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Abstract. In this paper, we introduce the truncated primal-infeasible dual-feasible interior
point algorithm for linear programming and describe an implementation of this algorithm for solving
the minimum cost network flow problem. In each iteration, the linear system that determines the
search direction is computed inexactly, and the norm of the resulting residual vector is used in the
stopping criteria of the iterative solver employed for the solution of the system. In the implementa-
tion, a preconditioned conjugate gradient method is used as the iterative solver. The details of the
implementation are described and the code, PDNET, is tested on a large set of standard minimum cost
network flow test problems. Computational results indicate that the implementation is competitive
with state-of-the-art network flow codes.
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1. Introduction. The minimum cost network flow problem is one of the most
studied problems in optimization, with a wide range of real-world applications [1].
In the past five decades, several computationally efficient algorithms for this prob-
lem have been developed. These include the network simplex method [8, 24, 29, 21],
the out-of-kilter method [15], the relaxation method [4], and the scaling push-relabel
method [19]. Furthermore, work in mathematical programming, stemming from the
paper by Karmarkar [27], has generated new algorithms for linear programming that
have been specialized to solve network flow problems. In this paper, we describe
an efficient implementation of a new interior point network flow method, the trun-
cated primal-infeasible dual-feasible algorithm, and show that this implementation is
competitive with previous network flow codes.

Given a directed graph G = (V, £), where V is a set of m vertices and £ a set of
n edges, let (4, 7) denote a directed edge from vertex ¢ to vertex j. The minimum cost
network flow problem can be formulated as the following linear program:

min E CijTij

(i,5)€€
subject to:
(1.1) Z Tk — Z Tp; =bj, JEV
(i,k)eE (k,5)€€

In this formulation, z;; denotes the flow on edge (i, j) and ¢;; is the cost of transporting
one unit of flow on edge (i, ). For each vertex j € V, b; denotes the flow produced
or consumed at vertex j. If b; > 0, vertex j is a source. If b; < 0, vertex j is a sink.
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Otherwise (b; = 0), vertex j is a transshipment vertex. For each edge (4, ) € &, l;;
and u;; denote the lower and upper bounds on flow on edge (3, j), respectively. Most
often, the problem data are assumed to be integer, and many network flow codes
adopt this assumption. However, there can exist applications where the data are real
numbers, and algorithms should ideally handle problems with real data.

Constraints of type (1.1) are referred to as the flow conservation equations, while
constraints of type (1.2) are called the flow capacity constraints. In matrix notation,
the above network flow problem can be formulated as a primal linear program of the
special form

(1.3) min {¢'z | Az = b; x + 5 =u; x,5 >0},

where A is the m x n vertex-edge incidence matriz of the graph G = (V,€), i.e. for
each edge (i,7) in &€ there is an associated column in matrix A with exactly two
nonzero entries: an entry 1 in row ¢ and an entry —1 in row j, b, x, and u are defined
as above, and s is an n-dimensional vector of upper bound slacks. The dual of (1.3)
can be written as:

(1.4) max {b'y—u'w| ATy —w+z=c¢; z,w >0},

where y is the m-dimensional vector of dual variables and w and z are n-dimensional
vectors of dual slacks.

If graph G is disconnected and has p connected components, there are exactly p
redundant flow conservation constraints, which are sometimes removed from the prob-
lem formulation. Without loss of generality, we rule out trivially infeasible problems
by assuming

> bj=0, k=1,....p,

JEVE

where V¥ is the set of vertices for the k-th component of G.
When it is further required that the flow z;; be integer, (1.2) is replaced with

lij S Tij S Ujj, Tij integer, (Z,j) € E.

Since the vertex-edge incidence matrix A is totally unimodular, when the data is inte-
ger all vertex solutions of the linear program are integer. In certain types of network
flow problems, such as the assignment problem, one may be only interested in solu-
tions having integer flows, since fractional flows do not have a logical interpretation.
An algorithm that finds a vertex solution, such as the simplex method, will necessarily
produce an integer optimal flow if the input data is integer. Interior point methods
do not necessarily produce integer solutions. However, interior point network flow
methods use termination procedures that produce vertex solutions.

In the remainder of this paper we assume, without loss of generality, that {;; =0
for all (i,j) € £ and that ¢ # 0. A simple change of variables can transform the
original problem into an equivalent one with [;; = 0 for all (i,5) € £. The case where
¢ =0 is a simple feasibility problem, and can be handled by solving a maximum flow
problem [1].

In the last two decades, many approaches have been developed for solving large-
scale network flow problems. A history of computational approaches up to 1977 is
summarized in [6]. In addition, several computational studies [17, 21, 29, 44] estab-
lished the fact that specialized network simplex algorithms were orders of magnitude



faster than the best linear programming codes of that time. A collection of FORTRAN
codes of efficient algorithms of that period can be found in [55]. Another impor-
tant class of network optimization algorithms and codes are the relaxation methods
described in [4]. More recent computational research is reported in [23] and [19].

In 1984, N. Karmarkar [27] introduced a new polynomial time algorithm for solv-
ing linear programming problems. This algorithm and many of its variants, known
as interior point methods, have been used to efficiently solve network flow problems.
These interior point methods share the same basic computational structure. They
begin from an initial interior solution, and at each iteration compute a direction on
which some potential function improves. The computation of this direction (the m-
vector §) involves solving a system of linear equations of the type

AOATS = 3,

where A is the m x n constraint matrix of the linear program, © is an n x n diagonal
scaling matrix, and (3 is an m-vector.

Early attempts to apply interior point methods to network flow problems can be
found in Aronson et al. [3], Karmarkar and Ramakrishnan [28], Rajan [48], Armacost
and Mehrotra [2], Yeh [61], Resende and Veiga [51], Resende and Veiga [53], and
Kaliski and Ye [26].

In 1991, the first year-long DIMACS algorithm implementation challenge [23] fo-
cused on network flow and matching algorithms. Three entries in the network flow
portion of the challenge involved interior point approaches. The paper by Joshi,
Goldstein, and Vaidya [25] described the implementation and testing of a primal
path-following interior point algorithm [59] with a preconditioned conjugate gradient
that uses the spanning tree preconditioner, first implemented in [53]. Ramakrish-
nan, Karmarkar, and Kamath [49], extended the code in [28] to handle assignment
problems, by adding modules for initial solution and optimal solution identification.
Resende and Veiga [52], described DLNET, an implementation of a dual affine scaling
algorithm using diagonal and spanning tree preconditioned conjugate gradient algo-
rithms. All network flow codes were tested on a set of benchmark problems collected
during the DIMACS challenge, establishing interior point methods as viable techniques
for large-scale linear network flow optimization.

A new indicator to identify the optimal face of network linear programs was
introduced in [50] and incorporated in DLNET. Using the new indicator, DLNET was
able to find complementary primal-dual integer optimal solutions for all of the DIMACS
test instances. The DLNET version used in [52] found solutions that were primal-
optimal and not dual-optimal in 4% of the instances. Using a new preconditioner
(incomplete QR decomposition), Portugal et al. [45] implemented preconditioned
conjugate gradient based dual affine scaling, primal-dual, and predictor corrector
interior point algorithms for solving linear transportation problems. On this class of
problems, the new preconditioner was shown to outperform both the diagonal and
spanning tree preconditioners. A survey of interior point network flow methods is
given in [54].

