
Computing Lower Bounds for the Quadratic

Assignment Problem with an Interior Point

Algorithm for Linear Programming∗

M.G.C. Resende† K.G. Ramakrishnan‡ Z. Drezner§

Abstract

A typical example of the quadratic assignment problem (QAP) is the facility location problem,
in which a set of n facilities are to be assigned, at minimum cost, to an equal number of
locations. Between each pair of facilities, there is a given amount of flow, contributing a cost
equal to the product of the flow and the distance between locations to which the facilities are
assigned. Proving optimality of solutions to quadratic assignment problems has been limited to
instances of small dimension (n less than or equal to 20), in part because known lower bounds
for the QAP are of poor quality. In this paper, we compute lower bounds for a wide range
of quadratic assignment problems using a linear programming-based lower bound studied by
Drezner (1994). On the majority of quadratic assignment problems tested, the computed lower
bound is the new best known lower bound. In 87 percent of the instances, we produced the
best known lower bound. On several instances, including some of dimension n equal to 20, the
lower bound is tight. The linear programs, which can be large even for moderate values of n,
are solved with an interior point code that uses a preconditioned conjugate gradient algorithm
to compute the directions taken at each iteration by the interior point algorithm. Attempts to
solve these instances using the CPLEX primal simplex algorithm as well as the CPLEX barrier
(primal-dual interior point) method were successful only for the smallest instances.

The quadratic assignment problem (QAP) can be stated as

min
p∈Π

n∑

i=1

n∑

j=1

aijbp(i)p(j)

where Π is the set of all permutations of {1, 2, . . . , n}, A = (aij) ∈ Rn×n, B = (bij) ∈ Rn×n.
The QAP was proposed by Koopmans and Beckmann (1957) as a mathematical model for a set of
indivisible economical activities. A typical example of the QAP is the facility location problem, in
which a set of n facilities is to be assigned to an equal number of locations. Between each pair of
facilities, there is a given amount of flow, contributing a cost equal to the product of the flow and
the distance between the locations to which the facilities are assigned. Applications of the QAP
are abundant, and can be found in (Bokhari, 1987; Francis & White, 1974; Hubert, 1987; Krarup

∗Revision date: March 21, 1995
†AT&T Bell Laboratories, Murray Hill, NJ 07974 USA. E-mail: mgcr@research.att.com
‡AT&T Bell Laboratories, Murray Hill, NJ 07974 USA. E-mail: kgr@research.att.com
§Department of Management Science, School of Business Administration and Economics, California State Univer-

sity, Fullerton, CA 92634 USA. E-mail: drezner@fullerton.edu

1

2

& Pruzan, 1978; Li, Pardalos, & Resende, 1994b; McCormick, 1970; Pardalos & Wolkowicz, 1994).
Many classical combinatorial optimization problems, such as the traveling salesman problem and
the graph partitioning problem, are special cases of the QAP.

A wide range of heuristics have been applied to find approximate solutions to the QAP (Burkard
& Rendl, 1984; Fleurent & Ferland, 1994; Li et al., 1994b; Mawengkang & Murtagh, 9856; Murtagh,
Jefferson, & Sornprasit, 1982; Skorin-Kapov, 1990; Taillard, 1991; Thonemann, U.W. and Bölte,
A.M., 1994). Exact solution approaches have been limited to small (n ≤ 20) instances, and are
mostly based on branch and bound. This has been frequently attributed to the observation that
lower bounds for the QAP tend to deteriorate quickly, as the size of the QAP increases.

Lower bounds can be categorized into three groups. The first includes the Gilmore-Lawler lower
bound (Gilmore, 1962; Lawler, 1963; Li, Pardalos, Ramakrishnan, & Resende, 1994a) and related
bounds. Eigenvalue-based bounds (Finke, Burkard, & Rendl, 1987; Hadley, Rendl, & Wolkowicz,
1990, 1992a, 1992b) constitute the second category. They have been generally acknowledged to be
the best, but also the most expensive to compute. The third group of bounds are mainly based on
reformulations of the QAP (Assad & Xu, 1985; Carraresi & Malucelli, 1992; Chakrapani & Skorin-
Kapov, 1994; Christofides & Gerrard, 1981; Frieze & Yadegar, 1983; Karisch & Rendl, 1994) and
are usually computed by solving a series of linear assignment problems.

Drezner (1994) studied a lower bound based on the linear programming (LP) relaxation of a
well-known integer programming formulation of the QAP. Computational testing was done on three
small quadratic assignment problems, showing that on those instances the LP relaxations produced
tight bounds. In fact, they also produce an optimal permutation. In this paper, we extend Drezner’s
experiments to a large set of QAP test problems from QAPLIB (Burkard, Karisch, & Rendl, 1991),
a much-studied suite of problems.

For a QAP of dimension n, the LP-based bound requires the solution of a linear program having
2n2(n − 1) + 2n constraints and n2(n − 1)2/2 + n2 variables. For even moderate values of n, the
resulting linear programs are large, by today’s standards. For example, to compute the LP-based
bound for a quadratic assignment problem of dimension n = 30, requires the solution of a linear
program with 52,260 constraints and 379,350 variables. To solve linear programs of up to this
size, we apply an interior point LP code (Karmarkar & Ramakrishnan, 1991) that uses a conjugate
gradient algorithm to approximately compute the improving direction at each iteration of the interior
point algorithm. Attempts to solve these linear programs with the commercially available CPLEX
(CPLEX is a Registered Trademark of CPLEX Optimization, Inc.) primal simplex and CPLEX
barrier (primal-dual) interior point algorithms indicate that, except for the smaller instances, these
linear programs are beyond the current capabilities of those solvers. CPLEX version 2.1 was used
in the experiments reported in this paper.

The paper is organized as follows. In Section 1 we review the LP-based bound. In Section 2, we
outline how we compute the bounds, and briefly discuss our attempts at solving the LP relaxations
using CPLEX. Computational results are summarized in Section 3 and concluding remarks are made
in Section 4.

1 A Linear Programming Bound for QAP

Define the (0, 1)-variable xir to be such that xir = 1 if, and only if, facility i is assigned to location
r, and let crs

ij be the cost associated with simultaneously assigning facility i to location r and facility
j to location s. The following is a classical integer quadratic programming formulation for the
quadratic assignment problem:

min
n∑

i=1

n∑

j=1

n∑

r=1

n∑

s=1

crs
ij xirxjs (1)

subject to:

3

n∑

i=1

xir = 1, r = 1, . . . , n, (2)

n∑

r=1

xir = 1, i = 1, . . . , n, (3)

xir = {0, 1}, i, r = 1, . . . , n. (4)

By defining the (0, 1)-variable yirjs = xirxjs, it follows that, for i, r, s = 1, . . . , n,

n∑

j=1

yirjs =
n∑

j=1

xirxjs

= xir

n∑

j=1

xjs

= xir,

and for i, j, r = 1, . . . , n,

n∑

s=1

yirjs =
n∑

s=1

xirxjs

= xir

n∑

s=1

xjs

= xir.

Substituting yirjs into (1–4) gives us the following integer programming formulation for the QAP:

min
n∑

i=1

n∑

j=1

n∑

r=1

n∑

s=1

crs
ij yirjs (5)

subject to:
n∑

i=1

xir = 1, r = 1, . . . , n, (6)

n∑

r=1

xir = 1, i = 1, . . . , n, (7)

n∑

j=1

yirjs = xir , i, r, s = 1, . . . , n, (8)

n∑

s=1

yirjs = xir , i, j, r = 1, . . . , n, (9)

xir = {0, 1}, i, r = 1, . . . , n, (10)

yirjs = {0, 1}, i, r, j, s = 1, . . . , n. (11)

Note that for i, j, r, s = 1, . . . , n, we have yirjs = xirxjs = xjsxir = yjsir , implying

yirjs = yjsir . (12)

Consequently, (12) can be incorporated into the objective function and constraints of the integer pro-
gram (5–11), reducing substantially the number of variables and constraints. Furthermore, yirjs = 0
if i = j (r 6= s) or r = s (i 6= j), and can be thus eliminated from the formulation for those indices.

