include least-squares estimation [2, 15, 7, 3] and Kalman filtering
[5, 2]. The second class of algorithms does not assume knowledge of the data association.
In effect, these types of algorithms attempt to determine the systematic error and the data
correspondence at the same time [2, 1, 6, 11, 13, 10].

In this paper we present an approach to determine systematic sensor registration errors,
based on a new continuous greedy randomized adaptive search procedure, C-GRASP [8].
This approach is applicable to situations where the correspondence of data between the
sensors is not known a priori, thus falling into the second class of sensor registration
algorithms. This paper is organized as follows. We begin by briefly describing the general
C-GRASP algorithm, and how to apply it to the problem of sensor registration. Then, we
compare our approach against two others from the literature. Finally, we provide some
conclusions and future research directions.

2. C-GRASP

C-GRASP is a new meta-heuristic that was developed to solve continuous optimization
problems. In [8], C-GRASP was shown to outperform several other continuous optimiza-
tion heuristics on a set of standard test functions, as well as on two ‘hard’ real-world
problems [4]. We begin by giving a short overview of the C-GRASP algorithm, and then
discuss its application to sensor registration.

C-GRASP is a multi-start search procedure, with each main iteration consisting of two
phases, a construction phase and a local search phase. The construction phase combines
elements of greediness and randomization to form a diverse set of good-quality solutions
from which to start local search. The best solution found over all iterations is kept as
the final solution. Pseudo-code for the main, construction, and local search C-GRASP
functions can be found in Fig. 1 to 3, and a more detailed explanation of the C-GRASP
algorithm can be found in [8].

3. C-GRASP AND SENSOR REGISTRATION

In this section, we develop our C-GRASP algorithm for the sensor registration problem.
Assume we have two sensors, A and B, and the data from sensor B has been transformed
into A’s coordinate system. Let NA and NB denote the number of targets seen by sensor A
and B respectively. Without loss of generality, assume NA ≤NB. Denote by PA(i) and CA(i)
the position and covariance estimates of the ith track of sensor A, and similarly PB( j) and
CB( j) for the jth track of B. Also, there is an unknown systematic sensor registration error
on the sensor B data, described by the function Ω (i.e. Ω(PB( j)), Ω(CB( j)) would remove
the systematic error from the jth track of sensor B). Then, the likelihood of associating the
ith track from sensor A with the jth track of sensor B can be written as a function of Ω as

(1) Fi j(Ω) =
1√

(2π)m|Si j|
e−

1
2 δT

i jS
−1
i j δi j
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procedure C-GRASP(n, `,u, f (·),MaxIters,MaxNumIterNoImprov,
NumTimesToRun,MaxDirToTry)

1 f ∗← ∞;
2 for j = 1, . . . ,NumTimesToRun do
3 x← UnifRand(`,u);h← 1;
4 NumIterNoImprov← 0;
5 for Iter = 1, . . . ,MaxIters do
6 α← UnifRand(0,1);
7 x← Construction(x, f (·),n,h,

`,u,α);
8 x← LocalSearch(x, f (·),n,h, `,u,

MaxDirToTry);
9 if f (x)< f ∗ then
10 x∗← x; f ∗← f (x);
11 NumIterNoImprov← 0;
12 else
13 NumIterNoImprov←

NumIterNoImprov+ 1;
14 end if
15 if NumIterNoImprov≥

MaxNumIterNoImprov then
/* make grid more dense */

16 h← h/2;
17 NumIterNoImprov← 0;
18 end if
19 end for
20 end for
21 return(x∗);
end C-GRASP;

FIGURE 1. Pseudo-code for C-GRASP.

where δi j = PA(i)−Ω(PB( j)) and Si j = CA(i) + Ω(CB( j)). We then define our objective
function F(Ω) to be the negative sum over all i and j of the Fi j in (1). For completeness,
this objective function is given in (2).