Though the truncated dual affine scaling algorithm is known to perform well in
practice on minimum cost network flow problems, there are reasons why one would
want to implement a truncated primal-dual interior point method. First, primal-dual
methods have been considered by many as the most efficient and robust of all interior
point methods for linear programming [33]. We would like to verify if this also holds
true for network flow problems. Second, to this date, no efficient implementation of
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a truncated primal-dual method has been described [34]. This paper describes such
an implementation. Finally, though the dual affine scaling algorithm converges to
a strictly complementary solution, there is no theoretical guarantee that its primal
iterates converge to a point in the center of the optimal face (the dual iterates do,
but the primal iterates can only be guaranteed to converge to a point in the relative
interior of the optimal face [11, 43, 58]). Most primal-dual algorithms enjoy this
guarantee [22]. This property has been used to develop the robust stopping criteria
for the network interior point method described in this paper.

Before concluding this introduction, we present some notation and outline the
remainder of the paper. We denote the i-th column of A by A;, the i-th row of A by
A ; and a submatrix of A formed by columns with indices in set S by Ag. Let x € £&".
We denote by X the n x n diagonal matrix having the elements of x in the diagonal.
The Euclidean or 2-norm is denoted by || - ||.

The paper is organized as follows: In Section 2 we present the truncated infeasible-
primal feasible-dual interior point method for linear programming. The implemen-
tation of this algorithm to handle network flow problems is described in Section 3.
The code, called PDNET, is compared with other efficient implementations of network
flow algorithms, namely DLNET [52], CPLEX NETOPT [7], and ¢S [19], and results are
reported in Section 4. Concluding remarks are made in Section 5.

2. Truncated primal-infeasible dual-feasible interior point algorithm.
Portugal et al. [45] described the first implementation of a primal-dual interior point
network algorithm. The algorithm they implemented, the feasible primal-dual (FPD)
algorithm, stemmed from the work of Monteiro and Adler [42], Kojima, Mizuno and
Yoshise [31], Megiddo [36], and Tanabe [56]. As its name indicates, the FPD algo-
rithm operates simultaneously on the primal (1.3) and dual problems (1.4). The FPD
algorithm requires feasible interior primal and dual starting solutions and iterates in
the interior of the feasible region of the primal-dual pair of problems. Let

Qy = {(z,y, 8,w,2) € R™EMEENIN L 450 550w > 0,2 > 0},
S+={(1‘7y,8,w,z)€Q+ : Am:b7m_~_s:u7 ATy_w+Z:C}
The FPD algorithm begins with a point (20,9°, s% w®, 2°) € Sy. At iteration k, the

Newton direction (Az*, Ay*, As* Aw*, AzF) associated with the system of equations
that defines the central path [36, 13]

Axr =b,

xr+ s =u,

(2.1) ATy—w+z=c,
Xz = pe,
Sw = pe,

z,s,w,z >0,

for > 0, is computed as the solution of the linear system of equations

AAzF =0,
AzF + AsF =0,
(2.2) ATAYR — AwF + AP =0,

ZFAzP + XFAZK = e — XK ZFe,
WFAs* + SFAwF = ppe — WFSFe.



A new iterate
k41, k+1 _k+1  k+1 _k+1
(2™ gy ST w2

is computed by moving from (z*,y*, s¥,w*, z*) in the direction

(AzF, Ay* Ask Awk AZF),

as follows
PRl — gk Jraprk,
bl = gk 4 apAsk,
(2.3) M = gk 4 ag Ay,

kL — b 4 oszwk,

b+l — ok 4 oszzk,

n & e o

where «;, and aq are stepsizes in the primal and dual spaces, respectively. It can be
easily verified that the sequence {(z*,y*,s* w* z¥)} generated by the FPD method
belongs to the set S, if stepsizes o, and a4 are appropriately chosen and the direction
components Az¥, Ay* AsF AwF and Az* are computed exactly.

In [45], the solution of the linear system (2.2) is obtained in two steps. First, the
Ay* component of the direction is computed as the solution of the system of normal

equations

(2.4) AQF AT AY* = — A% (up(XF)te — un(SF) e —c+ ATy,
where
(2.5) OF = (ZF(XF)~ + Wh(sF)TH

The remaining components of the direction are then recovered by

Azk = OF AT AYF + 0F (up(X*) e — i (S%) e — c + ATy,
(2.6) Ast = —Azk,
AR = 28 ¢ (XY Tle — ZR(XF) T AL,
Aw® = —wP + pp(S*) e — WF(SF) "1 AR
The practical implementation of the FPD algorithm, presented in [45], differs
slightly from the theoretical polynomial-time variant. The main differences concern

updating the parameter i, and selection of the stepsizes oy, and agq. In the practical
implementation,

(xk)'l'zk + (wk)TSk

2.7 =

(2.7) i = P on

with #; = 0.1 and

(2.8) ap = 0p max{a : ¥ +aAz® >0, s +alAs® >0},

aqg = o4 max{a : wh + aAw* >0, 2F + aAZF > 0},

where, as suggested in McShane, Monma and Shanno [35], ¢, = 04 = 0.9995.



The experimental work of McShane, Monma and Shanno [35] and Mehrotra [37]
has shown that the FPD algorithm performs well on certain types of linear programs.
However, since the FPD algorithm requires the iterates to be both primal and dual
feasible, the system of normal equations (2.4) demands a solution having a high de-
gree of accuracy, such as the one computed with direct factorization. In fact, when
an iterative method was used in [45], the convergence tolerance of the preconditioned
conjugate gradient (PCG) algorithm had to be tightened to such a degree that the al-
gorithm was not competitive with the network simplex code NETFLO [29]. In Portugal
et al. [45], some ideas were pointed out to overcome this drawback, leading us to the
truncated primal-infeasible dual-feasible algorithm, that we introduce next.

In truncated mathematical programming algorithms, the search direction is not
computed exactly. These methods have been shown to be computationally attractive
in many instances [9, 10]. Suppose that we want to apply an iterative procedure
to approximately solve the system of normal equations that arises in interior point
methods. It is natural to ask how approximately can the system be solved with-
out losing the global convergence of the interior point algorithm. Since, in the FPD
method, both primal and dual feasibility need to be maintained throughout the it-
erations, truncated methods cannot be applied. In this paper, we propose a method
that is primal infeasible and dual feasible, that we call the truncated primal-infeasible
dual-feasible (TPIDF) algorithm. This algorithm is presented next.

Let

S+:{($ay757w72)€Q+ . CC+$:U’ ATy*'LUﬁ’Z:C}

The TPIDF algorithm starts with any solution (z°,%°,s%,w?, 2%) € S,. At iteration
k, parameter py is computed by (2.7) with 0 < 81 < 1. The Newton direction
(Az*, Ayk, As® Aw*, AzF) is obtained as the solution of the linear system of equa-
tions

AAZF = b — Ak 4+ ¥,

Az* + Ash =0,

(2.9) ATAYR — AwF + AP =0,
ZFAxF + XFAZR = e — X*ZFe,
WFAs* + SFAwF = e — WFSFe,

where ¥ is such that
(2.10) 7% < BollAz* —b]l, 0 < By < b1

Finally, primal and dual steps are taken in the direction (Az*, Ay* Ask AwF AzF)
to compute new iterates according to (2.3).

