
On the implementation of a swap-based local search procedure for
the p-median problem∗

Mauricio G. C. Resende† Renato F. Werneck‡

Abstract

We present a new implementation of a widely used swap-based local search procedure for the p-median problem. It
produces the same output as the best implementation described in the literature and has the same worst-case com-
plexity, but, through the use of extra memory, it can be significantly faster in practice: speedups of up to three orders
of magnitude were observed.

1 Introduction
The p-median problem is defined as follows. Given a set F of m facilities, a set U of n users (or customers), a distance
function d : U×F → R , and a constant p≤ m, determine which p facilities to open so as to minimize the sum of the
distances from each user to the closest open facility.

Being a well-known NP-complete problem [2], one is often compelled to resort to heuristics to deal with it in
practice. Among the most widely used is the swap-based local search proposed by Teitz and Bart [10]. It is often
applied on its own [8, 13], and also as a key subroutine of more elaborate metaheuristics [3, 7, 9, 12]. The efficiency
of the local search procedure is of utmost importance to the effectiveness of these methods. In this paper, we present a
novel implementation of the local search procedure and compare it with the best alternative described in the literature,
proposed by Whitaker in [13]. In practice, we were able to obtain significant (often asymptotic) gains.

This paper is organized as follows. In Section 2, we give a precise description of the local search procedure and
its most trivial implementation. In Section 3, we describe Whitaker’s implementation. Our own implementation is
described in Section 4. Experimental evidence to the efficiency of our method is presented in Section 5. Final remarks
are presented in Section 6.

Notation and assumptions. Before proceeding with the algorithms themselves, let us establish some notation. As
already mentioned, F is the set of potential facilities and U the set of users that must be served. The basic parameters
of the problem are n = |U |, m = |F |, and p, the number of facilities to open. Although 1≤ p ≤ m by definition, we
will ignore trivial cases and assume that 1< p< m and that p< n (if p≥ n, we just open the facility that is closest to
each user). We assume nothing about the relationship between n and m.

In this paper, u denotes a generic user, and f a generic facility. The cost of serving u with f is d(u, f), the distance
between them. A solution S is any subset of F with p elements (representing the open facilities). Each user u must be
assigned to the closest facility f ∈ S, the one that minimizes d(u, f). This facility will be denoted by φ1(u); similarly,
the second closest facility to u in S will be denoted by φ2(u). To simplify notation, we will abbreviate d(u,φ1(u))
as d1(u), and d(u,φ2(u)) as d2(u). We often deal specifically with a facility that is a candidate for insertion; it will
be referred to as fi (by definition fi 6∈ S); similarly, a candidate for removal will be denoted by fr (fr ∈ S, also by
definition).
∗AT&T Labs Research Technical Report TD-5E4QKA, September 2002.
†AT&T Labs Research, 180 Park Avenue, Florham Park, NJ 07932. Electronic address: mgcr@research.att.com.
‡Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08544. Electronic address:

rwerneck@cs.princeton.edu. The results presented in this paper were obtained while this author was a summer intern at AT&T Labs
Research.

1

Throughout this paper, we assume the distance oracle model, in which the distance between any customer and any
facility can be found in O(1) time. This is the case if there is a distance matrix, or if facilities and users are points on
the plane, for instance. In this model, all values of φ1 and φ2 for a given solution S can be straighforwardly computed
in O(pn) total time.

2 The Swap-based Local Search
Introduced by Teitz and Bart in [10], the standard local search procedure for the p-median problem is based on
swapping facilities. For each facility fi 6∈ S, the procedure determines which facility fr ∈ S (if any) would improve the
solution the most if fi and fr were interchanged (i.e., if fi were inserted and fr removed from the solution). If one such
“improving” swap exists, it is performed, and the procedure is repeated from the new solution. Otherwise we stop,
having reached a local minimum (or local optimum). Our main concern here is the time it takes to run each iteration
of the algorithm: given a solution S, how fast can we find a neighbor S′?