(2) F(Ω) =−
NA

∑
i=1

NB

∑
j=1

Fi j(Ω)

Our approach to the sensor registration problem can now be simply stated as:

(1) Find the Ω that minimizes (2).
(2) Apply a linear assignment algorithm to determine association between the sensor

A data and the corrected sensor B data.

For the first step, we use the C-GRASP algorithm described above. For the second step,
we make use of the linear assignment algorithm described in [9].

4. ALGORITHM COMPARISON

We compare our C-GRASP algorithm against the two approaches found in [1, 11] (from
here on denoted as the Blackman and Levedahl algorithms, respectively). We chose the
particular sensor registration application as put forth in [1, 11, 13]. Briefly, it can be de-
scribed as follows. We have two sensors, one active and one passive, both viewing a scene
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procedure Construction(x, f (·),n,h, `,u,α)
1 S← {1,2, . . . ,n};
2 while S 6= /0 do
3 min←+∞; max←−∞;
4 for i = 1, . . . ,n do
5 if i ∈ S then
6 zi← LineSearch(x,h, i,n, f (·), `,u);
7 gi← f (zi);
8 if min> gi then min← gi;
9 if max< gi then max← gi;
10 end if
11 end for
12 RCL← /0;
13 for i = 1, . . . ,n do
14 if i ∈ S and gi ≤ (1−α)∗min+ α∗max then
15 RCL← RCL∪{i};
16 end if
17 end for
18 j← RandomlySelectElement(RCL);
19 x j← z j; S← S \{ j};
20 end while
21 return(x);
end Construction;

FIGURE 2. Pseudo-code for C-GRASP construction phase.

procedure LocalSearch(x, f (·),n,h, `,u,MaxDirToTry)
1 x∗← x; f ∗← f (x);NumDirTried← 0;
2 S← {x : ‖x∗− x‖2 = h};
3 while NumDirTried< MaxDirToTry do
4 NumDirTried← NumDirTried+ 1;
5 x← RandomlySelectElement(S);
6 if `≤ x≤ u then
7 if f (x)< f ∗ then
8 x∗← x; f ∗← f (x);
9 S←{x : ‖x∗− x‖2 = h};
10 NumDirTried← 0;
11 end if
12 end if
13 end while
14 return(x∗);
end LocalSearch;

FIGURE 3. Pseudo-code for C-GRASP local search phase.

from possibly different perspectives. Each sensor, using no information from the other, cre-
ates tracks on the targets it senses. At some point in time, the active sensor sends its track
data (state and covariance) via a communication link, to the passive sensor. The passive
sensor transforms this track data into the local (i.e. passive) coordinate system. As a result
of this coordinate transformation, as well as possible errors in the passive sensor perspec-
tive, systematic error is introduced into the active track data. The main component of this
error is a translational shift, and other factors are small enough to be ignored. Therefore,



SENSOR REGISTRATION IN A SENSOR NETWORK BY CONTINUOUS GRASP 5

FIGURE 4. Passive sensor image plane. Triangles represent passive
tracks. Squares represent active tracks. Systematic error present.

FIGURE 5. Plot of F(Ω).

for this problem, Ω defines an unknown translation, such that when Ω is applied to the ac-
tive sensor data, the systematic error is removed. The goal is to correct for the translational
error, and at the same time determine the association of active tracks to passive tracks. Fig.
4 shows a simple example of 3 passive tracks (triangles) and 5 active tracks (squares) when
the systematic error is present (the covariances have been omitted from the figure to reduce
clutter). Fig. 5 shows the F(Ω) function for this example. From this figure, you can see 10
local minimum, with only one of those being the global minimum. This global minimum
gives precisely the translational error between the active and passive tracks. Finally, Fig. 6
shows the result upon running the C-GRASP algorithm to remove the systematic error; the
three passive tracks align with the correct active tracks.

