A Polynomial-Time Primal-Dual Affine Scaling
Algorithm for Linear and Convex Quadratic

Programming and its Power Series Extension *

Renato D.C. Monteiro i
Illan Adler
Mauricio G.C. Resende i

University of California, Berkeley, CA 94720

Abstract

We describe an algorithm for linear and convex quadratic programming problems that
uses power series approximation of the weighted barrier path that passes through the
current iterate in order to find the next iterate. If r > 1 is the order of approximation
used, we show that our algorithm has time complexity O(n%(l"'%)l}(l“'%)) iterations
and O(n® + n?r) arithmetic operations per iteration, where n is the dimension of the
problem and L is the size of the input data. When r = 1, we show that the algorithm

can be interpreted as an affine scaling algorithm in the primal-dual setup.

1. Introduction

After the presentation of the new polynomial-time algorithm for linear programming by
Karmarkar in his landmark paper [15], several so-called interior point algorithms for linear
and convex quadratic programming have been proposed. These algorithms can be classified

into three main groups:
(a) Projective algorithms, e.g. [4], [3], [8], [14], [15], [29] and [34].

(b) Affine scaling algorithms, originally proposed by Dikin [9]. See also [1], [5], [10] and
[33].

* This research was partially funded by the United States Navy Office of Naval Research, under contract
N00014-87-K-0202 and by the Brazilian Postgraduate Education Agency — CAPES.

1 Present address: AT&T Bell Laboratories, Holmdel, NJ 07733

i Present address: AT&T Bell Laboratories, Murray Hill, NJ 07974

2 Primal-Dual Power Series Algorithm

(c) Path following algorithms, e.g. [13], [18], [19], [24], [25], [26], [28] and [32].

The algorithms of class (a) are known to have polynomial-time complexity requiring O(nl)
iterations. However, these methods appear not to perform well in practice [30]. In contrast,
the algorithms of group (b), while not known to have polynomial-time complexity, have
exhibited good behavior on real world linear programs [1] [20] [23] [31]. Most path following
algorithms of group (c) have been shown to require O(y/nL) iterations. These algorithms
use Newton’s method to trace the path of minimizers for the logarithmic barrier family of
problems, the so-called central path. The logarithmic barrier function approach is usually
attributed to Frisch [12] and is formally studied in Fiacco and McCormick [11] in the
context of nonlinear optimization. Continuous trajectories for interior point methods were
proposed by Karmarkar [16] and are extensively studied in Bayer and Lagarias [6] [7],
Megiddo [21] and Megiddo and Shub [22]. Megiddo [21] relates the central path to the
classical barrier path in the framework of the primal-dual complementarity relationship.
Kojima, Mizuno and Yoshise [19] used this framework to describe a primal-dual interior
point algorithm that traces the central trajectory and has a worst time complexity of O(nL)
iterations. Monteiro and Adler [25] present a path following primal-dual algorithm that

requires O(y/nL) iterations.
This paper describes a modification of the algorithm of Monteiro and Adler [25] and

shows that the resulting algorithm can be interpreted as an affine scaling algorithm in the
primal-dual setting. We also show polynomial-time convergence for the primal-dual affine
scaling algorithm by using a readily available starting primal-dual solution lying on the
central path and a suitable fixed step size. Furthermore, we show finite global convergence
(not necessarily polynomial) for any starting primal-dual solution. In [21] it is shown that
there exists a path of minimizers for the weighted barrier family of problems, that passes
through any given primal-dual interior point. The direction generated by our primal-dual
affine scaling algorithm is precisely the tangent vector to the weighted barrier path at the
current iterate. Hence, the infinitesimal trajectory determined by the current iterate is the

weighted barrier path specified by this iterate.

We also present an algorithm based on power series approximations of the weighted
barrier path that passes through the current iterate. We show that the complexity of
the number of iterations is given by O(*n%(l"'%)L(H%)) and that the work per iteration is
O(n® + n?r) arithmetic operations, where r is the order of the power series approximation
used and L is the size of the problem. Hence, as 7 — oo the number of iterations required
approaches O(y/nL). We develop this algorithm in the context of convex quadratic pro-
gramming because it provides a more general setting and no additional complication arises

in doing so. We should mention that the idea of using higher order approximation by trun-

R.D.C. Monteiro, I. Adler and M.G.C. Resende 3

cating power series is suggested in [17] and also is present in [1], [7] and [21]. However, no
convergence analysis is discussed there.

The importance of starting the algorithm at a point close to the central path is also
analyzed. More specifically, the complexity of the number of iterations is given as a function
of the “distance” of the starting point to the central path. It should be noted that Megiddo
and Shub [22] have analyzed how the starting point affects the behavior of the continuous
trajectory for the projective and affine scaling algorithms.

This paper is organized as follows. In section 2 we motivate the first order approx-
imation algorithm, by showing its relationship to the algorithm of Monteiro and Adler.
We also interpret this first order approximation algorithm as an affine scaling algorithm
in the primal-dual set up. In section 3 we present polynomial-time complexity results for
the primal-dual affine scaling algorithm (first order power series) in the context of linear
programming and under the assumption that the starting point lies on the central path. In
section 4, we analyze the higher order approximation algorithm in the more general context
of convex quadratic programming. We also analyze how the choice of the starting point af-

fects the complexity of the number of iterations. Concluding remarks are made in section 5.

2. Motivation

In this section we provide some motivation for the first order version of the algorithm that
will be described in this paper. We concentrate our discussion on the relationship between
this algorithm and the algorithm of Monteiro and Adler [25]. We also give an interpretation
of the first order algorithm as an afline scaling algorithm in the primal-dual setup.

Throughout this paper we adopt the notation used in [19] and [25]. If the lower case
¢ = (x1,...,%,) is an n-vector, then the corresponding upper case X denotes the diagonal
matrix diag(z) = diag(zy,...,7,). We denote the j* component of an n-vector z by z;,
for j = 1,...,n. A point (z,y,2z) € R* x R™ x " will be denoted by the lower case
w. The logarithm of a real number @ > 0 on the natural base and on base 2 will be
denoted by Ina and loga respectively. We denote the 2-norm and the oco-norm in £* by
|| - || and || - ||co respectively. Finally, for w = (z,y,z) € R* x R™ x R", we denote by
fw) = (fi(w), ..., fu(w))" € R, the n-vector defined by

filw)=ziz,i=1,...,n (1)
Consider the pair of the standard form linear program

(P) minimize ¢!z (2)

4 Primal-Dual Power Series Algorithm

subject to: Az = b (3)
x>0 (4)
and its dual
(D) maximize b7y (5)
subject to: ATy +2=c (6)
2> 0 (7)

where A is an m X n matrix, x, ¢ and z are n-vectors and b and y are m-vectors. We assume
that the entries of A, b and c¢ are integer.