It is not hard to come up with an O(pmn) implementation for this procedure. First, in O(pn) time, determine the
closest and second closest facilities for each user. Then, for each candidate pair (f i, fr), determine the profit that would
be obtained by replacing fr with fi, using the following expression (recall that d1(u) and d2(u) represent distances from
u to the closest and second closest facilities, respectively):

profit(fi, fr) = ∑
u:φ1(u)6= fr

max{0, [d1(u)−d(u, fi)]}− ∑
u:φ1(u)= fr

(min{d2(u),d(u, fi)}−d1(u)).

The first summation accounts for users whose closest facility is not fr; these will be reassigned to fi only if that is
profitable. The second summation refers to users originally assigned to fr, which will be reassigned either to their
original second closest facilities or to fi, whichever is more advantageous. The entire expression can be computed in
O(n) time for each pair of facilities; since there are p(m− p) = O(pm) pairs to test, the whole procedure takes O(pmn)
time per iteration.

There are several papers in the literature that use this implementation, or avoid using the swap-based local search
altogether, mentioning its intolerable running time [7, 9, 12]. All these methods would greatly benefit from Whitaker’s
implementation (or from ours, for that matter), described in the next section.

3 Whitaker’s Implementation
In [13], Whitaker describes the so-called fast interchange heuristic, an efficient implementation of the local search
procedure defined above. Even though it was published in 1983, Whitaker’s implementation was not widely used
until 1997, when Hansen and Mladenović [3] applied it as a subroutine of a Variable Neighborhood Search (VNS)
procedure. Their implementation is based on Whitaker’s, with a minor difference: Whitaker prefers a first improvement
strategy (a swap is made as soon as a profitable one is found), while Hansen and Mladenović prefer best improvement
(all swaps are evaluated and the most profitable executed). In our analysis, we assume best improvement is used.

The key aspect of this implementation is its ability to find in Θ(n) time the best possible candidate for removal,
given a certain candidate for insertion. The pseudocode for a function that does that, adapted from [3], is presented in
Figure 1.1 Function findOut takes as input a candidate for insertion (f i) and returns fr, the most profitable facility to
be swapped out, as well as the profit itself (profit).

In the code, w represents the total amount saved by reassigning users to f i, independently of which facility is
removed; it takes into account all users currently served by facilities that are farther than f i is. The loss due to the
removal of fr is represented by v(fr), which accounts for users that have fr as their closest facility. Each such user will
be reassigned (if fr is removed) either to its original second closest facility or to f i; the reassignment cost is computed
in line 7. Line 10 determines the best facility to remove, the one for which v(fr) is minimum. The overall profit of the
corresponding swap (considering also the gains in w) is computed in line 11.

Since this function runs in O(n) time, it is now trivial to implement the swap-based local search procedure in O(mn)
time per iteration: simply call findOut once for each of the m− p candidates for insertion and pick the most profitable
one. If the best profit is positive, perform the swap, update the values of φ1 and φ2, and proceed to the next iteration.
Updating φ1 and φ2 requires O(pn) time in the worst case, but can be made faster in practice, as mentioned in [13].
Since our implementation uses the same technique, its description is deferred to the next section (Subsection 4.3.1).

1Expressions of the form a +← b in the code mean that the value of a is incremented by b units.

2

function findOut (S, fi,φ1,φ2)
1 w← 0
2 forall (f ∈ S) do v(f)← 0;
3 forall (u ∈U) do
4 if (d(u, fi)< d(u,φ1(u)) then /* profit if fi is close enough to u */
5 w +← [d(u,φ1(u))−d(u, fi)];
6 else /* loss if facility that is closest to u is removed */
7 v(φ1(u))

+←min{d(u, fi),d(u,φ2(u))}−d(u,φ1(u));
8 endif
9 endforall
10 fr← argmin f∈S{v(f)};
11 profit← w− v(fr);
12 return (fr,profit);
end findOut

Figure 1: Function to determine, given a candidate for insertion (f i), the best candidate for removal (fr). Adapted from
[3].

