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Abstract. This paper introduces the family traveling salesperson prob-

lem (FTSP), a variant of the generalized traveling salesman problem. In the
FTSP, a subset of nodes must be visited for each node cluster in the graph.
The objective is to minimize the distance traveled. We describe an integer
programming formulation for the FTSP and show that the commercial-grade
integer programming solver CPLEX 11 can only solve small instances of the
problem in reasonable running time. We propose two randomized heuristics
for finding optimal and near-optimal solutions of this problem. These heuris-
tics are a biased random-key genetic algorithm and a GRASP with evolu-
tionary path-relinking. Computational results comparing both heuristics are
presented.

1. Introduction

This paper presents a variant of the well-known generalized traveling salesperson
problem (GTSP) (Srivastava et al., 1970) which we call the family traveling sales-

person problem (FTSP). Despite the fact that many TSP-related problems have
been widely studied in the literature (Applegate et al., 2011; Feremans et al., 2003;
Gutin and Punnen, 2002; Tsitsiklis, 1992), the FTSP variant is new and appears to
be computationally challenging. Golden et al. (2012) recently proposed the gener-
alized covering salesman problem (GCSP). In the GCSP a minimum length tour is
sought, such that a subset of nodes visited on the tour “covers” all the nodes in a
graph, i.e. are within a given covering distance from them. The GTSP is a special
case of the GCSP and consequently the FTSP is also a variant of this problem.

The FTSP is motivated by an application for order picking in warehouses. Al-
though extensive work has been done concerning warehouse design and control,
order picking is usually modeled using a traveling salesman problem or a Steiner
traveling salesman problem, where similar products are stored together (Koster
et al., 2007; Ratliff and Rosenthal, 1983; Theys et al., 2010). This may not be the
case in modern warehouses, where technologies such as RFID allow for product
localization, and hence, similar products may be stored separately.

In the FTSP we wish to visit a prescribed number nv l of nodes that must be
selected from a set Fl, where l is the index of K families. We are interested in
finding a minimum distance tour that visits all the prescribed nodes for all families.

For any given FTSP instance, consider the complete graph G = (N ∪ {0}, E)
where each family l has nf l nodes, and 0 is the origin of the tour. The edge-set E
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indexes the distances between pairs of nodes i and j such that d(i, j) > 0 where
i 6= j. Additionally, a number of required visits to each family nv l is given such
that KN =

∑
l=1→K nv l. Note that the family traveling salesperson problem can

be reduced to the NP-hard generalized traveling salesperson problem (Garey and
Johnson, 1979) when the number of visits to each family is exactly one, and hence,
the FTSP is also NP-hard. Figure 1 shows the optimal solution for an example
instance with |N | = 29, K = 4, and KN = 18. The 18 visits are such that nv1 = 6,
nv2 = 6, nv3 = 1, and nv4 = 5.

This problem can be formulated as a binary integer program (BIP). Define the
binary variables xi,j = 1 if node j is visited immediately after node i, and xi,j = 0
otherwise. The objective (1) is to minimize the distance traveled when visiting the
selected family members. Constraints (2–3) force the tour to start and end at node
0. Constraints (4–5) reflect the fact that at most one arc must enter and leave each
node. The number of arcs used in the solution is established by constraint (6),
while constraints (7–8) establish the number of arcs to enter and leave each of
the families. Flow conservation is expressed by constraint (9) and constraints (10)
are the sub-tour elimination constraints. The binary nature of the variables is
established in (11).

min
∑

i∈N∪{0}

∑

j∈N∪{0}

di,j × xi,j(1)

∑

i∈N

x0,i = 1(2)

∑

j∈N

xj,0 = 1(3)

∑

i∈N∪{0}

xi,j ≤ 1 ∀j ∈ N(4)

∑

j∈N∪{0}

xi,j ≤ 1 ∀i ∈ N(5)

∑

i∈N∪{0}

∑

j∈N∪{0}

xi,j = KN + 1(6)

∑

i∈N∪{0}

∑

j∈Fl

xi,j = nv l for l = 1, 2, . . . ,K(7)

∑

i∈Fl

∑

j∈N∪{0}

xi,j = nv l for l = 1, 2, . . . ,K(8)

∑

i∈N∪{0}

xi,j −
∑

i∈N∪{0}

xj,i = 0 ∀j ∈ N(9)

∑

i∈S

∑

j∈S

xi,j ≤ |S| − 1 S ⊆ N ∪ {0}(10)

xi,j ∈ 0, 1 ∀i, j ∈ N(11)

The remainder of this paper is organized as follows. In Section 2 we use a well-
known integer programming solver to address a set of benchmark instances. Then,
in Section 3 we describe two randomized heuristics for the FTSP, and experimental
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Figure 1. Example of instance with 29 nodes 4 families and 18 visits.

results are presented in Section 4. Finally, in Section 5 we present concluding
remarks.

