
RANDOMIZED HEURISTICS FOR HANDOVER MINIMIZATION

IN MOBILITY NETWORKS

L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE,
AND R.M.A. SILVA

Abstract. A mobile device connects to the cell tower (base station) from

which it receives the strongest signal. As the device moves it may connect to a
series of towers. The process in which the device changes the base station it is
connected to is called handover. A cell tower is connected to a radio network
controller (RNC) which controls many of its operations, including handover.
Each cell tower handles an amount of traffic and each radio network controller
has capacity to handle a maximum amount of traffic from all base stations con-
nected to it. Handovers between base stations connected to different RNCs
tend to fail more often than handovers between base stations connected to
the same RNC. Handover failures result in dropped connections and therefore
should be minimized. The Handover Minimization Problem is to assign
towers to RNCs such that RNC capacity is not violated and the number of
handovers between base stations connected to different RNCs is minimized.
We describe an integer programming formulation for the handover minimiza-
tion problem and show that state-of-the-art integer programming solvers can
solve only very small instances of the problem. We propose several random-
ized heuristics for finding approximate solutions of this problem, including a
GRASP with path-relinking for the generalized quadratic assignment problem,
a GRASP with evolutionary path-relinking, and a biased random-key genetic
algorithm. Computational results are presented.

1. Introduction

A cellular (or mobility) network consists of fixed base stations (cell towers) and
mobile transceivers (e.g., mobile phones and tablet computers). A radio signal
between the mobile transceiver and the base station allows communication between
the transceiver and other transceivers as well as with other devices in the network.
Each base station covers an area called a cell. As a mobile transceiver moves
between cells, it may need to connect over time to several base stations. The
transfer of connection from one base station to another is called a handover.

Each base station is controlled by a radio network controller or RNC. Each
base station is connected to one RNC. The amount of traffic between transceivers
and each base station depends strongly on the location of the base station. For
example, a base station located in a city center will usually have more traffic than
one located in a rural area distant from the city center. Each RNC can handle a
maximum amount of traffic. This constraint limits the subsets of base stations that
can connect to each RNC.

Date: August 2, 2012.
Key words and phrases. Mobility networks, handover minimization, randomized heuristics,

GRASP, biased random-key genetic algorithm.
AT&T Labs Research Technical Report.

1

2 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1. Example of 100 base station instance. Nodes corre-
spond to the 100 base stations and edges to pairs of base stations
with handover.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2. Example of solution found for 100 base station and 15
RNCs. Nodes corresponding to the 100 base stations are colored
according to RNC they are assigned to.

Let T be the set of base stations and let ti be the total traffic between base
station i ∈ T and the transceivers connected to it. Let R be the set of RNCs
and let cj be the maximum amount of traffic (capacity) RNC j ∈ R can handle.
Finally, let hi,j be the total number of handovers between base stations i and j
(i, j ∈ T , i 6= j). Note that hi,j and hj,i may differ.

HEURISTICS FOR HANDOVER MINIMIZATION 3

In the handover minimization problem (HMP) we wish to find an assignment
of each base station in set T to some RNC in set R. Let πi be the index of
the RNC that base station i ∈ T is assigned to and let Φj be the set of indices
of the base stations assigned to RNC j ∈ R. The assignments must also satisfy
the capacity constraints of the RNCs, i.e. for each RNC j ∈ R, we require that
∑

k∈Φj
tk ≤ cj . Among all feasible assignments, we seek one that minimizes the

sum of handovers between base stations assigned to different RNCs, i.e. we want
to minimize

∑

i,j∈T ×T | πi 6=πj
hi,j .

Consider the graphG = (T , E) where the node-set T represents the base stations
and the edge-set E is such that if base stations i, j are such that h(i, j) + h(j, i) >
0, then e = (i, j) ∈ E. Figure 1 shows an example of graph G with 100 base
stations. Each node represents a base station and an edge is present between a
pair of base stations if there is a positive number of handovers between the base
stations. Figure 2 shows a solution for this example when there are 15 RNCs. In
the figure, base stations assigned to the same RNC are grouped by color and shape.
The HMP can be formulated as a mixed integer program (MIP). Let the binary
variable xe,k = 1 if and only if edge e has both of its endpoints assigned to RNC k.
Furthermore, let the binary variable yi,k = 1 if and if RNC πi = k. We first require
that each base station i ∈ T must be assigned to one and only one RNC, i.e.

|R|
∑

k=1

yi,k = 1, ∀i ∈ T .

The next set of constraints forces xe,k = 0 if either one of the endpoints of edge e
is not assigned to RNC k, i.e.

xe,k ≤ yi,k, ∀e = (i, j) ∈ E, k ∈ R(1)

xe,k ≤ yj,k, ∀e = (i, j) ∈ E, k ∈ R.(2)

xe,k ≥ yi,k + yj,k − 1, ∀e = (i, j) ∈ E, k ∈ R.(3)

The final set of constraints limits the set of base stations that can be assigned to
each RNC. Since RNC j has capacity for at most cj units of base station traffic, the
sum of the the traffic values of all base stations assigned to RNC j cannot exceed
cj , i.e.

∑

i∈T

tiyi,k ≤ ck, ∀k ∈ R.

Since minimizing the total handover between base stations assigned to different
RNCs is equivalent to maximizing the total handover between base stations assigned

4 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

to the same RNC, we can formulate the following mixed integer program:

max
∑

k∈R

∑

e=(i,j)∈E

h(i, j)xe,k

|R|
∑

k=1

yi,k = 1, ∀i ∈ T

xe,k ≤ yi,k, ∀e = (i, j) ∈ E, k ∈ R

xe,k ≤ yj,k, ∀e = (i, j) ∈ E, k ∈ R
∑

i∈T

tiyi,k ≤ ck, ∀k ∈ R

0 ≤ xe,k ≤ 1, ∀e = (i, j) ∈ E, k ∈ R

yi,k ∈ (0, 1), ∀i ∈ T , k ∈ R.

Note that constraints (1–2) together with the objective function make constraint (3)
redundant. For the same reason, the integrality of decision variable xe,k can be
relaxed.

The handover minimization problem is also known as the node capacitated graph

partitioning problem. Ferreira et al. (1998) were first to study this problem, propos-
ing strong valid inequalities for a branch and cut algorithm. They test their algo-
rithm on three applications of partitioning: compiler design, finite element com-
putations associated with meshes, and design of electronic circuits. The largest
instances they were able to solve to optimality had 61 nodes and 187 edges for
compiler design, 48 nodes and 81 edges for design of electronic circuits, and 274
nodes and 469 edges for finite element computations on a mesh. Mehrotra and
Trick (1997) proposed a branch and price algorithm for the node capacitated graph
partitioning problem. They test their algorithm on instances having 30 to 61 nodes
and 47 to 187 edges. The largest instances they were able to solve to optimality
had 61 nodes and 187 edges. Deng and Bard (2011) recently proposed a reactive
GRASP with path-relinking post-processing for the node capacitated graph parti-
tioning problem. They test their heuristic on instances varying in size from 30 to 82
nodes and 65 to 540 edges. They used CPLEX 11 to solve to optimality instances
having 30 nodes and most of the instances having 40 nodes. They show that their
heuristic found solutions having the same objective function value than those found
by CPLEX on most instances, but in less time than CPLEX. On larger instances,
CPLEX failed to prove optimality and found worse solutions than those found by
the reactive GRASP with path-relinking for all but one instance where they were
tied. They also compare their reactive GRASP heuristic with the combinatorial
algorithm of Mehrotra and Trick (1997) showing that their heuristic matched the
optimal solutions found by the combinatorial algorithm on all but one instance
where it found a suboptimal solution.

The remainder of this paper is organized as follows. In Section 2 we describe three
heuristics for the HMP. Experimental results are presented in Section 3. Finally,
in Section 4 we present concluding remarks.

2. Randomized heuristics

In this section we motivate the need for heuristics by first showing that the mixed
integer programming approach fails even for small instances. We then propose three

HEURISTICS FOR HANDOVER MINIMIZATION 5

randomized heuristics: a GRASP with path-relinking for generalized quadratic
assignment, a GRASP with evolutionary path-relinking, and a biased random-key
genetic algorithm.

2.1. Solving the integer programming model. In Section 3 we will describe a
procedure to generate synthetic instances of the HMP and propose a set of bench-
mark instances on which to test our algorithms. We use here a few instances of
the benchmark set to evaluate CPLEX 11, a state-of-the-art integer programming
solver, on the MIP model proposed in Section 1.

Table 1 show results of running CPLEX on instances having the following pairs
of base stations and RNCs: (20,5), (20,10), (30,5), (30,10), (30,15), (40,5), (40,10),
(40,15), (100,15), (100,25), and (100,50). CPLEX was run on multiple instances
with (base stations, RNCs) pairs (20,*), (30,*), and (40,*) and on a single instance
of sizes (100,15), (100,25), and (100,50). For each instance, the table lists the
instance name, the number of base stations, the number of RNCs, the number of
handovers in the best known solution for that instance, the number of handovers in
the best solution found by CPLEX, and the time in CPU seconds taken by CPLEX.
On the instances with 20, 30, and 40 base stations a maximum running time of 10
hours was allowed while for the instances with 100 base stations the maximum
running time was 24 hours. CPLEX found optimal solutions for all instances have
20 and 30 base stations and all instances having 40 base stations and 5 and 10 RNCs.
For two instances with 40 base stations and 15 RNCs, it could not prove optimality
in spite of having found the best known solutions. On the other three instances of
the same size, it proved optimality. Running times increased with both number of
base stations and number of RNCs. On the three largest instances, with 100 base
stations, CPLEX found solutions that were quite far from the best known solutions
even though it ran for 24 hours. These examples indicate that problems with 100
or more base stations are beyond the reach of the current version of CPLEX.