We define the sets of interior feasible solutions of problems (P) and (D) as

S={zeR" Az =b,z >0}, (8)
T={(y,2) e R" x R ATy + 2 =¢,2 > 0} (9)

respectively, and let
W =A(z,y,2);0 € 5,(y,2) € T'}. (10)

We define the duality gap at a point w = (z,y,2) € W as ¢!z — bTy. One can easily verify
that for any w € W, ¢lz — b7y = 272, In view of this relation, we refer to the duality gap
as the quantity 2z instead of the usual ¢’z — bTy. We make the following assumptions

regarding (P) and (D):
Assumptions 2.1:

(a) S#0
(b)YT #0
(c) rank(A) = m.

Before we describe the primal-dual affine scaling algorithm, we briefly review the con-
cept of solution pathways for the weighted logarithmic barrier function family of problems
associated with problem (P). For a comprehensive discussion of this subject, see [11] and
[21].

The weighted barrier function method works on a parameterized family of problems

penalized by the weighted barrier function as follows. The weighted barrier function problem

with parameter g > 0 and weights s; >0, j =1,...,nis:
(P,) minimize ¢z — MZSJ' In z; (11)
=1

subject to: Az =b (12)

R.D.C. Monteiro, I. Adler and M.G.C. Resende 5

x>0 (13)

Conditions (a-b) of assumption 2.1 imply that the set of optimal solutions of (P) is non-
empty and bounded [25]. This fact implies that (P,) has a unique global optimal solution
@ = x®(p) that is characterized by the following Karush-Kuhn-Tucker stationary condition

(c.f. [11], [21]):

ZXs—pus = 0 (14)
Az —b = 0,2>0 (15)
Alytz2-¢c = 0 (16)

where s = (s1,...,5,) denotes the vector of weights, y = y*(u) € R™ and z = 2°(u) € R".
Furthermore, as p — 0%, the solution z*(x) for (14-16) converges to an optimal solution
of (P) and the corresponding pair (y*(u),2°()) € T converges to an optimal solution of
(D) [11] [21]. We refer to the path w® : p — w*(p) = («®(p), y*(p), 2°((1)) as the path of
solutions of problem (P) with weight s = (s1,...,5,).

We define the central path w(p) as the path of solutions w*(p) of problem (P) with
s=(1,...,1) and let I' denote the set of points traced by the central path, that is,

I'={w=1(z,y,2z) € W; for some u >0, z;2;, = pu, i =1,...,n}. (17)

For convenience, we also refer to the set I' as the central path.
Monteiro and Adler [25] present an interior path following primal-dual algorithm which
requires at most O(y/nL) iterations. This primal-dual algorithm assumes given constants ¢

and ¢ satisfying

0<o< (18)
0<b6<+n (19)
62 + 62 §
ﬂ1—0)§0<1_§§) 20

e.g. § = 6§ = 0.35) and an initial feasible interior solution w" € W satisfying the followin
g g g

criterion of closeness to the central path I':

1/ (w?) = uel| < 0u°, (21)
where p® = (2°)72%/n. Also assumed given is a positive tolerance ¢ for the duality gap.
The algorithm iterates until the duality gap (z*)T 2* falls below the tolerance e.

For w € W and p > 0, we denote the feasible direction Aw = (Az, Ay, Az) obtained
by solving the system of linear equations
ZAz+ ZAz = XZe— e (22)
AAz = 0 (23)
ATAy+A2 = 0 (24)

6 Primal-Dual Power Series Algorithm

by Aw(w, u). The direction Aw(w, u)is the Newton direction associated with system (14-
16) for the parameter p fixed and the weights s; =1, j = 1,...,n [19], [25]. System (22-24)

has the following solution:

Az = [Z27'—Z7'XAT(AZYXAT)YAZ7Y (X Ze — pe)
Ay = —[(AZ'XATYTAZ7Y)(X Ze — pe)
Az = [AT(AZ'XATY Y AZ7Y(X Ze — pe)

The algorithm is given next.

procedure PrimalDual (4,b,c, e, w°, ¢)

1 Set k:=0and u° = (2°)72%/n;
2 do (2" > e —

3 = (1 b)),

4 AwF = Aw(wk, bty

5 whtl = wk — Aw*;

6 Set k:=k+1;

7 od;

end PrimalDual;

Algorithm 2.1 - The Algorithm of Monteiro and Adler

Note that in line 5, no step size is used to define the next iterate. Instead, we can view
p as playing the role of step size. The following theorem, which is proved in [25], leads to

polynomial-time complexity of the above algorithm.

Theorem 2.1: Let 0 and § be constants satisfying (18-20). Assume that w = (z,y,z) € W

satisfies

1/ (w) — pel| < Op (25)
where i = xz/n. Let i > 0 be defined as i = p (1 —6//n). Consider the point & =
(Z,9,2) € R* x R™ x R" given by © = w — Aw, where Aw = Aw(w, fi) satisfies (22-24).
Then we have:

(a) || f(®) — fre
(b) & € W

< 0@

R.D.C. Monteiro, I. Adler and M.G.C. Resende 7
(c) T2 =np .

The approach of the algorithm of this paper is to compute the search direction Aw by
solving system (22-24) with p = 0, and introduce a step size « so that the new iterate w is

found from the current iterate w as follows:
W =w— alAw (26)

More specifically, the direction Aw = (Az, Ay, Az) is determined by the following system

of linear equations

ZAz + XAz = XZe (27)
AAz = 0 (28)
ATAy+ A2 = 0 (29)

which results in the following direction:

Az = [Z27' = Z7'XAT(AZ1XAT)YAZ7Y(X Ze)

= (27— Z7' X AT(Az7 X AT) T AZ X e (30)
Ay = —[(AZ7'XATYTAZ7Y(X Ze)
= —(Aaz7'xAT)™N (31)

Az = [AT(AZ7'XAT)YTAZ7Y(X Ze)
= AT(Az7 x AT (32)

where the second equalities in (30-32) follow from the fact that z = ¢ — ATy and Az = b.
Note that the computation of Ay and Az is a byproduct of the computation of Az. We
denote the solution Aw of system (27-29) by Aw(w).

We show that, by appropriately choosing the step size @ > 0 and an initial starting
point w® € W (via artificial variables), the algorithm outlined above has polynomial-time
complexity. A detailed description of the algorithm is presented in section 3 together with
a proof of polynomial-time complexity.

We now give an interpretation of this algorithm as an affine scaling algorithm in the
primal-dual setting. Before, we need to describe a general framework for afline scaling
algorithms. An affine scaling algorithm assumes a feasible interior point 2° € § is given as
a starting point. Given the k%" iterate z = z* € §, the algorithm computes a search direction

Az = Az* as follows. Let D = D* be a diagonal matrix with strictly positive diagonal

8 Primal-Dual Power Series Algorithm

entries. Consider the linear scaling transformation ¥p : " — R", where ¥p(z) = D71z,

In the transformed space problem (P) becomes

(Pp) minimize (Dc)lv (33)
subject to: ADv =15 (34)
v>0 (35)

The search direction d in the transformed space is obtained by projecting the gradient vector
Dc orthogonally onto the linear subspace {v: ADv = 0} to obtain a feasible direction that
yields the maximum rate of variation in the transformed objective function. Specifically,

this direction is given by
d = [I - DAT(AD*AT)™LAD| De (36)
Hence, in the original space the direction Az is given by

Az = V3l(d) (37)
= D[I-DAT(AD*AT)T AD| De. (38)

k41

Since (P) is posed in minimization form the next iterate & = 2**" is given by

&=z — alzx, (39)

where a > 0 is selected so as to guarantee that the iterate & > 0.

