
STRONG LOWER BOUNDS FOR THE PRIZE COLLECTING

STEINER PROBLEM IN GRAPHS

ABILIO LUCENA AND MAURICIO G. C. RESENDE

Abstract. Given an undirected graph G with nonnegative edges costs and
nonnegative vertex penalties, the prize collecting Steiner problem in graphs
(PCSPG) seeks a tree of G with minimum weight. The weight of a tree is the
sum of its edge costs plus the sum of the penalties of those vertices not spanned
by the tree. In this paper, we present an integer programming formulation of
the PCSPG and describe an algorithm to obtain lower bounds for the problem.
The algorithm is based on polyhedral cutting planes and is initiated with tests
that attempt to reduce the size of the input graph. Computational experiments
were carried out to evaluate the strength of the formulation through its linear
programming relaxation. The algorithm found optimal solutions for 99 out
of the 114 instances tested. On 96 instances, integer solutions were found
(thus generating optimal PCSPG solutions). On all but seven instances, lower
bounds were equal to best known upper bounds (thus proving optimality of
the upper bounds). Of these seven instances, four lower bounds were off by
1 of the best known upper bound. Nine new best known upper bounds were
produced for the test set.

1. Introduction

Let G = (V,E) be an undirected graph with a set of vertices V and a set of
edges E. Real-valued costs {ce : e ∈ E} are associated with the edges of G while
real-valued penalties {dv : v ∈ V } are associated with the vertices of G. A tree is a
connected acyclic subgraph of G and has a weight that equals the sum of its edge
costs plus the sum of the penalties of those vertices of G that are not spanned by
the tree. A solution of the prize collecting Steiner problem in graphs (PCSPG) is
a minimum weight tree.

Applications for the PCSPG can be found, for example, in the design of local
access telecommunication networks, where one wants to build a fiber-optic network
for providing broadband connections to business and residential customers. The
graph in this application corresponds to the local street map, with edges represent-
ing street segments and nodes representing street intersections and the locations of
potential customer premises. The penalty associated with a node in this graph is an
estimate of the potential loss of revenue that would result if that customer were not
to receive service. Nodes corresponding to street intersections have penalties with
zero value. The cost associated with an edge is the cost of laying the fiber on the
corresponding street segment. Since labor and right-of-way costs greatly outweigh
the cost of the fiber, one can assume that cable capacity is not a constraint.

Date: February 10, 2000. Revised October 11, 2002.
AT&T Labs Research Technical Report 00.3.1.

1

2 ABILIO LUCENA AND MAURICIO G. C. RESENDE

The PCSPG has been studied by Bienstock, Goemans, Simchi-Levi, and Wil-
liamson [3]. The roots for this problem can be traced to the prize collecting trav-
eling salesman problem of Balas [2]. A 2-approximation algorithm for the PC-
SPG was proposed by Goemans and Williamson [9]. That improved on an ear-
lier 5/2-approximation algorithm in [3]. An implementation of the Goemans and
Williamson algorithm is given in Johnson, Minkoff, and Phillips [11], where exten-
sive experimental results are provided. Canuto, Resende, and Ribeiro [4] present
a multi-start heuristic that makes use of a randomized Goemans and Williamson
algorithm with local search. Note that the PCSPG is related to the node weighted
Steiner problem in graphs (NWSPG) (see Segev [19]). In fact, the NWSPG is a spe-
cial case of PCSPG in that the single NWSPG terminal vertex can be conveniently
treated as a PCSPG vertex with a sufficiently positive penalty. To the best of our
knowledge, no exact solution algorithm specifically for PCSPG has been described
in the literature.

In this paper, we introduce an integer programming formulation of the PCSPG.
The formulation is used, in a cutting-plane algorithm, to obtain lower bounds for the
problem. The formulation is described in Section 2. In Section 3, the cutting-plane
algorithm is presented. Single-vertex solutions, which can be readily computed,
are excluded from the formulation in Section 4. The preprocessing strategy is
described in Section 5 and the implementation of orthogonal cuts is described in
Section 6. Computational results for randomly generated PCSPG instances are
reported in Section 7. A subset of these instances is generated to resemble a real-
world application. In Section 8, concluding remarks are made.

2. Problem formulation

Given a set S ⊆ V of vertices, let E(S) ⊆ E be the set of edges with both
endpoints in S. Associate a real-valued variable xe with every edge e ∈ E and
denote by x(E(S)) the sum

∑
e∈E(S) xe. In addition, associate a real-valued variable

yv with every vertex v ∈ V and denote by y(S), S ⊆ V , the sum
∑
s∈S ys. In order

to introduce a formulation of the PCSPG, consider a polyhedral region R, defined
as

x(E) = y(V)− 1,(1)

x(E(S)) ≤ y(S \ {s}), s ∈ S, S ⊆ V,(2)

0 ≤ xe ≤ 1, e ∈ E,

0 ≤ yv ≤ 1, v ∈ V.
An integer programming formulation of the PCSPG is given by

min

{∑

e∈E
cexe +

∑

v∈V
dv(1− yv) : (x, y) ∈ R ∩ (

� |E| , � |V |)
}
.(3)

Formulation (3) follows from an extended formulation of the Steiner problem in
graphs (SPG), introduced independently by Goemans [8], Lucena [13], and Margot,
Prodon, and Liebling [16].