4

Table 1: The Nugent et al. test problems

LP relaxation
name n constraints variables nz bks glb
nug05 5 210 225 1050 50 50
nug06 6 372 486 2232 86 82
nug07 7 602 931 4214 148 137
nug08 8 912 1632 7296 214 186
nug12 12 3192 8856 38304 578 493
nug15 15 6330 22275 94950 1150 963
nug20 20 15240 72600 304800 2570 2057
nug30 30 52260 379350 1567800 6124 4539

This results in an integer linear program with n2(n − 1)2/2 + n2 variables and 2n2(n − 1) + 2n
constraints.

Drezner (1994) proves that the optimal objective function value of the linear programming re-
laxation of the integer program (5–11) obtained by relaxing the integrality requirements of (10) and
(11) with the linear constraints

xir ≥ 0, i, r = 1, . . . , n, (13)

yirjs ≥ 0, i, r, j, s = 1, . . . , n, (14)

is a lower bound for the QAP that is at least as good as the classical Gilmore-Lawler lower bound.
Adams and Johnson (1994) show that the Gilmore-Lawler lower bound is equivalent to the above
linear programming formulation with (12) removed and develop a dual-ascent procedure for approx-
imating the dual of the LP relaxation. In that paper, however, they take at most 50 iterations of
the dual-ascent procedure, failing to reach the optmal value on all instances but the smallest (of
dimension n = 5). It is not clear whether the lower bound would improve if additional dual-ascent
iterations were to be taken.

Let c⊤y∗ be the optimal solution to the LP relaxation (5–10, 13–14). Assuming integer data
in the QAP matrices, we call ⌈c⊤y∗⌉ the QAPLP lower bound, where ⌈z⌉ is the smallest integer
greater than or equal to z. If the QAP matrices are symmetric, the LP objective function value can
be further rounded to the smallest even number greater than or equal to it. Throughout this paper,
we shall often refer to the best known approximate solution to the dual linear program, rounded up,
also as the QAPLP bound.

2 Efficient Computation of the LP-Based Lower Bound

QAPLIB (Burkard et al., 1991) is a collection of QAP test instances commonly used to test codes that
compute lower bounds, optimal or approximate solutions to quadratic assignment problems. Perhaps
one of the most used classes of QAP test problems is the one introduced by Nugent, Vollmann, and
Ruml (Nugent, Vollmann, & Ruml, 1969). QAPLIB has eight instances from this class, summarized
in Table 1, where for each instance, the dimension, number of constraints, variables, and nonzero
elements in the constraint matrix of the LP relaxation, best known solution (bks), and Gilmore-
Lawler lower bound (glb) are listed. Drezner (Drezner, 1994) solved the LP relaxations of instances
nug05, nug06, and nug07, finding tight bounds (i.e. 50, 86, and 148, respectively) for each of the
three instances. To expand on the experimental results of Drezner, we attempted to solve the LP
relaxations with the commercially available LP solver CPLEX. We used two algorithms in CPLEX
Version 2.1: the default CPLEX primal simplex algorithm and the CPLEX barrier (interior point)
algorithm. Table 2 summarizes results for those runs on a Silicon Graphics Challenge computer

5

Table 2: CPLEX 2.1 on Nugent et al. test problems

simplex barrier
name sol’n itr time sol’n b-itr x-time time
nug05 50.00 103 0.23 50.00 8 0.12 0.58
nug06 86.00 551 2.25 86.00 8 0.28 3.37
nug07 148.00 2813 21.95 148.00 11 1.10 17.66
nug08 203.50 5960 91.26 203.50 10 1.79 57.22
nug12 522.89 57524 9959.10 522.89 22 81.61 7070.76
nug15 1040.99 239918 192895.20 quit before itr 1
nug20 estimated time: > 2 months did not run
nug30 did not run did not run

(150-MHz MIPS 4400 processors with 1.5 Gbytes of RAM). For the simplex algorithm, the table
lists the value of the optimal solution found (sol’n), the number of iterations taken (itr), and the
total running time (time) in seconds. The default barrier uses CPLEX’s crossover scheme, switching
to the simplex method at the end to find a basic optimal solution. For the barrier algorithm, the
table lists the value of the optimal solution found (sol’n), the number of barrier iterations taken
(b-itr), the crossover time (x-time), in seconds, and the total running time (time), in seconds.

The simplex algorithm successfully found optimal solutions for the instances corresponding to
quadratic assignment problems of dimension n ≤ 15. The largest instance solved required over 53
hours of CPU time. On instance nug20, the simplex code took over 9 cpu days to finish phase I, and
took 1,348,478 seconds (over 15 cpu days) to execute 95,960 iterations (14.05 seconds/iteration).
At that point, the simplex algorithm had brought the primal objective function down to only 2916
(the optimal is 2182). Proceeding at that rate, we estimate that the simplex code would take over
63 CPU days to finish (see Figure 1). The barrier code was run with default parameters and had
no problem solving all instances having QAP dimension n ≤ 8. On nug12, the code using default
parameters encountered numerical difficulties and did not get past the initial factorization. I. Lustig,
of CPLEX Optimization, said that the LP model had many dependent rows and recommended that
we use the somewhat slower, but more robust, pulling factorization option (CPLEX command set

bar cholesky 0). The default on the SGI machines is the pushing factorization. Indeed, with the
pulling factorization the barrier code was able to find the optimal solution to nug12. On instance
nug15, however, both factorization options failed. I. Lustig informed us that version 3.0 of CPLEX
will include a dependency option to their presolve. He expects this to help get past the numerical
difficulties encountered here.

Even if the numerical difficulties encountered by the barrier method were resolved, we estimate
that the barrier method would take over 15 CPU days to solve nug20 (see Figure 1). Though this
is four times faster than the simplex code, it is nevertheless impractical. The most serious problem
with the barrier method arises from the very high density of the direction-determining linear systems
of these instances (Table 3 lists statistics of the factors used in the Barrier method: number of rows,
dimension of the dense window of the factor, number of nonzeroes in the factor). Such large densities
make indirect methods preferable to direct methods for solving these linear systems.

Karmarkar and Ramakrishnan (Karmarkar & Ramakrishnan, 1991) describe an implementation
of an interior point method for LP that applies the preconditioned conjugate gradient method to
approximately solve the linear systems of each interior point iteration. The algorithm solves primal
linear programs with upper bounds on all variables (if a variable is unbounded, a large upper bound
is assigned to it) by first solving the dual program, and then in a final phase finding a feasible
(optimal) primal solution that is complementary to the dual optimal found in the earlier phase. The
algorithm, called Approximate Dual Projective (ADP), initially takes a series of centering steps to
bring the initial iterate closer to the center of the dual LP polytope. Then, after each dual affine step,

6

Table 3: CPLEX 2.1 Barrier Factors on Nugent et al. test problems

dense
name rows window nz(factor)
nug05 185 128 10653
nug06 372 247 39657
nug07 602 417 105711
nug08 912 612 248166
nug12 3192 2089 2975612
nug15 6333 4273 11233305

Table 4: ADP on the Nugent et al. test problems

ADP steps ADP CPU time ratio
name affine center CG CPU time sol’n simplex/adp barrier/adp
nug05 14 39 244 1.62 50.00 0.14 0.35
nug06 17 43 336 2.57 86.00 0.87 1.31
nug07 19 48 1059 6.24 148.00 3.52 2.83
nug08 18 45 944 9.50 203.49 9.61 6.02
nug12 29 71 16329 754.12 522.89 13.20 9.38
nug15 36 81 19095 5203.83 1040.99 37.07 -
nug20 31 59 13846 6745.46 2181.57 - -
nug30 36 64 18547 35057.96 4804.56 - -

the algorithm takes one or more centering steps to maintain the iterate well centered. To compute
the affine and centering directions, a system of linear equations must be solved. The linear systems
for the affine and centering directions differ only with respect to the right hand side vector, allowing
the same preconditioner to be used for both computations. Furthermore, the preconditioner need
not be computed at each iteration. Once computed, it can be reused during several iterations. The
accuracy of the conjugate gradient method at each interior point iteration, as well as the cpu time
of the conjugate gradient method, determine if a new, more accurate, preconditioner needs to be
computed. If a primal optimal solution is required, a final series of centering steps are taken after
the convergence of the dual iterates, prior to the primal feasibility phase.