When the scaling matrix D = X, (38) is the direction generated by the primal affine
scaling algorithm [5] [10] [33]. Note that in this case, the primal affine transformation ¥ x
maps the current iterate z in the original space into the vector of all ones in the transformed
space. Commonly, for the primal affine scaling algorithm, the step size a is computed by
performing a ratio test and multiplying the step size resulting from the ratio test by a fixed
positive constant less than 1 (see for example [5], [10], [30] and [33] for details).

The primal-dual algorithm can also be viewed as a special case of this general framework
if we assume that besides the current primal iterate z € .S, we also have a current dual iterate
(y,2z) € T in the background. In this case, if we let the scaling matrix D = (Z~'X)'/2,
then (38) is exactly the direction given by (30). Note that now the current iterate z in the
original space is mapped, under the affine transformation ¥p, into the following vector in

the transformed space
(XZ)1/2€: (\/’rlzlv"'vvwnzn)T (40)

The above framework was described for problems posed in standard form. A similar

description can be done for problems posed in format of the dual problem (D). In this case,

R.D.C. Monteiro, I. Adler and M.G.C. Resende 9

the affine transformation ¥p is used to scale the slack vector z. When the scaling matrix
D = Z71, we obtain the dual affine scaling algorithm [1]. More specifically, if (y,2) € T is

the current iterate, the direction computed by the dual affine scaling algorithm is given by
Ay = —(AD*AT)1p (41)

Az = AT(AD?AT)™ Y (42)

where D = Z7! and the next iterate (§,2) € T is found by setting § = y — aAy and
2 = z — alAz. The step size « is computed in an way similar to the one in the primal affine
scaling algorithm and guarantees that 2 > 0. The dual affine scaling algorithm has been
shown to perform well in practice [1] [2] [20] [23]. In this dual framework, if the scaling
matrix D = (Z7'X)"/2, then (41) and (42) are identical to (31) and (32) respectively. Thus,
in this case, we again obtain the primal-dual affine scaling algorithm.

Global, though not polynomial, convergence proofs exist for the affine scaling algorithms
under the assumption of nondegeneracy [5] [10] [33]. It is conjectured, however, that both
the primal and dual affine scaling algorithms have worst case time complexity that are not
polynomial. By appropriately choosing a starting primal-dual solution and a suitable fixed
step size, we show in this paper that in the primal-dual setting, the afline scaling algorithm

has polynomial-time complexity.
3. The Algorithm and Convergence Result

In this section, we complete the description of the primal-dual affine scaling algorithm
that was briefly outlined in section 2. Polynomial-time complexity for this algorithm is
established by selecting a suitable starting point and an appropriate step size. We make

one further assumption regarding problems (P) and (D).

Assumption 3.1: A initial point w® = (2°,4°,2%) € W is given such that the following

condition holds:

A=l i=1,2,....n (43)

where 0 < u® = 20(),

Relation (43) is equivalent to requiring that w® = w(u®) where w(p) is the central
path. Observe that assumption 3.1 implies (a) and (b) of assumption 2.1. Given a linear
program in standard form, an associated augmented linear program in standard form can
be constructed satisfying assumptions 2.1 and 3.1 and whose solution yields a solution for
the original problem, if such exists. Indeed, in [25], it is shown that the augmented problem

can be constructed in such a way that a initial point w lying in the central path is readily

10 Primal-Dual Power Series Algorithm

available and that the size of the original problem and that of the augmented problem are
of the same order. The point w® is used as the algorithm’s initial iterate.

The algorithm generates a sequence of points w* € W, (k =1,2,...) starting from w°
as follows. Given w* € W, the search direction Aw(w*) is computed according to (30-32)

and w*t! is found by setting
whtt = wk — o Aw(wh) (44)

where o is the step size at the k" iteration. For the purpose of this paper, which is limited
to a theoretical analysis, we choose a constant step size a* = a (for k = 0,1,2,...), to be
described next. Let € be a given tolerance for the duality gap, i.e the algorithm terminates
when the duality gap (xk)Tzk is no longer greater than e¢. The step size is chosen to depend

on the parameter u°, the dimension n and the tolerance € as follows:

1
“= n[ln(ne=1u0)] (45)

where [z] denotes the smallest integer greater than or equal to z. We also assume that
a < 1/2, which can be insured by the choice of the tolerance e¢. Note that the larger ¢~ 1,
pY and n are, the smaller the step size o is. We are now ready to describe the algorithm,

which is presented below.

procedure PrimalDualAffine (A,b,c, ¢, w)

1 Set k:=0;

2 do (2" > e —

3 Compute Aw(w*) according to (30-32);

4 Set w**! := w* — aAw(w*) where a is a constant given by (45);
5 Set k:=k+1;

6 od;

end PrimalDualAffine;

Algorithm 3.1 - The Primal-Dual Affine Scaling Algorithm

Algorithm 3.1 is given as input the data A,b, ¢, a tolerance ¢ > 0 for the duality gap
stopping criterion and the initial iterate w® as the one specified in assumption 3.1.
The following theorem, whose proof we defer to later in this section, describes the

behavior of one iteration of algorithm 3.1 given that a general step size a is taken.

R.D.C. Monteiro, I. Adler and M.G.C. Resende 11

Theorem 3.2: Let w = (z,y,2) € W be given such that
— 0o = 12i — <4 4
17(w) = pelleo = max |zizi — pl < 6 (46)

where u = 2Tz/n > 0 and 0 < 6 < 1. Consider the point w = (&,7,2) defined as v =
w — aAw, where Aw = Aw(w) and o € (0,1). Let ff = (1 — a)p and

2
04— (47)

g 2(1 - a)

Then, we have:

(@) |f(@) - fielloo < B,

(b) If 6 < 1 then w e W,

(c) fr =2T3/n.

Theorem 3.2 parallels theorem 2.1 closely. In spite of the fact that theorem 3.2 was formu-
lated in terms of the co-norm, as compared to the 2-norm formulation of theorem 2.1, we
should point out that theorem 3.2 also holds for the 2-norm as will become clear from its
proof. The reason we state theorem 3.2 in terms of the co-norm is discussed in the next
section where we prove convergence (not necessarily polynomial) of algorithm 3.1 for any
given starting point w® € W. Polynomial convergence will only be guaranteed in the case
that the initial starting point is in some sense close to the central path. In that context,
the oco-norm will play an important role.