Constraint (1) imposes that the number of edges selected, x(E), equals the num-
ber of edges required for a spanning tree of the implied subgraph, i.e. y(V)−1. Con-
straints (2) are called generalized subtour elimination constraints (GSECs). They

PRIZE COLLECTING STEINER PROBLEM IN GRAPHS 3

guarantee that the solution is cycle free. GSECs generalize subtour elimination con-
straints (SECs) (introduced by Dantzig, Fulkerson, and Johnson [5] for the traveling
salesman problem). Notice that if ys = 1, for all s ∈ S, then (2) reduces to a SEC.
The set of feasible solutions for (3) corresponds to the set of all trees of G.

The above formulation can be seen as a generalization of the spanning tree
polytope [7], by noting that if the vertices that appear in an optimal (minimum
weight) tree are given, then the PCSPG reduces to finding a minimum spanning
tree (MST) of the subgraph of G induced by those vertices.

3. Solving the linear programming relaxation

A linear programming (LP) relaxation for (3) is

min

{∑

e∈E
cexe +

∑

v∈V
dv(1− yv) : (x, y) ∈ R

}
.(4)

As there are exponentially many GSECs in (2), one may choose to exclude some or
all of these inequalities from the linear program in an initial stage of the solution
process. This is usually done by firstly defining a polyhedral region R1 ⊇ R
and then optimizing over R1. An adequate choice of R1 is attained, for instance,
by dropping all GSECs from the set of inequalities that define R. The resulting
polyhedral region is described as

x(E) = y(V)− 1,

0 ≤ xe ≤ 1, e ∈ E,
0 ≤ yv ≤ 1, v ∈ V,

and a valid LP lower bound for (3) (and for (4)) is

min

{∑

e∈E
cexe +

∑

v∈V
dv(1− yv) : (x, y) ∈ R1

}
.(5)

Let (x̄, ȳ) be an optimal solution of (5). If (x̄, ȳ) violates one or more GSECs,
then these violated GSECs may be introduced as cutting planes. In the process,
the following separation problem must be solved: Find a GSEC that is violated by
(x̄, ȳ) or determine that no such inequality exists. If no violated GSEC exists, then
optimality of (4) is verified. Otherwise, the LP relaxation is reinforced with the
introduction of violated GSECs and the corresponding LP is reoptimized. This is
repeated until optimality of (4) is attained. Note that this procedure produces a
sequence of nondecreasing valid lower bounds for (3).

The separation problem posed above requires the solution of at most |V | maxi-
mum flow problems on a network with at most |V | vertices. A procedure to solve
it is described next.

3.1. Separation of GSECs. Let (x̄, ȳ) denote the solution of the current LP
relaxation. The support graph of this solution is the subgraph of G induced by
vertices and edges with nonzero variables in (x̄, ȳ). For a given vertex l in the
support graph, let Sl be the subset S of V that contains l and maximizes x̄(E(S))−
ȳ(S) + ȳl. Clearly, whenever this maximum is nonpositive, no violated inequality
of type (2) that includes vertex l exists. Otherwise, Sl is associated with the most

4 ABILIO LUCENA AND MAURICIO G. C. RESENDE

violated GSEC that contains vertex l. To determine Sl, the following quadratic
Boolean problem must be solved:

max
∑

(u,v)∈E
x̄(u,v)zuzv −

∑

v∈V
ȳvzv + ȳl(6)

subject to

zl = 1,(7)

zv ∈ {0, 1}, v ∈ V.(8)

Variable zv indicates whether vertex v is in set S (zv = 1) or not (zv = 0).
Problem (6)–(8) can be reformulated (cf. Picard and Ratliff [18]) as one of

finding a maximum flow on a companion network of at most |V |+ 2 vertices. It is
thus solvable in polynomial time. An algorithm for the separation of SECs, due to
Padberg and Wolsey [17], which is based on implicitly solving a problem similar to
(6)–(8), can be easily adapted to separate GSECs [15]. This adaptation is reviewed
below.

Let N = (V̄ ∪ {s, t}, A) be a companion network where V̄ is the set of vertices
in the support graph for (x, y). Nodes s and t are, respectively, a source and a
sink node for N . Arc set A has, for every edge e = (u, v) in the support graph,
two arcs [u, v] and [v, u] of capacities ξuv = ξvu = x̄e/2. For all vertices v of the
support graph, let δ(v) denote the set of edges incident to vertex v (in the support
graph) and ξv =

∑
u∈δ(v) ξvu. The source node has arcs [s, v], for v ∈ V̄ , of capacity

ξsv = max{ξv − ȳv, 0}. The sink node, on the other hand, has arcs [v, t], for v ∈ V̄ ,
of capacity ξv,t = max{ȳv − ξv, 0}.

For a given vertex l ∈ V̄ , an optimal solution to (6)–(8) corresponds to a max-
imum flow (minimum cut) over N = (V̄ {s, t}, A) with ξsl set to ∞. This problem
can be solved to optimality in polynomial time [1]. Therefore, the separation for
SECs is also solvable in polynomial time.

Following the procedure above, one may generate duplicate copies of violated
subtours. To avoid this, one can (cf. [17]), instead, solve |V | maximum flow prob-
lems. For the k-th maximum flow problem, ξsk = ∞, and if k ≥ 2, ξv,t = ∞ for

v = 1, . . . , k − 1. In this way, if |S| ≥ 3, then for all k = 1, . . . , |V |, k ∈ S and
{1, . . . , k − 1} ∈ (V ∪ {s, t}) \ S.

As many cuts as there are violated GSECs generated by the procedure above
are introduced simultaneously for every very linear programming relaxation of (3)
considered. In the computational results presented in Section 7, we call an iteration
of the algorithm the process of solving one LP relaxation and solving the resulting
separation problem.

