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Abstract. In this paper we present a primal-dual interior-point algorithm to
solve a class of multi-objective network flow problems. More precisely, our
algorithm is an extension of the single-objective primal infeasible dual feasible
inexact interior point method for multi-objective linear network flow problems.
Our algorithm is contrasted with standard interior point methods and experi-
mental results on bi-objective instances are reported. The multi-objective in-
stances are converted into single objective problems with the aid of an achieve-
ment function, which is particularly adequate for interactive decision-making
methods.

1. Introduction

Multi-objective optimization is a branch of mathematical programming dealing
with decision-making problems characterized by multiple and conflicting objectives
that are to be optimized over a feasible set of decisions or solutions. These problems
are important since many real-world applications are by their very nature multi-
objective. Such problems are referred to as multi-objective or multiple objective
programs, and they are commonly encountered in many areas of human activity, in-
cluding engineering, management, medicine, biology, and transportation. In these
problems, feasible solutions are only described implicitly, through a set of con-
straints in the form of mathematical functions (equalities and/or inequalities). An
optimization problem has to be solved to find the “best” solution or solutions. The
main goal of multi-objective mathematical programming is to seek the solutions
of multi-objective programs. In such problems, however, there is no single opti-
mal solution (or set of optimal solutions) as is the case when dealing with single
objective problems. The notion of optimal solution gives place to the concept of
non-dominated solutions. Non-dominated solutions are characterized by the fact
that when moving from one to another, one cannot improve the performance of all
of the objectives without the degradation of at least the performance of one objec-
tive. Consequently, methods suitable for finding these solutions are considered the
most fundamental tools for dealing with multi-objective mathematical problems.
For example, see Steuer (1986) and Figueira et al. (2005).

Most of the algorithms for multi-objective linear problems are based on vari-
ants of the simplex method for linear programming despite the good performance
of interior point methods in solving large scale problems. In fact, interior point
methods are not easy to adapt for multi-objective programs since they construct a
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sequence of points that converges to a single point on the boundary of the feasible
set. Thus, there are few interior point algorithms proposed in the literature for
multi-objective problems, and most of them are of an interactive nature. Although
the pivoting mechanism to move from one facet to another on the efficient or non-
dominated surface, required by simplex-based algorithms, may not pose any special
computational difficulty, the number of required operations increases rapidly when
the size of the problem increases, making simplex-based algorithms inefficient on
large-scale problems. One would expect interior-point-based algorithms to better
suited for this class of problems. Moreover, as mentioned by Arbel (1997), the use
of interior point algorithms allows new ways of interaction with the decision-maker
(DM) during the preference elicitation phase inherent to interactive multi-objective
linear problems. Interactive multi-objective optimization methods require interac-
tion with the DM to adapt the progress of the solution process to reflect the local
preferences of the DM. All of these methods share one common feature: at each
iteration a single objective linear programming problem is formulated to generate
a candidate solution or a set of candidate solutions for the examination by the DM.
Each of these single objective problems can be solved by a single objective linear
programming algorithm.

Interesting applications of interior point algorithms for multi-objective linear
problems have been developed (Arbel, 1993; 1994a;b; 1995; 1997; Arbel and Korho-
nen, 1996a;b; 2001; Arbel and Oren, 1993; 1996; Trafalis et al., 1990; Aghezzaf and
Ouaderhman, 2001). The first attempts at using interior point single objective algo-
rithms for multi-objective problems were reported in Arbel (1993; 1994a;b). These
approaches used two distinct variants to generate an interior sequence of iterates.
Arbel (1993) presents a multi-objective linear programming algorithm based on a
variant of Karmarkar’s interior point algorithm known as the primal affine-scaling
algorithm. The proposed algorithm goes through a series of iterations during which
interior step direction vectors are generated to optimize each of the objective func-
tions under consideration. The algorithm developed there and in Arbel (1997) and
Arbel and Oren (1993) generates step direction vectors according to the single ob-
jective interior algorithm and uses them to yield a single step direction vector for
the multi-objective linear programming problem algorithm along which one moves
from the current iterate to the next. Motivated by the numerical experiments with
single objective linear programming problems that showed primal-dual algorithm
to generally perform better than primal algorithm, Arbel extended earlier work
(Arbel, 1994b; 1995; 1997), modifying path-following primal-dual algorithms for
linear programming problems to solve multi-objective problems according to the
ideas developed in his previous studies. The proposed algorithms require interac-
tion with a DM to obtain locally-relevant preference information for the interior
directions generated at each step of the iterative process.

The use of scalarizing achievement functions together with aspiration levels, the
so-called reference point approach, was first proposed by Wierzbicki (1980; 1986).
This approach uses reference points as aspiration levels and provides more flexibility
in searching solutions on the non-dominated frontier. It is considered to be one
of the best approaches to deal with interactive decision-making and gained some
popularity in the multi-objective mathematical programming community. Many
authors use reference point based methods as the main tool in their interactive
methods. Korhonen and Laakso (1986) show how an unbounded line segment
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emanating from the current point in the reference direction can be projected onto
the (weakly) non-dominated set. Korhonen and Wallenius (1988) further developed
this idea making the specification of the reference direction dynamic. Arbel and
Korhonen (1996a;b) combine these ideas and develop an interactive approach which
is controlled through aspiration levels. They use one of two interior point variants:
a primal variant, the primal affine-scaling algorithm, and a primal-dual variant,
the primal-dual path-following algorithm. At each iteration, a DM is asked to
specify aspiration levels for the various objectives, and an achievement scalarizing
problem is defined to project the aspiration levels onto the non-dominated set. This
formulation leads to a single objective linear programming model. An interior point
algorithm is then used to draw a path from a starting solution and approach as
closely as desired a non-dominated solution corresponding to the optimum of the
achievement scalarizing problem. The DM can specify aspiration levels during the
solution process and thus steer the interaction solution path toward different areas
in the objective space. The interaction with the DM can take place every few,
pre-specified, iterations or after the duality gap achieved for the stated aspirations
has fallen below a certain threshold.

The above algorithms fall into the class of feasible interior point algorithms,
which do not require a feasible starting solution for the interior point algorithm, but
an exact determination of the search direction taken in each interior point iteration.
This leads to especially hard numerical problems to overcome when the size of the
problems increases and when a more precise solution is required. Despite the above
cited papers, to the best of our knowledge, no efficient practical implementation
has been described to allow the solution of medium- or large-scale multi-objective
problems. Moreover, no implementation has been described of an interior point
algorithm to solve a special class of multi-objective linear programming problems
such as multi-criteria network flow problems, despite their richness of real-world
applications.

The purpose of this paper is to present a primal-dual interior point algorithm to
solve a class of multi-objective network flow problems and to test this implementa-
tion on large instances.

