24 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-35, NO. 1, 1986 APRIL

A Program for Reliability Evaluation of Undirected
Networks via Polygon-to-Chain Reductions

Mauricio G. C. Resende
University of California, Berkeley

Key Words—Computer program, Data structure, Graph reduction,
Network reliability, Series-parallel graph

Reader Aids—
Purpose: To describe an existing program
Special math needed for explanations: Probability
Special math needed to use results: None
Results useful to: Reliability analysts and theoreticians

Abstract—This paper discusses the design and implementation of
PolyChain, a FORTRAN program for reliability evaluation of undirected
networks of a special structure via polygon-to-chain reductions.
Theoretical results presented by Satyanarayana & Wood are reviewed.
The program’s design and its implementation in FORTRAN are de-
scribed. A small problem is tested illustrating the code’s output. Several
large problems are run to evaluate the code’s performance capabilities.

1. INTRODUCTION

The evaluation of network reliability [1] is important
in engineering. Network reliability is an important
parameter in both the design and operation of systems
such as communication, power, and pipeline. Saty-
anarayana & Wood [8, 10] introduce a linear-time
algorithm for computing the reliability of a network with
an underlying series-parallel structure. This algorithm
employs the new polygon-to-chain reductions. They extend
the algorithm which enables the generation of a reduced
network when the input network is not totally reducible.

This paper discusses the design and implementation of
PolyChain, a portable FORTRAN program for K-terminal
network reliability evaluation using polygon-to-chain
reductions. Efficient data structures are implemented
allowing fast reliability computation of large undirected
networks. There are four output options which produce
flexible, informative reports.

Section 2 briefly discusses some of the theoretical
results of polygon-to-chain reductions. Section 3 describes
the algorithm’s implementation in FORTRAN. In section
4, PolyChain is applied to a small test problem illustrating
the code’s output. Several large networks are tested in sec-
tion 5, showing the performance capabilities of the code.
Conclusions and recommendations are made in section 6.

2. SERIES-PARALLEL GRAPHS AND
POLYGON-TO-CHAIN REDUCTIONS

For a complete discussion of series-parallel graphs
and polygon-to-chain reductions, see [8, 10]. This section

defines the K-terminal network reliability problem and
describes reductions that enable the evaluation of
K-terminal network reliability.

Let G = (V, E) be a nonseparable graph with vertex
set V and edge set E; vertices function perfectly and edges
may fail independently of one another. Edge e; has pro-
bability p, of functioning and g¢; = 1 — p, of failing. K U
V, |K| = 2, are distinguished vertices called the K-vertices
of G. Gk is graph G with K specified. The K-terminal
reliability of Gk, R(Gg), is the probability that all
K-vertices of Gk are connected by working edges.

The computation of the K-terminal reliability of a
graph may require the application of the factoring
algorithm [9]. Since the factoring algorithm has exponen-
tially bounded time-complexity, it is desirable to reduce as
much as possible the size of G prior to applying the fac-
toring algorithm [11]. Reductions in the size of Gk can be
obtained by applying reliability-preserving reductions, in
which graph Gy is replaced by a reduced graph Gi’, and
R(Gk) = QR(Gg'), where O is a multiplicative factor that
depends on the reduction applied. There are three well-
known simple reliability-preserving reductions: parallel
reduction, series reduction, and degree-2 reduction. In
parallel reduction, parallel edges e, = uv and e, = uv are
replaced by edge e. = uv with edge probability p. = 1 —
q. q». In series reduction, edgese, = uvande, = vw, u +
w, are replaced by edge e. = uw with probability p. =
Py Let u, v, w € K, deg(v) = 2 and consider two edges
e. = uvand e, = vw, such that u £ w. A degree-2 reduc-
tion substitutes edges e, and e, by edge e, = uw with p. =
pPy/(1 — q.qs) and R(Gk) = (1 - ¢.qs)R(Gk-.), Where
G-, is the new reduced graph.

The replacement of two series (parallel) edges by a
single edge in a graph with no specified distinguished
vertex set is called a replacement. A series-parallel graph is
a graph that can be reduced to a single edge after successive
series and parallel replacements. For a given series-parallel
graph G, Gk need not be reduced to a single edge by suc-
cessive simple reductions. G is said to be series-parallel
reducible if it can be reduced to a single edge by successive
simple reductions. It is series-parallel irreducible if it is not
series-parallel reducible.