2. Solving the mixed integer programming formulation

A subset of the benchmark instances described later in Section 4 are used to
evaluate the BIP formulation presented in Section 1. Although the TSP solver
Concorde (D.L. Applegate and R.E. Bixby and V. Chvátal and W.J. Cook, 2013)
has proven to be a state-of-the-art TSP solver (Hahsler and Hornik, 2007), it cannot
solve an FTSP instance directly. Hence, the integer programming solver CPLEX
11 is used in the BIP evaluations.

Table 1 shows the results of running CPLEX 11 on 13 FTSP instances having
the following triads of |N | nodes, K families and KN visits: (14,3,6), (14,3,10),
(14,3,4), (29,4,16), (29,4,17), (29,4,18), (48,5,34), (48,5,25), (48,5,15), (127,10,62),
(127,10,85), (127,10,60), and (280,20,179). For each instance, the table lists the
instance name, the number of nodes, the number of families, the number of visits,
the total distance in the best known solution for that instance, the total distance
in the best solution found by CPLEX, and the time in CPU seconds taken by
CPLEX. All CPLEX experiments were run on a computer with an Intel Core 2
Duo processor running at 2.2 GHz, and 2.0 GB of RAM on Microsoft Windows XP.

On instances with |N | ≤ 127 a maximum running time of 18000 seconds was
allowed. This limit was set to 30000 seconds for the instance with |N | = 280.
CPLEX found optimal solutions for all instances with 14 and 29 nodes and for
one instance with 48 nodes. However, for the remaining instances with 48 or more
nodes, CPLEX either ran out of time and returned solutions that were quite far
from the best known solutions or ran out of memory before the process was finished.
Running times increased with both number of nodes and number of visits. These
examples indicate that FTSP instances with 127 or more nodes are beyond the
reach of the current version of CPLEX.
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Table 1. CPLEX runs

Instance Solution (# distance) Soln. Time

Name Nodes Families Visits Best Known CPLEX (seconds)

burma14 3 1001 1001 2 14 3 6 13.93 13.93 0.43
burma14 3 1001 1002 2 10 25.65 25.65 0.34
burma14 3 1001 1003 2 4 11.88 11.88 0.19

bayg29 4 1001 1001 2 29 4 16 5345.86 5345.86 4.50
bayg29 4 1001 1002 2 17 5791.02 5791.02 27.94
bayg29 4 1001 1003 2 18 5544.33 5544.33 4.68

att48 5 1001 1001 2 48 5 34 23686.02 23686.02 3032.53
att48 5 1001 1002 2 25 20609.09 20609.09 3223.75
att48 5 1001 1003 2 15 9024.58 9024.58 1131.12

bier127 10 1001 1001 2 127 10 62 34161.23 46453.61 *18000.00
bier127 10 1001 1001 2 85 92784.43 95658.72 *18000.00
bier127 10 1001 1001 2 60 49044.66 61369.67 *18000.00

a280 20 1001 1001 2 280 20 179 1826.24 4907.66 *30000.00

∗ CPLEX reached maximum solution time.
Boldface indicates CPLEX failed to find best known solution.

3. Randomized heuristics

Noting the limitations found in Section 2, we propose in this section two ran-
domized heuristics to find good-quality (optimal or near-optimal) solutions to the
FTSP: a biased random-key genetic algorithm and a GRASP with evolutionary
path-relinking.

3.1. Biased random-key genetic algorithm for FTSP. A biased random-key
genetic algorithm (BRKGA) is a metaheuristic for optimization that works by evolv-
ing a population of individuals (encoded as encoded as vectors of random keys) by
applying genetic operations such as mutation and crossover. For a recent survey
of BRKGAs, the reader is referred to Gonçalves and Resende (2011). BRKGAs
are an extension of the random-key genetic algorithm (RKGA) proposed by Bean
(1994). Both methods search the solution space indirectly by searching the space
of random keys and use a decoder to map solutions from the space of random keys
to the solution space of the optimization problem. An application of a RKGA for
the GTSP can be found in Snyder and Daskin (2006). We are unaware of any
application of a BRKGA to the GTSP.

A BRKGA begins with an initial population P0 of np vectors (individuals), each
of size nc. Each vector λi with i ∈ 1, . . . , np is made up of randomly generated
numbers (random keys) in the real interval (0, 1]. A decoder then translates each
individual λi into a feasible solution to the optimization problem being solved and
a fitness value (solution value) f(λi) associated to it is computed.

At the g-th BRKGA iteration (generation), population Pg is partitioned into a
set Pe

g of ne elite individuals (the most fit) and a set P ē
g with the remaining non-

elite individuals of the population. To evolve a population into the next iteration,
first all elite individuals in Pe

g are copied into the population of the next generation
Pg+1. Then, a set Pm of nm mutant individuals is inserted into Pg+1. A mutant is
a new randomly generated individual (i.e. vector of random keys). Note that the
sizes of Pe

g and Pm are restricted to be such that 2 × ne < np and ne + nm ≤ np.
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Data: np, nc, ne, nm, pe
1 Generate P0 with np individuals having nc random-keys ∈ (0, 1];

2 g = 0;

3 while stopping criterion is not satisfied do

4 Evaluate fitness of each new individual in Pg;

5 Partition Pg into Pe
g and P ē

g ;