4. Excluding single-vertex solutions

Instead of generating PCSPG lower bounds directly from the LP relaxation of
(3), a different approach is followed. Notice that the most basic form of a PCSPG
solution consists of a single, isolated, positive penalty vertex whose value can be
computed efficiently. As a result, one may set aside single vertex solutions and
restrict (3) to deal exclusively with solutions involving one or more edges (i.e.
two or more vertices). That can be attained by considering a polyhedral region,

PRIZE COLLECTING STEINER PROBLEM IN GRAPHS 5

R2, defined by the inequalities that define R plus, for every v ∈ V , the following
inequalities:

x(E(δ(v))) ≥
{
yv, if dv > 0,

2yv, if dv = 0.
(9)

Assume that at least one vertex v ∈ V has a positive penalty and restrict R with
inequalities (9). Under the objective function used and over the restricted solution
space, PCSPG solutions are limited to one or more edges. That is indicated by
the right hand side of the inequalities. For the case where dv > 0, the inequality
imposes that any positive penalty vertex in an optimal tree must be at least a leaf
of that tree. If dv = 0, then the inequality imposes that these vertices cannot be
leaves (see Section 5 for the reasoning behind this restriction). Therefore, if any
such vertex appears at an optimal tree, its (tree) edge degree must be greater than
one.

An integer programming formulation for PCSPG (restricted to feasible solutions
with one or more edges) is then given by

min

{∑

e∈E
cexe +

∑

i∈V
di(1− yi) : (x, y) ∈ R2 ∩ (

� |E| , � |V |)
}
.(10)

We have found it computationally advantageous to split the set of feasible PCSPG
solutions into the two subsets indicated above, namely single vertex solutions and
multiple vertex solutions. This is because, in our computational experience, (10)
appears to be a stronger formulation for the restricted PCSPG than (3) is for
the unrestricted case. Even if this speculation proves incorrect, computing times
to obtain LP relaxations for each formulation tend to be smaller for (10). As it
may be appreciated in the section on computational results, in the majority of the
instances tested, the solution of the LP relaxation of (10), i.e.

min




∑

e∈E
cexe +

∑

i∈V \T
di(1− yi) : (x, y) ∈ R2



 ,(11)

turned out to be integral.
The lower bound given by (11) can be computed in a similar manner to that out-

lined in Section 3. Accordingly, we have chosen to optimize the objective function,
at an initial stage, over a polyhedral region R3, defined as

x(E) = y(V)− 1,

x(E(δ(v))) ≥ yv, v ∈ V, dv > 0,

x(E(δ(v))) ≥ 2yv, v ∈ V, dv = 0,

0 ≤ xe ≤ 1, e ∈ E,
0 ≤ yv ≤ 1, v ∈ V.

The initial optimization is done with a primal simplex method. Every violated
GSEC, obtained as detailed in Subsection 3.1, is appended to the set of inequalities
defining R3 and the objective function is reoptimized over the resulting polyhedral
region using the dual simplex method. Redefining R3 as the polyhedral region
associated with the very last LP relaxation generated, the procedure i repeated
until a stopping criterion is reached.

6 ABILIO LUCENA AND MAURICIO G. C. RESENDE

5. Reduction tests

A reduction test for the PCSPG attempts to determine vertices and edges that
are guaranteed not to be in any optimal solution. Some simple reduction tests can
be devised for the PCSPG. These tests follow directly from those that have been
suggested for the SPG (see Duin [6], for instance). A description of the tests used
to produce the results in Section 7 is given below.

5.1. Shortest path test. The shortest path test is only applied if cuv > 0, for all
(u, v) ∈ E. Let dist(u, v) denote the length of the shortest path between vertices
u, v ∈ V . If dist(u, v) < cuv, then edge (u, v) ∈ E can be eliminated from G.

5.2. Cardinality-one test. Assume that a given vertex, say vertex v ∈ V , has
an edge cardinality of one, i.e. |δ(v)| = 1. Denote the only edge incident to v by
e. If ce > dv , then vertex v and, consequently, edge e cannot be in any optimal
PCSPG tree. That applies because if edge e were in an optimal tree, its removal
would lead to a feasible solution of a smaller cost, thus contradicting the optimality
assumption. Indeed, this is the reason why a vertex v ∈ V with dv = 0 cannot be
a leaf of an optimal tree (see inequalities (9)).

5.3. Cardinality-two test. Assume that a given vertex v ∈ V has edge cardinal-
ity |δ(v)| = 2, and denote the two edges incident to v by (v, v1) and (v, v2). If dv = 0
and edges (v, v1) and (v, v2) have positive costs, either these two edges appear si-
multaneously in an optimal PCSPG solution or else neither can be in an optimal
solution. The reasoning follows (as explained above) from the suboptimality of any
PCSPG tree containing vertex v as a leaf.

Vertex v can be pseudo eliminated by being replaced by an edge (v1, v2) of cost
cv,v1 + cv,v2 . In case multiple edges between two vertices result from this operation,
only the one of least cost is kept.

5.4. Cardinality-larger-than-two test. The previous test can be extended to
vertices v ∈ V with dv = 0 and |δ(v)| ≥ 3, where all edges incident to v have positive
costs. For simplicity, assume that vertex v, under consideration, has |δ(v)| = 3.
The basic idea of this test is that if certain conditions are fulfilled, then vertex v
is guaranteed to be either absent from an optimal tree or else to be in an optimal
tree and have an edge degree equal to two.

