A relax and cut algorithm for the Prize
Collecting Steiner Problem in Graphs

Alexandre Salles da Cunha!, Abilio Lucena?, Nelson Maculan', and Mauricio
Resende?

! Universidade Federal do Rio de Janeiro, Programa de Engenharia de Sistemas e
Computacdo, acunha@cos.ufrj.br
2 Universidade Federal do Rio de Janeiro, Departamento de Administracio,
3 AT&T Labs Research.

Abstract. In this paper we address the problem of finding a minimal
weight tree in a undirected graph with non-negative edges costs and non-
negative vertex penalties, the Prize Collecting Steiner Problem in Graphs
(PCSPG). Using an approach proposed by Beasley [2], we formulate the
PCSPG as a restricted minimum forest problem, which is amenable to
be solved by a Lagrangean relaxation procedure. In our approach some
inequalities are dualized when they first become violated and are dropped
when their multipliers are zero. As soon as new stronger lower bounds
are found, we temporarily modify the cost of the edges present at the
Lagrangean solution, and call an upper bounding procedure based on an
approximative algorithm [14]. We report several computational results.

1 Introduction

Consider a undirected graph G = (V, E) with non-negative integer edge costs
{¢c. : Ye € E} and with non-negative integer vertices penalties {d; : Vi € V'}. An
optimal solution to the PCSPG is a tree in G that has minimal cost: the sum of
its edge costs plus the sum of the penalties of the vertices not spanned by the
tree.

Many practical problems can be modeled as the PCSPG, for example, the
design of a local access telecommunications network. In this particular applica-
tion, the cost of the edges and the penalties associated with each vertex may
represent, respectively, the infra-structure costs to connect specified locations
(vertices) and the potential profit loss for leaving a location (customer) out of
the coverage.

The first work that seems to be correlated to the PCSPG is the paper of Segev
[16], in which a Lagrangean relaxation based Branch and Bound algorithm was
proposed to solve the Single Point Weighted Steiner Tree Problem. In the latter,
one seeks a tree with a pre-specified root and pays penalties for not spanning
non-root vertices. The Single Point Weighted Steiner Tree Problem is a variant
of the PCSPG, in which one of its vertices has an infinity penalty. Another paper
that also considered this variant is [6].

The term Prize-Collecting was first introduced by Balas [1] in the context of
the Traveling Salesman Problem and, since then, it has been used to designate
problems in which there is a clear trade-off between paying the cost to add a
new vertex to a solution and paying the penalty for leaving such vertex out of
it.

Various approximative algorithms have been proposed to solve the PCSPG
(see for instance [3] and [8]). Goemans and Williamson [8] proposed a 2 approx-
imative algorithm that inspired many other works ([4], [14], [9] and [5]).

Recently, Lucena and Resende [13] presented an integer programming formu-
lation to the PCSPG. They also solved to optimality several instances by a linear
programming relaxation algorithm that generates cutting planes dynamically.

Here, we adapt the extended formulation of the Steiner Problem in Graphs
(SPG) proposed by Beasley [2] to reformulate the PCSPG as the problem of
determining a forest with additional constraints at a minimum cost. On the one
hand, if we relax these additional constraints in a Lagrangean fashion and if
we solve the remaining unrestricted minimum forest problem, we provide lower
bounds for the PCSPG. To strengthen these lower bounds, as soon as the La-
grangean solution violates valid inequalities, we generate a cutting plane and
relax it in a Lagrangean fashion. In our approach, those dinamically generated
inequalities are dropped from the objective function as soon as their Lagrangean
multipliers become zero. With this strategy, we are able to deal with families
of inequalities that are exponential in number. In some sense, this strategy of
generating cutting planes dynamically in a Lagrangean relaxation framework
follows a previous paper of Lucena [12]. On the other hand, we derive upper
bounds by running a ”powered” heuristic procedure based on [14].

This paper is organized as follows: in section 2, we present an Integer Pro-
gramming formulation for the PCSPG. In section 3, we describe the main ideas
of the algorithm and, in section 4, we report computational results. We conclude
this work in section 5.

2 An IP Formulation for the PCSPG

To formulate the PCSPG as a minimum forest problem with additional con-
straints, we add an artificial vertex indexed by 0 together with artificial edges
{(0,i), Vi € V : ¢, = d;}. Hereafter, we denote the resulting graph Go =
(Vo, Eo) as the expanded graph. So, the new sets are simply: Vo = V U {0} and
Ey = EU {(0,i), Vi € V}. One should note that, if we consider the expanded
graph, one typical feasible solution for the PCSPG is a forest with two disjoint
components (trees). The first component has only artificial edges and its cost
is, by construction, the sum of the penalties of the vertices that are connected
directly to the artificial vertex 0. The second component is constituted by the re-
maining set of vertices and a spanning tree connecting them. With this expanded
graph, we are seeking a two component forest with minimal cost.

