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Abstract. Given an undirected graph G with penalties associated with its
vertices and costs associated with its edges, a Prize Collecting Steiner (PCS)
tree is either an isolated vertex of G or else any tree of G, be it spanning or
not. The weight of a PCS tree equals the sum of the costs for its edges plus
the sum of the penalties for the vertices of G not spanned by the PCS tree.
Accordingly, the Prize Collecting Steiner Problem in Graphs (PCSPG) is to
find a PCS tree with the lowest weight. In this paper, after reformulating and
re-interpreting a given PCSPG formulation, we use a Lagrangian Non Delayed
Relax and Cut (NDRC) algorithm to generate primal and dual bounds to the
problem. The algorithm was capable of adequately dealing with the expo-
nentially many candidate inequalities to dualize. It incorporates ingredients
such as a new PCSPG reduction test, an effective Lagrangian heuristic and a
modification in the NDRC framework that allowed duality gaps to be further
reduced. The Lagrangian heuristic suggested here dominates their PCSPG
counterparts in the literature. The NDRC PCSPG lower bounds, most of the
time, nearly matched corresponding Linear Programming relaxation bounds.

1. Introduction

Given an undirected graph G = (V, E) with a set V of vertices and a set E of
edges, associate real-valued penalties {di ≥ 0 : ∀i ∈ V } with the vertices of G and
real-valued costs {ce ≥ 0 : ∀e ∈ E} with its edges. A Prize Collecting Steiner

(PCS) tree is either an isolated vertex of G or else any tree of G, be it spanning
or not. The weight of a PCS tree equals the sum of the costs for its edges plus
the sum of the penalties for the vertices of G not spanned by the PCS tree. The
Prize Collecting Steiner Problem in Graphs (PCSPG) is to find a PCS tree with
the lowest weight.

PCSPG is closely related with both the Steiner Problem in Graphs (SPG) [3] and
the Steiner Tree Problem in Graphs (STP) [16]. For the first of these problems,
two or more terminal vertices must be connected together while minimizing the
sum of the costs for the edges used. As such, feasible SPG solutions are implied by
connected components of the problem input graph containing all terminal vertices.
However, if one restricts the edges of the input graph to only assume nonnegative
costs, as it is the case for every single SPG instance found in the literature, an addi-
tional artificial constraint is implicitly imposed on the problem. That is, provided
the instance is feasible, an optimal SPG solution exits with the topology of a tree
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spanning all terminal vertices plus, possibly, some nonterminal Steiner vertices as
well. One should notice, however, that this kind of topology is just a particular case
of the more general structures the definition of the problem allows for. Contrary
to SPG, for STP a tree topology is explicitly required for feasible solutions and
this is the only difference between the two problems. Furthermore, it is normally
assumed, either for SPG or STP, that edge costs are unrestricted in sign. However,
when these costs are limited to be strictly positive, an optimal solution to STP
must also be optimal to SPG, and vice versa.

In the literature, SPG and STP are frequently mixed up. It is not uncommon
to find SPG formulations being referred to as STP formulations and vice-versa.
For PCSPG, it appears that we are fast following the same track. Indeed, in
tune with the discussion above, it would certainly help if one distinguishes PCSPG
from a Prize Collecting Steiner Tree Problem in Graphs (PCSTP). In this paper
we will use a PCSPG formulation that explicitly enforces a PCS tree topology on
feasible solutions. Furthermore, it originates from a STP formulation. Thus, it
would probably be more adequate to call that formulation a PCSTP formulation,
although, in this paper, we refrain from doing so.

SPG instances with nonnegative edge costs may be recast as PCSPGs. This is
attained by associating a sufficiently large positive penalty to every terminal vertex
and zero valued penalties to nonterminals. Thus, optimal PCS trees are guaranteed
to contain all terminal vertices, as required in SPG. Given that SPG was proven to
be NP-hard in [19], no matter if the edge costs of the input graph are nonnegative
or not, and since, under nonnegative edge costs, SPG is a particular case of PCSPG,
then PCSPG must also be NP-hard.

For the past few years, PCSPG has been the focus of considerable attention in
the literature. A possible explanation for that, apart from the inherent interest the
problem attracts, is the fact that Prize-Collecting appears to be a realistic model
for various applications in network design. An example is mentioned in [7, 18, 27]
where one wants to build a fiber-optics network to provide broadband connections
to business and residential customers. As such, for that application, G represents a
local street map, V corresponds to potential client premises and street intersections,
and E represents street segments. Another application, reported in [21], deals with
the planning of the expansion of electricity and gas facilities. For that application,
vertex penalties are discounted cash flows associated with the estimated heating
demands to be supplied. Edges costs are associated with laying (or expanding)
pipes and/or electrical cables.