For a vertex v as defined above, let v1, v2, and v3 be the only three vertices that
share edges with v. Accordingly, let e1, e2, and e3 be the corresponding edges. If,

(12) min{dist(v1, v2) + dist(v1, v3), dist(v2, v1) + dist(v2, v3),

dist(v3, v1) + dist(v3, v2)} ≤ ce1 + ce2 + ce3 ,

then vertex v is guaranteed not to have an edge degree of three in any optimal
PCSPG tree (since a cheaper option of a lesser degree exists). Therefore, the edge
degree of v in any optimal tree must be either 0 or 2 (see [6] for details). That
applies since, as explained before, a PCSPG tree where v has an edge degree of
one is suboptimal and the cost of the degree three solution (i.e. the rhs of (12)) is
dominated by degree zero or two solutions (i.e. the lhs of (12)).

Whenever (12) is verified, one can pseudo eliminate vertex v. Once again, this
is achieved by conveniently replacing every different combination of pairs of edges
incident to v by an adequately chosen edge, as explained in the previous subsection.

PRIZE COLLECTING STEINER PROBLEM IN GRAPHS 7

This test can also be extended to vertices v ∈ V with |δ(v)| > 3 where all edges
incident to v have positive costs. One should notice that the right hand side of (12)
gives the MST cost for the subgraph of G induced by vertices v1, v2 and v3 under
edge costs given by the shortest path lengths in G: dist(v1, v2), dist(v1, v3) and
dist(v2, v3) (note that when |δ(v)| = 3, such a spanning tree must have exactly two
edges). The test would then amount to computing MSTs (under shortest path edge
costs) for every possible combination (with three or more elements) of the vertices
incident to v. Analogously to (12), MST costs should, in turn, be compared with
the sum of the costs for the edges that link v directly to the MST vertices (in G).
To be successful, MST costs should not exceed their sum of edge costs counterparts
for any of the combinations tested.

Due to the combinatorial nature of test just described, in practice we limit it
only to vertices with small edge cardinalities.

6. Orthogonal cuts

For a given LP relaxation of (3), it has been found computationally advantageous
to adapt the separation algorithm of Section 3 to generate, at every iteration,
cutting planes where vertices in a violated GSEC-defining subset do not appear
in other violated GSEC-defining subsets generated at the current iteration. Cuts
that do not have common variables are called orthogonal cuts. Introduction of
orthogonal cuts have brought about substantial reductions in the CPU time required
to compute the lower bounds. In some cases that amounted to reducing CPU times
by a factor of 60.

Once again, let (x̄, ȳ) denote the solution of the LP relaxation on hand. Or-
thogonal cuts are generated by first solving (6)-(8) for all vertices that are on the
support graph of (x̄, ȳ). Let Sl be the subset associated with the most violated
GSEC found. The corresponding GSEC is then selected to be introduced as a cut-
ting plane into R3 and all the vertices in Sl are eliminated from the support graph
resulting in a restricted support graph. The procedure is recursively applied to the
restricted support graph until no more violated GSECs are found. In spite of being
clearly more computationally expensive than the previous separation scheme, it has
shown to pay off by usually cutting overall CPU times. The cuts above are derived
in the style of the nested cuts of Koch and Martin [12] for the SPG.

7. Computational Experiments

The main objective of this computational experiment was to evaluate the quality
of the lower bounds generated by the cutting planes algorithm described in this
paper. The algorithm was tested extensively on 114 test problems 1 described in
[4, 11]. These problems range in size from 100 nodes and 284 edges to 1000 nodes
and 25,000 edges. Tables 1–3 list these problems. For each instance, the tables list
the instance name, the original dimension of the graph, the dimension of the graph
after reduction with the procedures described in Section 5, and the best known
upper bound prior to this paper (obtained by Canuto, Resende, and Ribeiro [4]).

The experiments were done on an SGI Challenge computer (28 196 MHz MIPS
R10000 processors) with 7.6 Gb of memory. Each run used a single processor.
The algorithm was coded in Fortran and uses primal and dual Simplex LP solvers
in CPLEX 6.5 [10]. CPU times were measured with the system function etime.

1The test problems can be downloaded from http://www.research.att.com/~mgcr/data.

8 ABILIO LUCENA AND MAURICIO G. C. RESENDE

Table 1. Johnson, Minkoff, and Phillips [11] instances.

Original Reduced Upper
Problem Nodes Edges Nodes Edges Bound [4]

P100 100 317 86 212 803300
P100.1 100 284 91 211 926238
P100.2 100 297 83 201 401641
P100.3 100 316 94 243 659644
P100.4 100 284 83 221 827419

P200 200 587 172 447 1317874
P400 400 1200 361 1029 2459904
P400.1 400 1212 352 1025 2808440
P400.2 400 1196 364 1040 2518577
P400.3 400 1175 358 1008 2951725
P400.4 400 1144 356 972 2817438

K100 100 351 42 170 135511
K100.1 100 348 36 124 124108
K100.2 100 339 33 118 200262
K100.3 100 407 20 87 115953
K100.4 100 364 36 132 87498
K100.5 100 358 38 140 119078
K100.6 100 307 29 81 132886
K100.7 100 315 25 71 172457
K100.8 100 343 49 173 210869
K100.9 100 333 21 67 122917
K100.10 100 319 37 111 133567

K200 200 691 99 361 329211
K400 400 1515 237 944 350093
K400.1 400 1470 212 800 490771
K400.2 400 1527 217 935 477073
K400.3 400 1492 195 694 401881
K400.4 400 1426 190 747 389451

K400.5 400 1456 223 799 519526
K400.6 400 1576 239 986 374849
K400.7 400 1442 225 883 474466
K400.8 400 1516 245 1036 418614
K400.9 400 1500 205 803 383105
K400.10 400 1507 211 855 394191