The solution of the linear system (2.9) is again obtained in two steps. First,
we compute the Ay* component of the direction as the approzimate solution of the
system of normal equations

(2.11) AOFAT AyF = —AOF (1 (XF)te — pu(SF) Le — e+ ATyP) +
(b - Axk)a

where ©y, is given by (2.5). Then, the remaining components of the direction are
recovered by (2.6).
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In studying the global convergence for the TPIDF algorithm, we make use of the
theory of Kojima, Megiddo and Mizuno [30]. We can carry out the same analysis by
computing the exact solution of

(2.12) ABF AT AYF = — A (up (X™) e — up(SF) e —c+ ATyM) +
(b— Azk) 47k,

for some r* verifying (2.10). Let 3, v, and «, be such that 0 < 3 < 1,0 < v < 1,
and vy, > 0, and suppose that €. and €, represent tolerances required for the com-
plementarity gap and primal feasibility, respectively. Kojima, Megiddo, and Mizuno
[30] prove that if the sequence {(x*, s* y*, w*, 2¥)} generated by the FPD algorithm
is restricted to verify

(2.13) (z*, %,y Wk, 2F) e g,
(214) ($k+1)TZk+1 + (wk+1)Tsk+1 S B((Ik)TZk+ (’wk)TSk),
where

g = {(‘T?Say7w7'z) € S+ Tz > V(ITZ =+ ’wTS)/2TL (Z = 1a27 e .,TL)7
wis; > y(x'z4+w's)/2n (i=1,2,...,n),
xTz+w' s > ypl|Az —b| or |[Az —b| <e&p},

is a neighborhood of the central path (2.1), there is an iteration k such that (¥, s¥, y*,

wk, 2¥) is either an approximate solution satisfying

(2.15) (@) T2k + (sF)Twk <e.  and || Az* — b < e,
or verifies
(2.16) 1", 28]l > w*,

for a large w*.

Since ||r*|| is bounded from above, the iterates of the TPIDF algorithm can be
restricted in the same manner, and this result also holds. Conditions (2.13-2.14) hold
in each iteration if o, and ay are chosen in the same way as in [30]. Either the TIPFD
algorithm finds a solution satisfying (2.15) or termination criterion (2.16) occurs. In
the former case, an approximate optimal solution of both the primal and dual linear
programs is reached. In the latter case, Kojima, Megiddo and Mizuno [30] show that
a minor variation of the FPD algorithm guarantees that the problem is infeasible. To
apply this result for the TPIDF algorithm, we impose the additional assumption that
the iterates are bounded, precluding condition (2.16). This assumption, commonly
used in the analysis of nonlinear programming algorithms, is reasonable when solving
feasible linear programs, especially in the case of network flows, where detection of
infeasibility is straightforward.

3. Implementation. In this section, we describe PDNET, an implementation of
the truncated primal-infeasible dual-feasible algorithm for solving network flow prob-
lems. The Newton direction is computed using a preconditioned conjugate gradient
method [40]. Deviating from the theoretical algorithm, the starting solution, as well
as the iterates are not restricted to verifying (2.13-2.14). The practical implementa-
tion of PDNET uses long feasible stepsizes «, and aq4 given in (2.8) rather than the



stepsizes described in Kojima, Megiddo and Mizuno [30]. Furthermore, to stop the
preconditioned conjugate gradient algorithm, we use a stopping criterion based on
(2.10) for initial iterations of the TPIDF algorithm. To ensure practical performance,
on the later iterations of the TPIDF algorithm, we use the so-called cosine rule [53]
which does not necessarily satisfy (2.10).

PDNET is written almost entirely in Fortran. C code is used only to read input
files in the DIMACS network flow format [23] and for preparing the restricted and
augmented networks in the maximum flow stopping criterion of Resende and Veiga
[52], described in Subsection 3.2. That C code was borrowed from DLNET.

For ease of discussion, we assume, without loss of generality, that the graph G is
connected. However, disconnected graphs are handled by PDNET.

3.1. Computing the Newton direction. Perhaps the most fundamental re-
quirement of an interior point implementation for network flows is an efficient im-
plementation of an iterative method to compute the so-called interior point search
direction at each iteration. Direct methods have been shown to perform poorly on
even small instances of these problems [51]. In PDNET, the preconditioned conjugate
gradient algorithm is used to solve the linear system

(3.1) MY (AFAT)Ay* = M~1b,

where M is a positive definite matrix and ©* is given by (2.5), and
b=—A0%(ur(X*) e — up(S*)te —c+ ATyF) 4 (b — Azh).

The aim is to make the preconditioned matrix

(3.2) M~1(ABFAT)

less ill-conditioned than AG* AT, and improve the efficiency of the conjugate gradient
algorithm by reducing the number of iterations it takes to find a satisfiable direction.
In the previous section, we set conditions on the error in the computation of the
direction . Later, we discuss some implementation details.

Pseudo-code for the preconditioned conjugate gradient algorithm implemented in
PDNET is presented in Figure 3.1. With the exception of the starting point, this is the
algorithm implemented in [52, 45]. The matrix-vector multiplications in line 7 are of
the form AGFAT p;, and can be carried out without forming AG*AT explicitly. They
can be computed with n additions, 2n subtractions, and n multiplications. PDNET
uses as its initial direction Ayg the direction Ay produced in the previous call to the
conjugate gradient algorithm, i.e. during the previous interior point iteration. This
is done with the expectation that ©F and b change little between consecutive interior
point iterations, and consequently the direction produced in an iteration should be
close to the one produced in the previous iteration. The first time pcg is called,
Ayo = (O,...,O).

The preconditioned residual is computed in lines 3 and 11 when the system of
linear equations

(3.3) Mzit1 =i,

is solved. A preconditioner must be such that (3.3) is solved efficiently, while at the
same time (3.2) is well conditioned, resulting in few conjugate gradient iterations.

PDNET uses primal-dual variants of the diagonal and spanning tree preconditioners
described in [53, 52].



procedure pcg(A, O% b, ey, Ay)
1 Ay, = Ay;

2 roi=b— AOFAT Ay,;

3 20 = MﬁlTo;

4 po:= zo;

5 1:=0;

6  do stopping criterion not satisfied —
7 qi == AOFAT p;;

8 o =z i /pf @i

9 Ay o= Ay; + aipi;
10 Titl = T5 — QG5

11 Zi+1 = M_lTi+1;

12 ﬁi = 2;17“1‘+1/Z;r7“i;
13 Pit1 = Zit1 + Bipi;

14 t=1+1

15  od;

16 Ay := Ay,

end pcg;

F1a. 3.1. The preconditioned conjugate gradient algorithm [40]

The diagonal preconditioner, M = diag(AO*AT), can be constructed in O(n)
operations, and makes the computation of the preconditioned residual of the conjugate
gradient possible with O(m) divisions. This preconditioner has been shown to be
effective during the initial interior point iterations [51, 53, 61, 52, 45].

The spanning tree preconditioner was introduced in [53] and used in several codes,
e.g. [26, 52, 25, 45]. In that preconditioner, one identifies a maximal spanning tree of
the graph G, using as weights the diagonal elements of the current scaling matrix,

w = OFe,

where e is a unit n-vector. Kruskal’s algorithm [32], implemented with the data
structures in [57] has been applied to compute the maximal spanning tree, using
edges ordered approximately with a bucket sort [25, 52], or exactly using a hybrid
QuickSort [26]. In PDNET, an exact maximal spanning tree is computed with the
Fibonacci heap variant of Prim’s algorithm [47], as described in [1]. This is the code
used in [45]. At the k-th interior point iteration, let 7% = {t1,...,t,} be the indices
of the edges of the maximal spanning tree. The spanning tree preconditioner is

M = Ar©%, AL,
where
k . k k
O7. = diag(©y,,..., 0% ).
For simplicity of notation, we include in A7« the linear dependent rows corresponding
to the redundant flow conservation constraints. At each conjugate gradient iteration,

the preconditioned residual system

Mzi+1 = Ti+1
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is solved with the variables corresponding to redundant constraints set to zero. Since
A can be ordered into a block diagonal form with triangular diagonal blocks, then
the preconditioned residuals can be computed in O(m) operations.