2.2. GRASP for generalized quadratic assignment. In the generalized qua-
dratic assignment problem (GQAP) we are given a set F of facilities and a set L
of locations. Each facility i ∈ F has a demand ai and each location j ∈ L has a
capacity ci. Each pair of facilities {i, j} ∈ F × F has an associated flow fi,j ≥ 0.
Furthermore, the distance between each pair of locations {k, l} ∈ L×L is dk,l ≥ 0.
We want to find an assignment π of facilities to locations. Let πi be the location
to which facility i ∈ F is assigned and let Φj be the set of facilities assigned to
location j ∈ L. We want to find an assignment such that the capacity constraints
of the locations are not violated, i.e. for each location k ∈ L we have

∑

i∈Φk

ai ≤ ck.

Among all feasible assignments, the generalized quadratic assignment problem seeks
one that minimizes

∑

i∈F

∑

j∈F

fi,j dπi,πj
,

the sum of products of flows between pairs of facilities and distances between lo-
cations these facilities are assigned to. A pair of facilities with heavy inter-facility
flow should be assigned to nearby locations.

6 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

Table 1. CPLEX runs on small instances.

Instance Solution (# handovers) Soln. Time

Name Base Stations RNCs Best Known CPLEX (seconds)

20 5 270001 20 5 540 540 0.33
20 5 270002 54 54 0.19
20 5 270003 816 816 0.23
20 5 270004 126 126 0.27
20 5 270005 372 372 0.20

20 10 270001 20 10 2148 2148 4.11
20 10 270002 1426 1426 0.94
20 10 270003 2458 2458 11.53
20 10 270004 1570 1570 2.22

30 5 270001 30 5 772 772 0.64
30 5 270002 136 136 0.66
30 5 270003 920 920 0.50
30 5 270004 52 52 0.30
30 5 270005 410 410 0.56

30 10 270001 30 10 3276 3276 18.63
30 10 270002 1404 1404 1.84
30 10 270003 2214 2214 316.89
30 10 270004 2150 2150 15.97
30 10 270005 2540 2540 48.45

30 15 270001 30 15 6178 6178 25882.84
30 15 270002 4042 4042 19.64
30 15 270003 4126 4126 8.50
30 15 270004 3920 3920 11.02

40 5 270001 40 5 610 610 1.02
40 5 270002 136 136 0.94
40 5 270003 234 234 0.75
40 5 270004 232 232 1.08
40 5 270005 774 774 1.22

40 10 270001 40 10 4544 4544 44.59
40 10 270002 2068 2068 28.14
40 10 270003 2090 2090 67.02
40 10 270004 1650 1650 548.61
40 10 270005 4316 4316 3245.55

40 15 270001 40 15 8646 8646 9146.02
40 15 270002 4586 4586 ∗36000.00
40 15 270003 5396 5396 ∗36000.00
40 15 270004 4800 4800 19250.03
40 15 270005 6272 6272 863.89

100 15 270001 100 15 19000 49270
∗86400.00

100 25 270001 100 25 36412 58637
∗86400.00

100 50 270001 100 50 60922 70740
∗86400.00

∗ – Reached maximum solution time in seconds.
Boldface indicates CPLEX failed to find best known solution.

Note that the HMP is a special case of the GQAP. If we let

• facilities in the GQAP be the base stations in the HMP,
• locations in the GQAP be the RNCs of the HMP,
• flows in the GQAP be the handovers in the HMP,
• distances in the GQAP (between each pair of RNCs in the HMP) be one,

then the objective function of the GQAP corresponds to that of the HMP.

HEURISTICS FOR HANDOVER MINIMIZATION 7

Mateus et al. (2011) proposed a GRASP with path-relinking heuristic for the
GQAP and its Java implementation. In Section 3 we describe computational results
solving instances of the HMP with this algorithm.

2.3. GRASP with evolutionary path-relinking for handover minimiza-

tion. We next describe a specially tailored GRASP with evolutionary path-relinking
for the HMP. We first give an overview of the basic structure of a GRASP with
evolutionary path-relinking heuristic. Then, we describe construction procedures,
local search algorithms, and strategies for path-relinking and evolutionary path-
relinking. We then briefly address how heuristic parameters are set and how the
appropriate variants are configured.

GRASP, or greedy randomized adaptive search procedures (Feo and Resende,
1989; 1995), is a multi-start stochastic search method, where at each iteration lo-
cal search is applied to a solution generated with a randomized greedy algorithm.
Path-relinking was proposed by Glover (1996) as a search intensification procedure
for tabu search and scatter search. Paths in the solution space, connecting two
good-quality solutions, are explored for better solutions. Laguna and Mart́ı (1999)
introduced the hybridization of GRASP with path-relinking. Their algorithm main-
tains a pool of elite, or high-quality, solutions found during the search, and at each
GRASP iteration applies path-relinking between the GRASP local search solution
and a solution chosen at random from the pool. See Resende et al. (2010) and
Ribeiro and Resende (2012) for recent surveys of path-relinking. Evolutionary
path-relinking (Festa et al., 2002; Resende and Werneck, 2004; Aiex et al., 2005)
uses the path-relinking operator to attempt to improve the pool of elite solutions.
Given a pool, evolutionary path-relinking applies path-relinking between pairs of
pool solutions, updating the pool if better solutions are found.

Algorithm 1 shows pseudo-code for a GRASP with evolutionary path-relinking
heuristic for a minimization problem. In line 2 the value f∗ of the best solution
found is initialized to a large number while in line 3 the pool P of elite solutions
is initialized empty. The variable it2evPR which measures the number of GRASP
iterations left until evolutionary path-relinking is carried out is initialized in line 4.
The main loop of the algorithm goes from line 5 to line 22. It is repeated until
some stopping criterion is satisfied. In line 6, a randomized greedy solution x is
constructed. If the construction phase fails to produce a feasible solution, a repair
procedure is applied to x in line 8 with the objective of making x feasible. In
line 10 local search is applied, starting at x and the resulting local minimum is
tested for inclusion in the elite pool in line 11. If the current pool of elite solutions
is not yet full, then solution x is accepted if it differs from all solutions currently
in the pool. It is added to the pool and does not replace any solution already in
the pool. Otherwise, if the pool is full, x is accepted if it is better than at least
one solution currently in the pool. In this case, if accepted, x replaces the worst
pool solution if x is better than all pool solutions. Otherwise, if it is better than at
least one solution but not all solutions, then it replaces the least different solution
among those having worse cost. In the first GRASP iteration, path-relinking is not
applied. From then on, in line 13 a solution xp is selected from the pool and path-
relinking is applied between x and xp in line 14. The resulting solution x returned
by path-relinking is tested for inclusion in the elite pool in line 15. If x is accepted
into the pool, the pool is updated to include x. Evolutionary path-relinking is done
once every ie GRASP iterations. This condition is tested in line 17 and if triggered

8 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

1 GRASP+evPR

2 f∗ ←∞;

3 P ← ∅;

4 it2evPR← ie;

5 while stopping criterion is not satisfied do

6 x← GreedyRandomized(·);

7 if x is not feasible then

8 x← Repair(x);

9 end

10 x← LocalSearch(x);

11 P ← UpdateElite(P, x);

12 if |P | ≥ 2 then

13 xp ← SelectPoolSolution(P, x);

14 x← PathRelinking(x, xp);

15 P ← UpdateElite(P, x);

16 end

17 if it2evPR = 0 then

18 P ← evPathRelinking(P, x);

19 it2evPR← ie + 1;

20 end

21 it2evPR← it2evPR− 1;

22 end

23 return argmin{f(x) | x ∈ P}

Algorithm 1: GRASP with evolutionary path-relinking.

evolutionary path-relinking is done in line 18 where the updated pool is returned
and the counter of iterations to the next application of evolutionary path-relinking
is re-initialized in line 19. At end of each iteration, this counter is decremented by
one in line 21. A pool solution having minimum objective function value is returned
by the procedure in line 23.

The randomized greedy algorithm for handover minimization constructs a solu-
tion one base station to RNC assignment at a time. RNCs are initially permuted
at random and the algorithm scans the RNCs in the permuted order, dealing with
only one RNC at a time. Base stations are assigned to the current RNC being
scanned until this RNC does not have enough leftover capacity to accept another
base station. When an RNC being scanned is empty, a first base station must
be assigned to it. Let T̄ be the set of all yet-unassigned base stations for which
the RNC capacity is greater than the traffic associated with the base station. We
select a base station i ∈ T̄ to assign to the RNC with probability proportional to
∑

j∈T , (j 6=i) h(i, j)+h(j, i). The greedy choice would be to select the yet-unassigned

base station

i∗ = argmax{
∑

j∈T (j 6=i)

h(i, j) + h(j, i) | i ∈ T̄ }.