The code was compiled with the SGI MIPSpro F77 compiler using flags -Ofast

-static.
Tables 4–6 summarize the computational results. Note that all instances tested

have integral valued edge costs and vertex penalties. Therefore, fractional LP
relaxation lower bounds can be rounded up to integrality. For each instance, the
table lists the instance name, the best known upper bound, with new best known
bounds found by the cutting planes algorithm indicated in bold, the least number
of iterations (i.e. number of GSEC separation rounds) and CPU times to reach
best (integral valued) PCSPG lower bounds (rounding up fractional LP relaxation
values, if necessary), the number of iterations to reach the optimal solution, the
objective function value of the optimal LP relaxation, the corresponding integral
valued PCSPG lower bound, and an indication as to whether or not the best LP
relaxation solution is integral. Instances for which the cutting planes method was
not able to find an optimal solution are indicated by the “did not finish” label.

PRIZE COLLECTING STEINER PROBLEM IN GRAPHS 9

Table 2. Steiner series C test instances.

Original Reduced Upper
Problem Nodes Edges Nodes Edges Bound [4]

C1-A 500 625 116 214 18
C1-B 500 625 125 226 85
C2-A 500 625 110 209 50
C2-B 500 625 112 211 141
C3-A 500 625 174 293 414
C3-B 500 625 204 325 737
C4-A 500 625 207 331 618
C4-B 500 625 247 371 1063
C5-A 500 625 254 375 1080
C5-B 500 625 326 447 1528

C6-A 500 1000 356 823 18
C6-B 500 1000 356 823 55
C7-A 500 1000 366 843 50
C7-B 500 1000 366 843 103
C8-A 500 1000 382 866 361
C8-B 500 1000 385 869 500
C9-A 500 1000 412 903 533
C9-B 500 1000 416 907 694
C10-A 500 1000 431 920 859
C10-B 500 1000 440 929 1069

C11-A 500 2500 489 2143 18
C11-B 500 2500 489 2143 32
C12-A 500 2500 485 2189 38
C12-B 500 2500 485 2189 46
C13-A 500 2500 488 2167 237
C13-B 500 2500 488 2167 258
C14-A 500 2500 493 2168 293
C14-B 500 2500 493 2168 318
C15-A 500 2500 496 2153 501
C15-B 500 2500 496 2153 551

C16-A 500 12500 500 4740 11
C16-B 500 12500 500 4740 11
C17-A 500 12500 500 4704 18
C17-B 500 12500 500 4704 18
C18-A 500 12500 500 4781 111
C18-B 500 12500 500 4781 113
C19-A 500 12500 500 4729 146
C19-B 500 12500 500 4729 146
C20-A 500 12500 500 4770 266
C20-B 500 12500 500 4770 267

The optimal solution of the LP relaxation was found for 99 of the 114 test
instances. On 96 of those 99 instances, the optimal solutions were integral, thus
solving the PCSPG. On all but seven of the 114 instances, lower bounds were equal
to known upper bounds, thus proving optimality of the upper bounds. Of these
seven instances, four had lower bounds that were off of the upper bounds by a unit.
The relative error of the remaining three instances with respect to the best known
upper bound was never greater than 1.4%. Nine new best known upper bounds
were found with the cutting planes algorithm.

In the remainder of this section, we make further comments about the compu-
tational experiments, considering each problem class individually.

10 ABILIO LUCENA AND MAURICIO G. C. RESENDE

Table 3. Steiner series D test instances.

Original Reduced Upper
Problem Nodes Edges Nodes Edges Bound [4]

D1-A 1000 1250 233 443 18
D1-B 1000 1250 233 443 106
D2-A 1000 1250 261 485 50
D2-B 1000 1250 264 488 228
D3-A 1000 1250 340 571 807
D3-B 1000 1250 400 634 1510
D4-A 1000 1250 381 616 1203
D4-B 1000 1250 458 694 1881
D5-A 1000 1250 521 768 2157
D5-B 1000 1250 660 907 3135

D6-A 1000 2000 741 1709 18
D6-B 1000 2000 741 1709 70
D7-A 1000 2000 735 1706 50
D7-B 1000 2000 736 1707 105
D8-A 1000 2000 794 1772 755
D8-B 1000 2000 800 1780 1038
D9-A 1000 2000 791 1758 1072
D9-B 1000 2000 800 1767 1420
D10-A 1000 2000 844 1825 1671
D10-B 1000 2000 860 1842 2079

D11-A 1000 5000 986 4658 18
D11-B 1000 5000 986 4658 30
D12-A 1000 5000 992 4641 42
D12-B 1000 5000 992 4641 42
D13-A 1000 5000 990 4614 445
D13-B 1000 5000 990 4614 486
D14-A 1000 5000 991 4621 602
D14-B 1000 5000 991 4621 665
D15-A 1000 5000 993 4622 1042
D15-B 1000 5000 993 4622 1108

D16-A 1000 25000 1000 10595 13
D16-B 1000 25000 1000 10595 13
D17-A 1000 25000 1000 10542 23
D17-B 1000 25000 1000 10542 23
D18-A 1000 25000 1000 10312 218
D18-B 1000 25000 1000 10312 224
D19-A 1000 25000 1000 10242 308
D19-B 1000 25000 1000 10242 311
D20-A 1000 25000 1000 10471 536
D20-B 1000 25000 1000 10471 537

7.1. Johnson, Minkoff, and Phillips test problems. We consider 34 test prob-
lems introduced by Johnson, Minkoff, and Phillips [11]. Reduction tests have a sig-
nificant but decreasing impact as instance dimension grows. This can be observed
in Table 1 for the Johnson, Minkoff, and Phillips test problems. On all instances,
the algorithm found optimal solutions. All optimal solutions were integral, thus
producing feasible upper bounds. In five of the 34 instances, a single vertex so-
lution having a better objective function value than the optimal solution of the
relaxation was found.