We can view f(w) as a map from R” X " x R” into R", mapping w = (z,y, z) into
the complementarity vector X Ze. Under this map, the set W is mapped onto the positive
orthant, the central path I' is mapped onto the diagonal line f(I') = {pe; p > 0} and an
optimal solution w* = (z*,y*, z*) for the pair of problems (P) and (D) is mapped into the
zero vector [25]. The image under f of the set of points w € W such that || f(w) — pe|| < 0u
with ¢ = 272/n is a cone in the positive orthant of " having the diagonal line f(I') as
a central axis and the zero vector as an extreme point. The central axis forms a common
angle with all the extreme rays of the cone and this angle is an increasing function of 8. For
this reason, we refer to 6 as the opening of the cone. Theorem 2.1 states that if we start at a
point inside this cone, then all iterates will remain within the same cone and will approach
the optimal solution f(w*) at a rate given by (1 — 6/4/n). This is to be contrasted with
theorem 3.2, where the iterates are guaranteed to be in cones with openings that gradually

increase from one iteration to the other.

12 Primal-Dual Power Series Algorithm

Note that by (c) of theorem 3.2, we have
¢T3 =nji=(1 —a)np = (1 - a)z’z (48)

that is, the duality gap is reduced by a factor of (1 — a) at each iteration. Therefore, it is
desirable to choose a as large as possible in order to obtain as large as possible a decrease
in the duality gap. Once a is specified, the number of iterations necessary to reduce the

duality gap to a value < € is not greater than
K =a ln(nule™t)] (49)

which is immediately implied by the fact that
()T = (1 -) (20720 = (1 -) nu® < e (50)

where the second equality is due to (43) and the inequality follows by the choice of K. The
choice of a should now be made to guarantee feasibility of all iterates w*, (k=0,1,....,K)
and toward this objective, (b) of theorem 3.2 will play an important role. The choice of «

given by relation (45) becomes clear in the proof of the following result.

Corollary 3.3: Let K be as in (49) and consider the first K iterates generated by al-
gorithm 3.1, i.e. the sequence {w*}E_ . Let pF = (1 —)*u® and 6% = kna?, for all
k=0,1,2,...,K. Then, forall k =0,1,2,..., K we have:

(a) | f(w) — pel|o < OFp*,
(b) wk e W,
(c) (a*)T2F n = p*.

Proof: From (45), (49) and the definition of %, it follows that
0" < Kna® =1 (51)

forall k =0,1,..., K. The proof of (a), (b) and (c) is by induction on k. Obviously (a), (b)
and (c) hold for £ = 0, due to assumption 3.1. Assume (a), (b) and (c) hold for k, where
0 <k < K. Since a < 1/2, it follows that

2

L
Ty

<0+ na’ =01 < 1. (52)

In view of the last relation, we can apply theorem 3.2 with w = w*, u = p* and 6 = 6* to

conclude that (a), (b) and (c) hold for k£ 4 1. This completes the proof of the corollary. O

R.D.C. Monteiro, I. Adler and M.G.C. Resende 13

We now discuss some consequences of the above corollary. Let L denote the size of linear
programming problem (P). If we set € = 279(L) then by (50), the iterate w™ generated by
algorithm 3.1, where K is given by (49), satisfies (z%)725 < ¢ = 279, Then, from w¥,
one can find exact solutions of problems (P) and (D) by solving a system of linear equations
which involves at most O(n?) arithmetic operations [27]. Using this observation, we obtain

the main result of this section.

Theorem 3.4: Algorithm 3.1 solves the pair of problems (P) and (D) in at most O(nL?*)

iterations, where each iteration involves O(n®) arithmetic operations.

Proof: From (45), (50) and the fact that ¢ = 279(F) and u® = 20 it follows that the
algorithm takes at most

K =n[ln(ne'p®)]? = O(nL?) (53)

iterations to find a point w* € W satisfying (2*)72% < e = 279(F), The work in each itera-
tion is dominated by the effort required to compute and invert the matrix A(Zk)_leAT,

namely, O(n?) arithmetic operations. This proves the theorem. O

We now turn our attention towards proving theorem 3.2. The proof requires some

technical lemmas.

Lemma 3.5: Let w = (z,y,2) € W be given. Consider the point & = (&,7, 2) given by
W = w — aAw, where Aw = Aw(w) = (Az,Ay,Az) and o > 0. Then we have:

T;%2; = (1 — a)xizi + QQA.ZZ'AZZ' (54)

and

(Az)TAz = 0. (55)

Proof: First, we show (54). We have:
&2, = (@ — alAz)(z — alz)
= iz — a(x Az + zAz) + a?Az; Az
= x;2 — az;z + o?Az; Az
= (1-a)zz+ a?Az;Az;
where the third equality is implied by (27). This completes the proof of (54). To show (55)

multiply (28) and (29) on the left by (Ay)T and (Az)T, respectively, and combine the two

resulting expressions. This shows (55) and completes the proof of the lemma. O

The next lemma appears as lemma 4.7 in [25], where it is proved.

14 Primal-Dual Power Series Algorithm

Lemma 3.6: Let r, s and t be real n-vectors satisfying r + s = t and r's > 0. Then, we
have:
max (|7, [[s[]) < [J¢] (56)

t?
ase] < 195 (57)

where R and S denole the diagonal matrices corresponding to the vectors r and s, respec-
tively.
As a consequence of the previous lemma, we have the following result.

Lemma 3.7: Let w = (z,y,2) € W be given. Consider the direction Aw = Aw(w) =
(Az,Ay,Az). Define Af € R" as Af = (AX)(AZ)e, where (AX) and (AZ) are the
diagonal matrices corresponding to Ax and Az, respectively. Then, we have:

.fTZ

lAf] < N (58)
Proof: Let D = (Z_IX)%. Multiplying both sides of (27) by (XZ)_%, we have
D™ 'Az + DAz = (X Z)ze. (59)

By (55) we have that (D~'Az)T(DAz) = 0. Hence, we can apply lemma 3.6 with r =
D7 'Az, s = DAz and t = (XZ)%e resulting in

1
XZ)zell?
[0~ ax)(paz)d < 122D (60)
which is equivalent to (58). This completes the proof of the lemma. O
We are now ready to prove theorem 3.2.
Proof (Theorem 3.2): From (54) and the fact that 4 = (1 — a)p, it follows that
$:2i — = (1 —a)(ziz — p) + *Az;Az. (61)
Since p = z7z/n, it follows from lemma 3.7 that
etz np
|Az; Az| < ||Af]] < -5 =5 (62)

Using relations (46), (61), (62) and the fact that 4 = (1 — a)u, we obtain

&2 —p < (1—a)|eiz —p|+ | Az; Az
na’u
2

< (T-a)fu+

2

_ P*ﬂELTLl (63

l-a

R.D.C. Monteiro, I. Adler and M.G.C. Resende 15

Since the last relation holds for all ¢ = 1,...,n, (a) follows.