Since ADP solves the dual of the linear program, any feasible dual iterate produced by ADP is
a lower bound for the QAP. For the purpose of finding a lower bound for QAP, we do not need to
compute the primal solution, and thus terminate the algorithm with only a dual optimal solution.
Table 4 summarizes the results of running ADP on the Nugent et al. class of test problems. For
purpose of comparison, the table also lists CPU time ratios with respect to the two CPLEX codes.
Figure 1 plots running times for CPLEX primal simplex, CPLEX barrier, and ADP for the Nugent
et al. test problems. The estimated running time for the simplex code on nug20 is also plotted,
since the algorithm does make progress towards the optimal. We do not plot our estimate for the
barrier algorithm, since even for nug15 it is not able to get past the first factorization.

Figure 2 shows the primal and dual objective function values generated, respectively, by the
CPLEX primal simplex algorithm and the ADP algorithm on instance nug15. The plot shows
only feasible iterates. Note that the simplex code solves a perturbed problem, gaining in objective
function value near the end, while unperturbing the data. Since all dual feasible ADP iterates are
lower bounds, it is interesting to observe that though the algorithm took over 5000 seconds to stop,
it was within 10% of the optimal after only 77 seconds, within 5% in 88 seconds, and within 1%

7

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

5 6 7 8 9 10 20 30

time
(secs)

QAP dimension

adp time +

+
+

+
+

+

+ +

+

simplex time bb b b b b b

simplex time (est) ⋆

⋆

barrier time ••

•

•

•

•

Figure 1: CPLEX and ADP solvers on Nugent et al. problems

8

in 168 seconds. In 520.35 seconds it attained an objective function value of 1040.009084, which
rounded up gives the QAPLP lower bound of 1041.

3 Computational Results

In this section we report on computational results. We use as our testbed the suite of QAP test
problems QAPLIB. Because of memory requirements, we limit our experiment to the 63 instances
in QAPLIB that are of dimension n less than or equal to 30. For a QAP of dimension n = 30, ADP
requires about 800 Mbytes of memory (using the ADP parameter settings described later in this
section).

The experiment was done on a Silicon Graphics Challenge, whose hardware description is dis-
played in Figure 3 by executing the hinv command. The ADP code is written in C and Fortran.
It was compiled with the cc and f77 compilers using compiler flags CFLAGS = -O -DVAX -cckr -p

and FFLAGS = -O2 -p -trapuv. Running times were measured by making the system call times
and converting to seconds, using the HZ defined in sys/param.h.

The ADP code requires a number of parameters to be set. First, we describe some global
parameters. The fraction of the maximum step length of the dual and centering steps are set to
fract = 0.8 and pfract = 0.5, respectively. The dual iterates are said to be converged when the
relative dual objective function improvement falls below stptol = 10−6. The number of nonzero
elements in the factors of the preconditioner is limited to be at most nfacl times the number of
nonzero elements in the linear program constraint matrix A. We have set nfacl = 10. If this limit
is reached, the algorithm terminates.

Since the computation of the centering direction is not exact, the centering step may be limited
by a dual constraint, not permitting a step size fraction of pfract to be taken. Centering steps
are repeated until the sum of lengths taken over all centering steps (of the current interior point
iteration) exceeds thrsp = 0.95.

Next, we describe some conjugate gradient parameters. The conjugate gradient iterations ter-
minate when the solution residue falls below a certain value and the angle between the computed
direction and the right hand side vector is small. Suppose the system begin solved is Bx = b and the
current CG solution is x̂. At every CG iteration, the residue ‖b − Bx̂‖/‖b‖ is computed. At every
CG iteration after the first CG iteration in which the residue falls below tolres = 10−2 for the affine
direction computation (ptolres = 10−1 for the centering computation), the cosine of the angle θ
between x̂ and b is computed. The conjugate gradient terminates when the angle θ is such that
|1− cos θ| < coslim for the affine step computation and |1− cos θ| < pcoslim for the centering step
computation. The parameters coslim and pcoslim are initially (in the first interior point iteration)
set to 10−3 and 10−1, respectively. At each interior point iteration, they are tightened, according
to coslim = gcoslim× coslim and pcoslim = gpcoslim× gcoslim. The values of gcoslim and
gpcoslim are both set to 0.95. If nitr = 800 CG iterations are taken without satisfying the stopping
criterion, a new preconditioner is computed, and the CG restarts from where it left off.

Finally, we give some preconditioner parameters. The basis for the use of preconditioners in
ADP is that if many nonzero elements of the matrices A and later AD2A⊤ are dropped, little
fill-in will result in the computation of the preconditioner, i.e. the factors of the approximate
AD2A⊤. On the other hand, if too many elements are dropped, the preconditioner will not be
effective, resulting in a large number of conjugate gradient iterations. As each new preconditioner is
computed, fewer nonzero elements are dropped, making each new preconditioner more effective, but
also more expensive to compute and to apply in the conjugate gradient algorithm. Four parameters
control dropping of small nonzero elements. The parameter dpre (0 ≤ dpre ≤ 1) controls dropping
of nonzero elements of the constraint matrix A. A value of 1 forces all nonzero elements of A to be
dropped, while a value of 0 drops no element. dpre is initially set to 0.8. As each new preconditioner
is computed, dpre is decreased in value, according to dpre = dpre× gdpre. In these experiments,
the parameter gdpre is set to 0.5. Similarly to dpre and gdpre, parameters dpost and gpost

9

600

700

800

900

1000

100 1000 10000 100000

obj

time (secs)