7.2. Steiner series C test problems. We considered 40 instances of the Steiner
series C test problems, proposed in Canuto, Resende, and Ribeiro [4]. Reduction

PRIZE COLLECTING STEINER PROBLEM IN GRAPHS 11

Table 4. Computational results: Johnson, Minkoff, and Phillips
[11] instances.

Upper To bound To optimal Lower Solution
Problem Bound Iter. Time (s) Iter. Time (s) Bound Integral?

P100 803300 38 0.51 38 0.51 803300 yes
P100.1 926238 41 0.53 41 0.53 926238 yes
P100.2 401641 46 0.37 46 0.37 401641 yes
P100.3 659644 56 0.49 56 0.49 659644 yes
P100.4 827419 44 0.32 44 0.32 827419 yes

P200 1317874 58 1.47 59 1.56 1317874 yes
P400 2459904 972 326.85 972 326.85 2459904 yes
P400.1 2808440 812 294.19 812 294.19 2808440 yes
P400.2 2518577 387 68.57 387 68.57 2518577 yes
P400.3 2951725 373 52.56 373 52.56 2951725 yes
P400.4 2817438 393 82.49 393 82.49 2817438 yes

K100 135511 Single vertex 131 0.88 135511 yes
K100.1 124108 Single vertex 98 0.66 124108 yes
K100.2 200262 131 1.21 132 1.22 200262 yes
K100.3 115953 93 0.56 93 0.56 115953 yes
K100.4 87498 Single vertex 25 0.15 87498 yes
K100.5 119078 85 0.50 86 0.51 119078 yes
K100.6 132886 39 0.19 39 0.19 132886 yes
K100.7 172457 59 0.30 59 0.30 172457 yes
K100.8 210869 163 1.53 163 1.53 210869 yes
K100.9 122917 Single vertex 32 0.15 122917 yes
K100.10 133567 Single vertex 39 0.22 133567 yes

K200 329211 560 36.58 560 36.58 329211 yes
K400 350093 1687 905.61 1687 905.61 350093 yes
K400.1 490771 1967 5276.93 1967 846.44 490771 yes
K400.2 477073 1897 810.05 1897 810.05 477073 yes
K400.3 401881 1111 322.61 1111 322.61 401881 yes
K400.4 389451 1187 307.15 1188 308.21 389451 yes
K400.5 519526 1612 694.11 1612 694.11 519526 yes
K400.6 374849 1650 936.12 1650 936.12 374849 yes
K400.7 474466 2125 965.05 2125 965.05 474466 yes
K400.8 418614 1402 786.76 1402 786.76 418614 yes
K400.9 383105 1376 379.30 1376 379.30 383105 yes
K400.10 394191 2562 1081.74 2566 1083.54 394191 yes

tests have a significant but decreasing impact as instance dimension grows. This
can be observed in Tables 2 for the Steiner series C test problems. For 4 instances
in this set, the run was terminated prior to convergence to an optimal solution (see
Table 7 for details on the runs that were terminated prior to convergence). Out of
the 36 instances where optimal solutions were found, integral valued LP relaxations
were computed for all but one instance (C18-A), thus producing optimal solutions
to the PCSPG. For instance C18-A, where a fractional LP relaxation value was
obtained, as well as in three of the four instances terminated prior to convergence
to an optimal solution, rounding up the final objective function value matches a
known upper bound for the instance (thus proving optimality of the upper bound).
In the remaining instance (C20-A), the lower bound found was off by a unit from the
best known upper bound. The cutting planes algorithm produced new best known
upper bounds for two instances (C7-B and C13-A). In five of the 40 instances, a

12 ABILIO LUCENA AND MAURICIO G. C. RESENDE

Table 5. Computational results: Steiner series C test instances.

Upper To bound To optimal Lower Solution
Problem Bound Iter. Time (s) Iter. Time (s) Bound Integral?

C1-A 18 Single vertex 8 0.12 18 yes
C1-B 85 171 1.50 186 1.72 85 yes
C2-A 50 Single vertex 6 0.12 50 yes
C2-B 141 82 0.92 86 0.96 141 yes
C3-A 414 64 0.98 80 1.18 414 yes
C3-B 737 105 19.68 133 26.12 737 yes
C4-A 618 68 1.50 73 1.68 618 yes
C4-B 1063 436 201.77 536 287.42 1063 yes
C5-A 1080 223 47.71 314 80.36 1080 yes
C5-B 1528 1568 2612.08 1966 3487.08 1528 yes

C6-A 18 Single vertex 19 0.94 18 yes
C6-B 55 829 41.92 907 57.45 55 yes
C7-A 50 Single vertex 11 1.30 50 yes
C7-B 102 153 4.62 155 4.74 102 yes
C8-A 361 352 27.97 399 33.37 361 yes
C8-B 500 384 98.61 594 215.01 500 yes
C9-A 533 257 39.59 441 84.06 533 yes
C9-B 694 968 595.95 1911 1912.56 694 yes
C10-A 859 224 71.06 340 160.28 859 yes
C10-B 1069 821 1302.84 1674 3502.29 1069 yes

C11-A 18 Single vertex 52 3.44 18 yes
C11-B 32 413 25.13 776 68.53 32 yes
C12-A 38 386 21.18 596 37.03 38 yes
C12-B 46 721 109.73 815 126.66 46 yes
C13-A 236 529 235.0 858 332.52 236 yes
C13-B 258 1132 257.07 2906 3092.71 258 yes
C14-A 293 894 346.28 2195 1749.75 293 yes
C14-B 318 1079 1139.95 1710 1142.27 318 yes
C15-A 501 4524 7379.22 17283 54223.30 501 yes
C15-B 551 8213 23719.36 did not finish 551 ?