We now show that @ € W under the assumption that

na2

To show that @& € W, it suflices to show that £ > 0 and 2 > 0. Assume by contradiction
that &; < 0 or 2; < 0, for some . Using relations (63) and (64), it follows that ;2 > 0.
Hence, it must be the case that #; < 0 and 2; < 0. This requires that aAz; > z; and

aAz; > z;, which implies that
Q? Az Az > xi2 > (1 - 0)p. (65)

This last inequality and (62) imply that
na’p

2

> (1-) (66)

which contradicts the fact that

TL&Z TL&Z

0+ — <0+ ——< 1. 67
T Ry (67)
This shows (b). Summing (54) over all ¢ = 1,2,...,n and noting (55), we obtain (c). This

completes the proof of theorem 3.2. O
4. Primal-Dual Power Series Algorithm

The algorithm of section 3 can be viewed as generating points based on a first order
approximation of the weighted logarithmic barrier path of solutions determined by the
current iterate. This observation will be examined later in more detail. In this section,
we present an algorithm based on power series approximation of the path of solutions that
passes through the current iterate. As one should expect, faster convergence is obtained.
More interestingly, we show that the complexity of the number of iterations depends on
the order of approximation, say r, and moreover, as r — oc, the number of iterations
asymptotically approaches the complexity of the number of iterations of the primal-dual
path following algorithm [25], namely, O(y/n L) iterations. We develop the algorithm in
this section in the context of convex quadratic programming problems because it provides
a more general setting for the algorithm without additional complications.

We start by briefly extending the concepts introduced in section 2 to convex quadratic
programming problems. Consider the convex quadratic programming problem as follows.
Let

16 Primal-Dual Power Series Algorithm

(P) minimize ¢’z + %mTQx (68)
subject to: Az =b (69)
x>0 (70)

where A, b, ¢ and x are as in section 2 and @) is an n X n symmetric positive semi-definite

matrix. Its associated Lagrangian dual problem is given by

1
(D) maximize — §xTQx + b7y (71)
subject to: —Qu + ATy +z2=c¢ (72)
2>0 (73)

where y is an m-vector and z is an n-vector. We define the sets of interior feasible solutions
of problems (P) and (D) to be

S={zeR" Az =b,z >0}, (74)

T={(z,y,2) e R" X R™" x R"; —Qu+ ATy + 2 = ¢, 2 > 0} (75)

respectively and W is now defined to be
W =A{(z,y,2);2 € 5,(v,y,2) € T} (76)

The duality gap at a point w € W, which is defined as ¢’z + 27Qx — by, can be easily

shown to be given by 2. We make the following assumptions regarding problems (P) and
(D):
Assumptions 4.1:

(a) A point w° = (2, 4%, 2°%) € W is given.
(b) rank(A) = m.

The point w® will serve as the initial iterate for the algorithm described below. Observe
that (a) of assumption 4.1 is weaker than assumption 3.1 since we do not require w® to
lie in the central path. As a result, the upper bound on the number of iterations for the
algorithm described in this section will be given in terms of some measure of distance of w®
with respect to the central path and also in terms of the duality gap at w®.

In the context of convex quadratic programming problems, the path of solutions for

the weighted barrier function family of problems associated with problem (P), where the

R.D.C. Monteiro, I. Adler and M.G.C. Resende 17

weights are s = (s1,...,58y), is determined implicitly by the following parameterized system

of equations:

i (p)z(p) = sip,i=1,....n (77)
Ax®(p) = b (78)
—Qa(p) + ATy (p) + 2°(p) = ¢ (79)

Under assumption 4.1 and for g > 0 fixed, this system is ensured to have a unique solution
w*(p) = (z°(p), y*(p), 2°(p)). Furthermore, as u — 07, the solution z*(u) € S for (77-79)
converges to an optimal solution of (P) and w®(u) = (z°(u), y*(1), 2°(p)) € W converges to
an optimal solution of (D) [11] [21]. With these definitions and notations, the central path
associated with problems (P) and (D) is defined as in section 2.

Given a point w = (z,y,2) € W and letting s; = z;2;, ¢ = 1,...,n, it follows that
w?(1) = w. Therefore, for this particular set of weights, the path of solutions contains the

th degree truncated power series approach can be motivated as

point w. The idea of the r
follows. In order to obtain an approximation to the point w*(1 —) for a > 0, we consider
the 7" order Taylor polynomial, r > 1, of the function h : @ — w*(l —a) at a =0 as
follows:

(o)t dth

w'(w,a) =

(1) (80)

where for k& > 1, d*/du* is the k** derivative operator and for k = 0, d°/du® is defined
as the identity operator, that is, d%w?®/du’(u) = w*(u), for all . If the k** derivative
d*w* /du*(1), (k = 1,...,7), is known, then one can use w’”(w,a) to estimate the point
w?(1 — a), for a sufficiently small.
We next show how the k" derivative
dkws() (dkws() dk,ys) dkzs
duk duk 777 dpk T dpk

(1)) fork=1,...,r (81)

can be computed. Taking the derivative of (77-79) k times, and setting g = 1, we obtain

k l k—1 : —
E\ da; d*-Dz vz ifk=1
1 1) = 82
;(z)dul()dmk—”() {0 if k> 2 (82)
dkz
d* d* d*
QoM+ AT+ 1) = 0 (84)

duk

18 Primal-Dual Power Series Algorithm

To eliminate the binomial coefficients above and simplify the expressions below, let AF)yw =
[d*w/dp*(1)]/k!, for k = 0,1,...,7. With this notation relations (82-84) become

2 (A%z) (AFDz) = . (85)
=0 0 ifk>2
AARE = (86)
—QAW® gz 4 ATAB Yy L A = ¢ (87)
In terms of the direction A w, 1 < k < r, the right hand side of (80) becomes
w'(w,a) = Z(—a)kA(k)w =w+ Z(—a)kA(k)w (88)
k=0 k=1

Let A®WX and A®)Z be the diagonal matrices corresponding to the vectors A®)z and
Az respectively. Assume that ADw = (A(Z)x, Ay, A(Z)z), 0 <! < k have already been
computed. Then we compute AF)y = (A(k)x, ARy, A(k)z) by solving the following system

of linear equations, which is exactly system (85-87) written in a different format.

XZe i k=1
ZAWz 4+ X AW, = (89)
— i AOX)(AEDZ)e i k> 2
AAF g = (90)
—QAW g 4 ATARy L AR, = (91)

Sometimes, we denote the directions A w = (A(k)yc, ARy, A(k)z) by A(k)w(w) to indicate
their dependence on the point w. Note that the coefficients of the system above are the same
for the computation of all the directions A®w, 1 < k < r. Once the computation of AN w
is performed, which takes O(n®) arithmetic operations, the directions ARy, 2 < k<,
can each be computed in O(n?) arithmetic operations. Thus, the overall computation of
AWw, 1 < j<r, takes O(n® 4 rn?) arithmetic operations.