A chain x is an alternating sequence of distinct ver-
tices and edges, such that all vertices, except for the two
endpoints, have degree 2. Let x; and x, be two distinct
chains with common endpoints. /A = x; U x; constitutes a
polygon.

The main result in [8, 10] is: Let Gk be a graph that
admits no simple reduction. If Gk contains a polygon, it is
one of seven types. A reliability preserving reduction per-
mits the replacement of the polygons by chains with the

0018-9529/86/0400-0024$01.00©1986 IEEE

RESENDE: FOR RELIABILITY EVALUATION OF UNDIRECTED NETWORKS VIA POLYGON-TO-CHAIN REDUCTIONS 25

new edge reliability computed according to formulas given
in appendix I. The above reductions are the polygon-to-
chain reductions.

An O(|E|) algorithm for reliability evaluation of a
nonseparable series-parallel graph is presented in [8, 10].
The algorithm is described in appendix II. For a series-
parallel graph the algorithm repeats two main steps until
Gy is reduced to a single edge. The first step performs all
simple reductions while the second finds a polygon and
performs the corresponding polygon-to-chain reduction
given in appendix 1. An extension to the algorithm allow-
ing all possible simple and polygon-to-chain reductions in
a nonseries-parallel graph is also given in [8, 10]. This ex-
tension enables the algorithm to be used as a subroutine in
a more general algorithm, such as the factoring algorithm,
for computing network reliability. PolyChain is a direct
implementation of that algorithm and the extension.

3. PROGRAM DESIGN AND IMPLEMENTATION

In this section, the code is briefly described. Programming
is commented and data structures discussed. For a detailed
description of program variables, COMMON blocks, and
subroutines, see [6]. PolyChain is designed to be portable.
All algorithmic routines are written in standard FOR-
TRAN 77. Only output-related code is system dependent.
The program is modular, and has format free input and in-
formative outputs.

The algorithm of Satyanarayana & Wood (8, 10]
manipulates undirected networks. Undirected networks
can have several representations in a computer code.
Matrix representation is inefficient both with respect to
core usage and execution times. These matrices are ex-
tremely sparse in practice, often having densities of less
than 1%, For a static network, an efficient representation
is a packed matrix. In this algorithm the network is
dynamic and therefore linked lists are the most appropriate
data structure. Helgason & Kennington [4], Thesen [7],
Berztiss {2], among many, discuss efficient network
representations using linked-list data-structures. Thesen
[7] and Berztiss [2] discuss the implementation of linked
lists in FORTRAN.

During the algorithm’s reduction process, one or
more edges or vertices are removed from the network.
With respect to the data structure, this corresponds to
removing elements from the linked lists. This process is
repeated frequently in the algorithm. Doubly-linked lists
[2, 5] use more core than lists with a single link, but are
more efficient when many element deletions are required;
they are implemented in PolyChain. Each vertex has a list
of adjacent vertices, which besides indicating which ver-
tices are adjacent to it, also provides information on
whether the vertex and its adjacent vertices belong to set K.
For every element of the list, there is a pointer indicating
the address where information about the edge, correspon-
ding to these two vertices, is stored. Figure 1 illustrates this
multilist data structure for a small network.

/ “ | “ >@
pmv.;-—~m N

\2 }——"“'
4

ptr(vy) v

— Dl —
putry) ———] . = - —

pir(rd n

Fig. 1. Multilist data structure

| SO

v }———-11}3 J—i"l

| SO

Next, we describe the FORTRAN arrays used to im-
plement the code’s data structures. PTRADIJ(i) points to
the beginning of the list of vertices adjacent to vertex i. If
PTRADI() is positive, vertex i does not belong to set K. If
PTRADIJ(J)) is negative, then vertex i is in set K.
PTRADIJ(/)) may also be null. This indicates that vertex i
has been removed from the network. Array ADJVRT(") is
the principle information element in the list structure. For
each list it contains the vertices adjacent to the vertex that
defines the list. If ADJVRT(") is positive, that vertex is not
in K, and if it is negative, the vertex is in the set K.
LNKDWN() points to the next element downwards in the
list of adjacent vertices. If LNKDWN(*) = 0, this element
is the last element in the list. LNKUP(*) points to the ele-
ment just above it in the adjacent vertices list. If LNKUP(®)
= 0, then this element is the first in the list. EDGPRB(*)
contains the edge reliability. Suppose vertex ADJVRT()) is
in the list pointed to by PTRADJ(/). Then LNKEDGY())
points to the position in array EDGPRB(*) corresponding
to edge the links vertices i and ADJVRT()). AVSADJ is a
pointer to the beginning of the list of available space [2].