C16-A 11 665 89.16 1244 204.50 11 yes
C16-B 11 665 89.38 1244 205.05 11 yes
C17-A 18 428 64.41 745 250.30 18 yes
C17-B 18 830 361.60 853 388.25 18 yes
C18-A 111 927 822.68 10850 20031.81 111 no
C18-B 113 1284 1526.48 did not finish 113 ?
C19-A 146 1099 683.23 50067 152217.06 146 yes
C19-B 146 330 173.18 13041 18999.60 146 yes
C20-A 266 22187 165521.17 did not finish 265 ?
C20-B 267 71476 932619.06 did not finish 267 ?

single vertex solution having a better objective function value than the optimal
solution of the relaxation was found.

7.3. Steiner series D test problems. We considered 40 instances of the Steiner
series D test problems, proposed in Canuto, Resende, and Ribeiro [4]. Reduction
tests have a significant but decreasing impact as instance dimension grows. This
can be observed in Tables 3 for the Steiner series D test problems. For 11 instances
in this set, the run was terminated prior to convergence to an optimal solution (see
Table 7 for details on the runs that were terminated prior to convergence). Out of
the 29 instances where optimal solutions were found, integral valued LP relaxations

PRIZE COLLECTING STEINER PROBLEM IN GRAPHS 13

Table 6. Computational results: Steiner series D test instances.

Upper To bound To optimal Lower Solution
Problem Bound Iter. Time (s) Iter. Time (s) Bound Integral?

D1-A 18 Single vertex 17 0.43 18 yes
D1-B 106 253 4.95 269 5.53 106 yes
D2-A 50 Single vertex 14 0.65 50 yes
D2-B 218 68 1.72 95 2.24 218 yes
D3-A 807 195 11.56 197 12.22 807 yes
D3-B 1509 237 206.49 342 331.50 1509 yes
D4-A 1203 236 34.64 281 51.50 1203 yes
D4-B 1881 533 1245.67 653 1551.29 1881 yes
D5-A 2157 349 290.06 599 597.47 2157 yes
D5-B 3135 9741 184501.31 did not finish 3135 ?

D6-A 18 Single vertex 15 2.62 18 yes
D6-B 67 1420 155.65 1549 225.75 67 yes
D7-A 50 Single vertex 17 4.31 50 yes
D7-B 103 585 50.71 989 154.11 103 yes
D8-A 755 342 110.28 492 170.69 755 yes
D8-B 1036 1092 1238.95 2037 3267.93 1036 yes
D9-A 1070 1073 911.78 1321 1346.68 1070 no
D9-B 1420 3402 13241.68 5140 25052.53 1420 yes
D10-A 1671 2182 8526.87 7476 62590.02 1671 yes
D10-B 2079 7365 107820.08 did not finish 2079 ?

D11-A 18 Single vertex 463 33.88 18 yes
D11-B 29 1410 419.83 1759 870.60 29 yes
D12-A 42 917 161.54 1092 281.74 42 yes
D12-B 42 913 161.62 1095 297.14 42 yes
D13-A 445 1395 1564.01 7595 24689.71 445 yes
D13-B 486 1000 1063.67 2242 4464.19 486 yes
D14-A 602 10584 47907.67 did not finish 602 ?
D14-B 665 16340 104869.80 did not finish 665 ?
D15-A 1042 8418 95251.23 did not finish 1040 ?
D15-B 1108 25464 731657.0 38461 1691918.5 1107 no

D16-A 13 1222 272.46 2999 9957.77 13 yes
D16-B 13 1221 273.68 2540 6129.69 13 yes
D17-A 23 1492 52541.44 3609 16939.77 23 yes
D17-B 23 1318 116752.22 3171 13742.37 23 yes
D18-A 218 11997 79384.02 did not finish 218 ?
D18-B 224 1547 4508.89 did not finish 223 ?
D19-A 308 2892 12483.63 did not finish 306 ?
D19-B 311 5519 29378.93 did not finish 310 ?
D20-A 536 6 171.96 did not finish 529 ?
D20-B 537 5 166.31 did not finish 530 ?

were computed for all but two instances (D9-A and D15-B), thus producing optimal
solutions to the PCSPG. For instance D9-A, where a fractional LP relaxation value
was obtained, as well as in five of the 11 instances terminated prior to convergence
to an optimal solution, rounding up the final objective function value matches a
known upper bound for the instance (thus proving optimality of the upper bound).
In the remaining instance where a fractional LP relaxation value was obtained
(D15-B), as well as two instances terminated prior to convergence to an optimal
solution (D18-B and D19-B), the lower bound found was off by a unit from the best
known upper bound. The cutting planes algorithm produced new best known upper
bounds for seven instances (D2-B, D3-B, D6-B, D7-B, D8-B, D9-A, and D11-A). In

14 ABILIO LUCENA AND MAURICIO G. C. RESENDE

Table 7. Computational results: Instances which did not termi-
nate with optimal solution of LP relaxation. For each instance,
the table lists number of iterations performed, total CPU time (in
seconds) expended, objective function value at termination, the
best known upper bound, and the relative error of the objective
function value with respect to the best known upper bound.