In fact, explicit expressions for AFw = (A(k).r, ARy, A(k)z) in terms of the previous

directions AWw, 1 =1,2,...,k—1 are given as follows:
AWz = (24 XQ) I - XAT(A(Z+ XQ)"' XA A(Z+ XQ) 7] w
AWy = [(A(Z+XQ) XA A(Z+ XQ)] u

ARz = QAW — ATAB)
where

— RN AOXYAEDZ)e if k> 2

XZe ifk=1
u =
=1

R.D.C. Monteiro, I. Adler and M.G.C. Resende 19

Note that when the matrix ¢ = 0, that is, problem (P) is a linear program, then the
direction AMw is exactly the direction Aw = Aw(w) as defined in section 3. Thus, one can
easily see that the algorithm to be described next, when r = 1, generalizes the one presented
in the previous section for linear programming. When we consider the infinitesimal version
of the algorithm described in the previous section, or more generally, the one presented in
this section when r = 1, we are led to consider the solution of the following differential

equation in the set W of primal-dual interior feasible solutions:

T = ADu(e() (93)
W) = w (94)

where p° and w = (z,y,2) € W are assumed given and (94) determines the initial condition
for (93). The trajectories of the differential equation (93) are said to be induced by the
vector field w € W — A(l)(w) € R* x R™ x ™. It turns out, by the way we motivate our
algorithm, that the trajectory induced by this vector field and passing through the point
w = (z,y,2) is exactly the locus of points traced by the path of solutions w*(p) of system
(77-79) when the weights s = (s1,...,s,) are given by s; = ;2;.

Before we describe the algorithm based on the r** degree truncated power series, we

need to introduce some further notation. For w € W, let fpn(w) = 1rglélnf2(w) and
fmax(w) = 1I2?<)§zf2(w) Consider now the point w® € W mentioned in assumption 4.1
and let
10 = (Frmax(w®) + Fin(w?))/2 (95)
o Jmas) ~ Fuin() "
Jmax(0°) + fonin(w°)

Note that 6° < 1 and that p° and 6° satisfy
1F(®) = pelloe < 8. (97)

The fact that we are using the oo-norm is crucial here in order to guarantee that, given
w® € W, there exist constants p° and 6° such that #° < 1 and such that relation (97) holds.
In general, given any w® € W, the above property does not hold if we use the 2-norm. This
is the main reason for using the oo-norm instead of the 2-norm.

We now have all the ingredients to describe the truncated power series algorithm of
degree r. The truncated power series algorithm of degree r studied in this section generates a
sequence of points w* € W, (k = 1,2,...), starting from the point w® € W (c.f. assumption
4.1) as follows. Given w* € W, w**! is found by setting w**! = w”(w*, a) (c.f. (88)),
where a > 0 is the step size. As in section 3, we assume that the same step size is used for

all iterations. The step size a > 0 is determined as follows. Let ¢ > 0 be a tolerance for

20 Primal-Dual Power Series Algorithm

the duality gap (z%)T(2*), so that, like in section 3, we terminate the algorithm as soon as
(z")T(2%) < €. The step size is determined as a function of the degree of approximation r,

the dimension n, the parameter u°, the constant #° and the tolerance € as follows:

1

a= ([2(%—}_%)7(%—1—;)(](7?);"(%*—217)[111(2n€_1/10)-‘;-‘)_1 (98)

where v = 2/(1—6°) and ¢(r) = 372, 1 p(k) with the sequence p(k) defined recursively as

follows:
p(l) =1 (99)
k—1
p(k) = 3 p(i)pk —3), k > 2 (100)

We also assume that the tolerance € is given small enough to ensure that @ < 1/2. The

solution of the recurrence relation (99-100) is well known and is given by

pk) = 7 (ol) . (101)

L/7 will be useful later.

The following estimate of ¢(r)

Lemma 4.2: sup ¢(r)"/" < 16.

Proof: Using the formula for p(k) above and the fact that (:) < 2% forall n and £ < n,

we obtain
q(r) = Z p(k) < rp(2r) < (i) <2 (102)

and this completes the proof of the lemma. O

We are now ready to describe the algorithm, which is presented below.

R.D.C. Monteiro, I. Adler and M.G.C. Resende 21

procedure Truncated PowerSeries (A, b, ¢, ¢, w?)

1 Set k:=0;

2 do (2"l > e —

3 Compute AFw(wk), for k= 1,2,...,7, as described above;
4 Set wkt! := w”"(w”, a) where a is the constant given by (98);
5 Set k:=k + 1;

6 od;

end TruncatedPowerSeries;

Algorithm 4.1 - The Truncated Power Series Algorithm of Degree r

The next theorem is a generalization of theorem 3.2.

Theorem 4.3: Let w = (z,y,z) € W and p > 0 be given such that
— = 2 — 1| <
17(w) = pelleo = max |zizi — pl < 6 (103)

for some 0 < 6 < 1. Consider the point & = (&,7,2) given by © = w"(w,a), where
a€(0,1). Let p=(1 - a)u and

{

) B 2r 1/2
f=0+ -6 > K%) n1/2a] p(l). (104)

l-a I=r+1

Then, we have:

(a) || /(@) = fie|oo < O
(b) If 6 < 1 then w € W.

Note that the opening of the cone described in the discussion following theorem 3.2
gradually increases by a term that depends on the k-powers of the step size, r+1 < k < 2r.

The consequences of theorem 4.3 are as follows.

Corollary 4.4: Let K = o 'in(2ne 'p®)]. Consider the first K iterates generated by
algorithm 4.1, that is, the sequence {w*}_ . Let p* = (1 — a)*u® and

0% = 60 + k [20+3)/2 (r=D/2p 04 1)/2] 41 g (105)

22 Primal-Dual Power Series Algorithm
Then, for all k =0,1,..., K, we have:

(a) [1f(w*) = pbelloo < 0% p*.

(b) wk e W.

(¢) (a9)7(2*) < (14 0)it < 2npat.

Proof: From the definition of 8%, K, relation (98) and the fact that v = 2/(1 — 8Y), we
have that for all K =1,2,..., K

T';S,yrgl n(r+1)/2ar+lq(r)

r+3 r—1

5) 27 (1) (2 0]
< 04970
1—6°

2

1+46°
2

Since 6° < 1, it follows that #* < 1 for k = 1,2,..., K. Note that (a) and the fact that
0¥ < 1 immediately imply (c). The proof of (a) and (b) is by induction on k. Obviously
(a) and (b) hold for £ = 0 due to (97) and assumption 4.1. Assume (a) and (b) hold for k,
where 0 < k < K. We will show that (a) and (b) hold for k£ 4 1. If

{

oF < 9° 1+ K2

= 6°+2

= 0+

(106)

16k & [[1460\"?
T 2 [(1—9k o p(l) < 651 (107)
=r+1

then, by applying theorem 4.3 with w = w*, & = w**', p = ¥ and 6 = 6%, it follows that
(a) holds for k+ 1 and that (b) also holds for k4 1 since #**! < 1. Therefore, we only have
to show (107) to complete the proof of the corollary. Note that (106) implies that

1-6°
1-6%> 5= 7L (108)

Using relation (98), (108) and the fact that (1 + 6%) < 2, one can easily verify that

g\ 1/2
[(%) n1/2a] <1. (109)

Hence, from the definition of ¢(r), % and the fact that a < 1/2, it follows that

et 2 [fiee\ T
e S | (Hg) |

R.D.C. Monteiro, I. Adler and M.G.C. Resende 23

r+1
1—0k [[140\"* 2r
<O+ 1-a (1—(%) n'/?a Z p(l)
l=r+1
146k [1408\71/2
<0+ ;: (—1 E gk) D 2am+ g (r)

< ek _|_4(2)7“ 1)/2, (7’+1)/2a7’+1q(7,)
:0k+2(r+3)/2 (r—1)/2 (T+1)/2ar+lq(,’,)

— 0k+1

where in the third inequality we use the fact that (1 4+ %) < 2 and (1 — #*)~! < 5. This
shows (107) and concludes the proof of the corollary. O

As an immediate consequence of the above theorem, we have the following result.