In this paper, by the term “solving multi-objective network flows”, we mean that
we consider the solution of a Tchebychev-like problem that can further be used in an
interactive multi-objective framework (see Steuer (1986) and Figueira et al. (2005)).
The Tchebychev transformation is a well-known technique, but we are unaware of
any effective implementation to date of interior point methods to solve network flow
problems. In this paper we want to investigate the use of interior point methods
to solve this type of problem. We propose an extension of the primal-dual interior
point method (Kojima et al., 1989) to the infeasible (Kojima et al., 1993) and
inexact (Freund et al., 1999) cases. The proposed algorithm, begins with a dual-
feasible primal-infeasible starting solution and, at each interior point iteration, the
search direction is found by solving the normal equations resulting from the Newton
system. Those equations are in the form of a positive definite system with two dense
matrix rows. We solve those reduced systems using one of two methods, a direct
method based on the Cholesky decomposition of the system matrix or an iterative
method based on the pre-conditioned conjugate gradient method with diagonal pre-
conditioner (pcg). We test the performance of these two methods using instances of
bi-objective network flow problems generated with an adaptation of the Netgen
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generator (Klingman et al., 1974) for single objective network flow problems to
network flows instances with two objectives. The sizes of the test problems vary
from 5 to 1500 nodes and from 7 to 10, 000 arcs. We observed a good performance of
the variant which applies the pcg method to find the search directions. Moreover,
in our experiments we used different “weights” for the objectives and different
reference points, including the ideal point and an approximation of the nadir point.
The algorithm appears to be insensitive to changes in the reference point.

The paper is organized as follow. Section 2 presents the concepts, their defini-
tions, and notation. Section 3 describes the primal-dual algorithm used to solve
the multi-objective network flow problem. Section 4 provides discussion of some
implementation issues like starting point, stopping criteria for the interior point al-
gorithm, and a reduction of Newton system to the normal equations, and is devoted
to the main procedures used in the solution of the normal equations. Section 5 is
dedicated to the computational experiments and results. Finally, conclusions are
made in Section 6.

2. Concepts: Definitions and Notation

Consider a directed graph G = (V, E ), where V is a set of m vertices and E
represents a set of n edges; let (i, j) denote the arc from vertex i to vertex j. The
multi-objective “minimum cost” network flow problem, with p objectives, can be
formulated as

min
∑

(i,j)∈E

c1
ijxij

min
∑

(i,j)∈E

c2
ijxij

...
...

min
∑

(i,j)∈E

cp
ijxij

(1)

subject to:

∑

(i,j)∈E

xij −
∑

(j,i)∈E

xji = bi, ∀i ∈ V(2)

lij ≤ xij ≤ uij , ∀(i, j) ∈ E.(3)

In this formulation, xij denotes the flow on arc (i, j) and cq
ij , q = 1, ..., p, are

the costs to transport one unit of flow on arc (i, j). For each i ∈ V, bi denotes the
flow produced or consumed at vertex i. If bi > 0, vertex i is called a source vertex.
If bi < 0, vertex i is called a sink vertex. Otherwise (i.e. bi = 0), vertex i is called
a transshipment vertex. For each arc (i, j) ∈ E, uij (lij) denotes the upper (lower)
bound on the flow on arc (i, j). Most often, data are assumed to be integer, and
many implementations of network flow algorithms adopt this assumption. However,
there can exist applications where the data are real numbers, and algorithms should
ideally handle problems with real data. Constraints of type (2) are referred to as
the flow conservation equations, while constraints of type (3) are called the flow
capacity constraints. In the remainder of this paper we assume, without loss of
generality, a lower bound lij = 0 for all arcs (i, j) ∈ E. A simple change of
variables can transform the corresponding problem with upper and lower bounds
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into an equivalent one only having lower bounds, lij = 0, for all (i, j) ∈ E. In
matrix notation, the problem can be stated as

(4) “ min ” {Cx : Ax = b, x + s = u, x ≥ 0},

where A is the m× n vertex-arc incidence matrix of graph G=(V,E ), vectors x, s,
and u are real n-vectors, and b is a demand/supply m-dimensional real vector. The
dense real matrix C with the p cost vectors with respect to the n arcs (i, j) ∈ E,
denoted by one index i, i = 1, . . . , n, is defined as

C =




c1T

c2T

...

cpT




=




c1
1 c1

2 . . . c1
n

c2
1 c2

2 . . . c2
n

...
...

...
cp

1 cp
2 . . . cp

n


 .

Scalarizing functions, such as Tchebychev-like augmented weighted functions,
can be used to convert the multi-objective problem into one with a single-objective.
Scalarizing weighted and augmented Tchebychev-like problems as well as more gen-
eral functions, such as the achievement functions presented in Wierzbicki (1980;
1986), have many interesting properties. One of the families1 of achievement func-
tions, particularly well adapted to work with reference point approaches is

(5)
ρ(Cx, π0, λ, σ) = minq=1,2,...,p

{
λq(π

0
q − cqT

x)
}

+

σ
∑p

q=1 λq(π
0
q − cqT

x)

where ρ(·, ·, ·, ·) is an application of the feasible set of solutions in the objective
space into R; λ1, λ2, . . . , λp are the non-negative “weights” associated with each of

the p objectives so that
∑p

q=1 λq = 1; π0 =
(

π0
1 π0

2 . . . π0
p

)T
is the vector

which represents the reference point considered in the objective space and σ is an
arbitrary small positive number (0 < σ ≪ 1).

The achievement problem

(6)
max ρ(Cx, π0, λ, σ)

subject to: x ∈ X,

can be formulated, where X is the set of feasible solutions in the decision space.
For a given reference point π0, two fundamental properties can be proved:

i) If x⋆ = argmax {ρ(Cx, π0, λ, σ) subject to x ∈ X}, then x⋆ is an efficient
solution.

ii) If x⋆ is an efficient solution, then there exists a function ρ(z, π0, λ, σ) such
that x⋆ is a (global) optimal solution of max ρ(Cx, π0, λ, σ) subject to x ∈
X .

To convert this single objective non-linear problem into one that is linear, a free
variable α needs to be introduced. If we assume that the reference point is the
ideal point (the one corresponding to the minimum of each objective), α needs to
be positive. Later we consider the adaptation of the problem to the case where the
reference point is any point (in general, a point that represents an aspiration level
for the DM) in the objective space, and thus α will be a free variable. We use the

1The word family is used here to state that several functions can be built according to the
variability of “weighted” coefficients and reference points.
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common approach of decomposing the free variable α by α = α+ − α−. Using the
above notation, we can then formulate (4) as either the single-objective program

min α + σ
∑p

q=1 cqx − σ
∑p

q=1 πq

subject to:
(7)

α ≥ λq(c
qTx − πq), q = 1, . . . , p

Ax = b
x + s = u
x ≥ 0, s ≥ 0, α ≥ 0

(8)

or

min α + σ
∑p

q=1 cqx − σ
∑q

q=1 πq

subject to:
(9)

cqTx − λqα + rq = πq, q = 1, . . . , p
Ax = b
x + s = u
x ≥ 0, s ≥ 0, α ≥ 0

(10)

where r is a slack p-vector and λq = 1/λq, with q = 1, . . . , p. Let us assume for the
moment that our reference point is the ideal one. In this case, α ≥ 0.