The term Prize-Collecting was coined in Balas [1], in the context of the Traveling
Salesman Problem. Since then it is has been used to define various combinatorial
optimization problems. A common tract for all these problems is a clear trade-off
between paying an edge cost to include a vertex into a feasible solution or else
incurring a penalty for leaving it out.

References to additional problems closely related to PCSPG go back to Segev
[33]. In that reference, Node-Weighted Steiner Tree Problem (NWSTP) is used
to describe a variant of SPG where, in addition to the usual edge costs, vertex
penalties are also present. Solution algorithms for a single terminal vertex version
of NWSTP are proposed and tested in [33].

Another exact solution algorithm for NWSTP is proposed in [13]. This algorithm
is based on a formulation which is similar to the SPG formulation found in [23]. In
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turn, the SPG formulation in [23] could be seen as a strengthened version of the SPG
formulation in [4]. Likewise, it could also be seen as a reformulation of the SPG
formulation suggested in [14, 22, 28] (see [26] or [25], for details). Additionally,
NWSTP lower bounds in [13] are generated as suggested in [23]. Thus, like the
algorithm in [23], the Lagrangian relaxation algorithm in [13] could be seen as a
Non Delayed Relax-and-Cut algorithm (see [25] for details).

PCSPG, in the minimization form described here, could be polynomially approx-
imated [6, 15]. In Bienstock [6], an algorithm with an approximation factor of 3
was proposed for the problem. Later on, Goemans and Williamson [15] proposed
a general primal-dual approximation framework for a family of NP-hard problems,
PCSPG included. Specializing that framework to PCSPG resulted in an algorithm
with an approximation factor of 2 and complexity O(|V |2log(|V |)). The algorithm
is geared to a rooted version of PCSPG, where a pre-specified vertex is required to
be part of any feasible solution. Thus, for the general case, where no root vertex
exists, the algorithm requires |V | runs, with every vertex in V playing, in turn,
the role of root. In doing so, the approximation factor of 2 is maintained, albeit
at a O(|V |3log(|V |) complexity. More recently, Minkoff [29] improved upon the
Goemans and Williamson algorithm (GWA) by dropping the root vertex require-
ment, preserving the asymptotic approximation factor, and reducing the worst case
complexity to O(|V |2log(|V |)). An additional contribution found in [29] is the devel-
opment of a pruning, or post processing strategy, based on Dynamic Programming.
This strategy dominates the one suggested in [15].

Lucena and Resende [27] specialized the STP formulation in [14, 23, 28] to PC-
SPG and used a cutting plane algorithm to generate Linear Programming (LP)
relaxation bounds. The algorithm was tested on instances from the literature and
proved to be capable of returning strong PCSPG lower bounds. Still in [27], some
pre-processing tests, adapted from the SPG literature, were used to reduce instance
input size.

Another PCSPG formulation is found in Ljubic et al. [21]. It relies on a digraph
induced by G and involves an additional, artificial, root vertex. A branch-and-
cut algorithm based on this formulation was implemented in [21]. The algorithm
underwent extensive computational testing and proved to be very effective. Indeed,
it managed to solve to proven optimality all test instances from the literature.
Additionally, optimality certificates were also obtained for some new hard-to-solve

instances, proposed in [21].
Recently, Haouari and Siala [17] studied the Quota PCSPG (QPCSPG). For that

variant of PCSPG, instead of vertex penalties, vertex prizes are used. Accordingly,
for any feasible QPCSPG solution, solution vertices qualify for a prize. Further-
more, for a tree of G to be feasible to QPCSPG it is required to collect at least a
given minimum amount in prizes. As such, QPCSPG is more in tune than PCSPG
with the idea of prize collecting, as originally introduced in [1]. A hybrid solution
approach for QPCSPG, involving a genetic algorithm and Lagrangian relaxation,
was proposed in [17]. The approach was tested on instances with up to 500 vertices
and 5000 edges.