Upper Relative
Problem Iterations Time (s) Solution Bound Error (%)

C15-B 12366 46280.32 550.163 551 0.152
C18-B 6450 65002.18 112.204 113 0.704
C20-A 68366 660808.88 264.927 266 0.403
C20-B 72335 952436.88 266.011 267 0.370

D5-B 10248 201439.42 3134.120 3135 0.028
D10-B 14946 463579.75 2078.193 2079 0.039
D14-A 51117 661451.50 601.993 602 0.001
D14-B 41898 534742.13 664.796 665 0.031
D15-A 9685 121711.20 1039.204 1042 0.268

D18-A 37088 423244.63 217.161 218 0.385
D18-B 95603 1955244.75 222.919 224 0.483
D19-A 58235 1218375.75 305.995 308 0.651
D19-B 42012 667919.38 309.56 311 0.463
D20-A 4150 172934.42 528.997 536 1.307
D20-B 4034 171829.67 529.997 537 1.304

five of the 40 instances, a single vertex solution having a better objective function
value than the optimal solution of the relaxation was found.

8. Concluding Remarks

A formulation of the prize collecting Steiner problem in graphs was introduced
in this paper. The strength of this formulation, as measured in terms of the lower
bounds obtained from its LP relaxation, was tested on 114 randomly generated
instances. The algorithm found optimal solutions for 99 out of the 114 instances
tested. On 96 instances, integer solutions were found (thus generating optimal
PCSPG solutions). On all but seven instances, lower bounds were equal to best
known upper bounds (thus proving optimality of the upper bounds). Of these seven
instances, four lower bounds were off by a unit of the best known upper bound.
Since the upper bounds for these instances were produced heuristically [4], it is
conceivable that these upper bounds are not optimal. Recall that nine new best
known upper bounds were produced for the test set, improving upon the bounds
in [4]. Consequently, one or more of these seven lower bounds may turn out to be
optimal.

The instances of the Steiner Problem in Graph (SPG) from which PCSPG in-
stances C and D are derived are today recognized as being easy to solve. Our com-
putational experience with a lower bounding LP relaxation SPG algorithm which
uses GSECs [14] indicates that these SPG instances are much easier to solve than
the corresponding PCSPG instances. Clearly, for many of the instances tested, op-
timality could have been proven a lot earlier if known PCSPG upper bounds from
the literature were used in conjunction with the lower bounds being generated.
Nevertheless, even if this action were to be taken, the remark above would remain
valid.

PRIZE COLLECTING STEINER PROBLEM IN GRAPHS 15

References

[1] N.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows. Prentice Hall, Englewood Cliffs,
NJ, 1993.

[2] E. Balas. The prize collecting traveling salesman problem. Networks, 19:621–636, 1989.
[3] D. Bienstock, M.X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize col-

lecting traveling salesman problem. Mathematical Programming, 59:413–420, 1993.
[4] S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations for the

prize collecting Steiner tree problem in graphs. Networks, 38:50–58, 2001.
[5] G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson. Solution of a large scale traveling salesman

problem. Operations Research, 2:393–410, 1954.
[6] C. Duin. Steiner’s problem in graphs. PhD thesis, University of Amsterdam, 1994.
[7] J. Edmonds. Matroids and the greedy algorithm. Mathematical Programming, 1:127–136,

1971.
[8] M.X. Goemans. The Steiner tree polytope and related polyhedra. Mathematical Program-

ming, 63:157–182, 1994.
[9] M.X. Goemans and D.P. Williamson. The primal dual method for approximation algorithms

and its application to network design problems. In D.S. Hochbaum, editor, Approximation
algorithms for NP-hard problems, pages 144–191. P.W.S. Publishing Co., 1996.

[10] ILOG CPLEX, Inc. Cplex 6.5, 1999.
[11] D.S. Johnson, M. Minkoff, and S. Phillips. The prize collecting tree problem: Theory and

practice. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 760–769, 1999.

[12] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality. Networks,

32:207–232, 1998.
[13] A. Lucena. Tight bounds for the Steiner problem in graphs, 1991. Talk given at the TIMS

XXX - SOBRAPO XXIII Joint International Meeting, Rio de Janeiro.
[14] A. Lucena. Tight bounds for the Steiner problem in graphs. Technical report, IRC for Process

Systems Engineering, Imperial College, 1993.
[15] A. Lucena and J.E. Beasley. Branch and cut algorithms. In J.E. Beasley, editor, Advances in

linear and integer programming, pages 187–221. Oxford University Press, 1996.
[16] F. Margot, A. Prodon, and Th.M. Liebling. Tree polyhedron on 2-tree. Mathematical Pro-

gramming, 63:183–192, 1994.
[17] M. Padberg and L. Wolsey. Trees and cuts. Annals of Discrete Mathematics, 17:511–517,

1983.
[18] J.C. Picard and H.D. Ratliff. A graph theoretic equivalence for integer programs. Operations

Research, 2:261–269, 1973.
[19] A. Segev. The node-weighted Steiner tree problem. Networks, 17:1–17, 1987.

(Abilio Lucena) Laboratório de Métodos Quantitativos, Departamento de Administração,
Universidade Federal do Rio de Janeiro, Av. Pasteur 250, 22290-240 Rio de Janeiro, RJ,

Brazil
E-mail address: lucena@openlink.com.br

(Mauricio G. C. Resende) Internet and Network Systems Research, AT&T Labs Re-
search, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.

E-mail address: mgcr@research.att.com