The selection process proposed for this heuristic is therefore randomized greedy
since the choice is not deterministic. After each base station is assigned to the RNC,
the RNC’s available capacity is adjusted to reflect the assignment just made. Base

HEURISTICS FOR HANDOVER MINIMIZATION 9

stations are assigned to the RNC while the RNC has available capacity. Suppose
now that one or more base stations have been assigned to the current RNC and
again let T̄ denote the set of base stations that can be accommodated by the RNC
and let Φ denote the set of base stations already assigned to the RNC. Define the
greedy function associated with base station i ∈ T̄ to be g(i) =

∑

j∈Φ h(i, j)+h(j, i).

A restricted candidate list (RCL) is formed such that

RCL = {i ∈ T̄ | g(i) ≥ g∗ − α(g∗ − g∗)},

where g∗ = min{g(i) | i ∈ T̄ }, g∗ = max{g(i) | i ∈ T̄ }, and α ∈ R such that
0 ≤ α ≤ 1. A base station in the RCL is selected uniformly at random and
is assigned to the RNC. In this paper we use two variants of this construction
procedure, which we call fixed and random. In fixed construction we use a fixed
value for the RCL parameter α, whereas in random, fixed lower and upper bounds
for α are given and a value within these bounds is selected uniformly at random at
each GRASP iteration.

After scanning all available RNCs, it may occur that not all base stations are as-
signed. In such a case, a repair procedure is applied to attempt to achieve feasibility.
Let T̂ be the set of base stations that have not be assigned. Let uk =

∑

i∈Φk
ti be

the total utilization of RNC k, where Φk is the set of base stations assigned to RNC
k. For base station i ∈ T̂ , let ûk = ti+uk be the utilization of RNC k if base station
i were to be assigned to it. Clearly ûk > ck. The repair procedure scans the base

stations in T̂ and assigns each base station to RNC k = argmin{ûj | j ∈ R} and
updates the utilization uk of RNC k, i.e. uk ← ûk. This is continued until all base
stations are assigned to an RNC. The resulting base station to RNC assignment is
clearly infeasible since at least one RNC has an utilization that exceeds its capacity.
Let πi be the RNC to which base station i is assigned. To try to achieve feasibility,
we attempt to swap RNC assignments of base station i ∈ T̂ assigned to RNC πi

with some base station j ∈ T \ T̂ assigned to RNC πj 6= πi. If the swap results
in feasible assignments, i.e. if ûπi

− ti + tj ≤ cπi
and ûπj

− tj + ti ≤ cπj
, then the

swap is made and the set T̂ is updated, i.e. T̂ ← T̂ \ {i}. Otherwise, if ti > tj and
ûπj
− tj+ ti ≤ cπj

then by making the swap, RNC πj remains underutilized and the

over-utilization of RNC πi is reduced. The swap is made and the set T̂ is updated,
i.e. T̂ ← T̂ \ {i}∪ {j}. This repair procedure continues until a feasible assignment

is found, i.e. T̂ = ∅, or a maximum number of swap attempts is reached and we
declare the repair procedure to have failed and a new GRASP iteration begins.

Once the randomized greedy construction procedure produces an assignment
vector {π1, π2, . . . , π|T |}, where πi is the RNC to which base station i ∈ T is
assigned to, a local search algorithm attempts to improve the assignment by making
changes in the assignment vector. We propose three local search algorithms, move-

1, move-max, and swap-2. The three algorithms scan the base stations in increasing
order of their total traffic. For base station i, assigned to the RNC πi, the procedure
checks if there is any RNC k 6= πi with enough capacity to accommodate base
station i such that the reassignment of base station i from RNC πi to RNC k
reduces the total handover count. If such RNC is found, base station i is reassigned
to RNC k. In the case of move-1, the procedure is restarted at the first base station
in the permutation (i.e. the base station with the smallest traffic), whereas in the
case of move-max it proceeds to the next station in the permutation (i.e. the station
with least traffic among those with more traffic than the just reassigned station).

10L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

The procedure ends when the all base stations are scanned and no improving move
is found. In the case of swap-2, pairs of base station assignments are considered for
swapping, i.e. if base station i is assigned to RNC πi and base station j is assigned
to RNC πj , the swap would assign i to πj and j to πi. This is only feasible if the
available capacities of πi and πj allow and if πi 6= πj . If a feasible swap can be
made and this results in a reduction of the handover count, then the swap is made
and the local search proceeds to the base station pair i and j+1 in case j ≤ n− 1,
otherwise the pair i+1 and i+2 is considered. The number of pairs considered for
swapping is limited by the value

β ×
∑

i∈R





∑

j∈R\{i}

|Φi| × |Φj |



 ,

where 0.01 ≤ β ≤ 0.3 is an input parameter and Φk is the set of base stations
assigned to RNC k. In the case of all three local search procedure, the resulting
local minimum is denoted by Πl.

Besides local search, intensification is done with both path-relinking and evo-
lutionary path-relinking. We refer the reader to Ribeiro and Resende (2012) for
descriptions of the many variants of these search intensification methods.

During the search, the algorithm maintains a pool, or set, of elite solutions. In
each GRASP iteration, a solution Πe is chosen at random from the elite set and a
path-relinking operator is applied, exploring a path in the solution space spanned
Πe and the local minimum Πl. Let the symmetric difference Γ(Π1,Π2) between two
solutions Π1 and Π2 be the set of base stations assigned to different RNCs in these
assignments. The method selects a solution Πe from the elite set with probability
proportional to the cardinality of its symmetric difference with respect to Πl.

In what follows we describe the basic path-relinking operator used in this paper.
Path-relinking is given a starting solution Πs = {πs

1, π
s
2, . . . , π

s
|T |} and a guiding

solution Πg = {πg
1 , π

g
2 , . . . , π

g

|T |}. Depending on the flavor of path-relinking used,

Πs and Πg can vary. In forward path-relinking, for example, Πs = Πl and Πg = Πe.
At each iteration of path-relinking we consider each base station in the symmetric
difference Γ(Πs,Πg) and reassign each base station i ∈ Γ(Πs,Πg) to πg

i and eval-
uate the ratio of cost improvement to the resulting capacity deficit. Let Πs ⊕ πg

i

denote the assignment obtained by reassigning base station i in Πs to RNC πg
i and

let ∆h(i) denote the change in the total number of handovers due to this reassign-
ment (an increase in the number of handovers corresponds to a value ∆h(i) < 0).
Denote the capacity utilization of RNC πg

i to be σπ
g

i
= ti +

∑

j∈Φ
π
g
i

tj and let

∆c(i) = 1 + max{0, σπ
g

i
− cπg

i
}. The cost function used by path-relinking to se-

lect a move is ∆h(i)/∆c(i). The greedy choice for a move in path-relinking is
to choose the reassignment (of base station i) that maximizes the greedy func-
tion g(i) = ∆h(i)/∆c(i). This cost function penalizes moves that lead to capacity
deficits in the RNC. Our algorithm defines a restricted candidate list (RCL) such
that

RCL = {i ∈ Γ(Πs,Πg) | g(i) ≥ g∗ − αp(g
∗ − g∗)},

where g∗ = min{g(i) | i ∈ Γ(Πs,Πg)}, g∗ = max{g(i) | i ∈ Γ(Πs,Πg)}, and
0 ≤ αp ≤ 1. A move is selected from the RCL uniformly at random. If the
move does not lead to any infeasibility, then the selected move is only based on
the difference in handover count. Once a move is selected, say base station i is

HEURISTICS FOR HANDOVER MINIMIZATION 11

reassigned to RNC πg
i , we then redefine Πs to be Πs⊕πg

i . The procedure continues
until |Γ(Πs,Πg)| = 1. This way, path-relinking generates a sequence of neighboring
solutions, each of which may be feasible or infeasible, and selects, among the feasible
solutions, a solution with the fewest handovers. On this solution, local search is
applied and the local minimum Πp is returned as the path-relinking solution.

The GRASP with path-relinking heuristic attempts to add all local minimum
solutions (Πl produced by local search after construction and Πp produced by path-
relinking) into the elite set. Let us call this local minimum simply Π. If the elite
set is not full, then Π is placed in the set as long as it is different from all elite
set solutions. Next, we describe the case when the elite set if full. If the number
of handovers of solution Π is less than that of the best solution in the elite set,
Π replaces a worst solution in the set. If the number of handovers of solution Π
is greater than that of the best solution in the elite set but less than that of the
worst, then Π replaces the elite set solution most similar to it (that minimizes the
symmetric difference with respect to it) among all elite set solution having greater
number of handovers than it does.

We allow four flavors of path-relinking: forward, backward, back and forth,
and mixed. Suppose path-relinking is to be applied between solutions Πl and Πe.
In forward path-relinking, we have Πs = Πl and Πg = Πe and in backward path-
relinking, we have Πs = Πe and Πg = Πl. In back and forth path-relinking, one path
is produced with Πs = Πl and Πg = Πe and another with Πs = Πe and Πg = Πl.
Finally, with mixed path-relinking, we move both Πs and Πg, alternating at each
step which solution plays the role of starting and guiding solution. The solutions
eventually meet when their symmetric difference differs by one. Finally for each
flavor of path-relinking we have full and truncated versions. In the full version, the
entire path linking the two solutions is explored while in the truncated version γ%
of the path is explored, where γ is an input parameter such that 20% ≤ γ ≤ 70%.