A metaheuristic based heuristic was suggested to PCSPG in Canuto et. al. [7].
It combines a multi-start implementation of GWA (operating under randomly per-
turbed input costs), Local Search (LS), Variable Neighborhood Search (VNS), and
Path-Relinking (PR). The extensive computational experiments in [7] indicate that
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the proposed heuristic is capable of attaining near optimal solutions in acceptable

CPU times.
In this paper, we investigate primal and dual bounds for PCSPG. These origi-

nate from Lagrangian relaxations to the PCSPG formulation in [27]. Since, at first
sight, that formulation does not seem amenable to be decomposed in a Lagrangian
fashion, we reformulate it with a new set of variables. The resulting formulation
is then given a more convenient graph theoretical interpretation, allowing it to be
easily decomposed in a Lagrangian fashion. In doing so, a Non Delayed Relax-and-
Cut (NDRC) algorithm [25] is then applied. In association, an effective new rule
for discarding inactive dualized inequalities is also proposed and tested here. Addi-
tionally, operating under the proposed NDRC framework, a Lagrangian heuristic is
implemented to find PCSPG feasible solutions. One of the features of this heuristic
is the use of Lagrangian dual information to generate feasible integral solutions to
PCSPG. It also uses Local Search to attempt to improve the feasible solutions thus
obtained. These combined ingredients are repeatedly used throughout the Relax-
and-Cut algorithm. Preprocessing and variable fixing tests, that proved effective
in reducing instance input size, are also used in our NDRC algorithm.

This paper is organized as follows. In Section 2, the PCSPG formulation in [27]
is reformulated and re-interpreted to make it amenable to the use of Lagrangian
relaxation. In Section 3, the basic features of a general NDRC algorithm are de-
scribed. In Section 4, that general framework is tailored to PCSPG. Reduction
tests for the problem and the pricing out of suboptimal variables are discussed in
Section 5. In Section 6, the NDRC algorithm is computationally tested. Finally,
the paper is closed in Section 7 with some conclusions and directions for future
work.

2. An Integer Programming Formulation for PCSPG

The PCSPG formulation used in this paper was suggested in [27] and involves
two different sets of variables. Namely, variables {yi ∈ {0, 1} : i ∈ V } to select
the vertices to appear in the PCS tree and variables {xe ≥ 0 : e ∈ E} to connect
these vertices. We denote by E(S) ⊆ E the set of edges with both endpoints in
S ⊆ V . Accordingly, x(E(S)) :=

∑

e∈E(S) xe represents the sum of the variables

associated with the edges in E(S). Likewise, y(S) :=
∑

i∈S yi represents the sum
of the variables associated with the vertices in S. Using this notation, the PCSPG
formulation in [27] is then given by

(1) min

{

∑

e∈E

cexe +
∑

v∈V

dv(1 − yv) : (x, y) ∈ R0 ∩ (R
|E|
+ , B|V |)

}

,

where B
|V | stands for {0, 1}|V | and the polyhedral region R0 is defined as

(2) x(E) = y(V ) − 1,

(3) x(E(S)) ≤ y(S \ {j}), ∀j ∈ S, ∀S ⊆ V,

(4) 0 ≤ xe ≤ 1, ∀e ∈ E,

(5) 0 ≤ yi ≤ 1, ∀i ∈ V.
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For the formulation above, for any feasible solution, constraint (2) imposes that
the number of edges involved must equal the number of vertices minus one, very
much as one would expect from a PCS tree. Constraints (3) generalize the Subtour
Elimination Constraints (SECs) of Dantzig, Fulkerson, and Johnson [10] and guar-
antee that the resulting solution is cycle free. Finally, inequalities (4) and (5) define
valid lower and upper bounds for the variables involved. Thus, after introducing
necessary integrality constraints on the y variables, it then follows that the set of
feasible solutions to (1) imply all PCS trees of G.

Clearly, single vertex solutions to PCSPG could be efficiently computed through
explicit enumeration. Bearing that in mind, Lucena and Resende [27] only concen-
trated on feasible PCSPG solutions involving one or more edges. Such a restricted
version of the problem follows from (1) and is given by

(6) min

{

∑

e∈E

cexe +
∑

v∈V

dv(1 − yv) : (x, y) ∈ R1 ∩ (R
|E|
+ , B|V |)

}

,

where polyhedral region R1 is defined by the set of constraints in R0 plus

(7) x(δ(i)) ≥ yi, ∀i ∈ V with di > 0,

and

(8) x(δ(i)) ≥ 2yi, ∀i ∈ V with di = 0.