6 Initialize next population: Pg+1 ← Pe
g ;

7 Generate nm mutants Pm each having nc random-keys ∈ (0, 1];

8 Pg+1 ← Pg+1 ∪ P
m;

9 for k ← 1 to np − ne − nm do

10 Select parent a at random from Pe
g ;

11 Select parent b at random from P ē
g ;

12 for i← 1 to nc do

13 Toss biased coin having probability of heads, pe > 0.5;

14 if Toss results in heads then c[i]← a[i];

15 else c[i]← b[i];

16 end

17 Pg+1 ← Pg+1 ∪ {c};

18 end

19 g ++;

20 end

21 return λ∗ ← argmin{f(λg) | λg ∈ Png
}

Algorithm 1: Biased random-key genetic algorithm

Finally, the remaining no = np−ne−nm individuals that make up Pg+1 are found
by mating no pairs of individuals (parents) from Pg, one from Pe

g and another from

P ē
g . Parents are chosen at random with replacement.

Let a ∈ Pe
g and b ∈ P ē

g denote the elite and non-elite parents respectively, and
let c denote the individual (offspring) that results by mating a and b. The mating
operator uses parameterized uniform crossover (Spears and DeJong, 1991). When
mating takes place, a biased coin toss is repeated nc times (i.e. once for each
random key), to determine from which parent will the offspring inherit each key.
For each coin toss i ∈ 1, . . . , nc the offspring inherits the i-th key from a with
probability pe > 0.5 and from parent b with probability pē = 1 − pe. This ensures
that an offspring has a greater chance to inherit keys from its elite parent. BRKGAs
differ from the RKGA proposed by Bean (1994) in the way that pairs of parents
are selected at random from the entire population and therefore the coin toss is
not necessarily biased towards the fittest of the two parents. This small difference
between a BRKGA and a RKGA usually leads to an improved performance of
BRKGAs with respect to RKGAs (Gonçalves et al., 2012).

Once the population of the next generation Pg+1 is complete, it is set as the cur-
rent population and all BRKGA operations are repeated until a stopping criterion
is met. Denote ng as the total number of iterations (generations) produced by the
algorithm. An individual with the best fitness in the last population Png

is returned
as the result of the BRKGA. The BRKGA is summarized in the pseudo-code of
Algorithm 1.
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3.1.1. Encoding and decoding random keys. Solutions to the family traveling sales-
person problem are encoded as an |N | + KN vector λ of random keys, where
KN =

∑
j∈1,...,K nv j . The first |N | keys are used to determine which subset of

nodes will be visited from each family while the last KN keys are used to define
the tour to be followed. To produce a tour that defines a feasible solution to the
FTSP, the vector λ is decoded in the following steps:

(1) Separate keys: The first |N | keys are divided into K sets of families Ri,
i = 1, 2, . . . ,K, each of size nf i.

(2) Select family members: For each family set of random keys Ri, i =
1, 2, . . . ,K, sort the nf i keys in the set in increasing order and select the
nv j smallest key indices where j = 1, 2, . . . ,K. The chosen indices will
define the nodes to be visited in the solution.

(3) Define tour: The remaining KN keys are sorted in increasing order. Their
sorted indices are used to define the order (tour) in which the nodes selected
in step (2) will be visited.

(4) Local search: Let a solution Λ be the tour defined in the previous steps.
Local search is applied, scanning the nodes in Λ. Nodes are scanned in
increasing order of their indices. Suppose that a visited node i is in position
k and another visited node j is in position l. If a reduction in the total
distance traveled is achieved by swapping the position of both nodes, then
i is set to position l and j to position k. The tour is repeatedly checked
for swaps until no further improvement is found or slim = KN successful
swaps are made. The maximum number successful swaps slim is fixed so
that the time spent doing local search is limited for low-quality solutions.

(5) Update chromosome: If a tour improvement was found in step (4),
the we adjust the KN keys of output vector λ so that they reflect the
local optimum found in the previous step. Otherwise, the output vector λ
remains unchanged. Since local search is unrelated to the selected family
members, there is no need to adjust the first |N | keys of λ.

(6) Compute fitness: Finally, f(λ), the total distance traveled in the tour
defined by the output vector λ is set as its fitness.

3.2. GRASP with evolutionary path-relinking for FTSP. A greedy ran-
domized adaptive search procedure (GRASP) is a multi-start metaheuristic, where
in each iteration a feasible solution is constructed with a randomized greedy algo-
rithm and refined afterwards with a local search algorithm (Feo and Resende, 1989;
1995). Path-relinking (PR) is a search intensification method first introduced by
Glover (1996). PR is based in the premise that paths that connect two good-quality
solutions can be explored to search for better solutions.

Laguna and Mart́ı (1999) proposed the first hybridization of GRASP and PR
(GRASP+PR). Their version of GRASP+PR keeps a pool of elite (good-quality)
solutions found during the search. At each GRASP iteration, a path-relinking oper-
ator is applied between the GRASP local search solution and a solution randomly
chosen from the elite pool. Recent surveys of PR can be found in Ribeiro and
Resende (2012) and Resende et al. (2010).