Formulation (9-10) is presented for subsequent development through the appli-
cation of the interior point algorithm. Of course, the fact that many programs
can be written in the form of linear programs with equality and non-negativity
constraints does not necessarily imply that these programs are algebraically sim-
ilar. Furthermore, the strategies followed in the application of the interior point
algorithm should not necessarily be the same, since the constraint matrix as well
as the algebraic structures can be quite different. The constraint which is present
in (9-10), associated with the cost matrix C, as well as with the relative “weights”
related to the objective functions, and to the chosen reference point, introduce
numerical difficulties which are dealt with in the implementation of the interior
point algorithm. A primal-dual method is proposed to solve this program. The
corresponding dual problem is

(11) max bTy − ΠTv − uTw

subject to

ATy − CTv − w + z = σ

p∑

q=1

cq(12)

λT
q v + zα = 1(13)

v ≥ 0, w ≥ 0, z ≥ 0, zα ≥ 0.(14)
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A vector x is a solution of problem (9-10) if the optimality conditions

Ax = b
x + s = u
Cx − αλ + r = Π
ATy − CTv − w + z = ρ

∑p

q=1 cq

λTv + zα = 1
xTz = 0, rTv = 0, sTw = 0, αzα = 0
x ≥ 0, α ≥ 0, r ≥ 0, s ≥ 0,
v ≥ 0, w ≥ 0, z ≥ 0, zα ≥ 0

(15)

are satisfied.
The solution of the achievement problems presented in this section is important

when dealing with interactive procedures. The DM can provide an aspiration level,
treated as a reference point, and a non-dominated solution will be obtained after
solving the linear network flow problem stated above.

3. A truncated primal-infeasible dual-feasible

interior-point algorithm

Primal-dual interior-point algorithms (for example, see Monteiro and Adler (1989),
Kojima et al. (1989), Megiddo (1989), and Tanabe (1988)) have been supported by
many sophisticated codes to solve large scale linear problems, including network
flow problems. They have suitable theoretical properties and were shown to have
good performance in practice. A feasible primal-dual algorithm operates simultane-
ously on the primal and dual problems. It requires feasible interior primal and dual
starting solutions and iterates in the interior of the feasible region of the primal-
dual pair of problems. It was proved that the iterates generated by the feasible
primal-dual algorithm are feasible if the step lengths in the primal and the dual
spaces of the interior point algorithm are appropriately chosen and the direction
components are computed exactly (for example, see Kojima et al. (1989)). Usually,
practical implementations of a feasible primal-dual algorithm are slightly different
from their corresponding theoretical polynomial-time variant. The main differences
at each iteration are related to the update procedure for the central parameter and
the selection of the interior step lengths, which are not easy to compute directly
from theory.

A major drawback of feasible algorithms is that they require the solution of a
Newton system with a high degree of accuracy, in general, computed through direct
factorization. Moreover, obtaining a feasible starting point can be very expensive.
Although the better theoretical properties of primal-dual interior point algorithms
are reached when feasible and exact variants of these algorithms are used, many
practical implementations of primal-dual methods only use infeasible and/or inexact
variants.

These drawbacks are significant when solving large scale network flow problems.
One of the first implementations of a primal-dual feasible interior point method for
network flow problems is due to Portugal et al. (1996). The authors investigated
the use of an iterative solver to obtain the interior search direction. Based on the
computational results by Portugal et al. (1996) and on the conclusions of their
paper, Portugal et al. (2000) proposed a primal-dual interior point algorithm, that
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is primal infeasible and dual feasible, called the truncated primal-infeasible dual-
feasible (TPIDF) algorithm. In addition, the algorithm works with inexact search
directions. It was applied to solve network flow problems, and the PDNET code
(which implements the TRIDF algorithm) is considered today to be a competitive
code for solving large-scale network flow problems (Portugal et al., 2008).

Kojima et al. (1993) proved that the primal-dual infeasible-interior-point method
converges if the interior step lengths are computed by a specific rule they pro-
posed. This algorithm was shown to have several practical implementable variants.
A primal-dual infeasible-interior-point algorithm starts with an infeasible-interior
point, that is, an initial point whose non-negative variables are strictly positive
but the primal and dual residuals are not necessarily zero. In that case, the gen-
erated sequence of iterates is not restricted to the interior of the feasible region.
Consequently, optimal solutions are approached by moving through not only the
interior but also the exterior of the feasible region of the primal-dual pair of prob-
lems. Despite the simplicity of these methods, the theoretical constraints needed
to control the central parameter and step lengths are not practical or easy to im-
plement for large scale problems. Consequently, most implementations of infeasible
primal-dual algorithms relax these constraints in one way or another. The possibil-
ity of using arbitrary starting points and long step sizes that can be different in the
primal and dual spaces are not the only explanation for the popularity of infeasible
primal-dual algorithms. Perhaps not less important is the fact that, because of its
simple structure, primal-dual algorithms can easily be modified to handle inexact
search directions. The use of inexact search directions is a major difference of most
interior-point algorithms (feasible or infeasible) whose convergence is proved un-
der the assumption that the search directions are calculated exactly. The so-called
inexact or truncated interior point methods are those where the search directions
are calculated only to moderate accuracy. Since inexact interior point algorithms
follow the central path in a less rigorous way than exact ones, an increase in the
number of iterations is expected. However, the use of inexact search directions can
nevertheless result in a decrease in the total processing time, because the inexact
search directions can sometimes be calculated very efficiently. Algorithms featuring
similar search directions for network flow problems were proposed by Resende and
Veiga (1993) and Portugal et al. (2000). Also, in standard linear programming
problems, inexact directions are studied by Freund and Jarre (1997), Oliveira and
Sorensen (1997), Freund et al. (1999), Mizuno and Jarre (1999), Baryamureeba
et al. (1999), Korzak (2000), and Monteiro and O’Neal (2003).

Several authors have used iterative linear solvers to compute Newton search di-
rections. For example, Resende and Veiga (1993) and Oliveira and Sorensen (1997)
used the pre-conditioned conjugate gradient method in conjunction with some spe-
cific pre-conditioners to solve the normal systems of equations, to calculate the
interior search direction. Their computational results show that iterative interior
point methods can be extremely useful in practice.

Korzak (2000) presents a convergence analysis of inexact variants of the Kojima
et al. (1993) infeasible algorithm for linear programming, where the iterates are
bounded, and shows that the (polynomial) convergence of such variants can be
proved in almost the same way as the convergence of the (exact) original algorithm
by Kojima et al. (1993). Contrary to what occurs with the infeasible exact algo-
rithm, when infeasible problems are processed, the iterates are unbounded and the
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infeasibility of the given problems cannot be proved. The convergence analysis of
inexact methods for linear programming usually assumes that no primal or dual
feasible starting solutions are known, and it is based on the convergence rules of
Kojima et al. (1993). However, standard network flow problems and standard net-
work flow problems with multiple objectives, have the nice property that it is easy
to compute a feasible starting dual solution. In those particular cases, Freund et al.
(1999) recommend the use the algorithm of Portugal et al. (2000).

In the implementation of Portugal et al. (2000; 2008), strategies are designed to
explore the very nature of network flow problems as a particular way of defining
a starting solution and two network-specific stopping criteria for the interior point
algorithm are proposed. Although they do not use the theoretical rules of conver-
gence of Kojima et al. (1993), the pre-conditioning techniques used in the iterative
method applied to solve the system of normal equations, as well as other techniques
related to algebraic efficient procedures to manipulate network matrices, allow us to
observe in practice the efficiency of their algorithm. More recently, Monteiro and
O’Neal (2003), obtained some complexity properties for the modified versions of
the long-step primal-dual infeasible algorithms for solving linear programs, where
the search directions are computed by means of an iterative linear solver applied to
a pre-conditioner normal system of equations, with a maximum weight basis pre-
conditioner. For network flows these correspond to a class of pre-conditioners based
on spanning trees. Such pre-conditioners were introduced by Resende and Veiga
(1993) in the context of the minimum cost network flow problem, and later gener-
alized by Oliveira and Sorensen (1997) for general linear programming problems.
They make the condition number of the preconditioned normal equations system
uniformly bounded regardless of the values of the diagonal elements of the scaled
matrix. Nice complexity properties can be reached with an iterative variant of the
infeasible primal-dual interior point method of Kojima et al. (1993) if that class of
pre-conditioners is used together with a careful selection of the stopping criterion of
the iterative solver. In the Monteiro and O’Neal (2003) approach, as well as in the
approach of Portugal et al. (2000), only the search direction components calculated
by the normal equations are computed approximately. The remaining components
of the search direction are calculated in a way that the equations of the Newton
system that correspond to primal and dual feasibilities are satisfied exactly, while
the equation of the Newton system corresponding to the centrality condition is vi-
olated. This way of choosing the search direction is crucial to establish that the
number of outer iterations of the proposed methods are polynomially bounded.