Indeed, to exclude single vertex solutions from (1), it suffices to append inequalities

(9) x(δ(i)) ≥ yi, ∀i ∈ V

to (1). However, given the nonnegative edge costs and vertex penalties in PCSPG,
we use the stronger inequalities (7), for positive penalty vertices. It should be
noticed that (8) explicitly imposes that no zero penalty vertex may be a leaf in an
optimal PCS tree. Validity of this condition follows from the fact that a PCS tree
of lower weight would otherwise be obtained after eliminating leaves for zero valued
penalty vertices (thus contradicting any optimality assumption).

2.1. Exchanging variables and uncovering structure. Typically, for the use
of Lagrangian relaxation, one looks for an easy to solve problem, obtained after
dropping a set of complicating constraints from the formulation in hand. Ideally,
such an easy problem should be capable of returning, for our specific application, a
good quality bound on (6). In principle, R1 does not appear to contain a structure
meeting these requirements. However, as we shall see next, such a structure is
actually hidden in R1 and could be uncovered by following a two-step procedure.
Firstly, binary 0−1 variables {yi : i ∈ V } should be replaced by their complements
in 1. Then, the new variables should be re-interpreted in terms of a graph which
expands G = (V, E) with the introduction of an artificial vertex together with some
edges incident to that vertex.

To implement the first of the two steps indicated above, let {zi = 1− yi : i ∈ V }
be the set of variables to replace {yi : i ∈ V } in (6). Exchanging variables results
in a polyhedral region R2, in a one-to-one correspondence with R1, given by

(10) x(E) + z(V ) = |V | − 1,

(11) x(δ(i)) + zi ≥ 1, ∀i ∈ V with di > 0,

(12) x(δ(i)) + 2zi ≥ 2, ∀i ∈ V with di = 0,
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(13) x(E(S)) + z(S \ {j}) ≤ |S| − 1, ∀j ∈ S, ∀S ⊆ V,

(14) 0 ≤ xe ≤ 1, ∀e ∈ E,

(15) 0 ≤ zi ≤ 1, ∀i ∈ V.

Re-written as above, GSECs (13) now appear very clearly as a lifting of ordinary
SECs. A reformulation of (6) is thus given by

(16) min

{

∑

e∈E

cexe +
∑

i∈V

dizi : (x, z) ∈ R2 ∩ (R
|E|
+ , B|V |)

}

.

At this point, let us give an alternative interpretation to the meaning of variables
{zi : i ∈ V }. Assume that an artificial vertex (n + 1), where n = |V |, has been
introduced into G = (V, E) and that every variable zi, i ∈ V , represents an edge of
cost di directly linking i to (n+1). Denoting by G′ = (V ′, E′) the graph that results
from this expansion of G, then V ′ = V ∪ {n + 1} and E′ = E ∪ {(i, n + 1) : i ∈ V }.

Notice that |V ′| − 2 (or, alternatively, |V | − 1) edges of G′ must appear at any
feasible solution to (10)–(15). Notice as well that such a solution must violate
no GSECs. It is thus not difficult to check that any feasible solution to (10)-(15)
corresponds to a certain GSEC restricted spanning forest of G′ with exactly two
connected components. One of these components must either be a star centered at
vertex (n + 1) (i.e., a set of one or more edges of G′, all incident to vertex (n + 1))
or else vertex (n+1) in isolation. GSECs xe + zi ≤ 1 and xe + zj ≤ 1, defined for a
set S = {i, j} ∈ V , where e = (i, j) ∈ E, imply the topology of the first component.
The other component must be a PCS tree involving at least one edge of G and
having no vertex i ∈ V with di = 0 as a leaf (as enforced by inequalities (11) and
(12)). A typical example of such a solution is depicted in Figure 1.

n + 1

i ∈ V : di > 0 i ∈ V : di = 0

Figure 1. A feasible PCSPG solution under the expanded graph G′.

Within a Lagrangian framework, the remarks above provide us with an attractive
structure to work with: an unrestricted spanning forest of G′ with exactly |V ′| − 2
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edges. Provided such a spanning forest does not violate degree constraints (11) and
(12) nor GSECs (13), it must imply a feasible PCSPG solution involving two or
more edges. In accordance with that, consider now a polyhedral region R3 given
by

(17) x(E) + z(V ) = |V ′| − 2

(18) x(E(S)) ≤ |S| − 1, ∀S ⊆ V ′

(19) 0 ≤ xe ≤ 1, ∀e ∈ E

(20) 0 ≤ zi ≤ 1, ∀i ∈ V

where (18) are ordinary SECs. A forest of G′ with exactly |V ′| − 2 edges must
then be associated with any point in R3 where z ∈ B

|V |. Additionally, if such
a point does not violate (11), (12) and (13), it must imply a PCS tree, i.e., the
second of the two structures discussed above. Therefore, if one attaches nonnegative
multipliers to inequalities (11), (12) and (13) and brings them to the objective
function in (16), optimizing the resulting Lagrangian modified objective function

over (x, z) ∈ R3 ∩ (R
|E|
+ , B|V |) returns a valid PCSPG lower bound.