optimal QAPLP bound
adp ++

+

++

++

++
++
++++

+++

simplex ×

×
×
×
×
×
×
×
×
×
×
××
×××

×××

Figure 2: CPLEX simplex and ADP iterates on nug15

10

16 150 MHZ IP19 Processors

CPU: MIPS R4400 Processor Chip Revision: 5.0

FPU: MIPS R4010 Floating Point Chip Revision: 0.0

Data cache size: 16 Kbytes

Instruction cache size: 16 Kbytes

Secondary unified instruction/data cache size: 1 Mbyte

Main memory size: 1536 Mbytes, 8-way interleaved

I/O board, Ebus slot 13: IO4 revision 1

I/O board, Ebus slot 15: IO4 revision 1

Integral EPC serial ports: 8

Integral Ethernet controller: et1, Ebus slot 13

Integral Ethernet controller: et0, Ebus slot 15

FDDIXPress controller: ipg0, version 1

Integral SCSI controller 131: Version WD33C95A

Disk drive: unit 4 on SCSI controller 131

Disk drive: unit 3 on SCSI controller 131

Disk drive: unit 2 on SCSI controller 131

Disk drive: unit 1 on SCSI controller 131

Integral SCSI controller 130: Version WD33C95A

Tape drive: unit 7 on SCSI controller 130: 8mm(8500) cartridge

Jukebox: unit 6 on SCSI controller 130

Disk drive: unit 4 on SCSI controller 130

Disk drive: unit 3 on SCSI controller 130

Disk drive: unit 2 on SCSI controller 130

Disk drive: unit 1 on SCSI controller 130

Integral SCSI controller 4: Version WD33C95A

Disk drive: unit 4 on SCSI controller 4

Disk drive: unit 3 on SCSI controller 4

Disk drive: unit 2 on SCSI controller 4

Disk drive: unit 1 on SCSI controller 4

Integral SCSI controller 3: Version WD33C95A

Disk drive: unit 4 on SCSI controller 3

Disk drive: unit 3 on SCSI controller 3

Disk drive: unit 2 on SCSI controller 3

Integral SCSI controller 2: Version WD33C95A

Tape drive: unit 7 on SCSI controller 2: 8mm(8500) cartridge

Jukebox: unit 6 on SCSI controller 2

Disk drive: unit 5 on SCSI controller 2

Disk drive: unit 4 on SCSI controller 2

Disk drive: unit 3 on SCSI controller 2

Disk drive: unit 2 on SCSI controller 2

Integral SCSI controller 1: Version WD33C95A

Disk drive: unit 1 on SCSI controller 1

Integral SCSI controller 0: Version WD33C95A

Tape drive: unit 7 on SCSI controller 0: QIC 150

CDROM: unit 6 on SCSI controller 0

Disk drive: unit 2 on SCSI controller 0

Disk drive: unit 1 on SCSI controller 0

Integral EPC parallel port: Ebus slot 13

Integral EPC parallel port: Ebus slot 15

VME bus: adapter 0 mapped to adapter 61

VME bus: adapter 61

Figure 3: Computer hardware configuration

11

Table 5: QAPLP statistics: QAP dim 5 ≤ n ≤ 10

name n bks qaplp bks−qaplp

bks
glb bklb is qaplp best ?

nug05 5 50 50 0.0000 50 50 y(m)
nug06 6 86 86 0.0000 84 86 y(m)
nug07 7 148 148 0.0000 137 148 y(m)
esc08a 8 2 0 1.0000 0 0 y(m)
esc08b 8 8 2 0.7500 1 1 y(i)
esc08c 8 32 22 0.3125 13 13 y(i)
esc08d 8 6 2 0.6667 2 2 y(m)
esc08e 8 2 0 1.0000 0 0 y(m)
esc08f 8 18 18 0.0000 9 9 y(i)
nug08 8 214 204 0.0467 186 194 y(i)
lipa10a 10 473 473 0.0000 463 463 y(i)
lipa10b 10 2008 2008 0.0000 2008 2008 y(m)
rou10 10 174220 170384 0.0220 152886 152886 y(i)
scr10 10 26992 26874 0.0044 24297 24297 y(i)

dynamically control the fill-in that occurs in the preconditioner, by dropping small nonzero elements
of the AD2A⊤ matrix. Parameter dpost is initially set to 0.8, while parameter gdpost is set to
0.5. The pivot tolerance parameter lndp = 10−12 is used to decide linear dependency of rows in the
preconditioner.

The row ordering heuristic used is minimum degree ordering. It is not computed every time a
factorization is done. Reordering is only done if the number of nonzero elements in the new precon-
ditioner is more than 1+mndg times the number of nonzero elements in the previous preconditioner.
We use mndg = 0.5. The maximum size of the dense window data structure for the factors is set to
dnswndw = 4000.

Tables 5–8 summarize the quality of the QAPLP bounds produced by ADP. For each instance,
the tables list its QAPLIB name, QAP dimension (n), cost value of best known solution (bks), the
QAPLP value (qaplp), the relative error of the QAPLP with respect to the best known solution,
the Gilmore-Lawler lower bound (glb), the best known lower bound prior to the QAPLP bound
(bklb), and an indication if the QAPLP bound is the best known for this instance (n = no; y(i) =
yes, QAPLP improved best known lower bound; y(m) = yes, QAPLP matched best known lower
bound).

Tables 9–12 show solution statistics for the ADP code. For each instances, the tables give the
instance name, the number of ADP affine scaling steps (aff), the number of centering steps (pot),
the number of refactorizations (rfac), the total number of conjugate gradient steps (cg), the total
cpu time (in seconds) associated with reordering prior to refactorization, symbolic factorization,
numeric factorization, and conjugate gradient method, as well as the overall solution time, how
ADP terminated (stop: do = relative improvement of dual objective function; nz = number of
nonzero elements in preconditioner), and fractional dual objective function value.

Figure 4 plots ADP running times (in seconds) as a function of QAP dimension, to compute the
QAPLP lower bound, as well as to compute lower bounds within 1%, 5%, and 10% of the QAPLP
lower bound.

Figures 5–8 illustrate how the dual objective function approaches the best QAPLP lower bound,
as a function of cpu time. These plots suggest that it is often the case that many interior point
iterations are spent trying to improve on the last digits of accuracy, when the lower bound already
produced is sufficiently good. In a branch and bound method, one need not run ADP with such a
tight interior point stopping criterion.

Tables 13–16 list running times for ADP to reach an objective function value, that rounded up
provides the Gilmore-Lawler lower bound and the QAPLP bound, as well as the ratios to the total
ADP running time to reach those bounds.

We make the following observations regarding the computational results.

12

Table 6: QAPLP statistics: QAP dim 12 ≤ n ≤ 16

name n bks qaplp bks−qaplp

bks
glb bklb is qaplp best ?

chr12a 12 9552 9552 0.0000 7245 7245 y(i)
chr12b 12 9742 9742 0.0000 7146 7146 y(i)
chr12c 12 11156 11156 0.0000 7976 7976 y(i)
nug12 12 578 523 0.0952 493 528 n
rou12 12 235528 224278 0.0478 202272 202272 y(i)
scr12 12 31410 29827 0.0504 27858 27858 y(i)
chr15a 15 9896 9511 0.0389 5625 5625 y(i)
chr15b 15 7990 7990 0.0000 4653 4653 y(i)
chr15c 15 9504 9504 0.0000 6165 6165 y(i)
nug15 15 1150 1041 0.0948 963 1083 n
rou15 15 354210 324869 0.0828 298548 298548 y(i)
scr15 15 51140 49264 0.0367 44737 44737 y(i)
esc16a 16 68 48 0.2941 38 47 y(i)
esc16b 16 292 278 0.0479 220 250 y(i)
esc16c 16 160 118 0.2625 83 95 y(i)
esc16d 16 16 4 0.7500 3 3 y(i)
esc16e 16 28 14 0.5000 12 12 y(i)
esc16g 16 26 14 0.4615 12 12 y(i)
esc16h 16 996 704 0.2932 625 708 n
esc16i 16 14 0 1.0000 0 0 y(m)
esc16j 16 8 2 0.7500 1 1 y(i)

Table 7: QAPLP statistics: QAP dim 18 ≤ n ≤ 22

name n bks qaplp bks−qaplp

bks
glb bklb is qaplp best ?

chr18a 18 11098 10752 0.0312 6779 6779 y(i)
chr18b 18 1534 1534 0.0000 1534 1534 y(m)
els19 19 17212548 16874205 0.0197 11971949 11971949 y(i)
chr20a 20 2192 2174 0.0082 2150 2150 y(i)
chr20b 20 2298 2287 0.0048 2196 2196 y(i)
chr20c 20 14142 14142 0.0000 8601 8601 y(i)
lipa20a 20 3683 3683 0.0000 3667 3667 y(i)
lipa20b 20 27076 27076 0.0000 27076 27076 y(m)
nug20 20 2570 2182 0.1510 2057 2394 n
rou20 20 725522 643346 0.1133 599948 599948 y(i)
scr20 20 110030 95113 0.1356 86766 87968 y(i)
chr22a 22 6156 6143 0.0021 5924 5924 y(i)
chr22b 22 6194 6181 0.0021 5936 5936 y(i)

13

Table 8: QAPLP statistics: QAP dim 25 ≤ n ≤ 30

name n bks qaplp bks−qaplp

bks
glb bklb is qaplp best ?