We described a number of construction, local search, path-relinking, and evolu-
tionary path-relinking procedures that can be combined in different ways to result
in a GRASP with evolutionary path-relinking heuristic. Logical parameters can be
associated with these procedures and used to configure the heuristic. Furthermore,
each procedure has associated with it a number of numerical parameters that need
to be tuned. In the experiments described in Section 3 we tune both the logical and
numerical parameters with an automatic parameter tuning procedure described in
Morán-Mirabal et al. (2012).

2.4. Biased random-key genetic algorithm for handover minimization.

Biased random-key genetic algorithms (BRKGAs) evolve a set (or population) of
vectors of random keys (or individuals) applying Darwin’s principle of survival of
the fittest. See Gonçalves and Resende (2011) for a recent survey of BRKGAs.

A BRKGAworks with a fixed-size population P made up of |P| vectors χ1, χ2, . . . ,
χ|P| of randomly generated numbers (random keys) in the real interval (0, 1]. Each
vector has n random keys. The initial population therefore consists of |P| vectors
of n random keys each. A decoder is a deterministic algorithm that takes as input
a vector of random keys χ and outputs a solution to the optimization problem and
a fitness value (or objective function cost) f(χ) for the vector.

At each iteration (or generation) of the algorithm, the population is partitioned
into a smaller set Pe of elite individuals and a larger set Pē with the remaining indi-
viduals of P . The evolutionary dynamics of a BRKGA are as follows. First, all elite

12L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

individuals are copied, without change, to the population of the next generation.
Then, a set Pm of mutant individuals (a mutant is simply a vector of random keys,
generated in the same way as an individual of the initial population) is inserted
into the population of the next generation. We restrict the sizes of sets Pe and Pm

to be such that |Pe|+ |Pm| ≤ |P| and 2× |Pe| ≤ |P|.
The first two steps of the evolutionary dynamics account for |Pe|+ |Pm| individ-

uals and therefore px = |P| − |Pe| − |Pm| individuals will still need to be inserted
into the population of the next generation. This is done through the combination
(or mating) of px pairs of individuals from the current population, one from Pe and
another from Pē. Individuals are selected for mating at random and with replace-
ment. Therefore a single individual may mate more than once in each generation.
Let a ∈ Pe and b ∈ Pē denote the elite and non-elite individuals, respectively, and
let c denote the offspring that results from the combination of a and b. Mating is
done through parameterized uniform crossover (Spears and DeJong, 1991) where a
biased coin is flipped n times, once for each random key, to determine from which
parent the offspring will inherit each key. The coin has probability ph > 1

2 to result
in heads. For i = 1, . . . , n, the i-th component of c receives the i-th component of a
if the coin toss results in heads or the i-th component of b otherwise. This way an
offspring has a greater chance to inherit the keys of its elite parent. Furthermore,
since a given elite parent is selected from the smaller set Pe, it will have a greater
chance of being selected for mating than will a given non-elite parent.

1 BRKGA(|P|, |Pe|, |Pm|, n, ph)

2 Generate population P with individuals having n random-keys ∈ (0, 1];

3 while stopping criterion is not satisfied do

4 Evaluate fitness of each new individual in P ;

5 Partition P into sets Pe and Pē;

6 Initialize next population: P+ ← Pe;

7 Generate mutants Pm each having n random-keys ∈ (0, 1];

8 P+ ← P+ ∪ Pm;

9 for i← 1 to |P| − |Pe| − |Pm| do
10 Select parent a at random from Pe;

11 Select parent b at random from Pē;

12 for j ← 1 to n do

13 Toss biased coin having probability ph > 0.5 of heads;

14 if Toss is heads then c[j]← a[j];

15 else c[j]← b[j];

16 end

17 P+ ← P+ ∪ {c};

18 end

19 P ← P+;

20 end

21 return χ∗ ← argmin{f(χ) | χ ∈ P}

Algorithm 2: Biased random-key genetic algorithm.

The BRKGA is summarized in the pseudo-code of Algorithm 2. It takes as
input the size of population P , the sizes of the elite set Pe and mutant set Pm,

HEURISTICS FOR HANDOVER MINIMIZATION 13

where |Pe| + |Pm| ≤ |P| and 2 × |Pe| ≤ |P|, the size of the random-key vector
(n), and the probability that the toss results in heads (ph > 0.5). In line 2 the
initial population is generated, consisting of |P| vectors, each with n real-valued
keys randomly generated in the interval (0, 1]. The iterations of the algorithm
correspond to the loop in lines 3 to 20. In line 4, the finesses of all newly added
individuals of population P are evaluated (this can be done in parallel). Population
P is partitioned into a smaller set Pe of elite individuals (those with the best overall
fitness values) and a larger set Pē with the remaining population. The population
of the next generation is initialized with the elite set of the current population in
line 6. In line 7 the mutant set Pm is generated in the same way that the initial
population was generated. It is added to the population of the next generation in
line 8. The remainder of the population of the next generation is completed in lines 9
to 18. Parents a and b are selected at random in lines 10 and 11, respectively, and
parameterized uniform crossover is applied in lines 12 to 16 to produce the offspring
c which is added to the population of the next generation in line 17. An iteration
is completed in line 19 by making the population of the current generation that
of the next generation. Finally, after the stopping criterion has been satisfied, the
fittest individual of population P is returned by the algorithm in line 21.

BRKGA are based on a similar algorithm proposed by Bean (1994). Bean’s
algorithm differs from BRKGA in that in Bean’s algorithm parents are selected at
random from the entire population and the coin flip is not necessarily biased in
favor of the more fit parent.

2.4.1. Encoding and decoding. Solutions of the handover minimization problem are
encoded as a 2× |T | vector χ of random keys. The first |T | keys dictate the order
in which base stations are considered for assignment and the last |T | keys are used
to make the assignments.

To decode the vector χ and produce an assignment of base stations to RNCs,
the following steps are computed:

(1) Initialization: Initialize empty the set τ of unassigned base stations, i.e.
τ ← ∅, and for RNC k = 1, . . . , |R|, initialize empty the set of base stations
assigned to RNC k, i.e. Φk ← ∅.

(2) Order base stations: Sort the first |T | keys to produce a permutation
of the base stations defining the order in which they will be tentatively
assigned, i.e. the index of the i-th smallest key is the i-th base station to
be tentatively assigned.

(3) Assign initial base stations: Consider the base stations in the order
determined in step (2). The target RNC for base station i is k = ⌈χ[|T |+i]×
|R|⌉. If RNC k can accommodate base station i, i.e. if

∑

j∈Φk
tj + ti ≤ ck,

then assign base station i to RNC k, i.e. Φk ← Φk ∪ {i}. Otherwise,
add base station i to τ , the set of base stations to be assigned later, i.e.
τ ← τ ∪ {i}.

(4) Assign remaining base stations: Now consider the remaining base sta-
tions, i.e. those in set τ . Scan base stations in set τ in the order determined
in step (2). For each base station i ∈ τ , if there exists an RNC that can
accommodate base station i, consider only RNCs that can accommodate
base station i. Otherwise, consider all RNCs. Assign base station i ∈ τ
to the RNC which hosts the set of base stations which has maximum total
handovers with base station i. Note that if no RNC can accommodate base

14L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

station i, then an infeasible assignment will be made. Such assignments are
penalized with a high handover cost.

(5) Local search: Apply local search, scanning base stations in the order
determined in step (2). Scan RNCs in increasing order of their indices.
If moving base station i from its current RNC (say RNC j) to another
RNC (say RNC k) that can accommodate it reduces the total number of
handovers, then move the base station from RNC j to RNC k. Repeat
until no reduction in number of handovers can be obtained by moving a
base station to a different RNC.

(6) Adjust chromosomes: Adjust the keys in the second half of vector χ so
that they can be decoded directly into the final locally optimal assignment
in step (3) of the decoder. For example, if tower i was initially assigned to
RNC j = ⌈χ[T + i]⌉ and was reassigned to RNC k during decoding, then
adjust the chromosome: χ[|T |+ i]← χ[|T |+ i] + (k − j)× |R|−1.

3. Experimental results

In this section we compare the algorithms on benchmark synthetic instances and
on a real-world instance from a large wireless services provider.

3.1. Instances. To test the performance of our heuristics, we propose a set of
synthetically generated instances of handover minimization that mimic problems
encountered in practice. We also test the heuristics on one instance from a large
wireless provider.

We first describe how instances are generated. The idea is to randomly locate
base stations in the unit square, each with a randomly generated amount of traffic,
and associate with closely located pairs of stations an amount of handover that
is inversely proportional to the distance between the stations. Pairs of base sta-
tions located beyond a given maximum distance do not have handover between
themselves. RNC capacities are generated with the goal of the RNCs being able
to accommodate all of the base station traffic. To generate an instance we are
given as input parameters |T | (number of base stations), |R| (number of RNCs), r
(maximum handover distance), ut and lt (upper and lower bound on base station
traffic), uh and lh (upper and lower bounds on number of handovers), and uc and
lc (upper and lower bounds on capacity slacks) such that uc > lc > 1. The steps of
the generation process are:

(1) Generate uniformly at random in the unit square the x and y coordinates
of the |T | base stations.