For the above reasons, we choose to use the TPIDF algorithm to solve (9).
Consider the sets

Rp = {(x, α, r, s) ∈ Rn+1+p+n : x ≥ 0, α ≥ 0, r ≥ 0, s ≥ 0},(16)

Rd = {(y, z, zα, v, w) ∈ Rm+n+1+p+n : z ≥ 0, zα ≥ 0, v ≥ 0, w ≥ 0},(17)

R = {(x, α, r, s, y, z, zα, v, w) : (x, α, r, s) ∈ Rp, (y, z, zα, v, w) ∈ Rd},(18)
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and Rp+, Rd+, R+, the interior of Rp, Rd, and R. The primal feasible set Fp and

the dual feasible set Fd of (9-10) are defined, respectively, as

Fp = {(x, α, r, s) ∈ Rp+ : Ax = b, x + s = u, Cx − αλ + r = π},

Fd = {(y, z, zα, v, w)Rd+ : ATy − CT v − w + z = ρ

p∑

q=1

cT
q , λTv + zα = 1}.

In network flow problems, the primal condition Ax = b is the most difficult to
satisfy. Consider the subset F̃p of the primal feasible set defined by

F̃p = {(x, α, r, s) ∈ Rp+ : x + s = u, Cx − αλ + r = π}.

A primal-infeasible dual-feasible algorithm operates on the dual feasible set Fd and
on the partial primal feasible set F̃p, i.e. on the set F̃ defined by

F̃ = {(x, α, r, s, y, z, zα, v, w) ∈ R+ : (x, α, r, s) ∈ F̃p, (y, z, zα, v, w) ∈ Fd}.

When an infeasible primal-dual algorithm is used, the primal feasibility residuals
ξ1, ξ2, ξ3, the dual feasibility residuals ζ1, ζ2, and the complementary feasibility
residuals ς1, ς2, ς3, ς4, in each iteration k, can be defined as

ξk
1 = u − xk − sk(19)

ξk
2 = −Axk + b(20)

ξk
3 = Π − Cxk + λαk − rk(21)

ζ1
k = σ

p∑

k=1

cT
k − ATyk + CTvk + wk − zk(22)

ζk
2 = 1 − λTvk − zk

α(23)

ςk
1 = µke − XkZke(24)

ςk
2 = µk − zk

ααk(25)

ςk
3 = µke − RkV ke(26)

ςk
4 = µke − SkW ke.(27)

These residuals are possibly not null. However, if the algorithm is dual feasible,
then the dual feasibility residuals ζ1

k and ζ2
k are null at each iteration. Moreover,

it is possible to force ξ1
k to be null in each iteration k.

In spite of the fact that single objective and multi-objective network flow prob-
lems formulated as linear programs with the same form, each is algebraically pro-
cessed by interior point algorithms in a different way. The case of the multi-objective
network flow problem introduces particular numerical difficulties. The major dif-
ficulty arises from the constraint matrix. It is not simply a node-arc adjacency
matrix but assumes a more complex structure and is numerically more unstable.
It was necessary to develop appropriate strategies for which the implementation of
the interior point algorithm proposed by Portugal et al. (2000) for single objective
network flows could be adapted to solve multi-objective problems. Thus, the in-
terior point algorithm implemented is specialized for network flow problems with
multiple objectives and not only for single objective problems, since the structure of
the matrices involved between the network flow problems constraints with multiple
objectives and the adjacency matrices of single objective are significantly different.
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The TPIDF algorithm applied to (9 - 10) can then be described as follows.

TPIDF-MNFP - Truncated primal-infeasible dual-feasible interior-point algo-

rithm applied to scalarized multi-objective linear network flow problem:

(1) Take an arbitrary point

(x0, α0, r0, s0, y0, z0, z0
α, v0, w0) ∈ F̃ .

(2) For each k = 0, 2, . . . , do

(a) Set

̟k = (xk)Tzk + αkzα
k + (rk)Tvk + (sk)Twk

and

µk = β1
̟k

2n + p

where 0 < β1 < 1. In a practical implementation we use β1 = 0.1.

(b) Compute the primal residuals ξk
1 , ξk

2 , ξk
3 , the dual residuals ζk

1 , ζk
2 ,

and the complementarity residuals ςk
1 , ςk

2 , ςk
3 , ςk

4 , with the formulae
(19-21), (22-23), and (24-27), respectively. If ξk

1 , ζk
1 , and ζk

2 are not
null, then STOP: send an error message.

(c) Compute the auxiliary diagonal matrix

F k = (ZkSk + W kXk)

and auxiliary vector

χk = (F k)−1[XS(z − w) + µ(x − s)].

Compute the scaling matrix

Θk = ((Xk)−1Zk + (Sk)−1W k)−1

as

Θk = XkSk(F k)−1

Find (∆yk,−∆vk) as the solution of the positive definite system with
the main matrix

(28)

(
AΘkAT AΘkCT

CΘkAT CΘkCT + λαk

zk
α

λT + (V k)−1Rk

)

and the right-hand-vector

(29)

(
Aχk + ξk

2

Cχk + π − Cxk + µk

zk
α

λ − µk(V k)−1e

)
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(d) Recover the remaining components of the Newton search direction by
the formulae

∆xk = −χk + Θk(AT∆yk − CT∆vk)
∆zk

α = −λT∆vk

∆sk = −∆xk

∆zk = µk(Xk)−1e − Zke − (Xk)−1Zk∆xk

∆rk = µk(V k)−1e − Rke − (V k)−1Rk∆vk

∆wk = µk(Sk)−1e − W ke − (Sk)−1W k∆xk

∆αk = µk zk
α − αk + αk

zk
α

λT ∆vk.

(30)

(e) Choose a primal step length and a dual step length according to

δk
p = ̺p max{δ : xk + δ∆xk ≥ 0,

αk + δ∆αk ≥ 0,
rk + δ∆rk ≥ 0,
sk + δ∆sk ≥ 0},

δk
d = ̺d max{δ : zk + δ∆zk ≥ 0,

zk
α + δ∆zk

α ≥ 0,
vk + δ∆vk ≥ 0,
wk + δ∆wk ≥ 0}.

(31)

(We use ̺p = ̺d = 0.9995, as suggested in McShane et al. (1989)).
(f) Form the new iterate:

xk+1 = xk + δk
p∆xk

αk+1 = αk + δk
p∆αk

rk+1 = rk + δk
p∆rk

sk+1 = sk + δk
p∆sk

yk+1 = yk + δk
d∆yk

zk+1
α = zk

α + δk
d∆zk

α

vk+1 = xk + δk
d∆vk

wk+1 = xk + δk
d∆wk.