chr25a 25 3796 3785 0.0029 2765 2765 y(i)
bur26a 26 5426670 5334208 0.0170 5310923 5310923 y(i)
bur26b 26 3817852 3736954 0.0212 3710681 3710681 y(i)
bur26c 26 5426795 5359110 0.0125 5318021 5318021 y(i)
bur26d 26 3821225 3705831 0.0302 3717706 3717706 n
bur26e 26 5386879 5315311 0.0133 5307361 5307361 y(i)
bur26f 26 3782044 3712627 0.0184 3707226 3707226 y(i)
bur26g 26 10663354 10047627 0.0577 9979718 9979718 y(i)
bur26h 26 7560690 7036448 0.0693 6975151 6975151 y(i)
kra30a 30 88900 76003 0.1451 68360 68360 y(i)
kra30b 30 91420 76752 0.1604 69065 69065 y(i)
lipa30a 30 13178 12401 0.0590 13147 13147 n
lipa30b 30 151426 151426 0.0000 151426 151426 y(m)
nug30 30 6124 4805 0.2154 4539 5772 n
tho30 30 149936 100784 0.3278 90578 136447 n

Table 9: ADP statistics: QAP dim 5 ≤ n ≤ 12

adp steps adp time (secs) adp sol’n
name aff pot rfac cg ord sfac nfac cg tot stop obj
nug05 14 30 15 244 0.0 0.0 0.0 0.3 1.6 do 50.0
nug06 17 34 36 336 0.2 0.0 0.0 0.9 2.6 do 86.0
nug07 19 39 45 1059 0.1 0.3 0.1 3.6 6.2 do 148.0
esc08a 18 41 42 689 0.3 0.3 0.2 4.4 8.6 do 0.0
esc08b 18 38 40 873 0.3 0.0 0.2 5.2 9.3 do 2.0
esc08c 18 37 44 698 0.0 0.0 0.2 4.3 8.4 do 22.0
esc08d 18 37 42 545 0.3 0.3 0.2 4.0 8.1 do 2.0
esc08e 19 40 43 969 0.3 0.1 0.2 5.6 9.8 do 0.0
esc08f 17 36 38 823 0.2 0.2 0.1 5.2 9.2 do 18.0
nug08 18 36 41 944 0.3 0.0 0.2 5.7 9.5 do 203.5
lipa10a 18 38 37 531 0.8 0.0 0.3 9.1 17.2 do 946.0
lipa10b 17 37 37 432 0.5 0.2 0.4 7.7 15.6 do 4016.0
rou10 20 42 51 5178 0.9 0.4 0.5 67.0 86.6 do 170383.6
scr10 36 69 87 19404 4.5 0.7 1.1 350.0 466.4 do 26873.0

14

Table 10: ADP statistics: QAP dim 12 ≤ n ≤ 16

adp steps adp time (secs) adp sol’n
name aff pot rfac cg ord sfac nfac cg tot stop obj
chr12a 25 59 68 2985 2.6 1.0 1.4 100.8 152.1 do 9551.9
chr12b 23 57 58 2208 1.8 0.8 1.2 71.7 120.6 do 9741.9
chr12c 25 59 64 3732 2.0 0.9 1.4 120.8 171.7 do 11155.8
nug12 28 62 73 16206 10.4 1.2 2.2 598.2 754.1 nz 522.9
rou12 22 43 55 5793 2.3 0.8 1.1 164.8 207.8 do 224277.4
scr12 30 59 74 10234 4.5 1.1 1.9 327.0 448.3 nz 29826.5
chr15a 39 75 93 17887 15.8 3.8 6.5 1623.2 2042.4 do 9510.4
chr15b 31 65 79 8871 8.5 3.0 4.5 704.5 910.1 do 7989.8
chr15c 27 63 69 4475 6.4 2.5 3.7 357.4 491.3 do 9503.8
nug15 35 72 82 18967 135.1 3.5 6.2 1862.6 5203.8 nz 1041.0
rou15 22 46 58 6332 5.9 2.1 3.3 479.1 595.5 do 324868.9
scr15 35 62 75 13219 48.2 3.1 4.8 1181.8 2244.9 nz 49263.7
esc16a 20 43 50 2319 5.5 1.9 3.2 244.1 315.0 do 48.0
esc16b 17 39 44 1015 4.4 1.6 2.7 115.8 178.3 do 278.0
esc16c 20 40 49 1308 0.8 0.3 10.1 450.8 846.1 do 118.0
esc16d 21 46 54 2761 6.2 2.5 3.7 286.1 362.3 do 4.0
esc16e 21 44 51 2234 5.7 1.9 3.3 234.2 306.9 do 14.0
esc16g 21 44 51 2085 5.4 1.9 3.4 212.9 283.5 do 14.0
esc16h 21 46 55 2058 5.7 2.6 4.0 216.4 290.7 do 704.0
esc16i 23 49 58 2161 5.9 2.5 4.0 221.0 300.7 do 0.0
esc16j 23 49 58 2899 5.9 2.3 4.0 291.7 371.2 do 2.0

Table 11: ADP statistics: QAP dim 18 ≤ n ≤ 22

adp steps adp time (secs) adp sol’n
name aff pot rfac cg ord sfac nfac cg tot stop obj
chr18a 40 78 97 19680 31.2 8.1 13.1 3595.7 4333.5 do 10751.1
chr18b 27 55 69 7953 12.8 4.7 8.1 1299.7 1725.6 nz 1533.9
els19 49 90 115 21329 117.9 12.6 20.5 5245.3 8270.2 do 16874204.8
chr20a 47 86 94 21196 136.1 12.0 20.5 6627.1 9281.0 do 2173.8
chr20b 35 73 85 13877 26.0 10.1 17.0 3649.1 4603.6 do 2286.9
chr20c 51 76 97 19460 74.1 12.2 20.8 5388.1 6798.1 do 14142.0
lipa20a 22 45 53 2385 14.2 5.4 8.8 621.6 806.8 do 7366.0
lipa20b 20 43 46 920 12.0 4.2 7.2 264.2 432.2 do 54152.0
nug20 27 53 65 10952 31.4 6.8 11.3 2797.8 3611.4 nz 2181.4
rou20 27 52 65 13326 37.8 7.0 12.1 3453.2 4427.6 do 643345.5
scr20 39 68 79 13905 203.9 10.4 18.7 4192.9 8303.8 nz 95112.3
chr22a 70 103 149 41657 227.3 30.1 50.2 19665.8 24118.5 do 6142.7
chr22b 72 104 151 32444 195.7 30.0 51.9 16257.7 20224.8 do 6180.7

15

Table 12: ADP statistics: QAP dim 25 ≤ n ≤ 30

adp steps adp time (secs) adp sol’n
name aff pot rfac cg ord sfac nfac cg tot stop obj
chr25a 76 109 137 44958 1162.3 45.9 80.0 38640.3 64587.8 do 3784.3
bur26a 23 54 49 4603 45.0 16.8 29.6 4001.1 5410.6 nz 5334207.9
bur26b 25 59 56 8422 53.9 20.5 35.7 6968.8 8387.1 nz 3736953.1
bur26c 35 64 72 11175 128.4 29.3 49.8 9057.0 11728.1 nz 5359109.4
bur26d 18 47 39 4278 34.2 12.8 21.9 3710.7 4901.5 nz 3705830.0
bur26e 24 59 54 5743 51.5 19.1 34.1 4733.2 6176.1 nz 5315310.5
bur26f 22 50 46 5272 42.5 16.1 26.8 4497.9 5874.8 nz 3712626.5
bur26g 29 59 58 6373 55.8 20.5 36.7 5506.8 6957.4 nz 10047626.5
bur26h 28 56 56 6241 53.0 19.9 35.7 5425.6 6896.2 nz 7036447.8
kra30a 32 60 78 15761 223.3 45.5 76.0 20834.0 24679.0 nz 76002.3
kra30b 37 63 87 19139 502.8 53.7 90.7 26160.1 30481.8 nz 76751.8
lipa30a 23 53 61 5182 37.7 6.9 12.3 1493.9 2446.2 nz 24801.9
lipa30b 20 47 50 1574 64.0 23.8 39.5 2139.2 3150.4 do 302851.9
nug30 34 60 72 16802 356.2 42.2 71.8 22158.3 28819.6 nz 4804.4
tho30 37 63 87 18020 616.7 53.0 90.0 23803.1 28697.4 nz 100784.0