The algorithm also requires data structures for both the
T list and the chain defined in [8, 10]. Since the order of the
vertices in both the T list and the chain is irrelevant to the
algorithm, linear stacks are used to represent both structures.
TLIST(") contains the stack of vertices that are elements of
the Tlist. If TLIST(*) is positive, then that vertex isnot in set
K. If it is negative, the vertex is in set K. TTOP points to the
top of the TLIST(*) stack. CHAIN(®) is a stack of vertices
belonging to a given chain. TOP points to its top. As with
TLIST(*), if CHAIN(") is positive, then that vertex is not in
set K. If it is negative, the vertex is in set K. ONLIST() =
TRUE implies that vertex i is on the T list. DEG(J) indicates
the degree of vertex i. Figure 2 illustrates the use of some of
these arrays in network representation, where the darkened
vertices are K-vertices.

26 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-35, NO. 1, 1986 APRIL

pley)=0.5

e & pie;)=0.2

’ & ¢ pey)=0.3
€ 73 pled)=0.9

ples)=0.8

il 2 3 4
ONLIST(i) | FALSE TRUE TRUE FALSE
DEG(i) 2

PTRADIJ(i} -l) 6 -9

[ADJVRT((') LNKDWN(i) LNKUP(i) LNKEDG(/)

OO NP E N =~
WuALANLLwlwe
oo NOowaAON
VO NAD &WwO = O
N RWN S W N -

ij1 2 3 4 s
EDGPRB(/) [0.5 02 03 09 08

Fig. 2. FORTRAN Implementation of list structure

4. A TEST PROBLEM

PolyChain is applied to compute the reliability of a small
network. For a detailed user-guide and an example of the
application of the code to a series-parallel reducible net-
work, see [6].

Consider a series-parallel irreducible network, the
ARPA computer network, in figure 3. Vertices 1 and 21
are the network’s K-vertices. Edge reliabilities are given
alongside each edge.

Fig. 3. ARPA Computer network

For series-parallel irreducible networks, PolyChain
generates a 2-part report together with an output file con-
taining the reduced network. The first section of the
report, which is identical to the case of series-parallel
reducible networks, contains the input network. The se-
cond part indicates that the network is series-parallel ir-
reducible, contains the reduced network, the updated value

of M = H ;, and summarizes the reductions performed,

J
including percentage reductions in the network dimen-
sions. CPU time, excluding 1/0, is indicated. The 4-page
report generated by the code for the ARPA computer net-
work is given in appendix III. The reduced network ob-

tained by PolyChain for the ARPA computer network is
given in figure 4.

6 13

|° (10) 2
®

Fig. 4. Reduced network

For the series-parallel irreducible case, PolyChain
generates a file with the updated value of M and the re-
duced network. This file can be used as input to a factoring
algorithm program for reliability evaluation.

5. LARGE NETWORKS

Next, we test PolyChain with a number of large networks.
These problems help understand PolyChain’s behavior
when treating real networks and enable the estimation of
CPU times for large problems. A random generator was
used to provide the series-parallel irreducible networks,
while the series-parallel reducible networks were built ag-

. gregating several 150-vertex, 208-edge networks. Problems

were run on the VAX 11/750 of the Etcheverry Hall
VAX/UNIX CAE Laboratory, at Berkeley. The code was
compiled on the UNIX {77 computer using the -O optimiz-
ing option. The code was run under Berkeley’s BSD 4.2
UNIX operating system. CPU times were measured
through the dtime system routine. Table 1 summarizes the
networks tested.

TABLE I
Large-Scale Test Problems
Problem Edges Vertices K-Vertices Reducible?
1 208 150 63 Yes
2 418 300 126 Yes
3 838 600 252 Yes
4 1258 900 328 Yes
5 2518 1800 756 Yes
6 211 150 63 No
7 428 300 126 No
8 840 600 252 No
9 1272 900 328 No
10 2521 1800 756 No

The results obtained for these problems are contained table
II.