Since exponentially many inequalities exist in (13), dualizing them in a La-
grangian fashion is not as straightforward as it would otherwise be for (11) and
(12). Thus, in Section 3, a description is given of NDRC algorithms. As mentioned
before, NDRC allows one to deal with the nonstandard Lagrangian relaxation ap-
plication suggested above.

3. Non Delayed Relax and Cut

The NDRC algorithm in [23, 24] is based upon the use of Subgradient Method
(SM) and, throughout this paper, we follow [23, 24, 25] in using SM to describe and
test NDRC. The material presented in this section essentially follows from [25].

Assume that a formulation for a NP-hard combinatorial optimization problem
is given. Assume as well that exponentially many inequalities are involved in it.
Such a formulation is generically described as

(21) w = min{cx : Ax ≤ b, x ∈ X},

where, for simplicity, x denotes binary 0 − 1 variables, i.e., x ∈ B
p for an integral

valued p > 0. Accordingly, for an integral valued m > 0, we have c ∈ R
p, b ∈ R

m,
A ∈ R

m×p and X ⊆ B
p. Assume, as it is customary for Lagrangian relaxation, that

(22) min{cx : x ∈ X}

is an easy to solve problem. On the other hand, in what is unusual for the applica-
tion of Lagrangian relaxation, assume that m is an exponential function of p, i.e.
(21) contains exponentially many inequalities. Assume as well that one dualizes

(23) {aix ≤ bi : i = 1, 2, . . . , m}

in a Lagrangian fashion, regardless of the difficulties associated with the dualization
of exponentially many inequalities. Denote by λ ∈ R

m
+ the corresponding vector of

Lagrangian multipliers. A valid lower bound on (21) is thus obtained by solving
the Lagrangian Relaxation Problem (LRP(λ))

(24) wλ = min{(c + λA)x − λb : x ∈ X}.
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To attain the best possible Lagrangian bound (24), Subgradient Optimization (SO)
could be used to solve the corresponding Lagrangian Dual Problem (LDP)

(25) wd = max
λ∈R

m
+

{wλ}.

Optimization is typically conducted here in an interactive way with multipliers
being updated so that wd is obtained. For the sake of completeness, let us briefly
review SM, as implemented in [5]. That implementation is precisely the one adapted
in this paper to produce the computational results in Section 6.

3.1. A brief description of the Subgradient Method. At iteration k of SM,
for a feasible vector λk of Lagrangian multipliers, let xk be an optimal solution
to LRP(λk), with value wλk , and w be a known upper bound on (21). Addition-
ally, let gk ∈ R

m be a subgradient associated with the relaxed constraints at x.
Corresponding entries for gk are

(26) gk
i = (bi − aix

k), i = 1, 2, . . . , m.

In the literature (see [5], for instance), to update Lagrangian multipliers, one ini-
tially generates a step size

(27) θk =
α[w − wλk ]
∑

i=1,...,m

(gk
i )2

,

where w is a valid upper bound on w and α is a real number assuming values in
(0, 2]. Having done that, one then updates multipliers as

(28) λk+1
i ≡ max{0; λk

i − θkgk
i }, i = 1, . . . , m

and moves on to iteration k + 1 of SM.
Under the conditions imposed here, the straightforward use of updating formulas

(27)–(28) is not as simple as it might appear. The reason being the exceedingly
large number of inequalities that one would typically have to deal with.

3.2. NDRC modifications to the Subgradient Method. Inequalities in (23),
at iteration k of SM, may be classified into three sets. The first contains inequali-
ties that are violated at xk. The second is for those inequalities that have nonzero
multipliers currently associated with them. Notice that an inequality may simulta-
neously be in the two sets just defined. Finally, the third set contains the remaining
inequalities. Following [25], we will refer to the three sets of inequalities just de-
scribed respectively as the Currently Violated Active set, the Previously Violated

Active set, and the Currently Inactive set. Accordingly, they are respectively de-
noted by CA(k), PA(k), and CI (k).