Table 13: ADP statistics: time to reach bounds: QAP dim 5 ≤ n ≤ 10

to reach GLB to reach QAPLP
name time (secs) ratio to tot time time (secs) ratio to tot time
nug05 1.5 0.914 1.5 0.914
nug06 2.0 0.790 2.2 0.852
nug07 3.2 0.508 4.1 0.651
esc08a 5.1 0.598 5.1 0.598
esc08b 4.5 0.488 5.0 0.534
esc08c 4.7 0.558 5.5 0.652
esc08d 5.2 0.651 5.2 0.651
esc08e 5.2 0.523 5.2 0.523
esc08f 4.2 0.459 5.7 0.624
nug08 4.6 0.481 7.6 0.804
lipa10a 7.0 0.407 7.0 0.407
lipa10b 7.0 0.448 7.0 0.448
rou10 10.2 0.117 85.6 0.988
scr10 15.1 0.032 460.7 0.988

16

1

10

100

1000

10000

100000

5 6 7 8 9 10 20 30

time
(secs)

QAP dimension

adp time: opt +

+

+

+

++++
+++

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
++++
+

+

+

+
+

+

+

+

+

+
+

+

+
+

+

+

+

+

+
++
++

+
+

+
+

++
adp time: 99% opt b

b b b bbbbbbb bbbb
bbbbbb

bbbbbb bb
b
bbbbbb

bb b bbb
bbbbb

bb
b bbbbbbbb bb

bb
bb

adp time: 95% opt r

r r r rrrrrrr rrrr
rrrrrr

rrrrrr rr
r
rrrrrr

rr r rrr
rrrrr

rr
r rrrrrrrr rr

rrr
r

adp time: 90% opt •

•

•

•

•

•••

•

•
•

••
•

•

•
•
•

•
•

•

•
•

•

••

• •

•

•

•
••

•

•

•

•
•

•••

•

•
•
••

•

••

•

•

•

•
••

•

•

•
••

•

•

•

•

Figure 4: ADP times for approximate and exact solutions

17

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

1 2 3 4 5 6 7 8 9 10

opt−obj
opt

time (secs)

qap dim: 5 △

△△

△△

△△

△△

△△

△△

△△

△△

qap dim: 6 ×

××

××

××

××

××

××

××

××

××

××

qap dim: 7 •

••

••

••

••

••

••

• • •

••

• •

••

••

qap dim: 8 +

++

++

++

+++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

Figure 5: QAPLP bounds as a function of CPU time: (dim: 5 ≤ n ≤ 8)

18

0.00001

0.00010

0.00100

0.01000

0.10000

1.00000

10 100 1000 10000

opt−obj
opt

time (secs)

qap dim: 10 △

△△

△△

△△

△△

△△

△△

△△

△△

△△
△

△△

△△

△△

△△

△△

△△

△△

△△
△

△△

△△

△△

△△

△△

△△

△△

△△

△△

△△

△△

△△△

△△

△△△

△△△

△△△

△△

△△

△△

△△

△△

△△

△△
△△
△△

△△
△△
△△
△△
△△

△△

△△△

△△△

△△△

△△△

△△△

△△△

△△

qap dim: 12 ×

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

××

×××

×××

×××

×××

×××

×××

×××
×××

×××

×××

×××

××

××

××

××

××

××
××
××

××

××

×××

××

××

××

×××

××

××

××

××

××

××

××

×××
××

××

×××

××
×××

××

×××
××
××

××

×××

qap dim: 15 •

••
••

••
••

••
••
••
••
••
••
••
••
••
••
••

•••
••
••
••
••

••
••

••

••

••

••

••

••
••
••
••
••
••
••

••

••

••

••

••

•
•

••

••

••

••

••

••

••

••

••

••

••

•
•
•

••

••

••

••

••

••

••

••
••
••
••
••
••
••

••

•••
••
••

•••
•••
•••

• •••
•••
•••

••••

••

••

••

••

••

••

••

••

••

••

•••

••

• ••

••

•••

••

••

••

••

••

••
••
••
••

••
••
••
••
••

••
••
••
••
••
•• •

•••

•••

•••

qap dim: 16 +

++

++

++

++

++

++

++

++

++

++

++

++

++

+++

++

++

++

++

++

++

+++

++

++

++

++

++

+++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

+++

++

+++

++

++

++

++

++

++

++

++

++

++

++

++

++

++

Figure 6: QAPLP bounds as a function of CPU time: (dim: 10 ≤ n ≤ 16)

19

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

100 1000 10000

opt−obj
opt

time (secs)

qap dim: 18 △

△△

△△

△△

△△
△△
△△
△△
△△△△

△△
△△
△△△

△△
△△△
△△
△△
△△
△△
△△
△△
△△
△△

△△

△△

△△

△△

△△

△△

△△

△△

△△

△△

△△

△△

△△

△△

qap dim: 19 ×

××

××

××
××
××
××
××
×××××××××

××
××
××
××
××××××

××××
××
××
××
××
××××
××
××
××

××

××

qap dim: 20 •

••
••

••
••
••
••
••
••
••
••
•••••

••
••
••••••••

••
••
••••••••••

••
••
••
••
••
••

••

••

••

••
••
••

••

••
••
••
••
••
••
••

•••

••

••
••
••

••

••

••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••
••••
••
••
••
••
••

••

••
••••
••
••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

••

•
•
•

••

••

••

••

••

••

••

••

•••

••

••

••

••

••

••

••

••
••
••

••
••

••
••

••
••
••

••

••

••

• •

••

••

••

••

••

••

••
••
••

••

••

••

••
••

••

••

• ••

•••

• ••

•••

••

••

••

••
••

••
••
••
••
••
• •

••
••
•• •••

••
••
••••
••
••
••
••

• ••

•••

• • •

qap dim: 22 +

++

++

++

++
++

++
++

++
++

++
++

++
++++++

+++++++++++++++++
++++++++++

++++++++++++++++
++
++
++
++
++
++
++++
++++++++++
++
++

++

++

++

++

++

++

++
++

++
++

++
++

++++
++

++
++
++++++++++++++

++
++
++
++
++
++
++
++
++
++
++

++

Figure 7: QAPLP bounds as a function of CPU time: (dim: 18 ≤ n ≤ 22)

20

0.000001

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

1000 10000

opt−obj
opt

time (secs)

qap dim: 25 ×

××
××

××
××

××
××

××
××
××
××
××××××××

××××××××
××
××
××
××
××××××××××××

××××
××××××××××××××

××××××××
××
××
××
××××××

××
×××
××
××

××

××

××

××

qap dim: 26 •

••

••

••

••

• • •

••

••

••
• • •

••

••

••

••

••

• • • •

••

••

• ••

••
• • •••

••

••
••
••

••

••

••

••
• •

••
••
••

••
• • •

••
••
••
••
••
••
••
••
••
•• •

••
••
••
••
••

••

••

••

••

• • •

••

••

• • ••

••

••

••

••

• •

••

••

• ••
••

••
• • •

••

••

••

••

••

••

• • •

••

••
• • •

••
••

••

• •

• •

••

••

••

•••

••

••

•••

••
• •
••

••

••

••

••

••

••

• •

••

••

••
• • •

••

••
••
••
••
• •

••

••

qap dim: 30 +

++

++

++

++

++
++

++
++

++
++

++
++

++
++
++
++
++
++
++

++

++

++

++

++

++

++

++

++
++

++
++

++
++

++
++

++
++++

++++++
++++++

++
++
++

++

++

+
++

++

++
++

++

+++

++

++ +

++

++

++

++

++

++

++

++

++

++
+

++

++

++

++

++

++
++

++
++

++
++

++
++

++
++

++
++++

++
++
++
+++

++

++

++

++

++

++

++

++

++
++

++
++

++
++

++
++

++
++

++
++

++
++
++
++++

++
++
++
++

++

++

Figure 8: QAPLP bounds as a function of CPU time: (dim: 25 ≤ n ≤ 30)