In PDNET, a heuristic similar to the one implemented in DLNET is used to select the
preconditioner. The initial selection is the diagonal preconditioner, since it tends to
outperform the other preconditioners during the initial interior point iterations. The
number of conjugate gradients taken at each interior point iteration is monitored. If
the number of conjugate gradient iterations exceeds y/m/4, the current computation
of the direction is discarded, and a new conjugate gradient computation is done with
the spanning tree preconditioner. The diagonal preconditioner is not used again.
The diagonal preconditioner is limited to at most 30 interior point iterations. If at
iteration 30 the diagonal preconditioner is still in effect, at iteration 31 the spanning
tree preconditioner is triggered. Also, as a safeguard, a hard limit of 500 conjugate
gradient iterations is imposed.

In Section 2, stopping criterion (2.10) for the conjugate gradient method, based
on the primal feasibility residual, was described. In PDNET, that rule, along with a
stopping criterion implemented in [52] are implemented. The first stopping criterion
monitors the residual of the system of normal equations. Let r; be the residual at the
i-th conjugate gradient iteration and z* be the primal interior point solution at the
k-th interior point iteration. If

Ilrill < Boll Az* — o],

the first stopping criterion is triggered. In PDNET, By = 0.0999, since (2.10) must
be satisfied and 7 = 0.1. This criterion is always used in the first iterations of the
interior point algorithm. When ||Az* — b|| becomes small, then it is advisable to
terminate the conjugate gradient iterations before this stopping rule is satisfied, since
it may be to too conservative. In this respect, PDNET also uses the so-called cosine
stopping rule described in [28, 52]. The implementation of the cosine rule in PDNET
is described next.

To determine when the approximate direction Ay, produced by the conjugate
gradient algorithm is satisfactory, one can compute the angle 6 between

(AG*AT)Ay, and b

and stop when |1 — cos | < € ., where € _ is the tolerance at interior point iteration
k. PDNET initially uses €Y, = 1072 and, as in Joshi, Goldstein, and Vaidya [25] (for a
different stopping criterion), tightens the tolerance after each interior point iteration
k, as follows:

k+1 _ Kk
cos Ecos

X AeCOS)
where, in PDNET, A¢.,s = 0.95. The exact computation of

b7 (A0 AT)Ay;|
[161] - [I(AS*AT) Ay, |

cosf =

has the complexity of one conjugate gradient iteration and should not be carried
out every conjugate gradient iteration. One way to proceed is to compute the cosine
every l.,s conjugate gradient iterations, as was done in [52]. A more efficient procedure
follows from the observation, made in [45], that (A©FAT)Ay, is approximately equal
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to b—r;, where r; is the estimate of the residual at the i-th conjugate gradient iteration.
Using this approximation,

JBT (l;j i)
16l - 116 = 7i)
Since, on network linear programs, the preconditioned conjugate gradient method

finds good directions in few iterations, this estimate is quite accurate in practice.
Since it is inexpensive, in PDNET it is computed at each conjugate gradient iteration.

cosf ~

3.2. Stopping criteria for interior point method. In [52], two stopping
criteria for the interior point method were used. The first, called the primal-basic
(PB) stopping rule, uses the spanning tree computed for the tree preconditioner. If
the network flow problem has a unique solution, the edges of the tree converge to the
optimal basic sequence of the problem. Let 7 be the index set of the edges of the
tree, and define

Ot ={ie{1,2,....,n}\T : z;/zi > si/w;}

to the index set of edges that are fixed to their upper bounds. If the solution z% of
the linear system

Aray =b— > uid,

ieQt

is such that 0 < 2% < u, then 2% is a feasible basic solution. Furthermore, if the data
is integer, then z% has only integer components. Optimality of z% can be verified by
computing a lower bound on the optimal objective function value. This can be done
with a strategy introduced independently in [52] and [39, 60]. Denote by =} the i-th
component of z%-, and let

F=4eT:0<zx <u}

A tentative optimal dual solution y* (having a possibly better objective value than
the current dual interior point solution 3*) can be found by orthogonally projecting y*
onto the supporting affine space of the dual face complementary to z%. In an attempt
to preserve dual feasibility, we compute y* as the solution of the least squares problem
min {ly" — " : ARy = cx}.
yrER™

Resende and Veiga [52] describe a O(m) operation procedure to compute this projec-
tion. A feasible dual solution (y*,z*,w*) is built by adjusting the dual slacks. Let
0 = ¢; — ATZy* Then,

0 otherwise i~ 0; otherwise.

Ifc'a* —b y* +u'w* =0, then (z*,s*) and (y*,w*, z*) are optimal primal and
dual solutions, respectively. If the data is integer and 0 < ¢'a* —bTy* +u'w* < 1,
(x*,s*) is a primal optimal (integer) solution.

To apply the second stopping procedure of [52], called the maximum flow (MF)
stopping criterion, an indicator function to partition the edge set into active and
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inactive (fixed at upper or lower bounds) is needed. In PDNET, the indicator used
is the so-called primal-dual indicator, studied by Gay [16] and El-Bakry, Tapia, and
Zhang [12]. Let & be a small tolerance. Edge i is classified as inactive at its lower
bound if

Z; S;
< and L >

Zi Wi

Edge i is classified as inactive at its upper bound if

Tis et and 2 <.

Zi Wy
The remaining edges are set active. In PDNET, ¢ is initially set to 10~3 and this
tolerance is tightened each time the MF test is triggered according to £7¢% = £°ld x A€,
where, in PDNET, A¢ = 0.95.

We select a tentative optimal dual face F as a maximum weighted spanning forest
limited to the active edges as determined by the indicator. The edge weights used in
PDNET are those of the scaling matrix ©F.

As in the PB indicator, we project the current dual interior solution y* orthogo-
nally onto F. Once the projected dual solution y* is at hand, we attempt to find a
feasible flow z* complementary to y*. A refined tentative optimal face is selected by
redefining the set of active edges as

.7}:{1'6{1,2,...,71} : |CZ-7AIy*| < €}y

where €, is a small tolerance (e, = 10~® in PDNET). The method attempts to build a
primal feasible solution, z*, complementary to the tentative dual optimal solution by
setting the inactive edges to lower or upper bounds, i.e., for i € {1,2,...,n}\ F,

3

ﬁ_{ 0 ggeﬂ;:{jeﬂ,z,...,n}\f : cij;y:>O}
up ifieQF={je{l,2,....n}\F : ¢; — Ay* <0}

By considering only the active edges, a restricted network is built. Flow on this
network must satisfy

(3.4) Aszz=b=b— Z uiAg,
1€Qt
0<z; <y, ’L'Ej:-.

Clearly, from the flow balance constraints (3.4), if a feasible flow 2% for the restricted
network exists, it defines, along with x¢,, and z¢,_, a primal feasible solution comple-
mentary to y*. A feasible flow for the restricted network can be determined by solving

a maximum flow problem on the augmented network defined by the underlying graph
G=(V,E), where

V={olU{r}uV and E=XUIUPF.
In addition, for each edge (i, ) € F there is an associated capacity u;;. Let

Vt={ieV:b>0y and V- ={icV : b <0}
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The additional edges are such that ¥ = {(0,4) : 4 € V*}, with associated capacity
b; for each edge (0,i), and I = {(i,7) : i € V~}, with associated capacity —b; for
each edge (i,7). It can be shown that if M, , is the maximum flow value from o
to m, and Z is a maximal flow on the augmented network, then M, , = Zi€V+ b; if
and only if Tz is a feasible flow for the restricted network [52]. Therefore, finding
a feasible flow for the restricted network involves the solution of a maximum flow
problem. Furthermore, if the data is integer, this feasible flow is integer, as we can
select a maximum flow algorithm that provides an integer solution.