Evolutionary path-relinking (evPR) tries to improve an elite pool of solutions by
applying a PR operator between pairs of elite solutions, updating the pool if better
solutions are found in the process (Festa et al., 2002; Resende and Werneck, 2004;
Aiex et al., 2005; Morán-Mirabal et al., 2012b).
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1 f∗ =∞;

2 E ← ∅;

3 ev count = ie;

4 while stopping criterion is not satisfied do

5 x← GreedyRandomized();

6 x← LocalSearch(x);

7 E ← UpdateElitePool(E, x);

8 if |E| > 1 then

9 xp ← SelectEliteSolution(E, x);

10 x← PathRelinking(x, xp);

11 E ← UpdateElitePool(E, x);

12 end

13 if evcount == 0 then

14 E ← EvolutionaryPR(E, x);

15 evcount ← ie + 1;

16 end

17 evcount ← evcount − 1;

18 end

19 f∗ = argmin{f(x) | x ∈ E};

20 return f∗

Algorithm 2: GRASP with evolutionary path-relinking

The pseudo-code in Algorithm 2 illustrates a GRASP+evPR metaheuristic for a
minimization problem. The algorithm begins by initializing the incumbent solution
f∗ to a large number in line 1, and the pool of elite solutions E to an empty set
in line 2. The variable evcount, which measures the number of iterations left until
evolutionary path-relinking is invoked, is initialized in line 3. All GRASP+evPR
iterations take place between lines 4 and 18, until some stopping criterion is met.
Each iteration begins by constructing a solution using a greedy randomized proce-
dure in line 5, and then applying local search to it in line 6. The resulting local
minimum is tested for inclusion in the elite pool E in line 7. If E is full, x is
accepted if it is better than at least one solution in the pool. If x is better than all
pool solutions, then it replaces the worst pool solution. Otherwise, if it is better
than at least one solution but not all, then it replaces the least different solution
having higher cost. If E is not full, then x is accepted if it differs from all current
pool solutions. PR is applied once there are at least two elite solutions in E. When
this is met, a solution xp is selected from E in line 9, and PR is applied between
x and xp in line 10. The resulting solution x returned by path-relinking is tested
for inclusion in the elite pool in line 11. Evolutionary path-relinking is called every
ie iterations. This condition is checked in line 13 and, if fulfilled, evPR is done in
line 14 where an evolved pool is returned. The counter evcount is then re-initialized
in line 15. At the end of each GRASP+evPR iteration in line 17, this counter is
reduced by one unit. The algorithm finishes in line 19 by setting the incumbent
solution f∗ to a best solution in the last elite pool considered. As a result, the
GRASP+evPR returns the incumbent solution in line 20.
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We propose a customized GRASP+evPR for the FTSP. It consists of three dif-
ferent construction procedures, seven local search algorithms, twelve path-relinking
and evolutionary path-relinking strategies, and one restart method. We describe
each GRASP+evPR component separately, and briefly discuss how parameters and
configurations are tuned.

3.2.1. Construction. The randomized greedy algorithm constructs a feasible solu-
tion one node at a time. At any time, all remaining node candidates consist of all
the feasible non-visited family members, i.e. if family j has already been visited
the prescribed number of times nf j , then all remaining nodes in j are discarded as

future candidates. Let F̂l consist of the feasible non-visited nodes in family l. The
construction phase begins by initializing a setM = ∅ which will hold the nodes to
be selected in each family, a set T = ∅ which will hold the order indices in which
the members of M will be visited in the tour, and a set C = F̂1 ∪ F̂2 ∪ . . . ∪ F̂K

with all the candidate nodes available to visit at each move.
Let ν = 0 be the current node visited, τν be the tour position of ν, and define

the greedy function associated with a candidate node i ∈ C to be h(i) = d(ν, i). A
restricted candidate list (RCL) is formed such that

RCL = {i ∈M | h(i) ≤ h∗ − α(h∗ − h∗)},

where h∗ = min{h(i) | i ∈ M}, h∗ = max{h(i) | i ∈ M}, and α ∈ R such
that 0 ≤ α ≤ 1. The next node to be visited in the tour ν, is selected uniformly at
random from the RCL, and the candidate list C, the selected members setM and the
tour indices set T are updated, i.e. C ← C\{ν},M←M∪{ν}, and T ← T ∪{τν}.
The procedure is repeated until all nv j visits required, with j ∈ 1, . . . ,K, are
fulfilled. The total distance traveled by the tour defined in solution Λ = (M, T ) is
set as the objective function value Z of the current solution.

In this paper we use three variants of this construction procedure, which we call
Fixed, Random, and Reactive. In Fixed construction we use a fixed value for the
RCL parameter α, whereas in Random, fixed lower and upper bounds for α are given
respectively (i.e. αl and αu) and a value within these bounds is selected uniformly at
random at each GRASP iteration. Reactive construction uses a value of α selected
at random from a finite set consisting of nα values with probabilities favoring those
values that produced better solutions in previous constructions. This approach,
called Reactive GRASP (Prais and Ribeiro, 2000), recalculates these probabilities
over time. The number nα of distinct α values varies from 2 to 8 and the values go
from 0 to 0.8.