(32)

(g) Go to 2 if an appropriate stopping criterion is not satisfied.

If the system defined in step 2c is only approximately solved, then the above-
described infeasible algorithm is truncated or inexact. Let ǫ > 0 and ǫp > 0 be
the tolerances for the total complementarity gap and the primal feasibility error,
respectively. The TPIDF algorithm tries to calculate an element of the set

{(x, α, r, s, y, z, zα, v, w) ∈ R :‖ (ξ2, ξ3) ‖< ǫp, ‖ (̟) ‖< ǫ},

where (ξ2, ξ3) and ̟ are the non-null primal feasibility residuals and the comple-
mentarity gap residual, respectively) and uses it as an approximation of a solution
of (9 - 10), the so-called (ǫ, ǫp)-solution.

To ensure the convergence towards an (ǫ, ǫp)-solution, it is customary to force the
iterates to lie within a neighborhood of the central path. We can use the same type
of neighborhoods originally proposed by Kojima et al. (1993) and used in Portugal
et al. (2000) and Korzak (2000). Let γ ∈ (0, 1) and γp > 0, and consider the primal
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error tolerance ǫp > 0. A neighborhood N−∞(γ, γp) of the central path for (9 - 10)
can be defined by as

N−∞(γ, γp) = {(x, α, r, s, y, z, zα, v, w) ∈ R+ :
̟ = (xTz + αzα + wTs),
xizi ≥ γ̟/(2n + 1), i = 1, . . . , n,
wisi ≥ γ̟/(2n + 1), i = 1, . . . , n,
αzα ≥ γ̟/(2n + 1),
̟ ≥ γp‖(Ax − b, Π − Cx + λα − r)‖ or
‖(Ax − b, Π − Cx + λα − r)‖ ≤ ǫp}

The following trivial lemma gives a connection between N−∞(γ, γp) and an
(ǫ, ǫp)-solution.

Lemma 1. If (x, α, r, s, y, z, zα, v, w) ∈ N−∞(γ, γp) and ̟ ≤min{ǫ, ǫpγp} then
(x, α, r, s, y, z, zα, v, w) is an (ǫ, ǫp)−solution of (9 - 10).

Any primal-dual interior point algorithm, applied to (9 - 10), has to calculate,
at each iteration k, a solution

∆ =
(
∆xk, ∆αk, ∆rk, ∆sk, ∆yk, ∆zk, ∆zk

α, ∆vk, ∆wk
)
,

for a system with the matrix

(33) M =




0 0 0 0 AT I 0 −CT −I

0 0 0 0 0 0 1 λT 0

I 0 0 I 0 0 0 0 0

A 0 0 0 0 0 0 0 0

C −λ I 0 0 0 0 0 0

Zk 0 0 0 0 Xk 0 0 0
0 zα

k 0 0 0 0 αk 0 0
0 0 V k 0 0 0 0 Rk 0
0 0 0 W k 0 0 0 0 Sk




and the right-hand-vector

h =
(
ζ1

k, ζ2
k, ξk

1 , ξk
2 , ξk

3 , ςk
1 , ςk

2 , ςk
3 , ςk

4

)
.

In inexact methods, such systems are only approximately solved. An inexact
(Newton) search direction is accepted in the TPIDF algorithm if

M∆ = h + ǫ,

where the residual vector

ǫ = (0, 0, 0, ǫk
2 , ǫ

k
3 , 0, 0, 0, 0)

satisfies some appropriate conditions, in order to bound the feasibility problem
error. Following Portugal et al. (2000) we consider that ǫk

2 and ǫk
3 are such that

(34) ‖(ǫk
2 , ǫ

k
3)‖ ≤ β0‖(Axk − b, Π − Cxk + λαk − rk)‖,
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with 0 ≤ β0 ≤ β1.
Although, as referred by Baryamureeba and Steihaug (2006), satisfying this ter-

mination criterion for the iterative linear solver is computationally expensive once
the iterates become almost primal feasible or primal-dual feasible, it is one of the
most practical and computable termination criteria. For example, Freund et al.
(1999) suggest to control the errors using other tolerance variables that are up-
dated at every iteration, but are not known a priori. The variables reach zero
faster than ‖ǫk

2‖ and ‖ǫk
3‖, respectively, thus requiring high accuracy, very close to

a solution. Furthermore, Mizuno and Jarre (1999) control the error using a semi-
norm. This norm is not computable, but the accuracy requirement is shown to be
slightly weaker than the relative error with respect to the right-hand-side in a mod-
ified linear system. This system requires a QR factorization of the matrix A and
the accuracy requirement is thus not suitable for computation. Moreover, it was
shown that this class of termination criterion has suitable theoretical properties.

In studying the global convergence for the TPIDF algorithm, Portugal et al.
(2000) make use of the theory of Kojima et al. (1993), and show that if the steps
length δp and δd in the primal and dual spaces are chosen in the same way as
in Kojima et al. (1993) then, because of primal error feasibility is forced to be
bounded, the sequence of iterates generated by the TPIDF algorithm is restricted to
the appropriated neighborhood and the complementarity gap is reduced. However
PDNET follows the usual choice of McShane et al. (1989) for the step length δp and
δd. Furthermore, the initial point in PDNET is not necessarily in the neighborhood
of convergence. Despite this fact the authors of PDNET did not observe divergence
in their computational experiences.

4. Implementation issues

The main difficulties arising in the implementation of the TPIDF-MNFP algo-
rithm are related to the solution of the system of normal equations (28-29) used
to compute the Newton search direction. While in the application of the interior
point algorithm for network flow problems with single objective, we solve at each
iteration k, systems of matrices of the form AΘkAT, where Θk is a diagonal matrix
with diagonal positive elements and A is the adjacency matrix of the network, in
TPIDF-MNFP (network flow problems with multiple objectives) the systems are
solved at each iteration k with the matrices (28) that are poorly conditioned.

Other implementation aspects are the determination of an initial interior point
solution to start the algorithm and the description of the stopping criteria.

4.1. Starting point. In network flow problems it is customary to consider costs
and capacities as non-negative values. We thus assume that

p∑

t=1

ct > 0
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and u > 0. The starting point (x0, α0, r0, s0, y0, z0, zα
0, v0, w0) needs to be dual

feasible. It is easy to verify that if conditions

w0 > 0

y0 = (0, 0, . . . , 0)

v0 = (ν, ν, . . . , ν)

zα
0 = 1 − ν

p∑

t=1

λt

z0 = w0 + (ρ + ν)

p∑

t=1

ct

are satisfied, where

0 < ν ≤

(
p∑

t=1

λt

)−1

,

then (y0, z0, zα
0, v0, w0) ∈ Fd; i.e. this starting point is interior dual feasible.

Moreover, it is not difficult to define the primal components (x0, α0, s0, r0) that
satisfy the primal constraints of the MNFP algorithm, except, possibly, the primal
condition Ax = b. In fact, if (x0, α0, s0, r0) verifies the conditions

x0 > 0

s0 = u − x0

α0 ≥ maxi{
|ci

Tx0 − πi|

λi

}

r0
t = πt − ct

Tx0 + λtα
0, for t = 1, . . . , p,

then the starting point belongs to F̃p. In our implementation, we compute a starting

point in F̃ , using the above formulae with x0, s0, α0, w0, and ν computed as

ν =

(
2

p∑

t=1

λt

)−1

x0 = u/2

s0 = u/2

α0 = 1 +

p∑

t=1

|ct
T − πt|

λt

w0 =
r0T

v0 + α0zα
0 + x0

s0(2n + m + 2)

p∑

t=1

ct.