Since this stopping criterion involves the solution of a maximum flow problem, it
should not be triggered until the interior point algorithm is near the optimal solution.
The criterion is triggered at iteration k, when 1, < €, occurs for first time. The choice
€, = 1 used in PDNET is appropriate for the set of test problems considered here.
In a more general purpose implementation, a scale invariant criterion is desirable.
All subsequent iterations test this stopping rule. In PDNET, the implementation of
Goldfarb and Grigoriadis [20] of Dinic’s algorithm is used to solve the maximum flow
problems.

3.3. Other implementation issues. To conclude this section, we make some
remarks on other important implementation issues of the primal-infeasible, dual-
feasible algorithm, namely the starting solution, the adjustment of parameter py,
and the primal and dual stepsizes.

Recall that the algorithm starts with any solution {z°, s% 3% w®, 29} satisfying

(3.5) >0, s">0 v >0, 2°>0,
(3.6) 20+ 5% =,

and

(3.7) ATy — w4 20 = ¢,

but does not have to satisfy Az = b. Additionally, it is desirable that the initial
point also satisfy the remaining equations that define the central path (2.1), i.e.

(3.8) X020 = e and  S%w° = pe,

for p > 0.
For (i,7) € &, let

@y = Vijlij,
b = (1= i) uyj,

2y =/ (vij wig),

w?j = p/((1 = viz) uij),

be the starting solution, where 0 < v;; < 1 and p > 0. It is easy to verify that this
starting solution satisfies (3.5-3.6) as well as (3.8).
Condition (3.7) is satisfied if, for (i,7) € &, v;; is chosen as

1 w /1 B2 i s
2 + 191]11.1] 4 + (191]11.1‘]) 1f 197/.7 > 0’

Vi = 1 2] 1 K 2 i
i 5T one; Ty/1 T (ﬂijuij) if ¥;; <0,

S

3 if 9;; =0,
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12 250 MHZ IP19 Processors

CPU: MIPS R4400 Processor Chip Revision: 6.0

FPU: MIPS R4010 Floating Point Chip Revision: 0.0
Data cache size: 16 Kbytes

Instruction cache size: 16 Kbytes

Secondary unified instruction/data cache size: 1 Mbyte
Main memory size: 2560 Mbytes, 2-way interleaved

Fi1G. 4.1. Hardware configuration (partial output of system command hinv)

where, for some initial guess y° of the dual vector y,
191']' = —y? + y? + Cij-
In PDNET, we set the initial guess

0_ max{|c;;| : (4,5) € E}
max{|b;| : i € V}

and parameter
pn=0.2 max{\ ﬁi‘juij | : (’L,j) € E}

This choice has worked well in practice.

The primal-dual parameter has an initial value po = (31 u, where in PDNET
B1 = 0.1. Subsequently, for iterations k > 1, uy is computed as in (2.7).

The stepsize parameters g, and g4 are both set to 0.995 throughout the iterations,
slightly more conservative than as suggested by [35].

4. Experimental results. We next show some performance results for PDNET.
We use as the set of test problems in our computational experiment, instances from
several classes of pure minimum cost network flow problems, taken from the First
DIMACS Implementation Challenge [23], included in the computational study of Re-
sende and Veiga [52]. The problem classes considered in this study are Grid-Density-8,
Grid-Density-16, Grid-Long, Grid-Wide, Netgen-Hi, Netgen-Lo, and Mesh-1. A de-
scription of the characteristics of these problems is given in [52]. The generators
can be retrieved from the ftp site dimacs.rutgers.edu. From each problem class,
instances of increasing dimension are considered.

PDNET is compared with three efficient network flow implementations: the dual
affine scaling interior point network flow code DLNET [52], the network simplex code
CPLEX NETOPT [7], and ¢s [19], an implementation of the push-relabel algorithm. In
[52], DLNET was compared with the network simplex code NETFLO [29] and RELAXT-
3 [5], an implementation of the relaxation algorithm. The performance of PDNET
relative to those two codes can be inferred from the comparison with DLNET.

The parameter settings for PDNET have been described in Section 3. As is the case
with any interior point code, PDNET is sensitive to parameter settings. For example,
the algorithm can be slowed down by decreasing the step size parameters o), and aq
or by decreasing the initial cosine parameter €2, .. Though parameter tuning required
a considerable amount of experimentation, it is possible that further tuning may
produce even better performance. DLNET version 2.2a was used in the experiments.
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The stepsize parameter ¥ is set to 0.99 for the first 10 dual affine scaling iterations
and at each iteration, the relative dual objective function improvement
bTyf —uT 2y — (bTyh—1 — uT 21
[bTy* — ul 2|
is computed. After iteration 10, the stepsize is determined as follows:
0.95, if ZF > 0.0001,

vF=1¢ 0.66, if 0.00001 < Z* < 0.0001,
0.50, if ¥ < 0.00001.

Ik:(

In practice, DLNET never terminated with a value Z% > 0.00001. The indicator func-
tion Indicator 3 of [50] was used with parameters kg = 0.7 and x1 = 0.9. DLNET used
diagonal and spanning tree preconditioners and the switching heuristic described in
[52]. The PB stopping criterion was checked every iteration on which the spanning tree
was computed. The MF criterion was not ever checked during the first 5 iterations.
Once TF < 10710 the MF was checked every 10 iterations, and when ZF < 10712 it
was checked every 5 iterations. The conjugate gradient cosine parameter €.,s was set
fixed to 10~2 throughout all iterations and the exact cosine rule was checked every 5
conjugate gradient iterations.

The versions of CPLEX NETOPT and CS were 4.0.7 and 1.2, respectively. Both
codes were run using default parameter settings.

The experiments were performed on an sGI Challenge computer with the configu-
ration summarized in Figure 4.1. Though this hardware is fast for integer arithmetic,
it was not designed for floating point computations. We expect both PDNET and DL-
NET to benefit from systems with improved floating point performance comparatively
to integer arithmetic. For example, the next generation processor in the MIPS series,
the R10000, performs almost exactly as the R4400 on integer codes. However, floating
point performance benchmarks are 3 to 4 times as fast.

For every class of problems we present a figure with CPU time ratios between
DLNET and PDNET, CPLEX and PDNET, and CS and PDNET, and three tables. The
first two tables provide similar information about PDNET and DLNET: dimensions of
problem solved, number of interior point iterations, total CPU time of the interior
point algorithm, total number of conjugate gradient iterations, number of times MF
stopping criterion was activated, total CPU time spent in MF stopping criterion rou-
tines, and stopping criterion verifying optimality. The third table lists statistics for
CPLEX (number of iterations and CPU time) and ¢S (CPU time).