Corollary 4.5: The total number of iterations performed by algorithm 4.1 is on the order
of O(p Ut/ 2 [maz(log n,log e, log u®)|M+1/7)) where © = frax(w®)/ fumin(w®).

Proof: Let
K=o [In(2ne 1)) (110)

By (c) of corollary 4.4, it follows that
(.rK)TZK < QR;LK — 2n(1)Ix’uo (111)

where the last inequality follows from the definition of K. Hence, algorithm 4.1 performs

no more than K iterations. Using (96) and the fact that v = 2/(1 — 6°), it follows that

7 < 2 fmax(0°)/ fin(w®) (112)

By using the last relation, expressions (110), (98) and lemma 4.2, the corollary follows. O

Let L denote the size of the convex quadratic programming problem (P). Then, if we set
¢ =279 then the observation preceding theorem 3.4 still holds in the context of convex
quadratic programming problems. Using this observation, we can now state the main result

of this section, which is a direct consequence of the previous corollary.

Theorem 4.6: If the initial iterate is such that fuax(w®) = 20(L) and the ratio

Srax(0®)/ fmin(w®) = O(1) (113)
then algorithm 4.1 solves the pair of problems (P) and (D) in al most

0 (ns(+3)L(142)) (114)

24 Primal-Dual Power Series Algorithm

iterations, where each ileration involves O(n® 4 n®r) arithmetic operations.

We now turn our effort towards proving theorem 4.3. The next result generalizes lemma

3.5.

Lemma 4.7: Let w = (z,y,2) € W and a > 0 be given. Consider the point & = (&, 7, 2)

defined as w = w"(w, a). Then we have:

2r r
B2 = (1-a)zizi+ Y (=Dl 3 (AW (A=) (115)
[=r+1 j=l—r
(AT(AD2)y >0, j=1,...,r (116)

Proof: Using (88), we obtain forall e = 1,...,n

§>
£>
[l
N
B
+
[]-
—
|
o}
p——
Y
L
5
&
~——
N
2
+
[~]-
—
|
=}
S—
Y
L
)
R
~—

=1 7=0
27 T

+ 3 () 30 AU Al

=r+1 j=l—r

From (85), it follows that

T l]]
Z(—a)l ZA(])@A(Z_])ZZ' = —ax;%. (117)
=1 7=0

Combining the two last expressions, we obtain (115). The proof of (116) is similar to the
one given for (55) of lemma 3.5 and follows from (90-91) and the fact that the matrix @ is
positive semi-definite. This completes the proof of the lemma. O

The next lemma provides some bounds on the scaled directions D~'A®*)gz and DAK)z,
where D = (Z_lX)l/Q. It is a generalization of lemma 3.7 and its proof is an application

of lemma 3.6.

Lemma 4.8: Let w = (z,y,2) € W be given. Consider the directions
AP y(w) = (AW gz, APy A2 (118)

for k> 1. Then, we have

B p(k 2T \k/2
magz {| D7 AW ||, | DAB(|} < (f)((k%wl

min

(119)

R.D.C. Monteiro, I. Adler and M.G.C. Resende 25

where D = (Z_lX)% and p(k) is defined as in (99) and (100).

Proof: The proof is by induction on k. For k£ = 1, it follows that (119) holds by using
relations (116), (89), (56) and an argument similar to the proof of lemma 3.7. Assume (119)
holds for all j with 1 < j < k. We will show that (119) holds for k. By relation (89) and
relation (116) of lemma 4.7, we have

k-1

—(Xz)~'/? Z(A(j)X)(A(k_j)Z)e

i=1

D IAK), + DA®K)

(AP HTAB > 9
(120)
Letting r = D"'AWz, s = DAWz and t = —(X 2)~1/2 E?;%(A(j)AX)(A(k_j)Z)e, then by
lemma 3.6, it follows that
max {[|7{], ||s[|} <[] (121)
On the other hand, using the induction hypothesis, we obtain

(X 2)~\/? kZ_:I(A(j)X)(A(’“_j)Z)e

i=1

1t =

1 k-1

IN

| 5
1 | A=t , .
- - (DA XY DAF=D) 7)e
f

min j:l

IN

1/2 Z 1D 2)|| [DAF=)z))|

min J=1

2T2)i/2 = i) (2T) (k=)/2
z(s &)(ﬂ PERRE

min J=1 mln min

IN

k/2 k=1

= DS sk -)
fmin Jj=1
p(k)(aT2)k/?
W

min

where the last equality follows by the definition of p(k). The last relation and relation (121)
show that (119) holds for k£ and this completes the proof of the lemma. O

We are now ready to give the proof of theorem 4.3.

26 Primal-Dual Power Series Algorithm

Proof (Theorem 4.3): We first show (a). From relation (115) and the definition of f, it
follows that

=

i — = (1= a)(ziz —p) + Z YT AW Al (122)

l=r+1 j=l—r

The absolute value of the summation on the right hand side of the above expression can be

bounded with the aid of lemma 4.8 as follows. Let D = (Z_lX)% and let D;; denote the

it" diagonal element of the matrix D. Then

2r T
S (—a) YT AWy AU, (123)
l=r+1 J=l—r
2r T)]
< 3l Y AU Al (124)
[=r+1 j=l-r
2r T)]
= 3 o Y ;AU DAl) (125)
l=r+1 J=l—r
2r T))
< 3 ol Y DTt AW|| DAt (126)

l=r+41 gj=l—r

£y (ot zwﬂ) (mz-w«-ﬂﬂ) -
{=r+41 j=l—r frrflnl /2 fr(rii;]_l)/z
2r

al($ 22
=2 > 0 (128)

1
l=r+1 fliun j=l—r

27 o n /2 -1
<y QAOH OIS) (129)

=11 [(1=0)u]__1 j=1

2r 1/2 l
_(1-0) { > [(%} n%] pm] " (130)

I=r+1

IN

where the third inequality follows from (119) and the last inequality follows from (103). The
last relation, expressions (103) and (122) and the definition of & imply (a). The proof of (b)
is similar to the proof of (b) of theorem 3.2. This completes the proof of the theorem. O

5. Concluding Remarks

It should be emphasized that the computed upper bound on the number of iterations re-
quired by the power series algorithm of section 4 decreases with r, the order of the approxi-
mation, according to O(n2(1+)L(H'%)). Therefore, as r — oo, the upper bound converges
to O(y/nL), the upper bound on the number of iterations required by the path following

algorithms of group (c) of section 1. On the other hand, the work per iteration, namely

REFERENCES 27

O(n® + n?r) arithmetic operations, increases with r. When r = O(n) we still obtain O(n?)
arithmetic operations per iteration, which is the work per iteration required by all interior
point based algorithms if no rank-one update trick is used [15].