4 An Alternative Implementation
Our implementation has some similarity with Whitaker’s, in the sense that they perform the same basic operations.
However, the order in which they are performed is different, and in our case partial results obtained are stored in
auxiliary data structures. As we will see, this allows for the use of values computed in early iterations of the algorithm
to speed up later ones.

4.1 Additional Structures
For each facility fi 6∈ S, let gain(fi) be the total amount saved when fi is added to S (thus creating a new solution with
p + 1 facilities). The savings result from reassigning to f i every customer whose current closest facility is farther than
fi itself:

gain(fi) = ∑
u∈U

max{0,d1(u)−d(u, fi)}. (1)

Similarly, for every fr ∈ S, define loss(fr) as the increase in solution value resulting from the removal of fr (with only
p−1 facilities remaining). This is the cost of transferring every customer assigned to fr to its second closest facility:

loss(fr) = ∑
u:φ1(u)= fr

[d2(u)−d(u, fr)]. (2)

In the local search, we are interested in what happens when insertions and removals occur simultaneously. Let
profit(fi, fr) be the amount saved when fi and fr are swapped. We claim it can be expressed as

profit(fi, fr) = gain(fi)− loss(fr) + extra(fi, fr), (3)

for a properly defined function extra(fi, fr). Note that the profit will be negative if the neighboring solution is worse
than S. To find the correct specification of extra, we observe that, for every customer u, one of the following cases
must hold:

1. φ1(u) 6= fr (the customer was not assigned to fr before). We may save something by reassigning it to fi, and the
amount we save is included in gain(fi).

2. φ1(u) = fr (the customer was assigned to fr before). Three subscases present themselves:

a. d1(u)≤ d2(u)≤ d(u, fi). Customer u should be assigned to φ2(u), which was exactly the assumption made
during the computation of loss(fr). The loss corresponding to this reassignment is therefore already taken
care of.

3

function updateStructures (u, loss,gain,extra,φ1,φ2)
1 d1← d(u,φ1(u));
2 d2← d(u,φ2(u));
3 fr← φ1(u);
4 loss(fr)

+← (d2−d1);
5 forall (fi 6∈ S) do
6 if (d(u, fi)< d2) then
7 gain(fi)

+←max{0,d1−d(u, fi)};
8 extra(fi, fr)

+← (d2−max{d(u, fi),d(u, fr)});
9 endif
10 endfor
end updateStructures

Figure 2: Pseudocode for updating arrays in the local search procedure

b. d1(u) ≤ d(u, fi) < d2(u). Customer u should be reassigned to fi, even though during the computation of
loss(fr) we assumed it would be reassigned to φ2(u). This means that the estimate of the contribution of u
to loss(fr) is overly pessimistic by d2(u)−d(u, fi).

c. d(u, fi) < d1(u) ≤ d2(u). Customer u should be reassigned to fi, with a profit of d1(u)− d(u, fi) (cor-
rectly accounted for in the computation of gain(fi)). However, the loss of d2(u)− d1(u) predicted in the
computation of loss(fi) will not occur.

The defintion of extra(fi, fr) must handle cases (2b) and (2c) above, in which wrong predictions were made.
Corrections can be expressed straightforwardly as individual summations (one for each case), and then merged into a
single expression:

extra(fi, fr) = ∑
u:(φ1(u)= fr)∧

d1(u)≤d(u, fi)<d2(u)

[d2(u)−d(u, fi)] + ∑
u:(φ1(u)= fr)∧

d(u, fi)<d1(u)≤d2(u)

[d2(u)−d(u, fr)]

= ∑
u:[φ1(u)= fr]∧[d(u, fi)<d2(u)]

[d2(u)−max{d(u, fi),d(u, fr)}]. (4)

4.2 Local Search
Assume all values of loss, gain, and extra can be efficiently precalculated and stored in appropriate data structures
(vectors for loss and gain, a matrix for extra). Then, we can find the best swap in O(pm) time by computing the profits
associated with every pair of candidates using Equation 3.