If we define decision variables z., Ve € Ey, assuming the value of one if edge
e belongs to the solution, and in addition, defining the set of edges induced by

a subset S as E(S) := {e = (i,j) : i,j € S C V}, the sum of the decision
variables over a set of edges M as (M) := > .\, Te, M C Ey, and, finally,
the cut of vertex i as (i) := {e : e = (i,j) € E}, we can state our integer
programming formulation for the PCSPG as

min { Z CeZe : X ERN Z|E|+|V} (1)

ecFEy

where R:

z(Eo) = [Vo| — 2 (2)
z(6(i)) > 2(1 —z(0,3)), Vi€V :d; =0 (3)
2(BES) + Y. oy <ISI-1,VjeS VSCV (4)

ieS—{j}
0<z,<1,Vec€E. (5)

Equation (2) imposes the required number of edges of the two component forest.
Inequalities (3) states that if ¢, > 0,Ve € E, in any optimal solution, vertices
with zero penalty must have a degree of at least 2, or must not be spanned.
Otherwise, a not worse tree would be found by removing such vertex and its
hitting edge from the solution. Finally, inequalities (4), called generalized subtour
elimination constraints (GSEC’s), guarantee that the solution is cycle-free. These
inequalities (4) were independently proposed by [7], [12] and [15].

It should be clear that if we relax inequalities (3) and (4) in a Lagrangean
fashion, the remaining problem can be seen as the problem of finding a forest
with exactly [Vy|—2 edges with additional constraints, at a minimum Lagrangean
cost. In terms of the shape of the forest, these additional constraints impose
conditions to the degree of zero-penalty nodes and that if a vertex i € V is
connected to the artificial one, z(o ;) = 1, ¢ must not be connected to any other
vertex in V.

3 The relax-and-cut algorithm

3.1 Lower bounding

To derive valid lower bounds for the PCSPG formulation presented in the pre-
vious section, we relax inequalities (3) - (4) in a Lagrangean fashion, and we get
the Lagrangean Problem

LP(u) = min { Z Ce(u)z, : x is a forest with |Vo| — 2 edges } (6)

ecFEy

where u and C.(u) denote the vector of Lagrange multipliers and the Lagrangean
cost of edge e as a function of the Lagrangean multipliers, respectively. One can

solve (6) for a particular choice of v in polynomial time, for example, by using
Kruskal’s [10] algorithm. To solve the Lagrangean Dual associated with (6), we
use Subgradient Optimization (SO).

Here, instead of the traditional Lagrangean relaxation approach in which all
relaxed inequalites are dualized, we adopt a significantly different methodology.
Some of the relaxed inequalities, those of type (3) and those of type (4) generated
by sets S : |S| = 2 are dualized during all the time, no matter if they are violated
or not. One should note that we have a huge number of inequalities of type (4),
even for instances of moderate sizes. In principle, it should be advantageous
not to consider all of them at the same time. Thus, for these inequalities, we
proceed in a different way: we explicitly dualize them only when they first become
violated. For each solution z(u) of (6) unfeasible to (1), we find sets S that
generate violated inequalites. With the expanded graph, we have typically two
kinds of solutions that are cutted off by inequalities of type (4). The first one is
a solution that has a cycle. Considering that we use Kruskal’s algorithm to solve
(6), we do not have to deal with this kind of infeasibility: our Lagrangean solution
is garanteed to be cycle-free. In the second unfeasible solution, there is a vertex
i € V simultaneously connected to the artificial vertex 0 and to another vertex
k € V. Consider this vertex ¢ and vertex j in (4). If a particular set S provides a
violated inequality, all subsets of S" C S : 4 € S’ also do if we choose j such that
j # i. In our approach we generate violated inequalities by sets S’ of maximal
cardinality and we choose the vertex j such that j = arg max,¢cg ,2;{C0,) (1)},
where 17 is, as before, the vertex directed connected to 0.

3.2 Upper bounding

To derive a valid initial upper bound, we run a powered version of Minkoff’s
Unrooted-Growth-Phase with Global-Strong-Prunning algorithm [14]. At the
end of the unrooted growth phase, we have a forest as an output. Each tree
in this forest is prunned by the Best-Tree-Prunning procedure [14]. The result-
ing output tree is then post processed by a minimum spanning tree (MST)
algorithm and by an one-neighborhood local optimization [4]. Considering that
this local optimization is time consuming, we restricted its use only to the first
call of our upper bounding strategy.