Each test problem was run 10 times. The network size,
|E|, processed per CPU second varied from 733 to 784
edges/sec on the series-parallel reducible networks tested
and from 694 to 766 edges/sec on the series-parallel ir-
reducible networks. The mean network size, |E|, processed
per CPU second was, respectively, 775 and 725 edges/sec
for the reducible and irreducible networks.

RESENDE: FOR RELIABILITY EVALUATION OF UNDIRECTED NETWORKS VIA POLYGON-TO-CHAIN REDUCTIONS

TABLE II
Test Results
Reduction Types Mean
Prob CPU
Ser Deg2 I I NI IV V VI VII VII Time
1 8 S6 &8 24 3 0 S 0 1 17 0.27s
2 174 114 16 49 6 0 10 0 2 35 0.57s
3 348 230 32 99 12 0 20 O 4 71 1.09s
4 522 346 48 149 18 0 30 O 6 107 1.60s
5 1044 694 96 299 36 0 60 0 12 215 3.23s
6 52 9 0 1 0 1 0 0 0 3 0.30s
7 98¢ 18 1 1 0 0 0 O O 1 0.60s
8 216 50 0 2 0 0 0 o0 0 4 1.14s
9 330 36 2 1 0 0 0 0 0 1 1.66s
10 583 101 0 2 1 0 0 0 0 1 3.59
These first results show that APPENDIX I - POLYGON-TO-CHAIN REDUCTIONS
PolyChain is feasible for com-
puting K-terminal reliability of large
series-parallel reducible networks.
With 1 min. CPU on a VAX
11/750, one should be able to com- ol Chain N N
pute the K-terminal reliability of omeen . New Bdge Reliabilities e
series-parallel reducible networks pr = $llash) a = rrt
having upwards of 35000 edges. e “ OO0 | »-wmen 8 = Dutrte
e SO R) & = 0PI +(da 192140/ 20)+ (4 /2)]
6. CONCLUSION
] . | astaen a = quPrqc
The code’s implementation “) .T’TQ B = 41(88) f=rtss

facilitates further extensions and
enhancements. It uses a multilist data
structure representation of the net-
work, which enables good core
management and efficient network
manipulation. Input is simple and
format free. Outputs are detailed and
a data file, containing the reduced
network, is generated for use by
another program, when the network
is series-parallel irreducible. The
code was tested on large networks
and the results are encouraging.

The algorithm has a constraint
on the topology of the input net-
work. The network must be
nonseparable. In the present ver-
sion, PolyChain does not test for
this requirement. Even [3] presents a
depth-first-search based algorithm
for determining all nonseparable
components of a network. To insure
the evaluation of the K-terminal net-
work reliability for any network,
this code should encorporate a fac-
toring algorithm. Enhancements to
the code, under development, in-
clude both nonseparability testing,
and a factoring algorithm with op-
timal pivot selection [9].

= [(a+3KB+8))/8

§ = PaPrpc (1 +(qa/Pa)+ (00 /Ps)+(4c /7))

pr = §/(atd)
P = 8/(B+8)
Q = [(a+3XA+8))/6

@ = PeQsqcPa+9aPsPc 04+ 9aPsqcPa
B = PeQoPcld
& = PaPsPc P4l +(4a/Pa}+ (/P4)+ /P)+(0a/pa))

Pr = v/(aty)
Py = Y/(B+7)
P = 1/(8+7)

Q = [(a+1XB+aNE+ /Y

a = qaPricPe
B = PaQsqcPd+qaPsPc A4
& = patspcqd

¥ = PaPsPcPal1 +(4a/Pa)+(@1/P2)+(@c/P)+10a /PN

27

@ = [(a+yNB+YNE+N/Y?

@ 1K >2 e = vllasy) a = quPsdcPa
« & . .| B =/ 8 = PaqvdcPe+9aPrPc 4
O—0—8—Q | 5w &= Petrpet
e
e Q = ((atyXB+ XS+ /¥ Y = PaPsPcPall +(4e/Pe)+(q8/Ps)+(ac /P) 194/ Pa)}
@ K| =2 Pr = 0o +Pa0sPcP) D5 +Pedspc) | @ = TaPodcPe
P) | * O P /B B = PeqsqcPa+qaPsPcU
H = V/Be) 8= Petspet
(2 ' Q= py +pespc ¥ = PaPsPcPlN +(0alPe)+ (@0 /Ps)+(Qc /P)+Qa/P)
o e = viasy) a = QaPsPcqaPe
:. ¢',_ - S L ::::Z::::: #PasPcQ4Pe +AaPsPcPed: +
R PRV b = D.PLGcPats