To develop an efficient method to precompute gain, loss, and extra, we note that every entry in these structures is
a summation over some subset of users (see Equations 1, 2, and 4). Moreover, the contribution of each user can be
computed separately. Function updateStructures, shown in Figure 2, does exactly that. It takes as input a user u
and its closest facilities (given by φ1 and φ2), and updates the contents of loss, gain, and extra. To compute all three
structures from scratch, we just need to reset them (set all positions to zero) and call updateStructures once for
each user. Together, these n calls perform precisely the summations defined in Equations 1, 2, and 4.

We now have all the elements necessary to build a full local search algorithm in O(mn) time. In O(pn) time,
compute φ1 and φ2 for all users. In O(pm) time, reset loss, gain, and extra. With n calls to updateStructures, each
made in O(m) time, determine their actual values. Finally, in O(pm) time, find the best swap.

4.3 Acceleration
So far, our implementation seems to be merely a more complicated alternative to Whitaker’s; after all, both have the
same worst-case complexity. Furthermore, our implementation has the clear disadvantage of requiring an O(pm)-sized
matrix, while Θ(n) memory positions are enough in Whitaker’s. The extra memory, however, allows for significant
accelerations, as this section shows.

4

procedure localSearch (S,φ1,φ2)
1 A←U ; /* A is the set of affected users */
2 resetStructures (gain, loss, extra);
3 while (TRUE) do
4 forall (u ∈ A) do updateStructures (u, gain, loss, extra, φ1, φ2);
5 (fr, fi,profit)←findBestNeighbor (gain, loss, extra);
6 if (profit ≤ 0) break; /* if there’s no improvement, we’re done */
7 A← /0;
8 forall (u ∈U) do /* find out which users will be affected */
9 if ((φ1(u) = fr) or (φ2(u) = fr) or (d(u, fi)< d(u,φ2(u)))) then
10 A← A∪{u}
11 endif
12 endforall;
13 forall (u ∈ A) do undoUpdateStructures (u, gain, loss, extra, φ1, φ2);
14 insert(S, fi);
15 remove(S, fr);
16 updateClosest(S, fi, fr,φ1,φ2);
17 endwhile
end localSearch

Figure 3: Pseudocode for the local search procedure

When a certain facility fr is replaced by a new facility fi, values in gain, loss, extra, φ1, and φ2 become inaccurate.
A straighforward way to update them for the next local search iteration is to recompute φ1 and φ2, reset the other arrays,
and then call updateStructures again for all users. But we can potentially do better than that. The actions performed
by updateStructures depend only on u, φ1(u), and φ2(u); no value is read from other structures. Therefore, if φ1(u)
and φ2(u) do not change from one iteration to another, there is no need to call updateStructures again for u.

Given that, we consider a user u to be affected if there is a change in either φ1(u) or φ2(u) (or both) after a swap is
made. Sufficient conditions for u to be affected after a swap between f i and fr are: (1) one of the two closest facilities
is fr itself; or (2) the new facility is closer to u than the original φ2(u) is. Contributions to loss, gain, and extra need
to be updated only for affected users. If the number of affected users is small (it often is) significant gains can be
obtained.

Note, however, that we cannot simply call updateStructures for these users, since this function simply adds new
contributions. Previous contributions must be subtracted before new additions are made. We therefore need a function
similar to updateStructures, with subtractions instead of additions.2 This function (call it undoUpdateStructures)
must be called for all affected users before φ1 and φ2 are recomputed.