Figure 4.2 and Tables 4.1-4.3 summarize the runs for problem class Grid-Density-
8. For those runs, we make the following remarks:

e Nine instances, having up to 65,536 vertices, were solved by all four codes.
We also conducted an experiment comparing PDNET and CS on an instance
having 131,072 vertices.

e PDNET required more interior point iterations than DLNET except for the in-
stance with 65,536 vertices. However, the total number of conjugate gradient
iterations in PDNET was always smaller than in DLNET.

e The running time taken by PDNET grew slower than that taken by DLNET and
PDNET was over 4.75 times faster than DLNET on the instance having 65,636
vertices.

e On the instance having 65,636 vertices, the total number of conjugate gradient
iterations required by PDNET was about 2.5 times smaller than that required
by DLNET.
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Fic. 4.2. CPU time ratios for problem class Grid-Density-8

TABLE 4.1
PDNET statistics: test problem class Grid-Density-8

network size int point alg CG max flow stopping

4 |€] itrs time itrs  calls time  criterion
256 2048 26 0.50 148 3 0.03 MF
512 4096 33 1.38 165 4 0.09 PB
1024 8192 32 3.10 148 4 0.23 MF
2048 16384 36 9.21 221 4 0.53 MF
4096 32768 43 26.16 278 5 1.43 MF
8192 65536 41 49.39 259 4 3.84 MF
16384 131072 44 114.57 297 5 12.34 MF
32768 262144 80 910.41 2075 19 74.08 MF
65536 524288 51 780.06 456 7 161.37 MF
131072 1048576 56 1969.65 566 6 455.24 MF

e With respect to CPLEX and Cs, the CPU time taken by PDNET grew at a slower
rate.

Figure 4.3 and Tables 4.4-4.6 summarize the runs for problem class Grid-Density-
16. For those runs, we make the following remarks:

e Eight instances, having up to 32,768 vertices, were solved by all four codes.
Experiments comparing PDNET with CS were also conducted on instances
having 65,536, 131,072 and 263,144 vertices. The density of these networks
is twice that of the networks of Grid-Density-8.

e With the exception of three instances, PDNET required less interior point
iterations than DLNET. The total number of conjugate gradient iterations
was also smaller in PDNET except for one of the instances.

e The running time for PDNET grew slower than for CPLEX and cs, but grew
at about the same rate as for DLNET.

e On the instance having 32,768 vertices, the total number of conjugate gradient
iterations in PDNET was about 1.5 times smaller than in DLNET.



TABLE 4.2

DLNET statistics: test problem class Grid-Density-8

network size int point alg cG max flow stopping

% |E]  itrs time itrs  calls time  criterion
256 2048 21 0.66 181 0 0.00 PB
512 4096 26 1.62 192 0 0.00 PB
1024 8192 29 3.78 234 0 0.00 PB
2048 16384 33 10.55 316 0 0.00 PB
4096 32768 32 23.69 376 0 0.00 PB
8192 65536 32 63.82 512 0 0.00 PB
16384 131072 43 245.42 615 0 0.00 PB
65536 524288 65 3708.66 1114 1 149.57 MF

TABLE 4.3

CPLEX and CS statistics: test problem class Grid-Density-8

network size CPLEX NETOPT v4.0.7 cs

V] |€] itrs time time
256 2048 4388 0.20 0.28
512 4096 13382 0.80 0.72
1024 8192 34139 4.41 1.92
2048 16384 70121 15.91 4.58
4096 32768 184044 70.93 13.73
8192 65536 391823 411.58 41.32
16384 131072 877322 2366.63 142.80
32768 262144 3627665 6080.27 561.43
65536 524288 4241328 41675.75  1321.80
131072 1048576 DNR DNR  4616.60

TABLE 4.4

PDNET statistics: test problem class Grid-Density-16

network size int point alg CcaG max flow stopping

4 |E]  itrs time itrs  calls time  criterion
256 4096 42 1.46 255 4 0.05 MF
512 8192 49 4.18 329 4 0.14 MF
1024 16384 57 11.27 408 5 0.39 MF
2048 32768 64 29.11 508 7 1.41 MF
4096 65536 67 65.26 453 6 2.45 MF
8192 131072 80 166.49 703 8 7.16 MF
16384 262144 97 423.58 890 7 16.05 MF
32768 524288 94 1069.76 858 8 42.68 MF
65536 1048576 113 2610.31 1111 11 255.44 MF
131072 2097152 106 5031.01 1041 9 479.28 MF
262144 4194304 114 16256.70 1735 14  1610.52 MF

TABLE 4.5

DLNET statistics: test problem class Grid-Density-16

network size int point alg caG max flow stopping

X |E]  itrs time itrs  calls  time criterion
256 4096 32 1.84 251 0 0.00 PB
512 8192 60 7.20 426 1 0.03 MF
1024 16384 65 18.01 515 1 0.09 MF
2048 32768 79 44.74 661 1 0.26 MF
4096 65536 74 98.57 669 1 0.85 MF
8192 131072 99 476.72 1052 1 2.38 MF
16384 262144 94 1034.19 1092 1 10.21 MF
32768 524288 94  2305.82 1223 1 34.28 MF
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TABLE 4.6
CPLEX and CS statistics: test problem class Grid-Density-16

network size CPLEX NETOPT v4.0.7 cs

4 €] itrs time time
256 4096 9244 0.43 0.57
512 8192 24725 1.52 1.40
1024 16384 70440 12.16 3.92
2048 32768 148281 37.07 9.85
4096 65536 380078 182.89 31.97
8192 131072 884825 979.60 95.13
16384 262144 2104805 4395.04 281.17
32768 524288 5399631 27203.37 1044.57
65536 1048576 DNR DNR 2325.98
131072 2097152 DNR DNR 6177.60
262144 4194304 DNR DNR  21110.75

TABLE 4.7

PDNET statistics: test problem class Grid-Long

network size int point alg cG max flow stopping
N4 €] itrs time itrs  calls  time criterion
514 1008 23 0.40 155 3 0.05 PB
1026 2000 29 1.12 254 2 0.09 PB
2050 3984 36 4.00 445 3 0.25 MF
4098 7952 45 12.47 731 3 0.54 MF
8194 15888 56 38.60 1075 7 2.63 MF
16386 31760 68 108.15 1577 6 7.55 MF
32770 63504 72 297.51 2376 8 13.73 MF
65538 126992 98 1045.05 3826 18  58.65 MF
131074 253968 102  2424.17 4390 9 7775 MF
TABLE 4.8
DLNET statistics: test problem class Grid-Long
network size int point alg CG max flow stopping
4 €] itrs time itrs  calls time criterion
514 1008 19 0.60 236 0 0.00 PB
1026 2000 29 1.50 402 0 0.00 PB
2050 3984 38 4.73 639 0 0.00 PB
4098 7952 73 17.11 1112 1 0.19 MF
8194 15888 56 42.27 1507 0 0.00 PB
16386 31760 84 166.73 2517 0 0.00 PB
32770 63504 106 470.00 3061 0 0.00 PB
65538 126992 169  2882.79 4228 0 0.00 PB
TABLE 4.9

CPLEX and CS statistics: test problem class Grid-Long

network size CPLEX NETOPT v4.0.7 cs
V] €] itrs time  time
514 1008 1152 0.09 0.15
1026 2000 2210 0.21 0.32
2050 3984 4029 0.55 0.62
4098 7952 7775 2.00 1.62
8194 15888 14350 7.69 4.22
16386 31760 29728 28.90 9.02
32770 63504 46894 181.88 24.48
65538 126992 91309 908.00 74.38
131074 253968 175833 4188.19  224.12
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Fic. 4.4. CPU time ratios for problem class Grid-Long

Figure 4.4 and Tables 4.7-4.9 summarize the runs for problem class Grid-Long.
For those runs, we make the following remarks:

e FEight instances, having up to 65,538 vertices and 126,992 edges, were solved
by all four codes. An experiment comparing PDNET with ¢S and CPLEX
NETOPT was conducted on an instance having 131,074 vertices.

e In general, PDNET required less interior point iterations than DLNET. The
total number of conjugate gradient iterations in PDNET was smaller by less
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TABLE 4.10
PDNET statistics: test problem class Grid- Wide
network size int point alg CG max flow stopping
4 |E]  itrs time itrs calls  time criterion

514 1040 23 0.39 156 2 0.02 PB

1026 2096 26 1.02 155 2 0.10 MF

2050 4208 41 3.20 238 2 0.17 PB

4098 8432 65 14.76 396 2 0.31 PB

8194 16880 64 34.11 349 3 1.07 PB

16386 33776 86 81.58 407 3 2.18 PB

32770 67568 166 369.88 600 2 3.48 PB

65538 135152 123 629.44 538 6 43.38 MF

131074 270320 450 5261.84 1476 0 0.00 PB

than 60% for all instances.

e The running time taken by PDNET grew slower than those of CPLEX and
DLNET, and faster than that of Cs.

e On the instance having 65,636 vertices, the total number of conjugate gradient
iterations in PDNET was about 10% smaller than in DLNET.