¥ = PaPsPcPuPell +(9s/Pa}+(qs/Ps)+(Qc IPc)+
(Qa/Pa)*Qe/Pe))

Pr = v/laty)
Ps = 1/(B+7}
Pe = v/(8+7)

Q= [(a+7NBerXb+1)I/Y?

a = QePsPc94PePr

B = PaQbPcuCcPr +PaldPcPdQePs +PadbPcPdPeds
PaPQcPdQePf+PaPsqc4PePr +
QaPoPcPdQePs +QaPsPPaPe 4y

& = DePrcPaPely

Y = PaPsPcPuPePril +(0a/Pa)+ (@0 /Ps)+(qc [Pc)+
(94/Pa)+(qe Pe)+ s oY

Note:

Dark vertices are K-vertices

28 IEEE TRANSACTIONS ON RELIABILITY, VOL. R-35, NO. 1, 1986 APRIL

APPENDIX II - DESCRIPTION OF ALGORITHM

Input: A nonseparable graph G with vertex set V, | V] = 2, edge
set E, |E| = 2,and set K U V, |K| = 2. Edge reliability p; for
each edge e; € E.

Output: R(Gg)if G is series-parallel or reduced K, Gk, and M =
Q, x 2 x ... x @, if G is nonseries-parallel, where n is the
number of reductions performed.

Begin
M — 1.
Make all series reductions.
Make all degree-2 reductions setting M — M x Q for each
reduction.
Construct list 7 — {v|v € V and deg(v) > 2}.
Mark all v € T onlist and all v € V — T offlist.
While 7 + 0 and |E| > 2 do
Begin
Remove v from T.
i — 1 (Index of next chain out of v to be searched.)
Untit / > 3 or v is deleted or deg(v) = 2 do
Begin
i—i+1
Search the (i — 1)-th chain out of v,
If a polygon /.(v, w) of type j is found then do
Begin
Apply the correct polygon-to-chain reduc-
tion to /.(v, w) to obtain chain x(v, w).
Let M — M x Q;.
i—i-1
If deg(v) = 2 or deg(w) = 2 then do
Begin
Perform all possible series and
degree-2 reductions on the chain (or
cycle) containing subchain x(v, w) to
obtain completely reduced chain y(x,
») or parallel edges e., and ey, set-
ting M — M x for each degree-2
reduction.
If y # v and y is offlist then mark y
onlist and add y to T.
If x + v and x is offlist then mark x
onlist and add x to T.

End
End
End
End
If |E| = 2 then output R(Gx) = M(1 — q.qs) where e, €
€ E.
Else do
Begin
For all vertices v € V such that deg(v) > 2 do
Begin
Perform polygon-to-chain reductions on all
polygons /.(v, w) found emanating from vertex
v.
Set M — M x Q; for each reduction performed,
where j is the polygon type of (v, w).
End
Output reduced K, Gg, and M.
End

End.

Page 1

Page 2

APPENDIX III - EXAMPLE OUTPUT

PolyChain - Version 83.1

Polygon to Chain Reductions

in Hetwork Rellability
Date 1 Fri Jul 26 1985
Time 1 12158126

Input Network

| Type ll Vel!ex | Type Il Reliability
e cet bommcmanfmm————
pommme— Phemmmsaan P e
[S| 2) oK || 100000004400
[[IELEE LY I e
[S | 3 1 ok Il 200000004400
+ +
[T | 3 1t nK 1].30000000d+00
pomemm— +
I ok 11 % | kK 11.90000000d+00
+ fmemene "
I ok I} 6 1 nk }1.500000004400
bommmmen " EXETET T +
ook) 5 1 ok II 60000000d+00
e Promeccaas R e e e e
1 ok 4 5 1 ok ll 700000004 +00
+ Pococaa
bonk I 8 I nK lI GOOOOOOdeOO
L E Rt R LT
I ok 1) 20 | »K tl 900000004400
L L et L
[N S] 7 | oK ll 100000004 500
oo L [R
I ok} ook || 200000004+00
¢ -
[S 20 | nk || 300000004400
(33 1+
[T]| 10} 0K || %0000000d+00
I thommemen e $rmcnre}prmmem e, ———
I % | 9 1 K ll 500000004400
pomm——— Phmmmmcmme [et T
[| 10 | nK lv 600000004400
fommem- Pyommmmene R
ook} 16 | nK II 700000004400 |
bmmmeae L et -1
[S]] 15 | oK ll.eoooouuou.ool
e ' Pommmaa +e -
[S 12 ! ok }1.900000004+00
--------- 1+ dmmme—apt ————
I ook 11 13 1 ok 1].10000000d+00
mmmm—— by [T - Pt |
ik 11 9 | nx }11.20000000¢+00