4.2. Stopping criterion. Let the error of the current iterate be defined as

(35) ǫ = ̟k + ζ2
k +

ζk
1

ωc

+
ξk
1

ωu

+
ξk
2

ωb

+
ξk
3

ωπ

,
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where, ζk
1 , ζk

2 , ξk
1 , ξk

2 , ξk
3 , are the primal and dual residues at iteration k, given by

(19-21) and (22-23), and

ωb = 1 + ‖b‖

ωπ = 1 + ‖π‖

ωu = 1 + ‖u‖

ωc = 1 + ‖ρ

p∑

q=1

cq‖

ωg = ωb + ωπ + ωu + ωc − 3.

An iterate is accepted as a solution if the error falls below some given tolerance,
e.g. if ǫ < 10−6.

4.3. Solving the Newton normal systems of equations. System (28) has a
positive definite matrix, so the solution of the normal equations exists and it is
unique in each interior point iteration k. However, as the duality measure tends
to zero, the matrices of the reduced systems tend to be poorly conditioned, which
causes serious numerical drawbacks. To solve the normal equations we implemented
two methods: a direct method based on the Cholesky decomposition of the matrix in
(28), and an iterative method, the preconditioned conjugate gradient method (pcg)
with a diagonal preconditioner. Although the Cholesky method is one of the most
used to solve positive definite systems and one of the most used in interior-point
methods (particularly in feasible interior-point algorithms), the iterative methods,
as the pcg method, have been used to solve network flow problems (Portugal et al.,
2000; Castro, 2005). We compared the performance of these two methods to solve
the normal equations (28-29) and discuss computational results in the next section.
In this section we describe the procedures used to implement both methods for
solving system (28-29). We begin by explicitly defining the matrices and vectors
used in the computation.

To compute the right-hand-side vector of each system (28-29), we consider, in
each iteration k, the auxiliary vector gk, defined as

gk = Γ−1[XkSk(Zk − W k)e + (Xk − Sk)eµk],

where Γ = (ZkSk + W kXk). Then, the right-hand-side vector b
k

= (b1, b2) of each
system (28-29) is computed as

b1 = b − Axk + Agk

b2 = ξ3
k

+ Cgk.

To compute bk, we only need to calculate vector gk, which is defined by applying
algebraic operations between diagonal matrices, and performing matrix-vector op-
erations, with the network matrix A and with the dense, but usually small, cost
matrix C. If x is an n-vector, the vector ω = (ωt)i=1,...,p resulting from the product
of x and the matrix C, can be trivially calculated as

ωt =

n∑

i=1

ct
ixi.

On the other hand, to perform the matrix-vector product with the network
matrix A we have the following routine:
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Computing the matrix-vector product y = Ax.

(1) Initialize yi = 0, for all i = 1, . . . , m.
(2) For i = 1, . . . , n do

snod = “head” of the arc i
enod = “tail” of the arc i
ysnod = ysnod + xi

yenod = yenod − xi

end for;

(3) yroot = 0, where root is the root node.

The network matrix A has a redundant row which we eliminate considering null
the row corresponding to the root node, as in Portugal et al. (2000).

To make explicit the elements of matrix (28) considered in each interior-point
iteration, we use the following notation. Let m̂ and p̂ be the indices defined, re-
spectively, by

m̂ =
m(m − 1)

2
and p̂ =

p(p − 1)

2
.

The sub-matrices in (28) are of the form

AΘkA⊤ =




d1 q1 q2 . . . q bm−(m−2)

q1 d2 q3 . . . q bm−(m−3)

. . . . . . . . . . . . . . .
q bm−(m−2) q bm−(m−3) . . . q bm dm


 ,

CΘkA⊤ =




g11 g12 . . . g1(m−1) g1m

g21 g22 . . . g2(m−1) g2m

. . . . . . . . . . . . . . .
gp1 gp2 . . . gp(m−1) gpm


 ,

CΘkC⊤ + λ
αk

zk
α

λT + (V k)−1Rk =




dm+1 f1 f2 . . . fbp−(p−2)

f1 dm+2 f3 . . . fbp−(p−3)

. . . . . . . . . . . . . . .
fbp−(p−2) fbp−(p−3) . . . fbp dm+p


 .

In each iteration, the positive definite matrix of (28) is symmetric. We can thus
store it into two vectors, d and s, respectively,

d = (d1, . . . , dm, dm+1, . . . , dm+p),

and
s = (q1, . . . , q bm,

g11, . . . , g1m,
g21, . . . , g2m, f1,
g31, . . . g3m, f2, f3,

. . .
gp1, . . . , gpm, fbp−(p−2), . . . , fbp).

The first m diagonal elements stored in d, are obtained from diag(AΘkAT), and
thus we can explore the network structure to improve the algorithm, as we can see
in the next procedure.
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Computing the diagonal elements dj, j = 1, . . . ,m.

(1) Initialize dj = 0, for all j = 1, ..., m.
(2) For i = 1, ..., n do

snod = “head” of the arc i
enod = “tail” of the arc i
dsnod = dsnod + Θk

i

denod = denod + Θk
i

end for;

(3) droot = 0, where root is the root node.

The remaining p diagonal elements, dm+t, t = 1, . . . , p, stored in d, are the

diagonal elements of the dense, but small, matrix CΘkCT + λαk

zk
α

λT + (V k)−1Rk,

and they can be simply computed with

dm+t =

(
n∑

i=1

Θi(c
t
i)

2

)
+ (rt/vt) +

α

zα

(λt)
2.

Next we describe the procedures used to compute the (m̂ + pm + p̂) elements
of the vector s. First, we observe that we can again explore the network structure
when we calculate the elements q(t), t = 1, . . . , m̂, of the lower triangular subma-
trix of AΘkAT.

Computing the non-diagonal elements, q(t), t = 1, . . . , m̂ (storage by
rows).

(1) Initialize t = 1.
(2) For i = 1, . . . , m and i 6= root do

For j = 1, . . . , i − 1 do
q(t) = 0
If i 6= root then

For arc = 1, . . . , n do
snod = “head” of the arc i
enod = “tail” of the arc i
If ((snod = i and enod = j)
or ( enod = i and snod = j)) then

q(t) = q(t) − Θ(arc)
end if;

end for;
end if;
t = t + 1

end for;
end for;

(3) Initialize index(1) = 1 and q(root) = 0.
(4) For i = 1, . . . , n − 1 and i 6= root do

index(i) = i − 1 + index(i − 1)
t = index(i)
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q(t) = 0
end for;

To compute the elements of CΘkAT we can transpose the p vector-columns, ut,
t = 1, . . . , p, which are computed by multiplying A by each vector Θkct, that is,

ut = A(Θkct).

Moreover, to compute the remaining elements f1, f2, . . . , fbp, of s, from the ma-

trix CΘkCT + λαk

zk
α

λT + (V k)−1Rk we used the following procedure.

Computing the non-diagonal elements f1, f2, . . . , fbp (storage by rows).