The main purpose of this paper was to present a theoretical result. However, based on
the good performance of both the primal affine [31] and dual affine scaling algorithms [1]
[20] [23], we feel that the primal-dual affine scaling algorithm has the potential of becoming
a competitive algorithm. For a practical implementation some modifications are required,
such as: (1) introducing a larger step size computed by means of a ratio test in the first order
approximation algorithm or by means of a binary search in the higher order approximation
algorithms; (2) determining an appropriate starting artificial problem that gives a good
initial starting point; and (3) making a good choice of r.

Note that when r = 1, the primal-dual affine scaling algorithm described in section 3
can be viewed as a simultaneous application of an affine scaling algorithm to the primal and
dual problems, which implies that both the primal and dual objective functions monoton-
ically approach the optimal value. For a practical implementation, this suggests that two
ratio tests performed independently in the primal and the dual spaces respectively, might
outperform one ratio test done simultaneously in the primal-dual space, since a larger de-
crease in the duality gap would be obtained. On the other hand, the last strategy would be
more conservative in the sense that it would keep the iterates from coming too close to the

boundary of the primal-dual feasible region.

References

[1] I. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga. An implementation of Kar-

markar’s algorithm for linear programming. Mathematical Programming, 44, 1989.

[2] 1. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga. Data structures and program-
ming techniques for the implementation of Karmarkar’s algorithm. ORSA Journal on
Compuling, 1:84-106, 1989.

[3] K.M. Anstreicher. A monotonic projective algorithm for fractional linear programming.
Algorithmica, 1:483-498, 1986.

[4] K.M. Anstreicher. A combined ‘phase I-phase II’ projective algorithm for linear pro-
gramming. Mathematical Programming, 43:209-223, 1989.

[5] E.R. Barnes. A variation on Karmarkar’s algorithm for solving linear programming

problems. Mathematical Programming, 36:174-182, 1986.

28

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

[18]

REFERENCES

D. Bayer and J.C. Lagarias. The nonlinear geometry of linear programming I. Affine
and projective scaling trajectories. Transactions of the American Mathemalical Society,
314:499-526, 1989.

D. Bayer and J.C. Lagarias. The nonlinear geometry of linear programming II. Leg-
endre transform coordinates and central trajectories. Transactions of the American
Mathematical Sociely, 314:527-581, 1989.

G. de Ghellinck and J.-F. Vial. A polynomial Newton method for linear programming.
Algorithmica, 1:425-454, 1986.

L.I. Dikin. Iterative solution of problems of linear and quadratic programming. Soviel
Mathematics Doklady, 8:674-675, 1967.

L.I. Dikin. On the speed of an iterative process. Upravlyaemye Sistemi, 12:54-60, 1974.

In Russian.

A.V. Fiacco and G.P. McCormick. Nonlinear programming: Sequential unconstrained

minimization technigues. John Wiley and Sons, New York, NY, 1968.

K.R. Frisch. The logarithmic potential method of convex programming. Technical

report, University Institute of Economics, Oslo, Norway, 1955.

C.C. Gonzaga. An algorithm for solving linear programming in O(n®L) operations. In
Nimrod Megiddo, editor, Progress in mathematical programming — Interior-point and

related methods, pages 1-28. Springer-Verlag, 1989.

C.C. Gonzaga. An conical projection algorithm for linear programming. Mathematical
Programming, 43:151-173, 1989.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combina-
torica, 4:373-395, 1984.

N. Karmarkar. Talk given at the University of California, Berkeley, CA, 1984.

Narendra K. Karmarkar, Jefferey C. Lagarias, Lev Slutsman, and Pyng Wang. Power
series variants of karmarkar-type algorithms. ATET Technical Journal, 68(3):20-36,
1989.

M. Kojima, S. Mizuno, and A. Yoshise. A polynomial-time algorithm for a class of

linear complementarity problems. Mathematical Programming, 44:1-26, 1989.

REFERENCES 29

[19]

[24]

[29]

[30]

[31]

M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for linear
programming. In Nimrod Megiddo, editor, Progress in mathemaltical programming —

Interior-point and related methods, pages 29-48. Springer-Verlag, 1989.

R. Marsten. The IMP system on personal computers, 1987. Presentation given at the
ORSA/TIMS Joint National Meeting, St. Louis, MI.

N. Megiddo. Pathways to the optimal set in linear programming. In Nimrod Megiddo,
editor, Progress in mathematical programming — Interior-point and related methods,
pages 131-158. Springer-Verlag, 1989.

N. Megiddo and M. Shub. Boundary behaviour of interior point algorithms in linear

programming. Mathematics of Operations Research, 14:97-146, 1989.

C.L. Monma and A.J. Morton. Computational experimental with a dual affine variant
of Karmarkar’s method for linear programming. Operations Research Letters, 6:261—
267, 1987.

R.D.C. Monteiro and I. Adler. An extension of Karmarkar type algorithm to a class of
convex separable programming problems with global linear rate of convergence. Techni-
cal Report ESRC 87-4, Engineering Systems Research Center, University of California,
Berkeley, CA 94720, 1987. To appear in Mathematics of Operations Research.

R.D.C. Monteiro and I. Adler. Interior path following primal-dual algorithms — Part I:
Linear programming. Mathematical Programming, 44:27-42, 1989.

R.D.C. Monteiro and I. Adler. Interior path following primal-dual algorithms — Part 11:
Convex quadratic programming. Mathematical Programming, 44:43-66, 1989.

C.R. Papadimitriou and K. Steiglitz. Combinatorial oplimization: Algorithms and
complexily. Prentice-Hall, Englewood Cliffs, NJ, 1982.

J. Renegar. A polynomial-time algorithm based on Newton’s method for linear pro-

gramming. Mathematical Programmaing, 40:59-93, 1988.

M.J. Todd and B.P. Burrell. An extension to Karmarkar’s algorithm for linear pro-

gramming using dual variables. Algorithmica, 1:409-424, 1986.

J.A. Tomlin. An experimental approach to Karmarkar’s projective method for linear

programming. Technical report, Ketron, Inc., Mountain View, CA, 1985.

J.A. Tomlin and J.S. Welch. Implementing an interior point method in a mathematical

programming system. Technical report, Ketron, Inc., Mountain View, CA, 1986.

30 REFERENCES

[32] P.M. Vaidya. An algorithm for linear programming which requires O(((m + n)n? +
(m+n)!-5)L) arithmetic operations. Technical report, AT&T Bell Laboratories, Murray
HII, NJ, 1987. To appear in Mathematical Programming.

[33] R.J. Vanderbei, M.S. Meketon, and B.A. Freedman. A modification of Karmarkar’s
linear programming algorithm. Algorithmica, 1:395-407, 1986.

[34] Y. Ye and M. Kojima. Recovering optimal dual solutions in Karmarkar’s polynomial

algorithm for linear programming. Mathemalical Programming, 39:305-317, 1987.