PolyChain - Version 83.1

Folygon te Chain Reductions

in Network Rellability
Date : Fri Jul 26 1985
Time t 12158126

Input Hetwork

| Edge |} Yertex | Type II Yertex | Type || Reliability

...... P T PP, PRSI

| EE TR (TR I o] pommome B R ettt
o2 1 13 | nK || 2%} K 11.30000000d+00
foemcemcemmceccccccecemmemem———em—————————

22 4 wo] onk 11 15 | nK }11.400000004+00
|ommmee Vlommmeaan P S bommmne fbmmm e
: 23 11 [I S 17 1 oK |1.50000000d+00
------ 4 ———ee- fmmmenmy

Ioan 71 ok I 8 | oK 11.60000000d4+00
| B bhoommomnn fommonn T L L
: 25 H 8 1 px) 19 1 nk 11.76000000d+00
------ [+

126 14 L T S | 21 |1 X |}.80000000d+00

Summary of Input Network Data

llumter of Vertices...
thumber of Eilges......
Humber of K-Vertlices. .
Hetwork Denstby....ocvvriivrvssnnennnsnnes

Summary of Core Usage

Variable Current Usage b3
Name Value

MAXELG 5000 26 0.5
HAXYRT 2000 21 1.0

MC De R o o e 1o

|

RESENDE: FOR RELIABILITY EVALUATION OF UNDIRECTED NETWORKS VIA POLYGON-TO-CHAIN REDUCTIONS 29

PolyChain - Version 83.1

Polygon to Chain Reductions

in Hetwork Reliability
Date :
Time :

Fri Jul 26 1965
12¢58:26

lletwork Series-Parallel Irreducible
Reduced Hetwork

| tEdge |! Vertex | Type |l Vertex | Type || Relilability |
R bhmmmmm e bomm—— thmmmme e fom———— tbmmmmmmm e !
[T hmmmmm e tmm = D R B B R et |
1 LR 1 K X 9 | unkK 11.31422812d+00 |
fommmem e tmmm——— D el D il L '
H 5 i 1 1 K K] 6 1 nK 11.53817522d+00 |
| PSR, $lommmm e P 44 mmmmmeem P 4temmmmmm -
| ig ! 6 1 nk 11 13§ oK !1.18000000d-01 |
[T tbmmmmm tmmm e 44momm—e e 4o t4mmmmmmcm——————]
i 13 4 6 | nk 1} w0 | nK {!.40000000d-01 |
fmmm——- f4mmmmee oo e 4mmemm- ttmmmmmm e i
1 26 {1 9 { nK | 2y | K 11.11760000d+00 |
e s pmmm——— e el D e 4bmmmmcmmmcmaaa 1
| 15 1 9 | nk i 10 ! nK 1].600000004+00 }
|-mmm e Almmmmm e fmmmm-e Fpomommmae pmm—o—- D H
\ 22 {1 10 + ok N 13 | oK 11.64000000d-01 |
j==——- + 1 + |
i FAN ! I . H
Page 3

Polychatn - Version 83.1

folygon to Chain Reductions

10 Hetwork Relfalility
Date 1t Fri Jul 26 1985
Time 3 12158126

Updated value of I = 0.21679720d400
feductions Performed
5
o
3
o
o
90
0
L]
0
[
Original Reduced $ Reduction
Retwork Network
EUGeSececenanan 26 8 69.2
Vertices....... 21 6 T1.4
K-Vertices..... 2 H 0.
Selution Time = 0.02 Secs.

Page 4

7. ACKNOWLEDGMENT

This research has been partially supported by the US
Army Research Office, under contract DAAG29-81-
K-0160, and Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico-CNPq, Brazil.

8. REFERENCES

[1] A. Agrawal, R. E. Barlow, “‘A survey of network reliability and
domination theory’’, Operations Research, vol 32, no. 3, 1984, pp
478-492.