Figure 3 contains the pseudocode for the entire local search procedure, already taking into account the observations
just made. Apart from the functions just discussed, three others appear in the code. The first, resetStructures, just
sets all entries in the auxiliary structures to zero. The second, findBestNeighbor, runs through these structures and
finds the most profitable swap using Equation 3. It returns which facility to remove (fr), the one to replace it (fi), and
the profit itself (profit). The third function is updateClosest, which updates φ1 and φ2, possibly using the fact that
the facility recently opened was fi and the one closed was fr.

The pseudocode reveals three potential bottlenecks of the algorithm: updating the auxiliarly data structures (loss,
gain, and extra), updating closeness information, and finding the best neighbor once the updates are done. We now
analyze each of these in turn.

4.3.1 Closeness

Updating closeness information, in our experience, has proven to be a relatively cheap operation. Deciding whether
the newly inserted facility fi becomes either the closest or the second closest facility to each user is trivial and can be
done in O(n) total time. A more costly operation is finding a new second closest for customers who had f r (the facility

2This function is identical to the one shown in Figure 2, with all occurrences of +← replaced with –←: instead of incrementing values, we
decrement them.

5

removed) as either the closest or the second closest element. Updating each of these users requires O(p) time, but
since there usually are few of them, the total time spent tends to be small fraction of the entire local search procedure.

One should also note that, in some settings, finding the set of closest and second closest elements from scratch is
itself a cheap operation. For example, in the graph setting, where distances between customers and facilities are given
by shortest paths on an underlying graph, this can be accomplished in Õ(|E|) time [11], where |E| is the number of
edges in the graph. For experiments in this paper, however, specialized routines were not implemented; we always
assume arbitrary distance matrices.

4.3.2 Best Neighbor

The number of potential swaps in a given solution is p(m− p). The straighforward way to find the most profitable is
to compute profit(fi, fr) (as defined by Equation 3) for all pairs and pick the best, which requires Θ(pm) operations.
In practice, however, the best move can be found in less time. As defined, extra(f i, fr) can be interpreted as a measure
of the interaction between the neighborhoods of fr and fi. After all, as Equation 4 shows, only users that have fr as
their current closest facility and are also close to fi contribute to extra(fi, fr). In particular, if there are no users in
this situation, extra(fi, fr) will be zero. It turns out that, in practice, this occurs rather frequently, especially for larger
values of p, when the average number of vertices assigned to each fr is relatively small.

Therefore, instead of storing extra as a full matrix, one may consider a sparse representation in which only nonzero
elements are explicit: each row becomes a linked list sorted by column number. A drawback of the sparse represen-
tation (in general) is the impossibility to make random accesses in O(1) time. Fortunately, for our purposes, this is
not necessary; updateStructures, undoUpdateStrcutures, and bestNeighbor (the only functions that access the
matrix) can be implemented so as to go through each row sequentially.

With the sparse matrix representation, one can implement bestNeighbor as follows. First, determine the facility
fi that maximizes gain(fi), and the fr that minimizes loss(fr). Since all values in extra are nonnegative, this pair is
at least as profitable as any pair (fi′ , fr′) for which extra(fi′ , fr′) is zero. Then, compute the exact profits (given by
Equation 3) for all nonzero elements in extra. The whole procedure takes O(m+λpm) time, where λ is the fraction of
pairs whose extra value is nonzero. This tends to be smaller as p increases. An interesting side-effect of using sparse
matrices is that they often need significantly less memory than the standard full matrix representation.

4.3.3 Updates

As we have seen, keeping track of affected users can reduce the number of calls to updateStructures. We now study
how to reduce the time spent in each of these calls.

Consider the pseudocode in Figure 2. Line 5 represents a loop through all facilities not in the solution, but line 6
shows that we can actually restrict ourselves to the facilties whose distance to u (the candidate customer) is no greater
than d2 (the distance from u to its second closest facility). This may be a relatively small subset of the facilities,
especially when p is large. This suggests a preprocessing step that builds, for each user u, a list with all facilities
sorted by distance to u. During the local search, whenever we need the set of facilities whose distance to u is less than
d2, we just take the appropriate prefix of the precomputed list — potentially much smaller than m.