3.2.2. Local Search. Once the construction phase produces a feasible solution Λ =
(M, T ), a local search algorithm (LS) attempts to improve the solution by making
changes in setsM and T . We propose three LS algorithms, change-members, tour-
swap-2, and iterative. Each algorithm scans either the elements ofM, the elements
of T or the elements of both sets. The order in which elements are scanned is at
random.

In change-members, the procedure scans each selected member i ∈ M and tries
to change it for a node family member k which is not currently used in the solution.
If a decrease in the current total distance traveled is found, then k replaces member
i, Λ and Z are updated, and the procedure continues to the next element inM.
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Alternatively, in tour-swap-2, pairs of tour indices in T are considered for swap-
ping, i.e. if element i and j fromM are in positions k and l respectively, the swap
would change their indices so that element i is in position l and element j in posi-
tion k. If a swap results in a reduction of the total distance traveled, then the swap
is made, Λ and Z are updated, and LS proceeds to check the next pair of indices
in T . The number of pairs considered for swapping is limited by the value

ϕ = β × 0.5× |T | × (|T | − 1),

where 0.01 ≤ β ≤ 1.00 is an input parameter.
Finally in iterative, the change-members and tour-swap-2 procedures are applied

iteratively (i.e. one element inM and one element in T at a time), in an attempt
to extend the solution space explored by LS. In the case of all three LS procedures,
the resulting local minimum solution is denoted as Λl(Ml, Tl).

Aside from the three LS algorithms proposed, three LS options are considered
to determine the extensiveness of the search. We propose three LS options, First,
Best, and Variable. In First, elements inM or T (depending on the algorithm) are
scanned until a first solution improvement is found. Then the search is restarted and
repeated until no further improvement is found. In the case of Best, all elements are
scanned and the move that produces the best improvement is selected. The search
is then restarted and repeated until no further improvement is found. Finally in
Variable, each time LS is called, an algorithm is chosen at random from among
Change-members, Tour-swap-2, and Iterative. In addition, either option First or
Best is selected at random.

3.2.3. Path-relinking and evolutionary path-relinking. Besides with local search, our
algorithm does intensification with both path-relinking (PR) and evolutionary path-
relinking (evPR). A survey of the many variants of these path-relinking based search
intensification methods can be found in Ribeiro and Resende (2012).

During the search of the solution space carried out by GRASP+evPR, the
algorithm maintains a pool of elite solutions E. In each iteration, a solution
Λe = (Me, Te) is chosen at random from the elite set and a PR operator is ap-
plied, exploring a path in the solution space spanned by Λe and the locally optimal
solution Λl = (Ml, Tl) found during the local search phase. Let the symmetric dif-
ference Γ(Λ1,Λ2) between two solutions denoted by (M1, T1) and (M2, T2) be the
set of node family members and tour indices that differ between the two solutions.
The method selects a solution Λe from the elite set with probability proportional
to the cardinality of its symmetric difference with respect to Λl.

The basic PR operator used in this paper proceeds as follows. PR is given a
starting solution Λs = (Ms, Ts) and a guiding solution Λg = (Mg, Tg). Depending
on the variant of PR used, Λs and Λg can vary. Let Z(Λi) denote the total distance
traveled by the tour defined in solution Λi. In Forward PR, for example, Λs would
be the solution with larger Z between Λe and Λl, whereas Λg would be the solution
with shorter Z.

At each iteration of PR, the method randomly selects an element k in the sym-
metric difference Γ(Λs,Λg) and reassigns this element in Λs with the corresponding
value in Λg. If an improvement in Z(Λs) is found then this solution is saved as Λpr.
The procedure continues until |Γ(Λs,Λg)| = 1. This way, PR generates a sequence
of neighboring solutions, and selects among them, a solution Λpr with the smallest
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Z value. LS is applied on this solution and the local minimum Λpr-l is returned as
the path-relinking solution.

Since each solution Λi consists of a set Mi and a set Ti we propose three PR
move options, which we call M-T, T-M, and I-MT. In M-T, all differences regarding
Mi are considered first and all differences regarding Ti are considered afterwards.
Inversely, T-M considers all tour differences first and all member differences after-
wards. Finally, the I-MT option iteratively considers one member difference and
one tour difference.

We allow four flavors of PR in our procedure: Forward, Backward, Back&Forth,
and Mixed. In Forward PR, Λs is the solution with larger Z between Λe and Λl

whereas in Backward PR, Λs is the solution with shorter Z. In Back&Forth PR,
one path is produced with Λs = Λl and Λg = Λe, and another with Λs = Λe and
Λg = Λl. Lastly, with Mixed PR, we move from both Λe and Λl, alternating at each
step which solution plays the role of starting and guiding solution. In this variant
the solutions eventually meet when their symmetric difference differs by one.

For each variant of PR, we consider full and truncated versions. In the full
version, the entire path linking the two solutions is explored while in the truncated
version γ% of the path is explored, where γ is an input parameter such that 20% ≤
γ ≤ 60%.