We briefly describe the Blackman and Levedahl approaches for this problem. The
Blackman approach is an iterative scheme that starts with an initial estimate of the sys-
tematic error, applies a linear assignment algorithm (with gating) to the current corrected
scene, to produce a set of assignments. From these assignments, a new estimate of the
systematic error is determined. This process continues until the systematic error estimate
achieves convergence (i.e. the difference between the previous and current estimate is
small). The Levedahl algorithm looks at each set of possible assignments, with gating
involved to limit the set of feasible assignments. For each feasible assignment vector, an
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FIGURE 6. Result of C-GRASP algorithm. Systematic error removed.

estimate of the systematic error is computed. The assignment and systematic error that
produces the maximum of an objective function (similar to (2)) is returned as the answer.
N.B.: In the worst-case scenario, where gating does not eliminate any of the feasible as-

signments, the Levedahl algorithm will need to examine
m
∑

k=0

(m
k

) n!
(n−k)! different assignment

vectors, where m and n are the number of targets seen by the passive and active sensor, re-
spectively.

All three algorithms were implemented by the authors in the C++ programming lan-
guage and compiled with GNU g++ version 3.2.3, using compiler options -O6 -funroll-
all-loops -fomit-frame-pointer -march=i686. The algorithm used for random-number gen-
eration (needed for C-GRASP) is an implementation of the Mersenne Twister algorithm
[12].

Without loss of generality, let sensor A be the passive sensor and sensor B the active
sensor. Define a test class as a vector [NA,NB,Nc,SA], where NA denotes the number of
targets seen by sensor A, NB denotes the number of targets seen by sensor B, Nc defines
the number of targets in common to the two sensors, and SA controls the maximum 1−σ
covariance value for all targets as seen by sensor A. For each test class, we created 100
random scenarios, choosing the target positions in a square of length 20 km, and fixing
the maximum 1−σ covariance value for all targets as seen by sensor B to be 3 km. After
creating each scenario, we applied a random translational bias to all sensor B target data.
The goal of the three algorithms is thus to determine the truthful bias, or an approximation
to this bias, as well as the correct association of passive to active tracks. Table 1 lists the
test classes examined in this paper. To measure the performance of the three algorithms,
we looked at two metrics: the percentage of correct assignments, and the distance between
each truthful correspondence. These two metrics were computed for each scenario, and
averaged over each test class.

Tables 2 to 5 display the results for each test class. For each table, the first three columns
show the average percentage of correct assignments for the three algorithms. Columns 4
to 6 show the average distance. The underlined number in each row of each table de-
note the best of the three algorithms. As is clearly seen from these tables, the C-GRASP
approach does better than the other two algorithms with respect to percentage of correct
assignments. For the average distance metric, the Blackman algorithm almost always per-
forms the worst, while the Levedahl and C-GRASP approaches perform about the same.



SENSOR REGISTRATION IN A SENSOR NETWORK BY CONTINUOUS GRASP 7

TABLE 1. Test Classes

NA NB Nc SA

4 6 2 {0.5,1.0,2.0,3.0}
4 6 3 {0.5,1.0,2.0,3.0}
4 6 4 {0.5,1.0,2.0,3.0}

5 10 2 {0.5,1.0,2.0,3.0}
5 10 3 {0.5,1.0,2.0,3.0}
5 10 4 {0.5,1.0,2.0,3.0}
5 10 5 {0.5,1.0,2.0,3.0}

7 20 2 {0.5,1.0,2.0,3.0}
7 20 3 {0.5,1.0,2.0,3.0}
7 20 4 {0.5,1.0,2.0,3.0}
7 20 5 {0.5,1.0,2.0,3.0}
7 20 6 {0.5,1.0,2.0,3.0}
7 20 7 {0.5,1.0,2.0,3.0}

These tables, along with knowledge of the Levedahl upper-bound on the number of pos-
sible assignments to examine, lend support to C-GRASP comparing favorably to both the
Blackman and Levedahl approaches.

5. SUMMARY

In this paper, we have developed a new algorithm for the sensor registration problem.
We have shown that it performs better than the approaches in [1, 11]. In addition, our ap-
proach does not suffer from the exponential worst-case performance bound of [11]. Hence,
our approach can be seen as an attractive algorithm for the removal of systematic sensor
registration error.