During the next iterations of the SO, we use dual information to drive our
heuristic procedure towards new better upper bounds. As soon as we find new
stronger lower bounds, we temporarily set the costs of the edges e € E at the
Lagrangean solution to zero, and we run Minkoff’s algorithm plus MST post-
processing to this modified instance. With this approach, we make the edges in
the Lagrangean solution more atractive to the greedy algorithm and we provide
a more diversified set of input data to the heuristic.

3.3 Reduction tests and variable fixing

Before running the SO, we perform reduction tests as described in [13]. During
the SO, we estimate linear programming reduction costs RC.(u) to all edges

in the Lagrangean solution. If RC,(u) + Z;(u) > Z,, edge e is surely not in
any optimal solution. In the last inequality, Z;(u) and Z,, are, respectively, the
current lower bound and the best upper bound obtained so far. If an edge has
been fixed, it is not considered by both Kruskal’s algorithm and by the heuristic.

4 Computational Results

In this work, we allowed the SO procedure to perform a maximum number of
10,000 iterations, halving the step size parameter in the subgradient algorithm
every 600 iterations without improving the best lower bound.

We tested the described algorithm with 64 instances (34 instances of P and
K series of [9] and 30 instances of C and D series of [4]). We sumarize the results
in the table below, where it are shown the lower and upper bounds (LB) and
(UB) obtained at the end of the 10,000 iterations if optimality was not proved,
or else the required number of iterations to prove it. In the next columns, we
present duality gaps and the percentual of edges e € E that we were able to fix.

It is important to note that our heuristic procedure produced solutions of
high quality. The heuristic hit the optimal known values for all but 4 intances
and, in this case, the maximum deviation from optimal values was about 1.1%.
Optimality was proved for 24 out of 64 instances and a maximum duality gap
of 11.6% was obtained. It is also important to mention that these results were
obtained for the same maximum number of subgradient iterations per halving
frequency ratio, even though for some instances a better ratio was found.

5 Conclusions

In this paper, we presented an algorithm that dynamically generates cuts in a
Lagrangean relaxation framework for the PCSPG. On the one hand, the heuris-
tic procedure provided solutions of high quality. On the other hand, we have
theoretical evidence that the existing duality gaps could be closed to optimality.
In a previous work [13], the linear programming relaxation of this formulation
lead to no duality gaps for all the instances tested in this work. We conjecture
that the gaps we report in this paper may be correlated to a cycling behavior of
the Lagrangean solution, probably due to instances symetries. But this point is
still an opened question that requires further investigation. We intend to imple-
ment cycles of reducing tests and subgradient optimization in order to reduce
these gaps.