Evolutionary path-relinking (evPR) is done every ie iterations in an attempt to
improve the pool E of elite solutions (ie is a given input parameter). Whenever
evPR takes place, a PR operator is applied to each pair of elite solutions, and every
improved solution ΛevPR found in the process is tested for inclusion into the elite
pool following the rules mentioned in Algorithm 2. The procedure is repeated until
no further improvement is found after applying the PR operator to all new pairs of
solutions in E.

3.2.4. Tuning. We described a number of construction, local search, path-relinking,
and evolutionary path-relinking procedures that can be combined in different ways
to result in a GRASP+evPR heuristic. Logical and numerical parameters can be
associated with these procedures and used to configure the heuristic. In the exper-
iments described in Section 4 we tune both the logical and numerical parameters
with an automatic parameter tuning procedure described in Morán-Mirabal et al.
(2012a).

4. Experimental results

In this section we compare both BRKGA and GRASP+evPR algorithms on
benchmark instances.

4.1. Instances. To test the performance of both heuristics, we propose a set of
benchmark instances for the FTSP. A set of 21 benchmark instances were generated
by using 7 instances from TSPLIB (Reinelt, 1991). To generate an instance, a
number of families K, smaller than the number of nodes in the instance |N |, was
chosen. Next, the amount of family members nf l were established uniformly at
random such that

∑
l=1,...,K nf l = |N |. Finally, the number of prescribed visits to

each family nv l was determined at random such that 1 ≤ nv l ≤ nf l.
The set of 21 instances consists of three instances for each of the following com-

binations (|N |,K,KN ) of nodes, families and visits: (14, 3, ∗), (29, 4, ∗), (48, 5, ∗),
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(127, 10, ∗), (280, 20, ∗), (666, 30, ∗), (1002, 40, ∗). The number of visits varies from
one instance to the next in the same group.

4.2. The experiments. The objective of the computational experiments was to
study the performance of the heuristics described in Section 3. The experiments
were divided into those run on CPLEX 11, and those using GRASP+evPR-FTSP and
BRKGA-FTSP.

Both GRASP+evPR-FTSP and BRKGA-FTSP were coded in C++ and compiled with
the g++ compiler using optimization flag -O3. Both algorithms used for random-
number generator an implementation of the Mersenne Twister algorithm (Mat-
sumoto and Nishimura, 1998). BRKGA-FTSP was implemented using the API de-
scribed in Toso and Resende (2012). All experiments other than those with CPLEX
were on an Intel Core i5-2450M processor at 2.50 GHz and 6GB of RAM.

As mentioned in Subsection 3.2, GRASP+evPR-FTSP was tuned using the pro-
cedure of Morán-Mirabal et al. (2012a). The average time taken for tuning each
instance with 14, 29, 48, 127, 280, 666, and 1002 nodes was approximately 46, 158,
236, 1453, 7557, 15068, and 24365 seconds, respectively. The tuned parameters
and configurations for each instance are shown in Table 2. All GRASP+evPR-FTSP
experiments were run using the tuned settings, and an elite pool size |E| = 15.

BRKGA-FTSP was run with a population size of |P| = 1000 for instances with
|N | ≤ 29, |P| = 800 for instances with 48 ≤ |N | ≤ 127, |P| = 600 for instances
with 280 ≤ |N | ≤ 666, and |P| = 400 for instances with |N | = 1002. Since the
time required to measure an individual’s fitness increases with the number of nodes
considered, the population size was decreased for BRKGA-FTSP to be able to consider
more generations. For each population, a fraction of 0.15 elite members and 0.20
mutants was considered. A reset was triggered every nr generations without im-
provement of the incumbent solution, replacing the population with new randomly
generated individuals. nr was set to 200, 150, 100, and 50 generations without
improvement for instances with |N | ≤ 29, 48 ≤ |N | ≤ 127, 280 ≤ |N | ≤ 666, and
|N | = 1002, respectively. The probability that an offspring inherits the key from
the elite parent during each step of crossover was set to ph = 0.7.

CPLEX was tested on all instances having 127 nodes or less, and one instance
with 280 nodes. As mentioned in Section 2, CPLEX was able to prove optimality
only for instances having less than or equal to 48 nodes. Instances having more
than 48 nodes reached the time limit and returned a low-quality solution.

To compare the performance of BRKGA-FTSP and GRASP+EvPR-FTSP, first a set of
5 independent runs of 36000 seconds, were done for each instance. After collecting
the results from both heuristics, the best objective function value found in all runs
was established as the best known solution for each instance (which in turn were
used when testing CPLEX). Next, target values with gaps between 0% and 11%
from the best known solutions were selected, and both heuristics were run for a
new set of five independent runs with a limited run-time. The maximum run-
time of GRASP+EvPR-FTSP was set to 7200 seconds for all instances. However, the
maximum run-time of BRKGA-FTSP was increased to compensate for the average
time taken when GRASP+EvPR-FTSP was tuned. Concisely, the maximum run-time
of BRKGA-FTSP was set to 7246, 7358, 7436, 8653, 14757, 22268, and 31565 seconds
for instances with 14, 29, 48, 127, 280, 666, and 1002 nodes, respectively.