Building these lists takes O(nm logm) time, but it is done only once, not in every iteration of the local search
procedure. This is true even if local search is applied several times within a metaheuristic (as in [3, 9], for instance):
we still need to perform the preprocessing step only once.

A more serious drawback of this approach is memory usage. Keeping n lists of size m requires Θ(mn) memory
positions, which may be prohibitive. On the other hand, one should expect to need only small prefixes most of the
time. Therefore, instead of keeping the whole list in memory, it might be good enough to keep only prefixes. The list
would therefore be used as a cache: if d2 is small enough, we just take a prefix of the candidate list; if it is larger than
the largest element represented, we look at all possible neighbors.

5 Empirical Analysis

5.1 Instances and Methodology
We tested our algorithm on three classes of problems. Two of them, TSP and ORLIB, are commonly studied in the
literature for the p-median problem. The third, RW, is introduced here as a particularly hard case for our method.

6

Class TSP corresponds to three sets of points on the plane (with cardinality 1400, 3038, and 5934), originally used
in the context of the traveling salesman problem [6]. In the case of the p-median problem, each point is both a user to
be served and a potential facility, and distances are Euclidean. Following [4], we tested several values of p for each
instance, ranging from 10 to approximately n/3.

Class ORLIB, originally introduced in [1], contains 40 graphs with 100 to 900 nodes, each with a suggested value
of p (ranging from 5 to 200). Each node is both a user and a potential facility, and distances are given by shortest
paths in the graph. All-pairs shortest paths are computed in advance for all methods tested, as it is usually done in the
literature.

Each instance in class RW is a square matrix in which entry (u, f) (an integer taken uniformly at random from
the interval [1,n]) represents the cost of assigning user u to facility f . Four values of n were tested (100, 250, 500,
and 1000), each with values of p ranging from 10 to n/2, totaling 27 combinations.3 The program that created these
instances (using the random number generator by Matsumoto and Nishimura [5]) is available from the authors upon
request.

All tests were performed on an SGI Challenge with 28 196-MHz MIPS R10000 processors (with each execution
of the program limited to one processor) and 7.6 GB of memory. All algorithms were coded in C++ and compiled
with the SGI MIPSpro C++ compiler (v. 7.30) with flags -O3 -OPT:Olimit=6586. All running times shown in this
paper are CPU times, measured with the getrusage function, whose precision is 1/60 second. In some cases, actual
running times were too small for this precision; therefore, each algorithm was repeatedly run for at least 5 seconds;
overall times were measured, and averages reported here.

For each instance tested, all methods were applied to the same initial solution, obtained by a greedy algorithm [13]:
starting from an empty solution, we insert one facility at a time, always picking the one that reduces the solution cost
the most. Running times mentioned in this paper refer to the local search only, they do not include the construction of
the initial solution.

5.2 Results
This section presents an experimental comparison between several variants of our implementation and Whitaker’s
method, which will be referred to here as FI (fast interchange). We implemented FI based on the pseudocode in [3]
(obtaining comparable running times); the key function is presented here in Figure 1. The same routine for updating
closeness information (presented in Section 4.3.1) was used for all methods (including FI).

We start with the most basic version of our implementation, in which extra is represented as a full (non-sparse)
matrix. This version (called FM, for full matrix) incorporates some acceleration, since calls to updateStructures
are limited to affected users only. However, it does not include the accelerations suggested in Sections 4.3.2 (sparse
matrix) and 4.3.3 (preprocessing). For each instance tested, we computed the speedup obtained by our method when
compared to FI, i.e., the ratio between the running times of FI and FM. Table 1 shows the best, (geometric) mean, and
worst speedups thus obtained considering all instances in each class.4 Values larger than one favor our method, FM.

Table 1: Speedup obtained by FM (full matrix, no preprocessing) over Whitaker’s FI.