(1) Initialize t = 1.
(2) For i = 2, . . . , p do

For j = 1, . . . , i − 1 do
ft = 0
For k = 1, . . . , n do

ft = ft + λiλj
α
zα

+ ci
kcj

kθk

end for;
t = t + 1

end for;
end for;

In the next two sub-sections we described the methods used to solve system (28-
29). The Newton search components (∆yk, ∆vk), in each iteration k, are obtained
by the solution (dy, dv) of each system (28-29), as

∆yk = dy

and

∆vk = −dv.

4.3.1. Cholesky method. The Cholesky method method requires that the elements
of the system matrix be given explicitly. However, if the system is symmetric, it is
only necessary to have two vectors to store its elements. To solve system (28-29),
in each interior point iteration k, consider the above described vectors d, and s,
respectively, with the diagonal and non-diagonal lower part of the matrix of the

system, that need to be first computed, and the right-hand-side vector bk. Then
we can use the following procedure to obtain the solution of (28-29). This routine
explores the symmetric structure of the matrix. To simplify the exposition, in the

next description we use b, d and s for bk, d, and s.

Solve the symmetric system (28-29) by a direct method.

(1) For k = 1, 2, . . . , (m + p) − 1 do

For i = k + 1, . . . , (m + p) do

l = (i−1)(i−2)
2 + k

aux = sl
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sl = sl

dk

di = di − slaux
end for;
For j = k + 1. . . . , i − 1 do

α = l + j − k

γ = (j−1)(j−2)
2 + k

sα = sα − sγaux
end for;

end for;

(2) For k = 2, . . . , (m + p) do

For j = 1, . . . , k − 1 do

l = (k−1)(k−2)
2 + j

bk = bk − slbj

end for;
end for;

(3) For k = 1, . . . , (m + p) do

bk = bk

dk

end for;

(4) For k = (m + p) − 1, . . . , 1 do

For j = k + 1, . . . , (m + p) do

l = (j−1)(j−2)
2 + k

bk = bk − slbj

end for;
end for;

4.3.2. Preconditioned Conjugate Gradient Method. When an iterative method is
used to find the Newton direction, there are no guarantees that the primal-dual
interior point method converges. However, it is possible to define a stopping crite-
rion for the preconditioned conjugate gradient algorithm that guarantees sufficient
accuracy (see Portugal et al. (2000) and Baryamureeba and Steihaug (2006)). The
choice of a good preconditioner is another important point to consider. We only
considered the diagonal pre-conditioner

Dk =

(
D1 0
0 D2

)
,

where D1 = diag(d1, . . . , dm) and D2 = diag(dm+1, . . . , dm+p) are the diagonal

matrices obtained from the diagonal vector d containing the diagonal elements of
matrix (28). Note that all those elements are strictly positive. Given a starting
solution, for example (dy, dv) = (0, 0), the pseudo-code is as follows.

Solve the symmetric system (28) by the pcg method.

(1)

(
dy0

dv0

)
=

(
dy
dv

)

(2) Compute:

r1
0 = b1 − (AΘkATdy0 + AΘkCTdv0)
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r2
0 = b2 − (CΘkATdy0 + (CΘkCT+

λαk

zk
α

λT + (V k)−1Rk)dv0)

(3)

(
z1

0

z2
0

)
=

(
D1 0
0 D2

)−1(
r1

0

r2
0

)

(4)

(
p1

0

p2
0

)
=

(
z1

0

z2
0

)

(5) i := 0;
(6) do stopping criterion not satisfied →
(7) call main pcg cycle procedure
(8) i := i + 1
(9) od;

(10)

(
dy
dv

)
=

(
dyi

dvi

)

The main procedure of pcg is next described.

procedure pcg cycle

Compute:

(1) q1
i = AΘkATp1

i + AΘkCTp2
i

(2)
q2

i = CΘkATp1
i+

(CΘkCT + λαk

zk
α

λT + (V k)−1Rk)p2
i

(3) ǫi = (zi
1r

i
1 + zi

2r
i
2)

(4) γi := ǫi/(pi
1q

i
1 + pi

2q
i
2)

(5)

(
dyi+1

dvi+1

)
=

(
dyi

dvi

)
+ γi

(
p1

i

p2
i

)

(6)

(
r1

i+1

r2
i+1

)
=

(
r1

i

r2
i

)
− γi

(
q1

i

q2
i

)

(7)

(
z1

i+1

z2
i+1

)
=

(
D1 0
0 D2

)−1(
r1

i+1

r2
i+1

)

(8) βi := (zi+1
1 ri+1

1 + zi+1
2 ri+1

2 )/ǫi

(9)

(
p1

i+1

p2
i+1

)
=

(
z1

i+1

z2
i+1

)
+ βi

(
p1

i

p2
i

)

A measure for the accuracy of the pcg solution at iteration i can be given by the
residual (r1, r2) = (r1

i, r2
i). To guarantee sufficient accuracy of the interior point

search direction, at the interior point iteration k, the condition

(36) ‖(r1, r2) ≤ β0‖(ξ
k
2 , ξk

3 )‖

should be satisfied (see Portugal et al. (2000) and Baryamureeba and Steihaug
(2006)). This condition is used as the stopping criterion for the pcg algorithm.
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Table 1. Data dimension of test problems

Problem Vertices Arcs Rows Columns Nonzeros

P1 5 7 14 17 46
P2 10 30 42 63 184
P3 40 600 642 1203 3604
P4 100 1000 1102 2003 6004
P5 300 900 1202 1803 5404
P6 500 2500 3002 5003 15004
P7 600 8000 8602 16003 48004
P8 1500 10000 11502 20003 60004

There is a computational advantage of the pcg algorithm over the Cholesky
method, applied to solve (28-29), because it does not require the explicit computa-
tion of the matrix of the system. Using the associative propriety, only matrix-vector
multiplications are needed. We can use the procedure already described to perform
operations with the network matrix A. Moreover, matrix-vector products with the
transpose of the network matrix, AT , can be easily computed by the next procedure.

Computing the matrix-vector product, x = ATy.

(1) Initialize xi = 0, for all i = 1, ..., n
(2) For i = 1, ..., n do

snod = “head” of the arc i
enod = “tail” of the arc i
If snod 6= root and enod 6= root then

xi = ysnod − yenod

If snod = root then
xi = −yenod

If enod = root then
xi = +ysnod

end for;

5. Computational experiments and results

In this section we report on our computational experience with the above algo-
rithm for solving multi-objective problems, by using a set of multi-objective prob-
lems with two objectives. The algorithms were coded in FORTRAN. Parts of the
code were adapted from the FORTRAN subroutines in Portugal et al. (2008). All
the experiments were performed on a 1.69 GHz Personal Computer with 256 MB
of RAM. The set of test problems was generated with a modification of the NET-
GEN generator (Klingman et al., 1974) to obtain network flow problems with two
objectives. Table 1 lists the names and dimensions of the test problems.