[2] A. T. Berztiss, Data Structures: Theory and Practice, Academic
Press, 1975.

31 S. Even, Graph Algorithms, Computer Science Press, 1979, pp
57-62.

[4] R. V. Helgason, J. L. Kennington, Algorithms for Network Pro-
gramming, John Wiley & Sons, 1980. e

(5] D. E. Knuth, The Art of Computer Programming, Volume One: g
Fundamental Algorithms, Addison-Wesley, 1973.

[6] M. G. C. Resende, ‘““A computer program for reliability evaluation
of large-scale undirected networks via polygon-to-chain
reductions’’, Report ORC-83-10, 1983. Available from: Operations
Research Center; University of California; Berkeley, California
94720 USA.

[7]1 A. Thesen, Computer Methods in Operations Research, Academic
Press, 1978.

{8] A. Satyanarayana, R. K. Wood, ‘‘Polygon-to-chain reductions and
network reliability”’, Report ORC 824, 1982. See [6]).

[9] A. Satyanarayana, M. K. Chang, ‘‘Network reliability and the fac-

—

[10] R. K. Wood, ‘‘Polygon-to-chain reductions and extensions for
reliability evaluation of undirected networks”’, PhD thesis, Dept. of
Industrial Engineering and Operations Research, University of ?
California, Berkeley, 1982. ,
[11] R. K. Wood, ‘A factoring algorithm using polygon-to-chain reduc-
tions for computing K-terminal network reliability’’, Networks, vol
15, 1985, pp 173-190.

AUTHOR

Mauricio G. C. Resende; Operations Research Center; University of
California; Berkeley, California 94720 USA.

Mauricio G. C. Resende was born in Maceio, Brazil, on 1955 July 27.
He received the degree of Electrical Engineer, with concentration in g
systems, from the Catholic University of Rio de Janeiro in 1978, and an
MS in Operations Research from the Georgia Institute of Technology in
1979. Mr. Resende was an operations research analyst with the Furnas i
Power Company in Rio de Janeiro from 1979 to 1982. He also held a
teaching position at the Catholic University of Rio de Janeiro from 1981
to 1982. He is a PhD candidate in operations research at the University of
California at Berkeley.

Manuscript TR83-144 received 1983 September 24; revised 1985 October
21. * kK

Z

LIST OF REFEREES (continued from page 18)

Richard C. Terzian O TRW Defense & Space-Systems Group; Redondo
Beach
L. C. Thomas O University of Manchester; Manchester
Marlin U. Thomas O Cleveland State University; Cleveland
William E. Thompson O Naval Research Laboratory; Washington, DC
K. Toguchi O Mitsubishi Kakoki Kaisha, Ltd.; Kawasaki
Martin Trachtenberg 0 RCA; Moorestown
Ashok K. Trivedi O Northern Telecom; Richardson
Masaaki Tsujitani O Kobe Women’s College; Hyogo
Steven S. Tung O Hughes Aircraft Company; Culver City
Lonnie C. Vance U General Motors Research Laboratories; Warren
P. Venkatachalam O Indian Institute of Technology; Bombay
John Verrall O The City University; London N
ulio Vilar O Inst. de Investigaciones Electricas; Cuernavaca
}im Von Bank O Control Data Corporation; Minneapolis

Mirko Vujosevic O Mihailo Pupin Institute; Belgrade
Haskell A. Walker O Harris Corp.; Melbourne
Duan Wei O Bureau of Statistics; Taipei

Mike West O University of Warwick; Coventry

Alan Winterbottom O The City University; London
N. Keith Womer O Clemson University; Clemson &
Kam Wong O Kambea Industries; Manhattan Beach X
Thomas G. Woo O Consultant; Medfield

Alan P. Wood O ESL Inc.; Sunnyvale

Wenxin Xu O Fujian Provincial éomputing Centre; Fuzhow City

Janan Xue O Beijing Light Industry Institute; Beijing

Shigeru Yamada O Okayama University of Science; Okayama

Soung R. Yee O Samsung Semiconductor & Telecom. Co. Ltd.; Buchun

John Yuan O National Tsing Hua University; Hsinchu

Antonio Zanini O University of Firenze; Firenze

toring theorem”’, Networks, vol 13, 1983, pp 107-120. ‘