(2) For each base station i ∈ T , generate its traffic uniformly at random be-
tween its lower and upper bounds, i.e. ti = randunif(lt, ut).

(3) Let di,j be the distance between stations i, j ∈ T ×T . For each pair of base
stations i, j ∈ T × T such that di,j ≤ r, generate an amount of handover
hi,j equal to (lh−uh)/r

2×d2i,j +uh. For all i, j ∈ T ×T such that di,j > r,
we have that the handover hi,j = 0.

(4) For each RNC j ∈ R, generate a capacity cj equal to randunif(lc, uc)× t̄,
where t̄ = (

∑

i∈T ti)/|T |.

Note that step 4 goes not guarantee that a feasible solution will be generated
since it is possible that some base station has more traffic associated with it than
the capacity of the largest RNC. In an attempt to relax somewhat the capacity

HEURISTICS FOR HANDOVER MINIMIZATION 15

constraint, we reassign to each RNC the largest capacity generated, i.e. cj ←
max{ ck : k ∈ R }, for all j ∈ R.

The benchmark set of 83 synthetic instances consists of five instances for each of
the following combinations (b, r) of base stations and RNCs: (20, 5), (30, 5), (30, 10),
(40, 5), (40, 10), (40, 15), (100, 15), (100, 25), (100, 50), (200, 15), (200, 25), (200, 50),
(400, 15), (400, 25), (400, 50), and four instances with the following combinations:
(20, 10), (30, 15). 1 These last two problem classes only have four instances because
one of five of each was infeasible. For all instances we used the following parameters:
r = 0.17, (lt, ut) = (5, 50), (lh, uh) = (5, 200), and (lc, uc) = (1.05, 1.15).

The real instance from a large wireless services provider has about 1000 base
stations, 30 RNCs, and about 2% of the ordered base station pairs have handover
between them.

3.2. The experiments. The goal of the computational experiments was to study
the behavior of three heuristics: GQAP, the GRASP with path-relinking for the
generalized quadratic assignment problem of Mateus et al. (2011), GevPR-HMP, the
GRASP with evolutionary path-relinking described in Subsection 2.3, and BRKGA,
the biased random-key genetic algorithm described in Subsection 2.4.

Instances were categorized into two sets: small, i.e. those with the following
combinations (b, r) of base stations and RNCs: (20, 10), (30, 15), (20, 5), (30, 5),
(30, 10), (40, 5), (40, 10), (40, 15), and large, i.e. those with the following combi-
nations (b, r) of base stations and RNCs: (100, 15), (100, 25), (100, 50), (200, 15),
(200, 25), (200, 50), (400, 15), (400, 25), and (400, 50).

Both GevPR-HMP and BRKGA were written in C++ and compiled with the g++

compiler using optimization flag -O3. GQAP was implemented in Java and compiled
into bytecode with javac version 1.6.0 05. All three implementations used for
random-number generator an implementation of the Mersenne Twister algorithm
(Matsumoto and Nishimura, 1998). GQAP used the implementation of the Mersenne
Twister from the COLT2 library. BRKGA was implemented using the API described
in Toso and Resende (2012). All experiments other than those with CPLEX were
done using the Condor job control system (University of Wisconsin, 2012) which
submitted jobs to either a cluster running Intel Xeon X5650 processors at 2.67 GHz
or a cluster running Intel Xeon E5530 processors at 2.4 GHz.

GevPR-HMP was run on the large instances with parameters tuned automatically
using the procedure described in Morán-Mirabal et al. (2012), where those heuristic
configurations and parameters are listed. On all small instances GevPR-HMP was run
using identical configuration and parameter settings as follows. The construction
randomly chose an RCL α parameter in the interval [0, 0.5], local search was move-
max with all base stations scanned at most once, and greedy, complete, back &
forth path-relinking was used. Evolutionary path-relinking was complete and back
& forth. It used a greedy randomized scheme with αp = 0.2. Evolutionary path-
relinking was triggered every 200 GRASP iterations. The size of the elite set was
10 for both small and large instances.

GQAP used the default configuration and parameter settings used in the experi-
ments described in Subsection 3.2 of Mateus et al. (2011).

1Available at http://www.research.att.com/~mgcr/data/handover-minimization.
2COLT is a open source library for high performance scientific and technical computing in

Java. See http://acs.lbl.gov/~hoschek/colt/.

16L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

BRKGA was run with three independent populations, each of size |P| = 1000
(|Pe| = 300 elite and |Pm| = 200 mutants). Every 500 generations populations
pass to each other their two best individuals, replacing the worst individuals of the
populations. Every 500 generations without improvement of the incumbent solu-
tion, a reset was triggered, replacing each population with new randomly generated
individuals. The probability that an offspring inherits the key from the elite parent
during each step of crossover was set to ph = 0.7.

The experiments were divided into two types: those on small instances and those
on large instances. On the small instances the mixed integer programming solver
CPLEX 11.1 was run with a time limit of 10 hours on an Intel Core 2 Duo processor
running at 2.2 GHz on Microsoft Windows XP. As we saw in Subsection 2.1, CPLEX
was able to prove optimality for all instances having up to 40 base stations and 10
RNCs as well as for three of the five instances having 40 base stations and 15 RNCs.
For each small instance, the three heuristics (GevPR-HMP, GQAP, and BRKGA) were
each run independently five times for one hour each run. Tables 2 and 3 show the
results for these runs. For each instance, the tables show the name and size of the
instance, and for each heuristic the average solution value over the five runs, the
average time taken to find the best solution in each run, and the value of the best
known solution for this instance.

The tables show that GevPR-HMP found the best known solution on all small
instances on all five independent runs. GQAP and BRKGA did so on all but two and
three instances, respectively. On each of the instances where GQAP failed to find
the best known solution on all runs, it failed on only one of the five runs. On the
instances where BRKGA failed to find the best solution on all five runs, it failed once
on 40 15 270001, twice on 40 15 270002, and all five times on 40 15 270004. With
respect to time taken to find the best solution, GevPR-HMP was clearly the fastest,
only having higher average running times than GQAP on two of the 48 instances and
was faster than BRKGA on all but one instance. BRKGA was faster than GQAP on 25
of the 48 instances. Note that our implementation of BRKGA allows decoding to
be done in parallel. The table reports user times for BRKGA, i.e. the sum of the
times taken by all processors not taking into account any parallel processing. Real
time (wall clock time) for BRKGA were actually less than reported in the tables. As
shown in Figure 3, real time to find the best solution using 16 processors was, on
average, about a factor 11 times smaller than the reported running times. Parallel
efficiency with 16 processors (the ratio of running time with a single processor to
16 times the running time with 16 processors) varied from 60% to 80%. Only with
32 processors did parallel efficiency drop to about 30%.

For the 45 large instances, CPLEXwas run on only three instances (100 15 270001,
100 25 270001, and 100 50 270001) always failing to find a near-optimum solution
in 24h of running time, as shown in Table 1. On the entire set of large instances
the three randomized heuristics were run independently five times for 24 hours each
and the best solution of each run was recorded. Tables 4 and 5 summarize these
results. For each instance the tables list the instance name and size, and the av-
erage and best solution values for each of the three heuristics and the best known
solution value for the instance. Note that the best known solution may correspond
to independent runs done by the authors that were longer than 24h. GevPR-HMP

was the best of the three randomized heuristics. It found solutions with lower av-
erage number of handovers than BRKGA on 44 of the 45 instances. With respect to

H
E
U
R
IS

T
IC

S
F
O
R

H
A
N
D
O
V
E
R

M
IN

IM
IZ

A
T
IO

N
1
7

Table 2. Algorithm performance for small instances on one hour runs (part 1)

Instance GevPR-HMP GQAP BRKGA

Name Stations RNCs Avg. solution Avg. time Avg. solution Avg. time Avg. solution Avg. time Best known solution
(handover) (sec) (handover) (sec) (handover) (sec) (handover)

20 5 270001 20 5 540 0.017 540 1.030 540 0.217 540
20 5 270002 54 0.001 54 0.690 54 0.270 54
20 5 270003 816 0.001 816 0.600 816 0.282 816
20 5 270004 126 0.001 126 0.650 126 0.284 126
20 5 270005 372 0.001 372 0.870 372 0.292 372

20 10 270001 20 10 2148 0.001 2148 1.950 2148 0.230 2148
20 10 270002 1426 0.001 1426 1.230 1426 0.234 1426
20 10 270003 2458 0.001 2458 2.500 2458 0.487 2458
20 10 270004 1570 0.004 1570 0.920 1570 0.471 1570

30 5 270001 30 5 772 0.006 772 2.790 772 0.384 772
30 5 270002 136 0.001 136 3.500 136 0.380 136
30 5 270003 920 0.261 920 3.050 920 0.542 920
30 5 270004 52 0.003 52 2.830 52 0.377 52
30 5 270005 410 0.005 410 3.480 410 0.530 410

30 10 270001 30 10 3276 0.087 3276 3.580 3276 1.457 3276
30 10 270002 1404 0.046 1404 3.880 1404 1.409 1404
30 10 270003 2214 0.119 2214 3.370 2214 14.263 2214
30 10 270004 2150 1.306 2150 4.870 2150 34.784 2150
30 10 270005 2540 0.531 2540 3.970 2540 3.303 2540