% of fixed

Instance| |V| |E| |Iterations LB UB|EB=LB _ %0pt 7| edges
of E

Ci-A [500 625 5 176 18 Yes

C2-A 10 49.1 50 Yes

C3-A 3,282 413.3 414 Yes

C4-A 6,400 617.1 618 Yes

Cc5-A 1,077.0 1,080 0.3 7.8

C6-A | 500 1000 33 173 18 Yes

cr-A 51 405 50 Yes

c8-A 357.8 362 1.2 14.6

co-A 530.3 533 0.5 17.0

C10-A 855.3 859 0.4 19.2

CTi-A | 500 2500 1,992 7.1 18 Yes

Cc12-A 36.1 38 5.3 56.8

C13-A 233.0 236 1.3 34.0

C14-A 288.5 203 1.6 19.2

C15-A 496.1 501 1.0 16.2

D1-A 1000 1250 4 18.0 18 Yes

D2-A 917 49.2 50 Yes

D3-A 803.5 807 0.4 16.9

D4-A 1,197.7 1,203 0.4 6.7

D5-A 2,153.7 2,157 0.2 6.8

D6-A [1000 2000 20 17.3 18 Yes

DT7-A 217 49.1 50 Yes

D8-A 752.4 755 0.3 24.0

D9-A 1,066.0 1,070 0.4 11.1

D10-A 1,066.2 1,671 0.3 7.3

Dil-A [1000 5000 1,887 171 18 Yes

D12-A 30.2 42 7.1 57.1

D13-A 440.9 445 0.9 26.1

D14-A 503.3 602 1.5 228

D15-A 1,037.0 1,042 0.5 17.1

P100 100 317 787,770.0] 803,300 2.0 303

P100.1 284 885.512.8| 926,238 46 a7

P100.2 297 3,392 401.641,0 401,641 Yes

P100.3 316 4.702| 659,644.0| 659,644 Yes

P100.4 284 809,642.1 827,419 2.2 18.0

200 | 200 587 T,584,900,5|1,317,874 2.6 5.7

400 [400 1200 3,305,163.3(2,459,004 2.7 3.0

P400.1 1212 2.753,256.1|2,808,678 2.0 6.4

P400.2 1196 2,470,833.3|2.518,577 1.6 18.9

P400.3 1175 2.807.543.5 2,051,725 1.9 6.6

P400.4 1144 2.703.107.1|2.852.956 2.1 3.7

K100 [100 351 3,087 135,511.0] 135,511 Yes

K100.1 348 2,021| 124,128.0| 124,128 Yes

K100.2 339 7.567| 200.262.0 200.262 Yes

K100.3 407 6,483 115.953.0| 115,953 Yes

K100.4 364 521| 87,498.0| 87,498 Yes

K100.5 358 258| 119,078.0| 119,078 Yes

K100.6 307 41| 132,886.0| 132,886 Yes

K100.7 315 3,156| 172,457.0| 172,457 Yes

K100.8 343 207.184.0| 210,869 1.8 5.5

K100.9 333 1,371 122,917.0 122,917 Yes

K100.10 319 30| 133,567.0| 133,567 Yes

200 [200 691 301,255.0] 329,311 93 0

K400 [400 1515 330,440.8| 350,003 5.9 0

K400.1 1470 453,519.0| 490,771 8.2 0

K400.2 1527 432,441.0| 477,073 10.3 0

K400.3 1492 390,923.4 415,328 6.2 0.2

K400.4 1426 367.814.8| 389,462 5.9 0.1

K400.5 1456 489,988.7| 521,310 6,4 0

K400.6 1576 354,624.1| 374,849 5.7 0

K400.7 1442 450,231.5 474,466 5.4 0

K400.8 1516 399,460.0| 418,614 48 0

K400.9 1500 350.604.8| 383,105 6.5 0

K400.10 1507 357,002,7| 398,618 11.6 0.1

Table 1: Computational results for the C and D instances of [4] and for the P and K instances of [9].

References

1. Balas, E. The prize collecting traveling salesman problem. Networks, 19: 621-636,
1989.

2. Beasley, J. An SST-Based Algorithm for the Steiner Problem in Graphs. Newt-
works, 19: 1-16, 1989.

3. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.. A note on the
prize collecting travelling salesman problem. Mathematical Programming, 59: 413-
420, 1993.

10.

11.

12.

13.

14.

15.

16.

Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.. Local search with perturbations for
the prize collecting Steiner tree problem in graphs. AT &T Tecnical Report, 1999.
Cole, R., Hariharan, R., Lewenstein, M., Porat, E.. A faster implementation of
the Goemans-Williamson clustering algorithm. Proceedings of the Twelfth Annual
ACM-SIAM Symposium on Discrete Algorithms, 17-25, 2001.

Engewall, S., Gothe-Lundgren, M. Varbrand, P. A Strong Lower Bound for the
Node Weighted Steiner Tree Problem. Networks, 31: 11-17, 1998.

Goemans, M.X.. The Steiner tree polytope and related polyhedra. Mathematical
Programming, 63: 157-182, 1994.

Goemans, M.X., Williamson, D.P.. The primal dual method for approximation
algorihms and its applications to network design problems. In D.S. Houchbaum,
editor, Approzimation algorithms for NP-hard problems, 144-191, P.W.S Publishing
Co., 1996.

Johnson, D.S.; Minkoff, M., Phillips, S.. The prize collecting tree problem: The-
ory and Practice. In Proc. 11th ACM-SIAM Symp. on Discrete Algoritms, San
Francisco, CA, 2000.

Kruskal, J.B.. On the shortest spanning tree of graph and the traveling salesman
problem, Proceedings of the American Mathematical Society, 7: 48-50, 1956.
Lucena, A.. Tight bounds for the Steiner problem in graphs, July 15-17 1991. Talk
given at the TIMS-XXX - SOBRAPO XXIII Joint International Meeting, Rio de
Janeiro.

Lucena, A.. Steiner Problem in Graphs: Lagrangean Relaxation and Cutting
Planes. In Proceedings of NETFLOWY3, 147-154, 1993.

Lucena, A., Resende, M.G.C.. Strong lower bounds for the prize-collecting Steiner
problem in Graphs. AT & T Technical Report, http://www.research.att.com/mgcr,
2000.

Minkoff, M.. The Prize Collecting Steiner Tree Problem. Masther Thesis, Mas-
sachusetts Insitute of Technology, 2000.

Margot, F., Prodon, A., Liebling, T.M.. Tree polyhedron on 2-tree. Mathematical
Programming, 63:183-192, 1994.

Segev, A.. The Node-Weighted Steiner Tree Problem. Networks, 17: 1-17, 1987.