There are two areas of future research worth mentioning. First, for the particular sen-
sor registration problem presented above, it is important to test the C-GRASP algorithm
against real target geometries, not just the random scenarios. Second, in order to show
the variety of problems C-GRASP can solve, work will be done to apply the C-GRASP
approach to other types of sensor configurations, e.g. passive to passive, as might be
evidenced by multiple UAV’s viewing a scene, and active to active, which occurs when
multiple active radars view the same scene.
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TABLE 2. SA = 0.5 km

Bl Le CG Bl Le CG
0.530 0.715 0.655 2.294 1.727 1.950

0.820 0.917 0.943 0.810 0.286 0.318

0.910 0.965 0.978 0.400 0.059 0.063

0.465 0.570 0.585 2.441 2.399 2.352

0.637 0.813 0.800 1.621 1.048 1.150

0.798 0.880 0.913 0.785 0.506 0.523

0.836 0.930 0.962 0.692 0.118 0.114

0.325 0.380 0.450 2.553 2.630 2.458

0.493 0.540 0.520 2.023 2.027 2.445

0.553 0.668 0.718 1.793 1.532 1.564

0.652 0.780 0.874 1.393 0.683 0.685

0.705 0.872 0.900 1.082. 0.322 0.299

0.799 0.899 0.951 0.910 0.111 0.136

TABLE 3. SA = 1.0 km

Bl Le CG Bl Le CG
0.625 0.770 0.785 1.826 1.336 1.305

0.793 0.880 0.927 1.043 0.798 0.497

0.945 0.960 0.993 0.282 0.061 0.092

0.450 0.650 0.615 2.607 2.090 2.297

0.677 0.853 0.833 1.450 0.802 0.901

0.820 0.923 0.943 0.826 0.348 0.342

0.856 0.948 0.972 0.677 0.058 0.024

0.375 0.345 0.430 2.342 2.760 2.510

0.483 0.617 0.653 1.995 1.778 1.548

0.573 0.755 0.757 1.783 0.946 1.003

0.594 0.802 0.826 1.488 0.724 0.732

0.745 0.863 0.952 1.026 0.381 0.298

0.747 0.920 0.987 0.995 0.095 0.096
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TABLE 4. SA = 2.0 km

Bl Le CG Bl Le CG
0.600 0.745 0.830 1.888. 1.658 1.046

0.850 0.943 0.957 0.617 0.248 0.258

0.975 0.968 0.965 0.151 0.042 0.034

0.560 0.465 0.500 1.712 2.983 2.558

0.680 0.830 0.817 1.320 0.884 0.900

0.818 0.905 0.940 0.797 0.298 0.386

0.870 0.946 0.986 0.727 0.085 0.091

0.340 0.360 0.405 2.687 2.915 2.885

0.463 0.530 0.570 2.100 2.128 2.032

0.493 0.750 0.763 2.066 0.882 0.781

0.638 0.800 0.826 1.419 0.709 0.724

0.732 0.878 0.945 1.190 0.341 0.355

0.766 0.930 0.959 1.137 0.125 0.137

TABLE 5. SA = 3.0 km

Bl Le CG Bl Le CG
0.615 0.745 0.710 1.948 1.476 1.796

0.833 0.910 0.920 0.696 0.436 0.449

0.973 0.973 0.983 0.117 0.032 0.031

0.495 0.495 0.655 2.309 2.452 1.752

0.653 0.760 0.763 1.642 1.227 1.230

0.783 0.935 0.898 0.891 0.275 0.253

0.858 0.962 0.966 0.719 0.055 0.061

0.345 0.235 0.370 2.695 3.610 2.887

0.447 0.487 0.550 2.242 2.066 2.068

0.563 0.680 0.663 1.789 1.378 1.344

0.622 0.790 0.832 1.608 0.753 0.750

0.740 0.863 0.898 1.014 0.348 0.341

0.716 0.944 0.961 1.220 0.092 0.093
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