1
8
L
.F

.
M

O
R
Á
N
-M

IR
A
B
A
L
,
J
.L

.
G
O
N
Z
Á
L
E
Z
-V

E
L
A
R
D
E
,
M

.G
.C

.
R
E
S
E
N
D
E
,
A
N
D

R
.M

.A
.
S
IL
V
A

Table 3. Algorithm performance for small instances on one hour runs (part 2)

Instance GevPR-HMP GQAP BRKGA

Name Stations RNCs Avg. solution Avg. time Avg. solution Avg. time Avg. solution Avg. time Best known solution
(handover) (sec) (handover) (sec) (handover) (sec) (handover)

30 15 270001 30 15 6178 0.082 6178 3.830 6178 21.735 6178
30 15 270002 4042 0.003 4042 5.450 4042 7.763 4042
30 15 270003 4126 0.035 4126 3.850 4126 4.306 4126
30 15 270004 3920 0.292 3920 3.740 3920 14.697 3920

40 5 270001 40 5 610 0.003 610 6.140 610 0.910 610
40 5 270002 136 0.016 136 7.740 136 0.922 136
40 5 270003 234 0.006 234 6.470 234 1.650 234
40 5 270004 232 12.998 232.01 85.140 232 0.818 232
40 5 270005 774 0.010 774 5.340 774 0.709 774

40 10 270001 40 10 4544 0.019 4544 8.790 4544 0.516 4544
40 10 270002 2068 0.269 2068 9.120 2068 111.121 2068
40 10 270003 2090 0.637 2090 7.740 2090 5.446 2090
40 10 270004 1650 39.318 1650 9.410 1650 84.193 1650
40 10 270005 4316 11.273 4316 11.940 4316 584.453 4316

40 15 270001 40 15 8646 2.225 8646.52 10.950 8677.2 1194.792 8646
40 15 270002 4586 7.991 4586 22.070 4614 1945.570 4586
40 15 270003 5396 18.355 5396 8.880 5396 1254.844 5396
40 15 270004 4800 2.628 4800 3.920 4894 524.678 4800
40 15 270005 6272 0.508 6272 6.490 6272 5.159 6272

H
E
U
R
IS

T
IC

S
F
O
R

H
A
N
D
O
V
E
R

M
IN

IM
IZ

A
T
IO

N
1
9

Table 4. Algorithm performance for large instances on one day runs (part 1)

Instance GevPR-HMP GQAP BRKGA

Name Stations RNCs Avg. solution Best solution Avg. solution Best solution Avg. solution Best solution Best known solution
(handover) (handover) (handover) (handover) (handover) (handover) (handover)

100 15 270001 100 15 19174.0 19174 19114.8 19000 19533.2 19000 19000
100 15 270002 22686.0 22686 22805.6 22686 23478.0 23288 22686
100 15 270003 14558.0 14558 14568.8 14558 14655.2 14616 14558
100 15 270004 19762.0 19762 19711.2 19700 20177.6 19882 19700

100 15 270005 22892.0 22892 22885.2 22746 23430.8 23092 22746

100 25 270001 100 25 36665.2 36412 36608.0 36448 37107.2 36752 36412
100 25 270002 39199.2 39144 38677.2 38608 39515.6 39256 38608
100 25 270003 33098.0 32966 32717.6 32686 33356.0 32708 32686
100 25 270004 35801.2 35678 35433.2 35322 36068.4 35954 35322
100 25 270005 36911.2 36906 36968.0 36878 37363.6 37100 36878

100 50 270001 100 50 61074.0 60922 61234.8 61172 61845.2 61554 60922
100 50 270002 62065.2 62046 62090.8 62022 62684.8 62524 62022
100 50 270003 54707.6 54618 54661.6 54596 55390.8 55192 54596
100 50 270004 57906.4 57894 57903.6 57894 58358.0 58208 57894
100 50 270005 61283.2 61088 61318.0 61318 63042.0 62784 61088

200 15 270001 200 15 81915.2 81558 84327.2 82834 81946.0 81558 81558
200 15 270002 90949.6 89810 93462.0 90620 92372.4 90506 89810
200 15 270003 79232.0 79232 81716.8 80980 79584.0 79548 79232
200 15 270004 78324.0 78324 84737.6 80538 81019.2 80026 78324
200 15 270005 96429.2 95998 100146.8 98826 99065.6 98830 95998

200 25 270001 200 25 133674.0 133168 141961.6 138454 141938.8 140492 133168
200 25 270002 137514.0 136038 141666.4 140066 141012.8 140690 136038
200 25 270003 139962.4 139438 145647.6 144120 144409.6 143724 139438
200 25 270004 129508.0 128554 136128.4 134054 133894.0 131786 128554
200 25 270005 149298.8 148402 157307.2 154260 154275.2 152934 148402

2
0
L
.F

.
M

O
R
Á
N
-M

IR
A
B
A
L
,
J
.L

.
G
O
N
Z
Á
L
E
Z
-V

E
L
A
R
D
E
,
M

.G
.C

.
R
E
S
E
N
D
E
,
A
N
D

R
.M

.A
.
S
IL
V
A

Table 5. Algorithm performance for large instances on one day runs (part 2)

Instance GevPR-HMP GQAP BRKGA

Name Stations RNCs Avg. solution Best solution Avg. solution Best solution Avg. solution Best solution Best known solution
(handover) (handover) (handover) (handover) (handover) (handover) (handover)

200 50 270001 200 50 221821.6 221550 223556.8 223096 224034.0 223098 219672
200 50 270002 218761.2 218254 221346.8 219910 221131.2 219834 216444
200 50 270003 222315.6 221500 223175.2 222404 221568.0 221110 221348
200 50 270004 212626.8 212044 213880.8 212544 213509.2 213170 211832
200 50 270005 232938.0 231890 238228.8 236136 237939.6 237156 231890

400 15 270001 400 15 375429.2 372694 475012.0 456158 378718.0 375650 370314
400 15 270002 373304.8 370274 465669.2 460232 386282.8 383096 370274
400 15 270003 360152.8 358684 456513.6 448830 369552.8 366314 358684
400 15 270004 336826.4 334430 447753.2 406834 349110.0 346282 334430
400 15 270005 365974.0 361904 476186.0 457274 380204.4 377094 361904

400 25 270001 400 25 571930.0 570852 694715.6 663908 584584.8 579130 568830
400 25 270002 547953.6 544568 679772.4 658440 560692.0 554840 543182
400 25 270003 554179.6 548000 680754.8 667982 555433.2 553162 548000
400 25 270004 504474.4 501750 633011.2 607672 517828.0 516416 501750
400 25 270005 561315.2 556044 703440.0 679848 589444.0 585070 556044

400 50 270001 400 50 854656.0 851412 957526.0 951882 881239.6 879438 851412
400 50 270002 848217.6 845496 953687.6 949562 877662.0 874226 845496
400 50 270003 824118.8 819242 927517.6 919140 850384.8 843242 819242
400 50 270004 777953.6 774564 885893.2 878912 810186.8 806690 774564
400 50 270005 857133.2 854726 950535.6 940358 885058.8 882060 854726

H
E
U
R
IS

T
IC

S
F
O
R

H
A
N
D
O
V
E
R

M
IN

IM
IZ

A
T
IO

N
2
1

Table 6. Time to target performance of GevPR-HMP, GQAP, and BRKGA (part1)

Instance GevPR-HMP GQAP BRKGA

Name Stations RNCs Target Avg. solution Avg. time Avg. solution Avg. time Avg. solution Avg. time
(handover) (handover) (sec) (handover) (sec) (handover) (sec)

100 15 270001 100 15 19806 19620.06 5.328 20662.36 638.939 19902.53 403.877
100 15 270002 23366 23174.25 11.378 24462.48 660.282 24137.02 418.112
100 15 270003 14684 14652.25 88.405 15703.73 672.222 14927.27 378.447
100 15 270004 20228 20167.62 39.133 21229.3 682.959 20575.55 415.186

100 15 270005 23674 23447.49 14.367 25363.04 679.104 23872.55 403.012

100 25 270001 100 25 37078 37058.2 139.643 38100.18 679.237 37810.72 399.842
100 25 270002 40150 40011.04 143.075 40181.71 632.307 40344.89 393.189
100 25 270003 34246 34058.03 103.451 34281.69 622.673 34167.63 386.389
100 25 270004 37178 37079.93 166.298 37376.2 644.268 36963.23 173.671
100 25 270005 38428 38171.05 81.539 38673.09 660.364 38169.68 203.611

100 50 270001 100 50 62000 61873.06 17.064 62259.75 551.270 62925.32 440.113
100 50 270002 62700 62605.34 54.887 62848.58 537.100 63485.57 454.600
100 50 270003 55500 55386.18 14.483 55653.1 534.460 56178.85 422.793
100 50 270004 58600 58481.38 8.971 58527.49 339.130 59005.59 470.755
100 50 270005 62400 62288.8 60.725 62285.03 301.390 64476.55 404.792