Figure 4.5 and Tables 4.10—4.12 summarize the runs for problem class Grid-Wide.
For those runs, we make the following remarks:

e Nine instances, having up to 131,074 vertices and 270,320 edges were solved
by all four codes.

e DLNET required slightly more interior point and conjugate gradient iterations
than PDNET on the smallest instances. However, on the largest instances, the
number of interior point and conjugate gradient iterations was significantly
less in DLNET.

e The running time for PDNET grew faster than for the other three codes.

e On the largest instance, the total number of conjugate gradient iterations in
PDNET was 3.5 times greater than in DLNET.



TABLE 4.11
DLNET statistics: test problem class Grid- Wide

network size int point alg CcG max flow stopping
4 €]  itrs time itrs calls time criterion
514 1040 24 0.56 325 0 0.00 PB
1026 2096 30 1.45 391 0 0.00 PB
2050 4208 40 4.10 555 0 0.00 PB
4098 8432 38 8.14 536 0 0.00 PB
8194 16880 43 19.53 581 0 0.00 PB
16386 33776 49 45.10 458 0 0.00 PB
32770 67568 55 107.26 397 0 0.00 PB
65538 135152 71 402.51 388 0 0.00 PB
131074 270320 82 1070.37 411 0 0.00 PB
TABLE 4.12
CPLEX and CS statistics: test problem class Grid-Wide
network size CPLEX NETOPT v4.0.7 cs
4 €] itrs time  time
514 1040 1106 0.07 0.15
1026 2096 2448 0.17 0.40
2050 4208 5451 0.36 0.88
4098 8432 10684 0.82 2.35
8194 16880 18867 2.05 5.60
16386 33776 37103 4.28 13.10
32770 67568 75470 13.10 43.87
65538 135152 140813 40.87  124.70
131074 270320 280883 91.41 322.23
TABLE 4.13
PDNET statistics: test problem class Netgen-Hi
network size int point alg CcG max flow stopping
V] |E]  itrs time itrs  calls  time criterion
256 2048 31 0.53 150 4 0.02 PB
512 4101 33 1.19 156 3 0.05 MF
1024 8214 41 3.38 179 6 0.19 PB
2048 16414 38 8.22 225 6 0.42 PB
4096 32858 44 24.50 303 10 1.97 PB
8192 65734 52 71.33 462 8 3.47 MF
16384 131409 55 166.50 510 11 13.47 PB
32768 262903 61 470.60 785 9 26.48 MF
65536 525803 68 1557.67 1319 12 81.92 MF
TABLE 4.14
DLNET statistics: test problem class Netgen-Hi
network size int point alg CcG max flow stopping
V] |E]  itrs time itrs  calls  time criterion
256 2048 29 0.91 255 0 0.00 PB
512 4101 34 2.03 307 0 0.00 PB
1024 8214 41 6.10 537 0 0.00 PB
2048 16414 49 17.52 596 0 0.00 PB
4096 32858 55 45.51 851 0 0.00 PB
8192 65734 62 106.73 731 0 0.00 PB
16384 131409 74 488.95 2012 0 0.00 PB
32768 262903 92 1746.94 3023 1 18.61 MF
65536 525803 107 8697.92 5153 1 95.01 MF
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Fic. 4.6. CPU time ratios for problem class Netgen-Hi

TABLE 4.15
CPLEX and CS statistics: test problem class Netgen-Hi

network size CPLEX NETOPT v4.0.7 cs
V] |€] itrs time  time
256 2048 1033 0.11 0.13
512 4101 2855 0.25 0.27
1024 8214 6679 0.65 0.75
2048 16414 11123 2.03 1.70
4096 32858 29138 6.73 4.38
8192 65734 75640 34.13 14.87
16384 131409 137023 129.00 51.32
32768 262903 374410 758.82  144.10
65536 525803 1077281 5264.24  407.68

Figure 4.6 and Tables 4.13—4.15 summarize the runs for problem class Netgen-Hi.
For those runs, we make the following remarks:

e Nine instances, having up to 65,538 vertices and 525,803 edges were solved
by all four codes.

e With the exception of two small instances, PDNET took fewer iterations than
DLNET. DLNET took more conjugate gradient iterations than PDNET in all
the instances.

e The growth rate of CPU time for PDNET was smaller than for DLNET and
CPLEX and was about the same for Cs.

e On the largest instance, the total number of conjugate gradient iterations in
PDNET was 4 times smaller than in DLNET.

Figure 4.7 and Tables 4.16—4.18 summarize the runs for problem class Netgen-Lo.
For those runs, we make the following remarks:

e Nine instances, having up to 65,538 vertices and 525,803 edges were solved
by all four codes.

e PDNET required fewer interior point iterations than DLNET except for two
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Fic. 4.7. CPU time ratios for problem class Netgen-Lo
TABLE 4.16
PDNET statistics: test problem class Netgen-Lo
network size int point alg cG max flow stopping
V] |E]  itrs time itrs  calls time  criterion

256 2048 21 0.50 246 3 0.03 PB

512 4101 26 1.35 302 6 0.10 PB

1024 8214 32 4.08 352 7 0.29 PB

2048 16414 41 13.02 484 10 0.98 PB

4096 32858 44 33.27 607 9 1.96 PB

8192 65734 47 84.72 699 9 4.45 PB

16384 131409 55 234.19 963 10 17.19 MF
32768 262903 60 681.91 1257 12 48.52 MF
65536 525803 60 1766.04 1469 11 147.89 MF

instances. With the exception of the smallest instance, The total number of
conjugate gradient iterations was also smaller in PDNET.

e The growth rate of CPU time for PDNET was smaller than for CPLEX and
slightly smaller than for ¢s. PDNET had a growth rate of CPU time similar to
DLNET.

e On the largest instance, the total number of conjugate gradient iterations in
PDNET was about 10% smaller than in DLNET.