CLASS BEST MEAN WORST

ORLIB 12.72 3.01 0.84
RW 12.42 4.14 0.88
TSP 31.14 11.68 1.85

The table shows that even the basic acceleration scheme achieves speedups of up to 30 for some particularly large
instances. There are cases, however, in which FM is actually slower than Whitaker’s method. This usually happens for
smaller instances (with n or p small), in which the local search procedure performs very few iterations, insufficent to

3More precisely: for n = 100, we used p = 10, 20, 30, 40, and 50; for n = 250, p = 10, 25, 50, 75, 100, and 125; for n = 500, p = 10, 25, 50,
100, 150, 200, and 250; and for n = 1000, p = 10, 25, 50, 75, 100, 200, 300, 400, and 500.

4Since we are dealing with ratios, geometric (rather than arithmetic) means seem to be a more sensible choice; after all, if a method takes
twice as much time for 50% of the instances and half as much for the other 50%, it should be considered roughly equivalent to the other method.
Geometric means reflect that, whereas arithmetic means do not.

7

ammortize the overhead of using a matrix. On average, however, FM has proven to be from three to almost 12 times
faster than FI.

We now analyze a second variant of our method. Instead of using a full matrix to represent extra, we use a sparse
matrix, as described in Section 4.3.2. We call this variant SM. The results, obtained by the same process as above, are
presented in Table 2.

Table 2: Speedup obtained by SM (sparse matrix, no preprocessing) over Whitaker’s FI.

CLASS BEST MEAN WORST

ORLIB 17.21 3.10 0.74
RW 32.39 5.26 0.75
TSP 147.71 26.18 1.72

As expected, SM has proven to be even faster than FM on average and in the best case (especially for the somewhat
larger TSP instances). However, the worst cases are also even worse. This happens mostly for instances with small
values of p: with the number of nonzero elements in the matrix relatively large, a sparse representation is not the best
choice.

The last acceleration we study is the preprocessing step (Section 4.3.3), in which all potential facilities are sorted
according to their distances from each of the users. Results for this variation (SMP, for sparse matrix with preprocess-
ing) are presented in Table 3. Columns 2, 3, and 4 consider running times of the local search procedure only; columns
5, 6, and 7 also include preprocessing times.

Table 3: Speedup obtained by SMP (sparse matrix, full preprocessing) over Whitaker’s FI.

CLASS LOCAL SEARCH ONLY INCL. PREPROCESSING

BEST MEAN WORST BEST MEAN WORST

ORLIB 66.98 8.70 1.30 7.50 1.17 0.22
RW 113.90 15.09 1.40 9.64 2.12 0.18
TSP 862.07 177.62 3.27 79.18 20.28 1.33

The table shows that the entire SMP procedure (including preprocessing) is in general still much faster than
Whitaker’s FI, but often worse than other variations suggested here (FM and SM). However, as already mentioned,
metaheuristics often need to run the local search procedure several times, starting from different solutions. Since
preprocessing is run only once, its cost can be quickly amortized. Based on columns 2, 3, and 4 of the table, it is
clear that, once this happens, SMP can achieve truly remarkable speedups with respect not only to FI, but also to other
variants suggested here. In the best case (instance rl5934 with p = 1000), it is almost 900 times faster than FI.

A more detailed analysis of this particular instance (rl5934, the largest we tested) is presented in Figure 4. It shows
how p (the number of facilities to open) affects the running times of all four methods previously studied (FI, FM, SM,
and SMP), and also some variants “between” SM and SMP. Recall that in SMP every user keeps a list of all facilities
sorted by distance; SM keeps no list at all. In a variant of the form SMq, each user keeps a limited list with the qm/p
closest facilities (this is the “cache” version described in Section 4.3.3). Running times in the graph do not include
preprocessing, which takes approximately one minute for this particular instance.