21

Table 14: ADP statistics: time to reach bounds: QAP dim 12 ≤ n ≤ 16

to reach GLB to reach QAPLP
name time (secs) ratio to tot time time (secs) ratio to tot time
chr12a 37.5 0.246 97.5 0.641
chr12b 35.2 0.292 68.3 0.566
chr12c 36.9 0.215 102.5 0.597
nug12 29.9 0.040 82.3 0.109
rou12 22.6 0.109 202.7 0.975
scr12 39.8 0.089 429.1 0.957
chr15a 142.3 0.070 1521.2 0.745
chr15b 117.7 0.129 625.2 0.687
chr15c 129.2 0.263 316.5 0.644
nug15 81.8 0.016 464.9 0.089
rou15 64.3 0.108 582.4 0.978
scr15 124.3 0.055 2231.7 0.994
esc16a 115.4 0.366 160.8 0.510
esc16b 81.2 0.456 123.8 0.694
esc16c 7.9 0.009 7.9 0.009
esc16d 133.1 0.367 133.1 0.367
esc16e 106.4 0.347 126.5 0.412
esc16g 107.2 0.378 128.5 0.453
esc16h 90.2 0.310 204.4 0.703
esc16i 122.4 0.407 122.4 0.407
esc16j 150.7 0.406 150.7 0.406

Table 15: ADP statistics: time to reach bounds: QAP dim 18 ≤ n ≤ 22

to reach GLB to reach QAPLP
name time (secs) ratio to tot time time (secs) ratio to tot time
chr18a 295.8 0.068 3268.0 0.754
chr18b 1040.0 0.603 1040.0 0.603
els19 546.0 0.066 5228.0 0.632
chr20a 2993.9 0.323 5909.6 0.637
chr20b 1157.8 0.251 3018.7 0.656
chr20c 611.5 0.090 6503.0 0.957
lipa20a 142.7 0.177 142.7 0.177
lipa20b 166.0 0.384 166.0 0.384
nug20 270.2 0.075 2409.9 0.667
rou20 266.0 0.060 4173.7 0.943
scr20 613.2 0.074 8260.7 0.995
chr22a 1344.9 0.056 14385.1 0.596
chr22b 1215.7 0.060 13336.2 0.659

22

Table 16: ADP statistics: time to reach bounds: QAP dim 25 ≤ n ≤ 30

to reach GLB to reach QAPLP
name time (secs) ratio to tot time time (secs) ratio to tot time
chr25a 2610.7 0.040 44227.3 0.685
bur26a 4839.7 0.894 5284.6 0.977
bur26b 6859.9 0.818 8260.5 0.985
bur26c 4656.2 0.397 11288.8 0.963
bur26d did not achieve GLB 4812.7 0.982
bur26e 5761.8 0.933 6050.0 0.980
bur26f 4746.1 0.808 5749.2 0.979
bur26g 5487.6 0.789 6762.3 0.972
bur26h 4015.8 0.582 6705.7 0.972
kra30a 2509.0 0.102 24144.7 0.978
kra30b 2474.1 0.081 29666.0 0.973
lipa30a did not achieve GLB 382.2 0.156
lipa30b 979.6 0.311 979.6 0.311
nug30 2284.3 0.079 25589.5 0.888
tho30 2745.7 0.096 28162.1 0.981

• We computed QAPLP lower bounds for all instances of QAPLIB having dimension n ≤ 30.
There are 63 such instances, the largest of which have corresponding linear programs with
52,260 constraints and 379,350 variables.

• Since QAPLP is known to be at least as good as the Gilmore-Lawler lower bound, solving the
LP relaxations to optimality must yield a lower bound at least as good as the Gilmore-Lawler
bound. The ADP solver produced bounds at least as good as the Gilmore-Lawler lower bound
for all but two instances (bur26d and lipa30a). In those two cases, the algorithm terminated
with the nonzero elements in preconditioner stopping criterion, prior to the time that the
relative dual objective function improvement criterion was satisfied. The cutoff used in these
experiments for number of nonzero elements in the preconditioner was set to 10 times the
number of nonzero elements in the A matrix. In 53 of the 63 instances the QAPLP was better
than the Gilmore-Lawler lower bound.

• In 28 instances, the QAPLP bound was at least 10% greater than the GLB. In 18 it was at
least 25% greater; in 9 at least 50% greater; and in three instances the QAPLP bound was
twice the GLB.

• Compared to the best bounds reported in the literature, the QAPLP bound was best for all
but 9 of the 63 instances considered. The 9 instances are summarized in Table 17. However,
the best known lower bound for one of the 9 instances (nug08) was achieved with the lin-
ear programming technique described in this paper on data preprocessed with the technique
described in (Chakrapani & Skorin-Kapov, 1994).

• The QAPLP bounds improved the best known lower bound for 44 of the 63 instances consid-
ered.

• In 15 instances the QAPLP bound was tight, i.e. equaled the cost value of a known permuta-
tion, thus proving optimality for those instances. Of those, three instances were of dimension
n = 20 and two had never been previously proved optimal.

• Using the preprocessing technique of Chakrapani and Skorin-Kapov (Chakrapani & Skorin-
Kapov, 1994), we were able to improve two of the QAPLP bounds derived from non-preprocessed

23

Table 17: Instances for which QAPLP is not the best known bound

lower bounds

name best qaplp best−qaplp
best

nug08 210 204 0.0286
nug12 528 523 0.0095
nug15 1083 1041 0.0388
esc16h 708 704 0.0057
nug20 2394 2182 0.0886
bur26d 3717706 3705831 0.0032
lipa30a 13147 12401 0.0567
nug30 5772 4805 0.1675
tho30 136447 100784 0.2614

data. Lower bounds of 209 and 1046 were produced for nug08 and nug15, respectively. Be-
cause of the symmetry of the QAP matrices, the value of 209 can be shifted to 210, a new best
known lower bound for nug08.

• ADP, as setup for these experiments, uses two stopping criteria: relative improvement of the
dual objective function and number of nonzero elements in the factors of the preconditioner.
In the 63 instances considered, ADP terminated due to the relative improvement of the dual
objective function in 42 runs and because of excessive nonzero elements in the preconditioner
in the remaining 21 runs. Increasing the maximum number of conjugate gradient iterations
(set at 800 for these experiments) may result in fewer refactorizations, and consequently fewer
nonzero elements in the factors of the the preconditioners. This may lead to some instances
that terminated because of dense preconditioners to terminate due to relative improvement of
the dual objective function, possibly resulting in slightly improved bounds.

• Summed over all runs, the conjugate gradient algorithm accounted for 74.3% of the total
running time of ADP. The computation of the preconditioners is done in three steps: reordering
of the rows of the A matrix, symbolic factorization, and numeric factorization. These accounted
for 1.4%, 0.2%, and 0.3% of the total running time, respectively. The computation of the
preconditioners thus accounted for less than 2% of the total running time of ADP.

4 Concluding remarks

We have presented computational testing of the linear programming-based lower bound for the
quadratic assignment problem studied by Drezner (Drezner, 1994). To solve the linear programs
we use the code first presented by Karmarkar and Ramakrishnan in 1988 at the 13th International
Symposium on Mathematical Programming, in Tokyo (Karmarkar & Ramakrishnan, 1988) and
further described in (Karmarkar & Ramakrishnan, 1991). The lower bounds produced improved the
best known bounds for most of the test problems having QAP dimension n ≤ 30 from the suite of
test problems QAPLIB. In several instances, tight bounds were produced.