200 15 270001 200 15 85249 84881.44 112.937 135174 759.537 84549.84 313.546
200 15 270002 92670 92922.22 148.077 138469.52 741.627 95791.04 407.303
200 15 270003 79455 79391.4 76.038 131023.3 754.658 81723.72 410.758
200 15 270004 79151 79049.84 191.834 131143.9 757.408 84192.58 374.751
200 15 270005 99753 99398.22 93.715 148374.34 750.687 102008.12 399.623

200 25 270001 200 25 136888 136985.08 164.352 199407.98 768.219 145775.02 430.870
200 25 270002 142496 142158.64 82.973 200546.6 762.716 144337.88 428.857
200 25 270003 145173 144430.38 88.706 205867.48 757.659 146618.14 464.378
200 25 270004 132899 133138.72 202.187 199655.6 738.460 137325.12 426.084
200 25 270005 155801 155751.84 133.340 212062.98 756.682 157598.46 455.711

2
2
L
.F

.
M

O
R
Á
N
-M

IR
A
B
A
L
,
J
.L

.
G
O
N
Z
Á
L
E
Z
-V

E
L
A
R
D
E
,
M

.G
.C

.
R
E
S
E
N
D
E
,
A
N
D

R
.M

.A
.
S
IL
V
A

Table 7. Time to target performance of GevPR-HMP, GQAP, and BRKGA (part2)

Instance GevPR-HMP GQAP BRKGA

Name Stations RNCs Target Avg. solution Avg. time Avg. solution Avg. time Avg. solution Avg. time
(handover) (handover) (sec) (handover) (sec) (handover) (sec)

200 50 270001 200 50 226713 226015.22 69.906 257332.98 755.506 226413.86 416.312
200 50 270002 221356 221203.06 119.822 253743.32 751.607 223162.9 419.161
200 50 270003 224419 224107.78 336.053 251997.68 746.041 224256.8 333.639
200 50 270004 216710 216101.96 104.803 244904.66 755.018 216107.06 134.643
200 50 270005 238376 237984.48 89.017 268692.52 761.601 239762.5 392.378

400 15 270001 400 15 402527 399649.52 321.422 945799.60 688.419 392628.54 174.726
400 15 270002 386927 385339.46 228.210 817270.62 669.215 398998.96 367.328
400 15 270003 376442 374582.30 184.832 794048.56 670.530 383126.52 383.002
400 15 270004 364988 361189.44 104.066 851717.10 656.314 364816.84 368.051
400 15 270005 387876 386195.32 143.762 840390.58 670.427 393153.64 361.039

400 25 270001 400 25 576035 578068.20 332.992 1108569.74 673.703 600535.5 410.892
400 25 270002 569055 564824.74 186.245 1123872.38 674.358 578253.92 440.243
400 25 270003 573570 570633.50 127.711 1072120.50 691.000 571058.72 334.239
400 25 270004 519279 516601.28 157.849 1049194.58 651.094 532885.44 463.086
400 25 270005 602675 599008.74 162.387 1125957.00 718.975 602253.58 371.044

400 50 270001 400 50 863436 862929.66 378.383 1211789.38 779.589 886941.26 417.197
400 50 270002 864789 861970.84 76.637 1193964.44 695.899 884644.42 346.493
400 50 270003 842378 840511.60 88.194 1177311.02 753.713 860251.82 420.258
400 50 270004 800980 799154.16 181.951 1131179.18 706.823 819416.4 448.579
400 50 270005 863916 863747.04 368.984 1208322.08 765.271 892137.36 363.091

HEURISTICS FOR HANDOVER MINIMIZATION 23

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16 32

E
ffi

ci
en

cy

Number of parallel threads

100_50_270003

Seed:1
Seed:2
Seed:3
Seed:4
Seed:5

Average

2
4

8

16

32

2 4 8 16 32

S
pe

ed
up

Number of parallel threads

100_50_270003

Seed:1
Seed:2
Seed:3
Seed:4
Seed:5

Average

Figure 3. Parallel runtime efficiency and speedup of BRKGA

GQAP, it found solutions with lower average number of handovers on all but eight
instances. Compared to GQAP, BRKGA found better average solutions on 29 of the
45 instances. In 32 of the 45 instances GevPR-HMP found a best solution that was
strictly better than the solutions found by the other heuristics. In 8 of the 45 in-
stances GQAP found a best solution that was strictly better than the solutions found
by the other heuristics. On a single instance (200 50 270003), BRKGA found a best
solution that was strictly better than the solutions found by the other heuristics.
On this instance its average solution value was also smaller than those of the other
two heuristics.

To compare the three randomized heuristics, we ran each heuristic on each of
the 45 large instances 300 times for instances with 100 base stations and 100 times
for instances with 200 or 400 base stations. Each run was independent of the
other and was limited to a maximum of 800 seconds. Each run was stopped when
a solution with handover count less than or equal to a target solution value was
found. Each target value was determined by running GevPR-HMP independently five
times for 150 seconds. The target value for each instance was set as the average best
solution value, rounded up to the nearest integer, over the five runs. Tables 6 and 7
summarize these experiments. For each instance, the tables list the instance name
and size, the target solution value, and for each heuristics, the average best solution
value found and the average time to find the best solution value. GevPR-HMP found
the smallest average solution values on all but five instances. On those five, BRKGA
found the smallest on four and GQAP found the smallest on one.

Figure 6 shows time-to-target plots (Aiex et al., 2007) for nine of the 45 large in-
stances: 100 15 270001, 100 25 270003, 100 50 270004, 200 15 270001, 200 25 270002,
200 50 270005, 400 15 270002, 400 25 270003, and 400 50 270002. For each in-
stance letKh be the number of theK (100 or 300) trials that heuristic h (GevPR-HMP,
GQAP, or BRKGA) found the target solution in at most 800 seconds and let t1, t2, . . . , tKn

be the times, sorted in increasing order, that the target solution was found in the
Kh successful trials of heuristic h. The time-to-target plot for heuristic h consists
of the points

(t1, 1/K), (t2, 2/K), . . . (tKh
,Kh/K).

The point (ti, i/K) is such that i/K corresponds to the cumulative probability that
the heuristic will find the target solution in at most ti seconds. In these figures,
a heuristic that finds the target solution in all trials in at most 800 seconds will

24L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

 0

 0.2

 0.4

 0.6

 0.8

 1

10-5 10-4 10-3 10-2 10-1 100 101 102 103

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to % gap of target of 14558 handovers

100_15_270003

0% gap
5% gap

10% gap
15% gap
20% gap

 0

 0.2

 0.4

 0.6

 0.8

 1

10-6 10-4 10-2 100 102

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to % gap of target of 36906 handovers

100_25_270005

0% gap
5% gap

10% gap
15% gap
20% gap

 0

 0.2

 0.4

 0.6

 0.8

 1

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to % gap of target of 58500 handovers

100_50_270004

0% gap
5% gap

10% gap
15% gap
20% gap

 0

 0.2

 0.4

 0.6

 0.8

 1

10-5 10-4 10-3 10-2 10-1 100 101 102 103

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to % gap of target of 79232 handovers

200_15_270003

0% gap
5% gap

10% gap
15% gap
20% gap

 0

 0.2

 0.4

 0.6

 0.8

 1

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to % gap of target of 133870 handovers

200_25_270001

0% gap
5% gap

10% gap
15% gap
20% gap

 0

 0.2

 0.4

 0.6

 0.8

 1

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to % gap of target of 212892 handovers

200_50_270004

0% gap
5% gap

10% gap
15% gap
20% gap

 0

 0.2

 0.4

 0.6

 0.8

 1

10-5 10-4 10-3 10-2 10-1 100 101 102 103

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to % gap of target of 376570 handovers

400_15_270001

0% gap
5% gap

10% gap
15% gap
20% gap

 0

 0.2

 0.4

 0.6

 0.8

 1

10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 103

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to % gap of target of 547450 handovers

400_25_270002

0% gap
5% gap

10% gap
15% gap
20% gap

 0

 0.2

 0.4

 0.6

 0.8

 1

10-5 10-4 10-3 10-2 10-1 100 101 102 103

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to % gap of target of 848048 handovers

400_50_270002

0% gap
5% gap

10% gap
15% gap
20% gap

Figure 4. Performance profiles of GevPR-HMP (time in seconds)

HEURISTICS FOR HANDOVER MINIMIZATION 25

 0

 5

 10

 15

 20

 25
1 10 100 1000 10000 100000 1000000

%
 h

an
do

ve
r

re
du

ct
io

n

Iterations

Real world instance

Seed:1
Seed:2
Seed:3
Seed:4
Seed:5

Figure 5. Progress of best solution for five independent runs of
GevPR-HMP: Percentage handover reduction as a function of number
of iterations.

have a time-to-target plot with cumulative probability going from 0 to 1, whereas
a heuristic which, for example only finds the target in half of the trials, will have a
time-to-target plot with cumulative probability going from 0 to 0.5.

Figure 6 shows time-to-target plots for nine of the 45 large instances. We make
the following observations regarding these plots:

• In all but one instance, GevPR-HMP found the target solution on all trials.
In that instance (200 15 270001) it failed to find the target on 32 of 100
trials.
• In two of the instances, GevPR-HMP was the only heuristic that found the
target solution in any trial.
• In all but two instances, BRKGA found the target solution in at least one trial.
On 200 15 270001, it was the only heuristic to find the target solution on
all trials.
• GQAP only found the target solution on instances with 100 base stations, the
most successful of which was on 100 50 270004 on which it failed on only
four trials. On this instance, GevPR-HMP also found the target solution on
all trials, but BRKGA found the target solution on only 16 of the 300 trials.
• The time-to-target plots show the dominance of GevPR-HMP over BRKGA as
well as the dominance of BRKGA over GQAP.
• The time-to-target plots of BRKGA show running times for the sequential
version of the algorithm. The parallel version would show a left shift in the
plot.