Each run stopped when a solution with objective function value less than or
equal to the target solution was found, or the time limit was reached. Table 3
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Table 2. Tuned parameters and configurations of GRASP+evPR-FTSP

Instance GRASP Local Search Path-relinking evPR
Name Nodes Families Visits Type α Options ϕ Direction Type γ ie

burma14 3 1001 1001 2 14 3 6 Random [0.21,0.65] Variable 0.15 Back&Forth M-T 0.28 Off
burma14 3 1001 1002 2 14 3 10 Random [0.45,0.59] Variable 0.70 Backward T-M 0.43 100
burma14 3 1001 1003 2 14 3 4 Random [0.15,0.54] First Change-members Backward M-T 1.00 Off

bayg29 4 1001 1001 2 29 4 16 Random [0.16,0.40] First Iterative 0.99 Backward T-M 0.46 50
bayg29 4 1001 1002 2 29 4 17 Fixed 0.76 First Iterative 0.62 Forward I-MT 1.00 66
bayg29 4 1001 1003 2 29 4 18 Random [0.00,0.17] Variable 1.00 Mixed I-MT 1.00 100

att48 5 1001 1001 2 48 5 34 Fixed 0.26 First Change-members Forward M-T 1.00 Off
att48 5 1001 1002 2 48 5 25 Reactive 6 alphas First Iterative 0.52 Backward T-M 0.55 40
att48 5 1001 1003 2 48 5 15 Fixed 0.03 Variable 0.97 Backward T-M 1.00 200

bier127 10 1001 1001 2 127 10 62 Fixed 0.02 First Iterative 0.81 Backward T-M 0.24 100
bier127 10 1001 1002 2 127 10 85 Fixed 0.02 First Iterative 0.95 Mixed I-MT 0.39 100
bier127 10 1001 1003 2 127 10 60 Fixed 0.03 First Tour-swap-2 0.76 Mixed T-M 1.00 40

a280 20 1001 1001 2 280 20 179 Reactive 8 alphas First Iterative 0.29 Mixed I-MT 1.00 200
a280 20 1001 1002 2 280 20 156 Reactive 8 alphas Best Iterative 0.73 Back&Forth T-M 0.48 66
a280 20 1001 1003 2 280 20 141 Reactive 4 alphas First Iterative 0.80 Mixed T-M 1.00 50

gr666 30 1001 1001 2 666 30 357 Random [0.01,0.20] First Iterative 0.22 Forward T-M 1.00 66
gr666 30 1001 1002 2 666 30 328 Reactive 7 alphas Variable 0.98 Back&Forth T-M 0.30 Off
gr666 30 1001 1003 2 666 30 328 Reactive 7 alphas Variable 0.98 Mixed I-MT 1.00 40

pr1002 40 1001 1001 2 1002 40 486 Reactive 3 alphas Variable 0.87 Mixed M-T 1.00 50
pr1002 40 1001 1002 2 1002 40 538 Reactive 4 alphas Best Iterative 0.77 Back&Forth T-M 1.00 66
pr1002 40 1001 1003 2 1002 40 463 Reactive 3 alphas Variable 0.60 Back&Forth T-M 0.54 50



H
E
U
R
IS

T
IC

S
F
O
R

T
H
E

F
A
M

IL
Y

T
R
A
V
E
L
IN

G
S
A
L
E
S
P
E
R
S
O
N

P
R
O
B
L
E
M

1
3

Table 3. Time to target performance on 5 independent runs of BRKGA-FTSP and GRASP+EvPR-FTSP

Instance BRKGA-FTSP GRASP+EvPR-FTSP

Name Nodes Families Visits Target Avg. solution Avg. time▽ Best solution Avg. solution Avg. time Best solution
(distance) (distance) (s.) (distance) (distance) (s.) (distance)

burma14 3 1001 1001 2 14 3 6 13.93 13.93 0.01 13.93 13.93 0.01 13.93

burma14 3 1001 1002 2 14 3 10 25.66 25.66 †0.01 25.66 25.66 0.03 25.66
burma14 3 1001 1003 2 14 3 4 11.89 11.89 0.01 11.89 11.89 0.01 11.89

bayg29 4 1001 1001 2 29 4 16 5345.86 5345.86 †3.40 5345.86 5345.86 8.05 5345.86

bayg29 4 1001 1002 2 29 4 17 5791.01 5791.01 †1.40 5791.01 5791.01 75.74 5791.01

bayg29 4 1001 1003 2 29 4 18 5544.33 5544.33 1.60 5544.33 5544.33 †0.03 5544.33

att48 5 1001 1001 2 48 5 34 23686.02 23686.02 143.40 23686.02 23709.622 2938.77 23686.02
att48 5 1001 1002 2 48 5 25 20609.09 20609.09 62.80 20609.09 20635.57 7199.22 20635.57

