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Abstract

Lower bounds for the quadratic assignment problem (QAP) tend to deterio-
rate rapidly with the size of the QAP. Recently, Resende, Ramakrishnan, and
Drezner (1995) computed a linear programming based lower bound for the
QAP using an interior point algorithm for linear programming to solve the lin-
ear programming relaxation of a classical integer programming formulation of
the QAP. That linear program can be viewed as a two-body interaction for-
mulation. Those bounds were found to be the tightest for a large number of
instances from QAPLIB, a library of QAP test problems. In this paper, we
apply the same interior point approach to cormpute lower bounds derived from
the three-body interaction formulation of Ramachandran and Pekny (1996).
All instances from QAPLIB, having dimension up to n = 12, were solved. The
new approach produces tight lower bounds (lower bounds equal to the optimal
solution) for all instances tested. Attemnpts to solve the linear programming
relaxations with CPLEX (primal simplex, dual simplex, and barrier interior
point method) were successful only for the smallest instances (n < 6 for the
barrier method, n < 7 for the primal simplex method, and n < 8 for the dual
simplex method).
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1 LP-based lower bounds for the QAP

In this section we briefly review integer programming formulations of the QAP that
are useful for producing lower bounds. Let the binary variables x;; represent the
assignment of facility 4 to location j and denote by ¢, the cost of assigning facility
to location 7 and facility k to location . The QAP can be Tormulated as the following
integer quadratic program:

n k() L3 n
min Y 33D cm Ty u (1
i=1 j=1 k=1 =1
subject to
k43
Zzij:l? 7’_17 y 1, (2)
j=1
k3
Szi=1, j=1,...,n, (3)
=1
Ty € {0,1}, ,7=1,...,n (1)

Linear programming based bounds for the QAP [1, 9, 7] have relied on the following
mixed integer formulation obtained by the linearization of the quadratic objective
with the introduction of continuous variables y;;,; = 2;; ©r. The resulting linear

integer program is
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Though lower bounds obtained from the linear programming relaxation of this for-
mulation are, in general, better than previously known lower bounds [9], there is still
a significant gap between the optimal solution and the lower bound for problems as
small as dimension n = 8. For example, problem nug08 from QAPLIB [2] has an
optimal solution of 214 and an LP-based lower bound of 204. This gap deteriorates
with the increase in the size of the problem, necessitating the solution of a large num-
ber of linear programs in branch and bound algorithms [8]. For example, nug30 has
a best known solution of 6124 and an LP-based lower bound of 4805.
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Ramachandran and Pekny [7] have recently proposed a higher-order formulation of
the QAP based on the application of lifting procedures to (5-9). Defining three-body
interaction coefficients as ¢;jrpg = Cijri + Chipg + Cijpe, the QAP can be formulated as:
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It can be shown that the optimal objective function of (10-15) is (n — 1) times that
of QAP. Prior to our study, this formulation had been tested only for small instances
of QAP of size at most n = 8 [7], showing that the LP relaxations were 100% tight in
those cases. Larger instances of quadratic assignment problems could not be solved
due to the limitations of CPLEX, the LP solver used. Decomposition methods based
on this formulation have also yielded better lower bounds than the LP based lower
bounds using the formulation (5-9) for a number of problems [7].

In this paper, our main objective is to use the interior point code ADP to obtain
superior lower bounds using (10-15).

2 Experimental results

In this section, we describe computational results. Because of the size of the linear
programs, we have limited this study to all QAPLIB instances having dimension
n < 12. ADP requires about 1.2 Gbytes of memory to run the largest instances in
the test set, which have 299,256 variables and 177,432 constraints.

The experiments were done on a 250MHz Silicon Graphics Challenge. The ADP
code is written in C and Fortran. It was compiled with the cc and £77 compilers
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Table 1: QAPLIB instances of dimension n < 12
LP-based lower bound linear programming relaxation

name n BKS RRD9S  3-body TOWS cols NZ(A)
nugds 5 50 50 50 1410 825 5850
nugl6 6 86 86 86 3972 2886 20232
nugl7 7 148 148 148 942% 8281 57134
nugl8 8 214 204 214 19728 20448 139008
nugl? 12 578 523 578 177432 299256 1954944
esc08a 8 2 0 2 19728 20448 139008
escO8b 8 8 2 8 19728 20448 139008
esc08 8 32 22 32 19728 20448 139008
esc08d 8 6 2 6 19728 20448 139008
escl8e 8 7 0 7 19728 20448 139008
escO8f 8 18 18 18 19728 20448 139008
roul0 10 174220 170384 174220 66620 90550 601400
roul2 12 235528 224278 235528 177432 299256 1954944
scrl0 10 26992 26874 26992 66620 90550 601400
scrl2 12 31410 29827 31410 177432 299256 1954944
lipal0a 10 473 473 473 66620 90550 601400
lipalOb 10 2008 2008 2008 66620 90550 601400

using compiler flags CFLAGS = -0 -DVAX -cckr -pand FFLAGS = -02 -p -trapuv.
Running times were measured by making the system call times and converting to
seconds, using the HZ defined in sys/param.h.