We are aware that to replicate our results one requires a solver capable of solving these large scale
linear programming problems. Since ADP is restricted for use within AT&T, and the authors are
unaware of another linear programming solver that can solve the entire set of 63 linear programming
problems, we make available all 63 AMPL (Fourer, Gay, & Kernighan, 1993) models, as well as all 63
feasible dual vectors that correspond to the best QAPLP bounds produced, so that the correctness
of the bounds can be verified. Furthermore, we make available detailed iteration summaries for all
63 runs. For each iteration, we indicate iteration number, type of iteration (affine or centering), if

24

refactorization was necessary, and if so, cpu times for reordering, symbolic factorization, and nu-
merical factorization, preconditioner statistics, including cpu time to apply preconditioner, number
of dropped nonzero elements from AA⊤ matrix and fill-in, conjugate gradient statistics, including
conjugate gradient iterations, final residue, final angle between direction and right hand side vector,
and cpu time, objective function value, total cpu time for iteration, and total cpu time since start
of algorithm.

Much remains to be achieved in terms of proving optimality of quadratic assignment problems.
Problems as small as dimension n = 16 still challenge researchers at attempts to prove optimality.
An interesting research project is to incorporate these LP-based bounds into an exact method, based
on branch and bound, to solve quadratic assignment problems, and study the tradeoff between the
effect of the improved lower bounds and the more computationally intensive computation of the
bounds, as compared with the classical Gilmore-Lawler lower bounds that are commonly used in
exact methods. Incoporating interior point methods in a branch and bound algorithm for integer
programming has been investigated by Brochers and Mitchell (Brochers & Mitchell, 1992).

Reference

Adams, W., & Johnson, T. (1994). Improved linear programming-based lower bounds for the
quadratic assignment problem. In Pardalos, P., & Wolkowicz, H. (Eds.), Quadratic assign-

ment and related problems, Vol. 16 of DIMACS Series on Discrete Mathematics and Theoretical

Computer Science, pp. 43–75. American Mathematical Society.

Assad, A., & Xu, W. (1985). On lower bounds for a class of quadratic {0, 1} programs. Operations

Research Letters, 4, 175–180.

Bokhari, S. (1987). Assignment problems in parallel and distributed computing. The Kluwer
International Series in Engineering and Computer Science. Kluwer Academic Publishers,
Boston/Dordrecht/Lancaster.

Brochers, B., & Mitchell, J. E. (1992). Using an interior point method in a branch and bound
algorithm for integer programming. Tech. rep., Rensselaer Polytechnic Institute.

Burkard, R., Karisch, S., & Rendl, F. (1991). QAPLIB – a quadratic assignment problem library.
European Journal of Operational Research, 55, 115–119. Updated version – Feb. 1994.

Burkard, R., & Rendl, F. (1984). A thermodynamically motivated simulation procedure for combi-
natorial optimization problems. European Journal of Operational Research, 17, 169–174.

Carraresi, P., & Malucelli, F. (1992). A new lower bound for the quadratic assignment problem.
Operations Research, 40 (Supplement 1), S22–S27.

Chakrapani, J., & Skorin-Kapov, J. (1994). A constructive method for improving lower bounds for
a class of quadratic assignment problems. Operations Research, 42, 837–845.

Christofides, N., & Gerrard, M. (1981). A graph theoretic analysis of bounds for the quadratic
assignment problem. In Hansen, P. (Ed.), Studies on graphs and discrete programming, pp.
61–68. North-Holland.

Drezner, Z. (1994). Lower bounds based on linear programming for the quadratic assignment prob-
lem. Tech. rep., Dept. of Management Science, California State University, Fullerton, CA
92634. To appear in Computational Optimization & Applications.

Finke, G., Burkard, R., & Rendl, F. (1987). Quadratic assignment problems. Annals of Discrete

Mathematics, 31, 61–82.

25

Fleurent, C., & Ferland, J. (1994). Genetic hybrids for the quadratic assignment problem. In
Pardalos, P., & Wolkowicz, H. (Eds.), Quadratic assignment and related problems, Vol. 16 of
DIMACS Series on Discrete Mathematics and Theoretical Computer Science, pp. 173–188.
American Mathematical Society.

Fourer, R., Gay, D., & Kernighan, B. (1993). AMPL – A modeling language for mathematical

programming. The Scientific Press, South San Francisco, CA.

Francis, R., & White, J. (1974). Facility Layout and Location. Prentice-Hall, Englewood Cliffs, N.J.

Frieze, A., & Yadegar, J. (1983). On the quadratic assignment problem. Discrete Applied Mathe-

matics, 5, 89–98.

Gilmore, P. (1962). Optimal and suboptimal algorithms for the quadratic assignment problem. J.

SIAM, 10, 305–313.

Hadley, S., Rendl, F., & Wolkowicz, H. (1990). Bounds for the quadratic assignment problem using
continuous optimization techniques. In Integer Programming and Combinatorial Optimization,
pp. 237–248. University of Waterloo Press.

Hadley, S., Rendl, F., & Wolkowicz, H. (1992a). A new lower bound via projection for the quadratic
assignment problem. Mathematics of Operations Research, 17 (3), 727–739.

Hadley, S., Rendl, F., & Wolkowicz, H. (1992b). Nonsymmetric quadratic assignment problems and
the Hoffman-Wielandt inequality. Linear Algebra and its Applications, 58, 109–124.

Hubert, L. (1987). Assignment methods in combinatorial data analysis. Marcel Dekker, Inc., New
York, NY 10016.

Karisch, S., & Rendl, F. (1994). Lower bounds for the quadratic assignment problem via triangle
decompositions. Tech. rep. 286, CDLDO-40, Technische Universität Graz, Streyrergasse 30,
A-8010 Graz, Austria.

Karmarkar, N., & Ramakrishnan, K. (1988). Implementation and computational results of the Kar-
markar algorithm for linear programming, using an iterative method for computing projections.
Tech. rep., AT&T Bell Laboratories, Murray Hill, NJ.

Karmarkar, N., & Ramakrishnan, K. (1991). Computational results of an interior point algorithm
for large scale linear programming. Mathematical Programming, 52, 555–586.

Koopmans, T., & Beckmann, M. (1957). Assignment problems and the location of economic activi-
ties. Econometrica, 25, 53–76.

Krarup, J., & Pruzan, P. (1978). Computer-aided layout design. Mathematical Programming Study,
9, 75–94.

Lawler, E. (1963). The quadratic assignment problem. Management Science, 9, 586–599.

Li, Y., Pardalos, P., Ramakrishnan, K., & Resende, M. (1994a). Lower bounds for the quadratic
assignment problem. Annals of Operations Research, 50, 387–410.

Li, Y., Pardalos, P., & Resende, M. (1994b). A greedy randomized adaptive search procedure
for the quadratic assignment problem. In Pardalos, P., & Wolkowicz, H. (Eds.), Quadratic

assignment and related problems, Vol. 16 of DIMACS Series on Discrete Mathematics and

Theoretical Computer Science, pp. 237–262. American Mathematical Society.

Mawengkang, H., & Murtagh, B. (1985/6). Solving nonlinear integer programs with large-scale
optimization software. Annals of Operations Research, 5, 425–437.

26

McCormick, E. (1970). Human Factors Engineering. McGraw-Hill, New York.

Murtagh, B., Jefferson, T., & Sornprasit, V. (1982). A heuristic procedure for solving the quadratic
assignment problem. European Journal of Operational Research, 9, 71–76.

Nugent, C., Vollmann, T., & Ruml, J. (1969). An experimental comparison of techniques for the
assignment of facilities to locations. Journal of Operations Research, 16, 150–173.

Pardalos, P., & Wolkowicz, H. (Eds.). (1994). Quadratic assignment and related problems. DIMACS
Series on Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society.

Skorin-Kapov, J. (1990). Tabu search applied to the quadratic assignment problem. ORSA Journal

on Computing, 2 (1), 33–45.

Taillard, E. (1991). Robust tabu search for the quadratic assignment problem. Parallel Computing,
17, 443–455.

Thonemann, U.W. and Bölte, A.M. (1994). An improved simulated annealing algorithm for the
quadratic assignment problem. Tech. rep., School of Business, Dept. of Production and Oper-
ations Research, University of Paderborn, Germany.