For the traditional use of Lagrangian relaxation, say when m is a polynomial
function of p, Beasley [5] reported good practical convergence of SM to (25), while,
arbitrarily setting gk

i = 0 whenever gk
i > 0 and λk

i = 0, for i ∈ {1, . . . , m}. In our
context, all subgradient entries that are candidates to that modification belong to
CI (k).

In spite of the exponentially many inequalities one is faced with, we follow
Beasley’s advice. The reasoning for doing that comes from two observations. The
first one is that, irrespective of the suggested changes, from (28), multipliers for
CI (k) inequalities would not change their present null values at the end of the
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current SM iteration. As such, at the current SM iteration, clearly, CI (k) inequal-
ities would not directly contribute to Lagrangian costs. On the other hand, they
would play a decisive role in determining the value of θk and this fact brings us to
the second observation. Typically, for the application being described, the number
of strictly positive subgradient entries associated with CI (k) inequalities, tends to
be huge. If they are all explicitly used in (27), θk would result extremely small,
leaving multiplier values virtually unchanged from iteration to iteration and SM
convergence problems should be expected.

By following Beasley’s suggestion, we are capable of dealing adequately, within
a SM framework, with the exceedingly large number of inequalities in CI (k). How-
ever, we may still face problems arising from a potentially large number of inequal-
ities in (CA(k) \ PA(k)). These, as one may recall, are the inequalities that will
become effectively dualized, i.e., that will have a nonzero multiplier associated with
them at the end of SM iteration k.

Assume now that a large number of inequalities exist in (CA(k) \PA(k)). These
inequalities must therefore be violated at the solution to LRP(λk) and have zero
valued Lagrangian multipliers currently associated with them. Typically, such in-
equalities may be partitioned into subsets associated, for instance, with a parti-
tioning of the set of vertices in a given associated graph, if that applies. Then,
according to some associated criteria, a maximal inequality would exist for each
of these subsets. In order to avoid repeatedly penalizing the same variables, again
and again, we only dualize one maximal inequality per subset of inequalities. Ex-
cluding these inequalities, remaining inequalities in (CA(k) \PA(k)) will have their
subgradient entries arbitrarily set to 0, thus becoming, in effect, CI (k) inequalities.

One should notice that, under the classification proposed above, inequalities may
change groups from one SM iteration to another. It should also be noticed that the
only multipliers that will have directly contributed to Lagrangian costs (c+λk+1A),
at the end of SM iteration k, are the ones associated with active inequalities, i.e.,
inequalities in (CA(k) ∪ PA(k)).

An important step in the dynamic scheme outlined above, is the identification of
inequalities violated at xk. This problem must be solved at every iteration of SM
and is equivalent to the separation problems found in Branch-and-Cut algorithms.
However, NDRC separation problems typically involve lower complexity algorithms
than their Branch-and-Cut counterparts. This follows from the fact that LRP(λ)
is normally formulated so that separation is conducted over integral structures.

3.3. Extending the life of dynamically dualized inequalities. For the NDRC
algorithm outlined above, assume that a given inequality is dynamically dualized at
iteration k of SM. Accordingly, assume, as previously suggested, that this inequality
is dropped from updating formula (27) as soon as it becomes inactive. This would
specifically occur at the very first SM iteration k1 > k for which, simultaneously,
the inequality is not violated at the solution xk1 to LRP(λk1 ) and its corresponding
Lagrangian multiplier drops to zero.

For the computational experiments in this study, we tested an alternative to the
rule above. Namely, we extend the life or, better say, the use of a dualized inactive
inequality in updating formula (27), past iteration k1. Accordingly, denote the age

of a dynamically dualized inequality, the number of consecutive SM iterations past
k1 where the inequality is not violated by corresponding LRP(λk) solutions. Under
this new rule, such an inequality remains dualized and is allowed to be used in (27)
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for as long as its age is less than a given parameter EXTRA ≥ 1. Clearly, in doing so,
whenever an inequality aged over 1 is violated at a LRP(λk2) solution xk2 , where
(k2 − k1) ≤ EXTRA, the inequality will leave probation and enter set CA(k2). As a
result, no need would exist, for the time being, to keep track of it. Obviously, this
situation would prevail until eventually the inequality becomes, yet again, aged 1
and monitoring of it becomes, once more, mandatory.

The use of the alternative rule proposed above proved quite effective. In fact,
for some of the instances tested, gaps between NDRC upper and lower bounds were
closed by as much as 30%, after setting EXTRA to a value larger than 1.