26L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 19806 handovers

100_15_270001

BRKGA
GQAP

HMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 34246 handovers

100_25_270003

BRKGA
GQAP

HMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 58600 handovers

100_50_270004

BRKGA
GQAP

HMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 85249 handovers

200_15_270001

BRKGA
HMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 142496 handovers

200_25_270002

BRKGA
HMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 238376 handovers

200_50_270005

BRKGA
HMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 386927 handovers

400_15_270002

HMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 573570 handovers

400_25_270003

BRKGA
HMP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Time to target of 864789 handovers

400_50_270002

HMP

Figure 6. Runtime distributions of GevPR-HMP, GQAP, and BRKGA

for specific target solutions (time in seconds)

HEURISTICS FOR HANDOVER MINIMIZATION 27

• GQAP was implemented in Java while both GevPR-HMP and BRKGA were im-
plemented in C++. It is not clear that this affected the results. One issue
that may have impacted the performance of GQAP is that fact that it is for
solving generalized quadratic assignment problems. For example GQAP sorts
the inter-facility distances at each iteration even though all inter-facility
distances are one.

Figure 4 shows time-to-target plots of GevPR-HMP for nine instances of different
sizes. Each plot shows five time-to-target plots, one for each different target value.
In each case a 0% gap target value f⊕ was determined to be an integer value at
most 1% greater than the average solution found by GevPR-HMP in the one-day run
experiments. Four other targets were computed as ⌈ 1.05 × f⊕ ⌉, ⌈ 1.10 × f⊕ ⌉,
⌈ 1.15×f⊕ ⌉, and ⌈ 1.20×f⊕ ⌉. For each target, 100 independent runs of GevPR-HMP
were carried out. The maximum allowed time per run was 3000 seconds, which
explains why several 0% gap runs failed to find the target solution. We make the
following observations regarding these experiments:

• Only for two instances (100 50 270004 and 200 15 270003) did GevPR-HMP

find the 0% gap target on all 100 trials.
• On all instances, GevPR-HMP found the 5% gap target (as well as the 10%,
15%, and 20% targets) on all 100 trials.
• As expected the easier the targets get, the further to the left the time-to-
target plots are shifted.
• The plots show that most runs find in the initial iterations solutions that
are within 15% to 20% of the 0% gap target. In the largest instance
(400 50 270002), around 50% of the initial solutions are within 5% of the
0% gap target value.

Finally, Figure 5 shows percent reduction of number of handovers with respect to
the solution value of the first GRASP iteration for handover minimization problem
taken from a real instance from a large wireless service provider. This instance has
about 1000 base stations and 30 RNCs. The figure shows reduction as a function of
the number of GRASP iterations for five independent runs of GevPR-HMP, each using
a different seed for the random number generator. GevPR-HMP was allowed to run
for up to one million iterations. Maximum percent reductions varied from 13.4%
to 21.1%. This is in agreement with our observations on the synthetic instances.

4. Concluding remarks

The handover minimization problem (HMP) arises in the operation of mobility
networks. Base stations which connect to mobile devices handover connections to
other base stations as devices change their locations. The handover operation is
not actually done by the base stations but rather by a radio network controller
(RNC). Each base station is assigned to an RNC and uses up part of the RNC’s
processing capacity with its traffic. Handovers between base stations assigned to
different RNCs tend to fail more often than those between base stations assigned
to the same RNC leading to more dropped connections between mobile devices and
the network. In the HMP we wish to assign base stations to RNCs such that the
RNC capacity is not violated and the number of handovers between base stations
assigned to different RNCs is minimized. Since traffic and handover patterns change
and new base stations and RNCs are introduced, the HMP must be solved on an
ongoing basis.

28L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, M.G.C. RESENDE, AND R.M.A. SILVA

In this paper we present a mixed integer programming formulation for the HMP
and introduce three randomized heuristics for this problem: a GRASP with path-
relinking for the generalized quadratic assignment problem, a GRASP with evolu-
tionary path-relinking, and a biased random-key genetic algorithm.

After showing that state-of-the-art mixed integer programming solvers can only
handle small instances of the HMP, we compare the three heuristics on a set of 83
synthetic instances of the HMP and show how one of the heuristics performs on a
real-world instance from a large wireless services provider.

The experiments show that the three heuristics can find optimal and near-
optimal solutions. Of the three, the GRASP with evolutionary path-relinking ap-
pears to perform best even though there are instances where the other two heuristics
find solutions with fewer handovers.

Acknowledgment

This research was done while L.F. Morán-Mirabal and R.M.A. Silva were Visiting
Scholars at AT&T Labs Research in Florham Park, New Jersey. The research of
R.M.A Silva was partially supported by the Brazilian National Council for Scientific
and Technological Development (CNPq), the Foundation for Support of Research
of the State of Minas Gerais (FAPEMIG), Coordination for the Improvement of
Higher Education Personnel, Brazil (CAPES), and Foundation for the Support of
Development of the Federal University of Pernambuco (FADE).

References

R.M. Aiex, P.M. Pardalos, M.G.C. Resende, and G. Toraldo. GRASP with path-
relinking for three-index assignment. INFORMS J. on Computing, 17:224–247,
2005.

R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS: A perl program to
create time-to-target plots. Optimization Letters, 1:355–366, 2007.

J.C. Bean. Genetic algorithms and random keys for sequencing and optimization.
ORSA Journal On Computing, 2:154–160, 1994.

Y. Deng and J.F. Bard. A reactive GRASP with path relinking for capacitated
clustering. J. of Heuristics, 17:119–152, 2011.

T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8:67–71, 1989.

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. J.
of Global Optimization, 6:109–133, 1995.

C.E. Ferreira, A. Martin, C.C. de Souza, R. Weismantel, and L.A. Wolsey. The node
capacitated graph partitioning problem: A computational study. Mathematical

Programming, 81:229–256, 1998.
P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Randomized heuristics
for the MAX-CUT problem. Optimization Methods and Software, 7:1033–1058,
2002.

F. Glover. Tabu search and adaptive memory programming – Advances, applica-
tions and challenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors,
Interfaces in Computer Science and Operations Research, pages 1–75. Kluwer
Academic Publishers, 1996.

J.F. Gonçalves and M.G.C. Resende. Biased random-key genetic algorithms for-
combinatorial optimization. J. of Heuristics, 17:487–525, 2011.

HEURISTICS FOR HANDOVER MINIMIZATION 29

M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS J. on Computing, 11:44–52, 1999.

G.R. Mateus, M.G.C. Resende, and R.M.A. Silva. GRASP with path-relinking
for the generalized quadratic assignment problem. J. of Heuristics, 17:527–565,
2011.

M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Mod-

eling and Computer Simulation, 8:3–30, 1998.
A. Mehrotra and M.A. Trick. Cliques and clustering: A combinatorial approach.
Operations Research Letters, 22:1–12, 1997.

L.F. Morán-Mirabal, J.L. Gonzalez-Velarde, and M.G.C. Resende. Automatic pa-
rameter tuning of grasp with evolutionary path-relinking heuristics with a biased
random-key genetic algorithm. Technical report, AT&T Labs Research, Florham
Park, New Jersey, June 2012.

M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem.
J. of Heuristics, 10:59–88, 2004.

M.G.C. Resende, C.C. Ribeiro, F. Glover, and R. Mart́ı. Scatter search and path-
relinking: Fundamentals, advances, and applications. In M. Gendreau and J.-Y.
Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series
in Operations Research & Management Science, pages 87–107. Springer, 2nd
edition, 2010.

C.C. Ribeiro and M.G.C. Resende. Path-relinking intensification methods for sto-
chastic local search algorithms. J. of Heuristics, 18:193–214, 2012.

W.M. Spears and K.A. DeJong. On the virtues of parameterized uniform crossover.
In Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 230–236, 1991.

R.F. Toso and M.G.C. Resende. A C++ application programming interface for
biased random-key genetic algorithms. Technical report, AT&T Labs Research,
Florham Park, NJ, 2012.

University of Wisconsin. Condor high throughput computing, 2012. research.cs.
wisc.edu/condor, last visited on June 25, 2012.

(Luis F. Morán-Mirabal) Tecnológico de Monterrey, Monterrey, Mexico.
E-mail address: luismoranm@gmail.com

(José Luis González-Velarde) Tecnológico de Monterrey, Monterrey, Mexico.
E-mail address: gonzalez.velarde@itesm.mx

(Mauricio G.C. Resende) Algorithms and Optimization Research Department, AT&T
Labs Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.

E-mail address, M.G.C. Resende: mgcr@research.att.com

(Ricardo M. A. Silva) Centro de Informática (CIn), Federal University of Pernambuco,
Av. Prof. Lúıs Freire s/n, Cidade Universitária, Recife, PE, Brazil.

E-mail address: rmas@cin.ufpe.br