Figure 4.8 and Tables 4.19-4.21 summarize the runs for problem class Mesh-1.
For those runs, we make the following remarks:

e Five instances, having up to 65,538 vertices and 131,072 edges were solved by
all four codes, with an additional instance having 262,144 vertices solved by
PDNET, CPLEX and CS.

e PDNET required fewer interior point iterations than DLNET, except for the
smallest instance. The total number of conjugate gradient iterations was
always smaller in PDNET.

e The growth rate of CPU time for PDNET was smaller than for CPLEX and
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TABLE 4.17
DLNET statistics: test problem class Netgen-Lo

network size int point alg CG max flow stopping

4 |E]  itrs time itrs  calls time  criterion
256 2048 19 0.65 233 0 0.00 PB
512 4101 48 2.94 533 0 0.00 PB
1024 8214 36 5.69 532 0 0.00 PB
2048 16414 52 19.78 803 0 0.00 PB
4096 32858 42 35.56 644 0 0.00 PB
8192 65734 68 132.45 1004 1 1.11 MF
16384 131409 73 342.18 1220 1 6.17 MF
32768 262903 88 993.39 1635 1 20.40 MF
65536 525803 102  3337.98 1685 1 111.35 MF

TABLE 4.18
CPLEX and CS statistics: test problem class Netgen-Lo

network size CPLEX NETOPT v4.0.7 cs
V] |€] itrs time  time
256 2048 2876 0.14 0.13
512 4101 7171 0.35 0.35
1024 8214 16956 1.06 1.02
2048 16414 29354 3.26 2.70
4096 32858 63856 9.39 7.18
8192 65734 146424 40.25 24.07
16384 131409 259140 131.27  100.05
32768 262903 556433 533.81  322.33
65536 525803 1212399 2549.02  856.62

DLNET. However, the solution time for PDNET grew faster than for Cs.
On the instance with 65,536 vertices, the number of total conjugate gradient
iterations in PDNET was 1.5 times smaller than in DLNET.

conclude this section with the following general remarks:

Neither PDNET nor DLNET was uniformly better with respect to the number of
interior point iterations. The small difference in this number can be attributed
to the different optimality indicators used in the MF stopping criterion. This
counters the general belief that, for non-truncated methods, the infeasible
primal-dual algorithms perform better than the dual affine methods.

In general, total running times for PDNET were slightly better than those for
DLNET, independent of problem size. We observe that the number of con-
jugate gradient iterations per interior point iteration was smaller for PDNET
explaining the improved running times. The difference in the number of inner
iterations can be explained by two of the main differences in the implemen-
tations:

— PDNET uses Prim’s algorithm to compute an exact maximum weight
spanning tree, while DLNET uses Kruskal’s method with a bucket sort
that computes an approximate maximum weight spanning tree. There-
fore, the MST preconditioner is expected to perform better in PDNET
than in DLNET.

— DLNET computes the exact cosine value every other five conjugate gra-
dient iterations while PDNET estimates this value every iteration. Thus,
DLNET has the additional cost of computing the exact cosine value and
usually performs more conjugate gradient iterations than necessary (four
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TABLE 4.19
PDNET statistics: test problem class Mesh-1
network size int point alg cG max flow stopping
V] |E]  itrs time itrs  calls time  criterion
256 512 17 0.16 109 4 0.03 MF
1024 2048 21 0.96 175 5 0.27 PB
4096 8192 26 7.48 290 7 2.74 PB
16384 32768 30 51.51 477 8 17.00 MF
65536 131072 36 364.51 789 12 178.74 PB

262144 524288 41  4800.78 1396 13 3187.57 MF

in the worst case).

e When compared to CPLEX NETOPT, PDNET was asymptotically faster on all
problem classes with the exception of Grid-Long.

e The push-relabel code Cs was the overall best performer for the size instances
considered in this computational study. However, there is an advantage for
PDNET in several classes when we observe the asymptotic growth of CS/PDNET
running time ratio. For instance, in problem classes Grid-Density-8 and
Grid-Density-16, PDNET displays smaller total running times for the larger
instances.

5. Concluding remarks. In this paper, we present the first implementable
truncated primal-dual interior point algorithm for linear programming. We also de-
scribe a practical primal-infeasible dual-feasible variant of this algorithm PDNET, spe-
cialized to minimum cost network flow problems. The code is tested on a standard
set of test problems and compared with several efficient network flow codes. No single
code was asymptotically the fastest on all classes of problems. PDNET is clearly asymp-
totically the fastest in two classes of problems (Grid-Density-8 and Grid-Density-16)
and is arguably asymptotically the fastest on Netgen-Lo. The other codes tested
in our computational study outperformed PDNET for some problem classes. CS was
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TABLE 4.20
DLNET statistics: test problem class Mesh-1

network size int point alg caG max flow stopping

4 |€]  itrs time itrs  calls time  criterion
256 512 15 0.19 182 0 0.00 PB
1024 2048 36 2.31 454 0 0.00 PB
4096 8192 64 15.47 817 0 0.00 PB
16384 32768 52 78.20 905 0 0.00 PB
65536 131072 83 1820.77 1183 1 105.05 MF

TABLE 4.21
CPLEX and CS statistics: test problem class Mesh-1

network size CPLEX NETOPT v4.0.7 cs
V] €] itrs time  time
256 512 787 0.03 0.07
1024 2048 3613 0.27 0.40
4096 8192 16404 2.82 2.27
16384 32768 67299 39.72 13.08
65536 131072 288322 575.66  132.60

262144 524288 1269945 15385.33  825.58

asymptotically the fastest on two problem classes and the network flow code of CPLEX
was asymptotically the fastest on one problem class.

The code described in this paper can be further improved. For instance, the
technique used for computing the maximum flows in the MF stopping criterion is the
implementation of the rather outdated Dinic’s algorithm described in [20]. A more
modern maximum flow algorithm, such as the push/relabel algorithm of Goldberg
and Tarjan [18], will contribute to make PDNET more efficient. The current version
of the code does not implement a scheme to fix edges to their upper or lower bounds,
as described in [53, 25]. Such a scheme has been shown to improve the efficiency of
interior point network flow codes on certain classes of problems. In [53], a parallel
implementation of a dual affine scaling network flow algorithm was shown to benefit
greatly from the parallel implementation of the conjugate gradient code. We expect
PDNET to also benefit from such computer architectures. Finally, since the code
involves heavy floating-point computations, it will surely benefit from faster floating-
point processors that are becoming available. The newer MIPS R10000 processor
executes floating point computations three to four times as fast as the MIPS R4400
used in this study. The interior point codes will benefit from this increase in speedup
while most of the other codes, which do little floating-point computations, will not
enjoy this speedup.

We further observe that this truncated algorithm can also be used to solve general
linear programming problems provided good preconditioner are available. We hope
this paper will lead to further research both into the implementation of truncated
methods for other special structure mathematical programming problems, as well as
theoretical analysis of truncated variants of other interior point techniques.

After the first manuscript of this paper was written in 1994, four related papers
have appeared in the literature. In [38], Mehrotra and Wang present a new precondi-
tioner for a preconditioned conjugate gradient based network interior point method.
Their preconditioner mimics the diagonal preconditioner used in this paper during
the early iterations of the interior point method and gradually changes to mimic the
spanning tree preconditioner. Mehrotra and Wang report encouraging computational
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results. In [46], Portugal et al. study and compare the preconditioners available in
the literature for network interior point methods. Upper bounds for the condition
numbers of the preconditioned matrices of the systems of linear equations that de-
fine the search directions are derived. The preconditioners are tested using PDNET.
A computational comparison of the preconditioners on a set of standard problems is
presented. Mizuno and Jarre [41] and Freund et al. [14] describe inexact interior point
algorithms for linear programming guaranteeing global convergence by assuming fea-
sibility of the problem. Also a proof of polynomiality is given for the method in [41].
The algorithm in [41] is not a practical algorithm for large sparse problems since it
requires a norm to be computed by using an orthogonal decomposition procedure. In
Freund et al. [14] it is assumed that a positive lower bound for the smallest singular
value of A is available. This bound is used to define the accuracy required in the
computation of the search direction.
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