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Abstract 

Lower bounds for the quadratic assignment problem (QAP) tend to deterio- 
rate rapidly with the size of the QAP. Recently, Resende, Ramakrishnan, and 
Drezner (1995) computed a linear programming based lower bound for the 
QAP using an interior point algorithm for linear programming to solve the lin- 
ear programming relaxation of a classical integer programming forn~ulation of 
the QAP. That linear progralil can be viewed as a two-body interaction for- 
mulation. Those bounds were found to be the tightest for a large number of 
instances from QAPLIB, a library of QAP test problems. In this paper, we 
apply the same interior point approach to compute lower bounds derived from 
the three-body interaction formulation of Ramachandran and Pekny (1996). 
All instances from QAPLIB, having dimension up to n = 12, were solved. The 
new approach produces tight lower hounds (lower bounds equal to  the optimal 
solution) for all instances tested. Attempts to solve the linear programming 
relaxations with CPLEX (primal simplex, dual simplex, and barrier interior 
point method) were successful only for the smallest instances (n 5 6 for the 
barrier method, n 5 7 for tlle primal simplex method, and n 5 8 for the dual 
simplex method). 
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1 LP-based lower bounds for the QAP 

In this section we briefly review integer programming formulations of the QAP that. 
are useful for producing lower bounds. Let the binary variables x ,  represent the 
assignment of facility i to location j and denote by the,cost of assigning facility r 
to location j and facility k to location 1. The QAP can beyormulated as the follov~iag 
integer quadratic program: 

subject to 

n n n n  

min C C C C c i 3 k l  x i j  551 
i = l j = l  k=1 l=l  

Linear programming based bounds for the QAP [I, 9, 71 have relied on the following 
mixed integer formulation obtained by the linearization of the quadratic objective 
with the introduction of continuous variables yijkl  = zij x k l .  The resulting linear 
integer program is 

min 2 5 C ~ j k l  Yi3kl (5) 
i=l j=l  k#i l > j  

subject to (2, 3, 4) and 

Though lower bounds obtained from the linear programming relaxation of this for- 
mulation are, in general, better than previously known lower bounds (91, there is still 
a significant gap between the optimal solution and the lower bound for problems as 
small as dimension n = 8. For example, problem nug08 from QAPLIB [2] has an 
optimal solution of 214 and an LP-based lower bound of 204. This gap deteriorates 
with the increase in the size of the problem, necessitating the solution of a large num- 
ber of linear programs in branch and bound algorithms [a]. For example, nug30 has 
a best known solution of 6124 and an LP-based lower bound of 4805. 



Ramachandran and Pekny [7] have recently proposed a higher-order formulation of 
the QAP based on the application of lifting procedures to (5-9). Defining three-body 
interaction coefficients as c,3klW =   kt + cklW + (;3P4, the QAP can be formulated as: 

subject to (2-4), (6-9) and 

It can be shown that the optimal objective function of (10-15) is (n - 1) times that 
of QAP. Prior to our study, this formulation had been tested only for small instances 
of QAP of size at most n = 8 [7], showing that the LP relaxations were 100% tight in 
those cases. Larger instances of quadratic assignment problems could not be solved 
due to the limitations of CPLEX, the LP solver used. Decomposition methods based 
on this formulation have also yielded better lower bounds than the LP based lower 
bounds using the formulation (5-9) for a number of problems [7]. 

In this paper, our main objective is to use the interior point code ADP to obtain 
superior lower bounds using (10-15). 

2 Experimental results 

In this section, we describe computational results. Because of the size of the linear 
programs, we have limited this study to all QAPLIB instances having dimension 
n 5 12. ADP requires about 1.2 Gbytes of memory to run the largest instances in 
the test set, which have 299,256 variables and 177,432 constraints. 

The experiments were done on a 250MHz Silicon Graphics Challenge. The ADP 
code is written in C and Fortran. It was compiled with the cc and f77 compilers 



name n 
nug05 5 
nug06 6 
nug07 7 
nug08 8 
nugl2 12 

Table 1: QAPLIB instances of dimension n 5 12 
LP-bayed lower bound linear programming relaxatmion 

BKS RRD95 3-body rows cols NZ(A) 
50 50 50 1410 825 5850 
86 86 86 3972 2886 20232 
148 148 148 9422 8281 57134 
214 204 214 19728 '20448 139008 
578 523 578 177432 299256 1954914 

using compiler flags CFLAGS = -0 -DVAX -cckr -p and FFLAGS = -02 -p -trapuv. 
Running times were measured by making the system call times and converting to 
seconds, using the HZ defined in sys/param.h. 