The results of the computational experiments are summarized in Tables 2 to 10,
where the CPU time is measured in seconds.
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Table 2. Direct Variant of TPIDF-algorithm (π = (70, 30); λ1 =
0.9, λ2 = 0.1): Iterations and time (in seconds) for three levels of
precision

ǫ < 5× 10−3
ǫ < 10−6

ǫ < 10−8

Problem Iters Time Iters Time Iters Time

P1 5 0 9 0 10 0
P2 8 0 10 0 12 0
P3 16 0 19 0 21 0
P4 19 2 22 2 24 2
P5 17 10 22 13 24 14
P6 19 3660 25 3647 27 7200
P7 25 530 32 666 — > 7200
P8 23 4767 31 6378 — > 7200

Table 3. pcg Variant of TPIDF-algorithm (π = (70, 30), λ1 =
0.9, λ2 = 0.1): Iterations and times (in seconds) for three levels of
precision

ǫ < 5× 10−3
ǫ < 10−6

ǫ < 10−8

Problem Iters Time Iters Time Iters Time

P1 7 0 9 0 10 0
P2 8 0 12 0 13 0
P3 25 0 29 0 30 0
P4 34 0 39 0 40 0
P5 31 3 35 6 41 9
P6 41 12 46 21 53 35
P7 61 58 65 91 75 244
P8 71 319 83 964 87 1019

We implemented and compared two variants of the TPIDF-algorithm that differ
with respect to the method used to solve the system which defines the Newton di-
rection. One variant uses a direct method based on Cholesky factorization while the
other one uses an iterative method, the preconditioned conjugate gradient method
with diagonal preconditioner.

With the direct-solver variant, we obtained the following results for three preci-
sion levels referred in the table by ǫ. We are able to observe (Table 2) how difficult
it was for this direct variant to reach the solution in the larger problems.

Instead, if the pcg method is used to compute the search direction, much better
times are obtained, although more interior point iterations are needed, as can be
seen in Table 3.

Moreover, the closer the interior-point algorithm is to the optimal solution, the
more time it takes to find an admissible iterate. In the direct-solver variant, one
can observe that the closer one is from a primal-dual solution, the more poorly
conditioned is the system that defines the search direction, so more time is needed
to obtain an interior admissible solution. On the other hand, one observes a similar
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Table 4. Iterations in pcg Variant of TPIDF-algorithm (π =
(70, 30), λ1 = 0.9, λ2 = 0.1): Interior point method (IPM) iter-
ations and preconditioned conjugate gradient (PCG) iterations for
three levels of precision.

ǫ < 5× 10−3
ǫ < 10−6

ǫ < 10−8

Problem IPM PCG IPM PCG IPM PCG

P1 7 39 9 52 10 57
P2 8 59 12 98 13 109
P3 25 450 29 591 30 633
P4 34 1774 39 2463 40 2630
P5 31 3656 35 6845 41 10477
P6 41 6926 46 12484 53 21953
P7 61 13481 65 21389 75 60420
P8 71 46481 83 149945 87 152546

behavior when the pcg-method is used to compute the search direction, but less
time is required. The pcg variant of the TPIDF algorithm was by far preferred over
the variant where a direct method was used to compute the search direction.

The increase in time needed for the pcg-method to compute the search direction
was related to the increase in the number of iterations required to find a search
direction, as we can see in Table 4.

An excessive increase in the pcg iterations to obtain more precise results, from
ǫ < 5 × 10−3 to ǫ < 5 × 10−8, can be observed. In practice, this is responsible
for the excessive amount of time taken by the algorithm to find the solution of
the problem. This point could be potentially improved with a more appropriate
preconditioner.

In the experiments, we also ran the pcg variant with different bi-criteria reference
points, namely, the ideal point or the nadir point of the multi-objective problem.
As we can observe from the results in Tables 5 and 6, when the CPU time of the
algorithm was compared to the number of pcg iterations obtained for the ideal
point and for the nadir point, better results were obtained for the ideal point, as
expected. Table 6 shows the results obtained when the nadir point was used instead
of the ideal point.

Concluding the experiments, we also have considered different values for the
objective weights, using the pcg variant of the TPIDF-algorithm for the ideal point
as the multi-objective reference point. The TPIDF algorithm did not seem to be
very sensitive to changes in the objective weights for the multi-objective problem.
The results presented in Tables 7-10 were stated for a precision of ǫ = 10−8.

6. Conclusions

In spite of the fact that the single- and multi-objective network flows problems
are quite different from an algebraic as well as numerical point of view, we observe
that the techniques described in Portugal et al. (2000; 2008), with the proper adap-
tations, can be used to solve network flow problems with several objectives. The
main contribution of this paper was to show that the inexact infeasible primal-dual
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Table 5. Interior point method iterations and time in seconds
and number of PCG iterations for the pcg variant when π is the
ideal point (λ1 = 0.9, λ2 = 0.1) with precision ǫ = 10−8.

Problem IPM iters Time PCG iters

P1 10 0 57
P2 16 0 133

P3 30 0 685
P4 43 1 3277
P5 34 5 6291
P6 41 38 23824
P7 84 135 32253
P8 97 947 140161

Table 6. Interior point method iterations and time in seconds
and number of PCG iterations for the pcg variant when π is the
nadir point (λ1 = 0.9, λ2 = 0.1) with precision ǫ = 10−8.

Problem IPM iters Time PCG iters

P1 12 0 63
P2 15 0 107
P3 25 0 496
P4 29 1 1704
P5 40 15 18303
P6 34 40 24975
P7 45 165 39339
P8 66 2008 290450

Table 7. Interior point method iterations and time in seconds
and number of PCG iterations for the pcg variant with objective
weight values λ1 = 0.7 and λ2 = 0.3.

Problem IPM iters Time PCG iters

P1 10 0 51

P2 14 0 112

P3 26 0 5222

P4 31 1 1740

P5 34 4 4688

P6 43 28 17113

P7 55 123 29077

P8 102 1029 150399
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Table 8. Interior point method iterations and time in seconds
and number of PCG iterations for the pcg variant with objective
weight values λ1 = 0.5 and λ2 = 0.5.

Problem IPM iters Time PCG iters

P1 9 0 50

P2 14 0 113

P3 27 0 557

P4 32 1 1550

P5 41 8 9484

P6 41 13 7550

P7 59 116 27439

P8 75 1105 163670

Table 9. Interior point method iterations and time in seconds
and number of PCG iterations for the pcg variant with objective
weight values λ1 = 0.3 and λ2 = 0.7.

Problem IPM iters Time PCG iters

P1 9 0 52

P2 15 0 118

P3 31 0 768

P4 31 1 1740

P5 39 7 9169

P6 45 20 10727

P7 61 114 27448

P8 69 876 129287

Table 10. Interior point method iterations and time in seconds
and number of PCG iterations for the pcg variant with objective
weight values λ1 = 0.1 and λ2 = 0.9.

Problem IPM iters Time PCG iters

P1 9 0 6

P2 14 0 101

P3 29 0 671

P4 35 1 1594

P5 42 7 8696

P6 46 17 10375

P7 70 94 21724

P8 69 873 123429
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interior point algorithm is a useful tool to solve multi-objective problems. Unfortu-
nately, our TPIDF algorithm implementation suffers from the performance of the
standard diagonal preconditioner used in the pcg to compute the Newton direc-
tion. More investigation needs to be done to derive improved preconditioners for
the multi-objective network flow problem.

We limited our computational study to bi-objective instances, but the method
can accommodate more objectives, which is not the case with some classical tech-
niques for network flow problems. We are unaware of any other practical (effective
and efficient) algorithm for solving multi-objective network flow problems with sev-
eral objectives. Furthermore, our computational experiments show that the interior
point algorithm implemented is not very sensitive to the variation of the reference
points as well as of the “weights” assigned to the different functions. Therefore, we
think that these algorithms can be easily used from an interactive point of view,
which is one of the lines for our future research.
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