ADP requires many parameters to be set. We used the parameter setting desecribed
in [9].

Table 2 surnmarizes these instances, listing for each instance, its name, dimension (n),
best known solution (BKS), the lower bound computed by Resende, Ramakrishnan,
and Drezner [9] by solving (5-9) (RRD95 bound), the lower bound resulting from the
3-body formulation (3-body), and the dimension of the 3-body linear programming
formulation (rows, columns, and number of nonzeros in the coefficient matrix). Note
that of the 17 instances, the lower bounds computed in [9] were tight for only 6
instances, whereas all 3-body lower bounds were tight.

Table 2 summarizes the ADP runs. For each instance, the table lists its name, the
number of interior point iterations (ipitr), number of conjugate gradient iterations
(cgitr), maximum number of conjugate gradient iterations in a single interior point
iteration (max-cgitr), average number of conjugate gradient iterations per interior
point iteration (avg-cgitr), and number of preconditioners computed (#-precond),
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name ipitr cgitr max-cgitr avg-cgitr #-precnd time (secs)
nugds 48 311 37 6 36 32s
nugl6 55 507 32 9 48 12.2s
nugl7 59 721 54 12 51 43.3s
nugl8 63 1036 83 16 a6 139.1s
nugl2 91 4655 201 50 86 6504.2s
esc08a 57 1130 75 19 53 146.4s
escO8b 65 4682 425 70 60 435.8s
esc08c 61 953 79 15 51 130.6s
esc08d 61 1110 251 17 51 138.6s
esc08e 66 2472 101 36 62 275.58
esc08f 59 879 53 14 53 121.58
rould 69 1476 101 1 59 800.8s
roul2 80 2736 173 33 72 4222.0s
scrl0 71 1788 101 24 60 950.0s
scrl2 83 3240 201 38 78 5038.8s
lipalOa 66 943 66 14 58 603.1s
lipalOb 66 900 62 13 54 580.1s

and the total CPU time in seconds.

We make the following observations regarding the experimental results:

e The lower bounds computed are tight for all instances tested.

e No other lower bounding technique for the QAP has produced tight bounds for
all instances from this set of problems.

e CPU times ranged from a little over 3 seconds on the smallest instance to a
little under 2 hours for the longest n = 12 run. In the concluding remarks we

discuss the relevance of this to branch and bound methods.

3 Concluding remarks

In this paper, we used an interior point algorithm [5] that uses a preconditioned
conjugate gradient algorithm to compute lower bounds for the QAP by solving a linear
programming relaxation of the 3-body interaction formulation of Ramachandran and
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Pekny [7]. On all QAPLIB [2] instances of dimension n < 12, the computed lower
bounds were tight, i.e. they equaled the optimal objective function vaiue.

A good lower bound by itself is of little use. However, in a branch and bound algo-
rithm, a good lower bound can make a significant difference. Ramakrishnan, Resende,
and Pardalos [8] showed that the weaker LP-based lower bound (QAPLP) studied
in [9] can reduce substantially the number of nodes of the branch and bound tree
that need to be scanned. Though the solution time for computing those bounds is
significantly greater than the time needed to compute the classical Gilmore-Lawler
bound [3, 6], the large number of scanned nodes for a Gilmore-Lawler based branch
and bound algorithm makes the LP-based branch and bound method more attractive,
specially for large quadratic assignment problems. For example, using the branch and
bound code described in [8], QAPLIB instance chri8a was solved after scanning 18
level-1 nodes of the search tree and 17 level-2 nodes in about 1600s, while on the
same machine the identical branch and bound code using the Gilmore-Lawler lower
bound in place of the LP-based lower bound had not solved the problem after having
scanned over 1636 million nodes in aver 12 days of CPU time.

To this date, there exist QAPLIB instances of dimension n = 16 that remain unsolved.
Though solving a 3-body interaction lower bound for n = 16 is beyond the capabilities
of today’s LP solvers, one can use this bound deeper in the search tree, where the
subproblems solved have smaller dimension. A practical approach is to combine the
QAPLP lower bound to compute bounds for shallow search tree nodes, with the
3-body interaction lower bound to compute bounds for deeper nodes.

Since the 3-body interaction LP contains the entire set of constraints of the LP used
for the QAPLP bound, the 3-body bound will always be at least as good as the
QAPLP lower bound. Lower bounds that are better than QAPLP but not as good
as the 3-body bound can be computed by considering a subset of the constraints
(11-14). The number of constraints used should be a function of the depth of the
node being scanned in the search tree.

Linear programming formulations of the QAP have been shown to produce tight
bounds. Further understanding of structural properties of the QAP polytope will
hopefully provide yet tighter bounds. For two recent investigations in this direction,
see Rijal [10] and Jiinger and Kaibel [4].
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