ADP requires many parameters to be set. We used the parameter setting described 
in [9]. 

Table 2 summarizes these instances, listing for each instance, its name, dimension (n), 
best known solution (BKS), the lower bound computed by Resende, Ramakrishnan, 
and Drezner [9] by solving (5-9) (RRD95 bound), the lower bound resulting from the 
3-body formulation (bbody), and the dimension of the Bbody linear programming 
formulation (rows, columns, and number of nonzeros in the coefficient matrix). Note 
that of the 17 instances, the lower bounds computed in [9] were tight for only 6 
instances, whereas all 3-body lower bounds were tight. 

Table 2 summarizes the ADP runs. For each instance, the table lists its name, the 
number of interior point iterations (ipitr), number of conjugate gradient iterations 
(cgitr), maximum number of conjugate gradient iterations in a single interior point 
iteration (max-cgitr), average number of conjugate gradient iterations per interior 
point iteration (avg-cgitr), and number of preconditioners computed (#-precond), 



name 
nugO5 

Table 2: ADP interior point solution statistics 
ipitr cgitr max-cgitr avg-cgitr #-precnd time (sees) 
48 311 37 6 36 3.2s 
55 557 32 9 48 12.2s 
59 721 54 12 5 1 43.3s 
63 1036 83 16 56 , 139.1s 
91 4655 201 50 86 " 6504.2s 

and the total CPU time in seconds. 

We make the following observations regarding the experimental results: 

The lower bounds computed are tight for all instances tested. 

No other lower bounding technique for the QAP has produced tight bounds for 
all instances from this set of problems. 

CPU times ranged from a little over 3 seconds on the smallest instance to a 
little under 2 hours for the longest n = 12 run. In the concluding remarks we 
discuss the relevance of this to branch and bound methods. 

3 Concluding remarks 

In this paper, we used an interior point algorithm [5] that uses a preconditioned 
conjugate gradient algorithm to compute lower bounds for the QAP by solving a linear 
programming relaxation of the 3-body interaction formulation of Ramachandran arid 



Pekny [7]. On all QAPLIB [2] instances of dimension n 5 12, the computed lowcr 
bounds were tight, i.e. they equaled the optimal objective function value. 

A good lower bound by itself is of little use. However, in a branch and bound algo- 
rithm, a good lower bound can make a significant difference. Ramakrishnan, Resende, 
and Pardalos [8] showed that the weaker LP-based lower, bound (QAPLP) studied 
in [9] can reduce substantially the number of nodes of the branch and bound tree 
that need to be scanned. Though the solution time for computing those bounds is 
significantly greater than the time needed to compute the classical Gilmore-Lawler 
bound [3, 61, the large number of scanned nodes for a Gilmore-Lawler based branch 
and bound algorithm makes the LP-based branch and bound method more attractive, 
specially for large quadratic assignment problems. For example, using the branch and 
bound code described in [a], QAPLIB instance chrl8a was solved after scanning 18 
level-1 nodes of the search tree and 17 level-:! nodes in about 1600s, while on the 
same machine the identical branch and bound code using the Gilmore-Lawler lower 
bound in place of the LP-based lower bound had not solved the problem after having 
scanned over 1636 million nodes in over 12 days of CPU time. 

To this date, there exist QAPLIB instances of dimension n = 16 that remain unsolved. 
Though solving a bbody interaction lower bound for n = 16 is beyond the capabilities 
of today's LP solvers, one can use this bound deeper in the search tree, where the 
subproblems solved have smaller dimension. A practical approach is to combine the 
QAPLP lower bound to compute bounds for shallow search tree nodes, with the 
3-body interaction lower bound to compute bounds for deeper nodes. 

Since the bbody interaction LP contains the entire set of constraints of the LP used 
for the QAPLP bound, the bbody bound will always be at  least as good as the 
QAPLP lower bound. Lower bounds that are better than QAPLP but not as good 
as the $body bound can be computed by considering a subset of the constraints 
(11-14). The number of constraints used should be a function of the depth of the 
node being scanned in the search tree. 

Linear programming formulations of the QAP have been shown to produce tight 
bounds. Further understanding of structural properties of the QAP polytope will 
hopefully provide yet tighter bounds. For two recent investigations in this direction, 
see Rijal [lo] and Jiinger and Kaibel [4]. 
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