4. NDRC bounds to PCSPG

We implemented a NDRC algorithm to PCSPG where GSECs (13) are dynam-
ically dualized, as suggested in the previous section. Degree-inequalities (11) and
(12), however, which are small in number, were dualized in a traditional Lagrangian
fashion. Thus, these inequalities remain dualized throughout SM, irrespective of
being active or not.

At iteration k of SM, for a conformable value q > 0, assume that Lagrangian
multipliers λk ∈ R

q
+ are associated with the dualized inequalities. Following the

discussion in Section 3, a valid lower bound on (16) is thus given by the solution to
LRP(λk), formulated as

(29) wλk = min

{

∑

e∈E

ck
exe +

∑

i∈V

dk
i zi + const(λk) : (x, z) ∈ R3 ∩ (ZZ|E|, B|V |)

}

,

where {ck
e : e ∈ E} and {dk

i : i ∈ V } are respectively Lagrangian modified edge
costs and vertex penalties and const(λk) is a constant implied by λk.

Notice that an optimal solution to (29), i.e. a minimum cost forest of G′ with
exactly (|V ′|−2) edges, is easy to obtain. To do so, among the alternatives available,
it suffices to adapt Kruskal’s algorithm [20] to stop immediately after the first
(|V ′| − 2) edges are selected.

Let us now concentrate on solutions (xk, zk) to LRP(λk), which are infeasible to
PCSPG. Each of these solutions gives rise to a support graph, that is a subgraph of
G′ induced by the nonzero entries in (xk, zk). A typical support graph is depicted
in Figure 2. From previous arguments, it is clear that feasible solutions to (29) that
happen to be feasible to (16) as well, must either contain vertex (n + 1) appearing
in isolation or else have that vertex as the center of a star, as previously defined.
For the solution in Figure 2, vertex i ∈ V contains two edges incident to it, namely
(i, n + 1) and (i, l). Thus, that solution must be infeasible to PCSPG and, as such,
must imply violated GSECs. Examples of such inequalities are the four maximal
GSECs induced by the set of five encircled vertices in the figure. For each of these
inequalities, in turn, a different vertex j ∈ S \ {i} is singled out in (13).

For a given optimal LRP(λk) solution (xk, zk), the identification of maximal
violated GSECs could be carried out efficiently. This is attained by investigating
the support graph associated with (xk, zk). In doing so, assume that edge (i, n+1),
for i ∈ V , is contained in that graph. In addition, denote by Si the set of support
graph vertices, i itself included, that could be reached from i without crossing edge
(i, n + 1). Whenever |Si| is larger or equal to 2, violated GSECs must necessarily
be associated with Si. Vertices in Si could be identified in O(n) time. To do so it
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suffices to eliminate (i, n + 1) from the support graph and conveniently adapt any
available shortest path algorithm to enumerate all vertices reachable from i.

After some computational experiments, it proved advantageous to dualize, in a
traditional Lagrangian fashion, in addition to (11) and (12), all GSECs with |S| = 2.
Only 2|E| such inequalities exist and, among all GSECs available, they are the ones
that contribute the most to the Lagrangian bound. Apart from these simple GSECs,
we only dualize maximal GSECs associated with sets Si of cardinality larger than 2.
Furthermore, from our experiments, for Si as just described, it proved advantageous
to only dualize one out of the |Si| − 1 corresponding maximal violated GSECs. We
thus only dualize that inequality in (13) for which S = Si and vertex j ∈ Si is
chosen as j = arg {maxl∈(S\{j}){d

k
l }}. Ties are broken arbitrarily.

n + 1 i

l

Si

Figure 2. A (xk, zk) solution infeasible to (16).

4.1. PCSPG upper bounds. Our upper bounding strategy attempts to use La-
grangian dual information in a procedure to generate feasible integral solutions to
PCSPG. The basic motivation behind this approach is the intuitive idea, validated
by primal-dual algorithms, that dual solutions (respectively Lagrangian dual so-
lutions, for this application) must carry relevant information for generating good
quality primal solutions. Operating within a Lagrangian relaxation framework, our
implementation of this basic idea involves two main components. The first is an
algorithm based on the variant of GWA proposed in [29]. We call it the Minkoff

Algorithm (MA). The second is a Local Search (LS) procedure that attempts to
improve feasible PCSPG solutions returned by MA.