att48 5 1001 1003 2 48 5 15 9024.58 9024.58 1.80 9024.58 9024.58 †0.05 9024.58

bier127 10 1001 1001 2 127 10 62 36990.04 36950.75 498.80 ∗36913.74 36856.17 3.65 ∗36800.39
bier127 10 1001 1002 2 127 10 85 98410.69 98333.46 1413.80 ∗98216.10 98370.63 2966.56 ∗97615.41
bier127 10 1001 1003 2 127 10 60 51079.03 50891.36 1048.60 ∗50513.10 50920.77 11.26 ∗50715.49

a280 20 1001 1001 2 280 20 179 1902.67 2164.40 14760.40 2126.34 1898.17 218.28 ∗1891.16
a280 20 1001 1002 2 280 20 156 1701.75 1980.84 14759.20 1925.28 1702.33 2700.88 ∗1697.48
a280 20 1001 1003 2 280 20 141 1601.14 17740.78 14758.40 1720.23 1598.49 6.91 ∗1597.25

gr666 30 1001 1001 2 666 30 357 1835.08 2733.62 22271.60 2625.69 1848.50 6610.22 ∗1817.06
gr666 30 1001 1002 2 666 30 328 1453.35 2390.46 22269.00 2275.80 1451.10 4005.06 ∗1443.05
gr666 30 1001 1003 2 666 30 328 1358.12 3062.17 22269.75 2426.59 1403.00 7199.99 1384.18

pr1002 40 1001 1001 2 1002 40 486 165947.46 432665.72 31568.00 421061.63 164721.66 20.72 ∗163461.79
pr1002 40 1001 1002 2 1002 40 538 187306.74 445954.00 31566.75 421761.00 184440.18 8.86 ∗182144.13
pr1002 40 1001 1003 2 1002 40 463 150068.78 326561.61 31565.50 284856.22 149838.13 227.56 ∗149456.63

Boldface indicates one heuristic did better on average solution values.
† indicates both heuristics had same average solutions, but one heuristic did better on average time.
∗ indicates the best solution found in all runs was better than the target solution.
▽ The maximum run-time of BRKGA-FTSP is 7200 seconds plus the average time taken when GRASP+EvPR-FTSP was tuned.



14 L.F. MORÁN-MIRABAL, J.L. GONZÁLEZ-VELARDE, AND M.G.C. RESENDE

summarizes these experiments. For each instance, the table lists the instance name
and size, the target solution value, and for each heuristic, the average best solution
value, the average run-time (in seconds), and the best solution value found in all
runs.

The table shows that both heuristics perform similarly for instances with 14 and
29 nodes. Both of them achieve the target solution in all runs, which in turn is the
optimal solution found previously by CPLEX. Both heuristics have short average
times per run, but BRKGA-FTSP performs faster than GRASP+EvPR-FTSP in 3 out of
6 instances.

For instances with 48 and 127 nodes the table indicates that BRKGA-FTSP has a
better average solution value than GRASP+EvPR-FTSP in 4 out of 6 instances. For
remaining two instances, either both achieve the target solution (i.e. optimal solu-
tion) in all runs, or GRASP+EvPR-FTSP has a better average solution value. Despite
the fact that one heuristic does better than the other, the average percentage gap
difference between both procedures is 0.12%, which denotes a small difference be-
tween solution values and the target solutions. BRKGA-FTSP also performs faster
in 3 out of 6 instances. An interesting observation is that both BRKGA-FTSP and
GRASP+EvPR-FTSP found at least one solution that had a lower solution value than
the target in all 3 instances with 127 nodes.

Finally for the remaining instances, the table shows that GRASP+EvPR-FTSP has
a better average solution value than BRKGA-FTSP. In this case the the average per-
centage gap difference between both procedures for instances with 280, 666, and
1002 nodes are 13.79%, 78.34%, and 139.61% respectively. Moreover, BRKGA-FTSP
did not reach the target solution in all runs, whereas GRASP+EvPR-FTSP found at
least one solution that had a lower solution value than the target in 8 out of 9
instances. This denotes that GRASP+EvPR-FTSP outperforms BRKGA-FTSP consider-
ably as instances become larger.

5. Concluding remarks

This paper introduced the family traveling salesperson problem (FTSP), a vari-
ant of the generalized traveling salesperson problem, which can be applied to order-
picking in warehouses. Considering that families of similar products can be located
in scattered positions in a warehouse, the FTSP can be used to optimize the routes
followed when picking a collection of products of an incoming order.

We also present a binary integer programming model for the FTSP, and propose
two randomized heuristics for this problem: a biased random-key genetic algorithm
and a GRASP with evolutionary path-relinking heuristic. After showing that the
integer programming solver CPLEX 11 can only handle small instances of the FTSP,
we compare the performance of the proposed heuristics on a set of benchmark
instances.

The experiments show that both heuristics can find optimal and good quality
near-optimal solutions. GRASP+evPR-FTSP seems to perform much better on large
instances, even if the time taken for fine-tuning the heuristic is considered. On
the other hand, BRKGA-FTSP tends to perform better in smaller instances, and find
equal or better solutions than GRASP+evPR-FTSP in less time.
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