Since all methods discussed here implement the same algorithm, the number of iterations does not depend on the
method itself, but it does depend on the value of p: in general, these two have a positive correlation. For some methods,
such as Whitaker’s FI and the full-matrix variation of our implementation (FM), an increase in p translates immediately
into greater running times (although our method is still 10 times faster for p = 1500). For SMP, which uses sparse
matrices, time spent per iteration tends to decrease even faster as p increases: the effect of swaps becomes more local,
with fewer users affected and fewer neighboring facilities visited in each call to updateStructures. This latter effect
explains why keeping even a relatively small list of neighboring facilities for each user seems to be worthwhile. The
curves for variants SMP and SM5 are practically indistinguishable in Figure 4, and both are much faster than SM.

8

1

10

100

1000

10000

10 300 600 900 1200 1500

tim
e

(s
ec

on
ds

)

facilities

FI
FM
SM

SM1
SM2
SM3
SM5
SMP

Figure 4: Instance rl5934: dependency of running times on p for different methods. Times are in logarithmic scale and
do not include preprocessing.

6 Concluding Remarks
We have presented a new implementation of the swap-based local search for the p-median problem introduced by
Teitz and Bart. Through the combination of several techniques — using a matrix to store partial results, a compressed
representation for this matrix, and preprocessing — we were able to obtain speedups of up to three orders of magnitude
with respect to the best previously known implementation, due to Whitaker. Our implementation is especially well
suited to relatively large instances and, due to the preprocessing step, to situations in which the local search procedure
is run several times for the same instance (such as within a metaheuristic). For small instances, Whitaker’s can still be
faster, albeit not by a significantly large margin.

Two lines of research suggest themselves from this work. First, it is still possible to improve the performance of
our method, especially for small instances. One might consider, for example, incorporating the preprocessing step
into the main procedure; this would allow operations to be performed as needed, instead of in advance (thus avoiding
useless computations). A second line of research would be an investigation on the use of our method as a building
block of more elaborate metaheuristics.

References
[1] J. E. Beasley. A note on solving large p-median problems. European Journal of Operational Research, 21:270–

273, 1985.

[2] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman,
1979.

[3] P. Hansen and N. Mladenović. Variable neighborhood search for the p-median. Location Science, 5:207–226,
1997.

9

[4] P. Hansen, N. Mladenović, and D. Perez-Brito. Variable neighborhood decomposition search. Journal of Heuris-
tics, 7(3):335–350, 2001.

[5] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidistributed uniform pseudoran-
dom number generator. ACM Transactions on Modeling and Computer Simulation, 8(1):3–30, 1998.

[6] G. Reinelt. TSPLIB: A traveling salesman problem library. ORSA Journal on Computing, 3:376–384, 1991.
http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.

[7] E. Rolland, D. A. Schilling, and J. R. Current. An efficient tabu search procedure for the p-median problem.
European Journal of Operational Research, 96:329–342, 1996.

[8] K. E. Rosing. An empirical investigation of the effectiveness of a vertex substitution heuristic. Environment and
Planning B, 24:59–67, 1997.

[9] K. E. Rosing and C. S. ReVelle. Heuristic concentration: Two stage solution construction. European Journal of
Operational Research, 97:75–86, 1997.

[10] M. B. Teitz and P. Bart. Heuristic methods for estimating the generalized vertex median of a weighted graph.
Operations Research, 16(5):955–961, 1968.

[11] M. Thorup. Quick k-median, k-center, and facility location for sparse graphs. In Proceedings of the 28th
International Colloquium on Automata, Languages and Programming (ICALP 2001), volume 2076 of Lecture
Notes in Computer Science, pages 249–260. Springer, 2001.

[12] S. Voss. A reverse elimination approach for the p-median problem. Studies in Locational Analysis, 8:49–58,
1996.

[13] R. Whitaker. A fast algorithm for the greedy interchange of large-scale clustering and median location prolems.
INFOR, 21:95–108, 1983.

10