GWA and MA are primal-dual based factor of 2 approximation schemes for PC-
SPG. They both rely on a constructive algorithm (where a forest of G is greedily
built) followed by pruning (where one attempts to construct a PCS tree from the
available forest components). One difference between GWA and MA is that, for
the former, a given pre-specified root vertex r ∈ V must be passed as an input
data to the constructive algorithm. Furthermore, only that connected component
containing r may be subjected to pruning in GWA. As a result, |V | runs are re-
quired for GWA to attain a factor of 2 approximation. Contrary to that, the
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constructive phase in MA, called UnrootedGrowthPhase, involves no root vertex.
Additionally, all connected components resulting from it may be submitted to prun-
ing. Due to these features, MA has a better run time complexity than GWA, i.e.,
O(n2log(n)) against O(n3log(n)). Furthermore, the pruning algorithm used in MA,
called BestSubTree, is based on Dynamic Programming and dominates the corre-
sponding algorithm in GW (BestSubTree returns the best possible PCS tree for
the subgraph of G induced by the connected component under inspection).

Due to the advantages quoted above, MA was selected to be used within our
NDRC framework. Essentially, at an iteration k of SM, complementary costs {(1−
xk

e)ce : e ∈ E} and complementary penalties {zk
i di : i ∈ V } are computed and used

as input data to UnrootedGrowthPhase, instead of the original edge costs and vertex
penalties. In doing so, one attempts to make it more attractive for MA to select
as many edges in the support graph of (xk, zk) as possible. Accordingly, we thus
use dual information to guide the construction of primal feasible solutions. This
overall Lagrangian heuristic, MA included, is only run for SM iterations where wλk

improves upon the best Lagrangian relaxation bound previously generated at SM.
For every such run, pruning algorithm BestSubTree is then used under the original
edge costs and vertex penalties (instead of using corresponding complementary
costs and penalties, as for the constructive algorithm). Solutions thus obtained are
then subject to Local Search, which is explained next.

4.2. Local search. Given a PCS tree T = (VT , ET ), we are essentially interested
in comparing T with PCS trees that result from T after a single vertex inclusion
or vertex exclusion operation. For the first operation, say the inclusion of vertex
i ∈ V into T , the most effective procedure to accomplish that task may involve the
insertion into T of some additional vertices. Accordingly, the same applies for the
operation of excluding a vertex j ∈ VT from T . The search neighborhood we aim
for is thus formed by those PCS trees that result from an optimized inclusion (resp.
exclusion) of a vertex into (resp. from) T .

On implementing the Local Search (LS) procedure suggested above, a vertex
inclusion (resp. exclusion) move is conducted in two steps. First, a minimal cost tree
spanning the enlarged (resp. contracted) vertex set is computed. Then, at a second
step, BestSubTree is applied to the resulting PCS tree. Only after this second step
is carried out, one may evaluate potential vertex inclusion (resp. exclusion) benefits.
Another key feature of our LS procedure is the effort to keep run time low and allow
LS to be applied whenever MA is used. In order to do so, several dominance tests
are performed to hopefully avoid having to evaluate every possible non-profitable
move. The time required by the overall scheme is bounded from above by the time
to compute, from scratch, a Minimum Spanning Tree (MST) of G, i.e. O(mlog(n)).
To avoid paying that price, we implemented the dominance tests used in the SPG
Tabu Search heuristic of Ribeiro and Souza [30]. As we shall see next, these tests
could be easily adapted to PCSPG.

4.3. Dominance tests. Given a PCS tree T , consider all different PCS subtrees
contained in it. Clearly, the weight of each of these subtrees may differ from that
of T . Throughout our upper bounding algorithm, however, we enforce that no
PCS tree T contains a subtree with a lower weight. We call that the Optimality

Condition (OC) for T over the graph induced by T itself. As such, if T is passed
to BestSubTree as an input, T itself must be returned as an output.
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Let us first concentrate on dominance tests for insertion moves. Consider a
vertex i 6∈ VT and the set of edges connecting i to VT , i.e., δT (i) := {e ∈ E : e ∈
δ(i)∩ δ(VT )}. Assume that the edges in δT (i), i.e. {e1, e2, ...., e|δT (i)|}, are ordered
in nondecreasing value of their edge costs. The following tests are then used to
evaluate the benefits of inserting vertex i ∈ V into T :

(1) If |δT (i)| = 0, no PCS tree exists spanning VT ∪ {i}.
(2) If |δT (i)| = 1, inserting i into T is profitable iff di > ce1

. In this case, since
the original tree satisfies OC, the new one must also satisfy that condition.

(3) If |δT (i)| = 2, two cases must be considered:
(a) If di > ce1

, inserting i into T is profitable and the resulting tree satisfies
OC.

(b) If di ≤ ce1
, inserting i into T might still be profitable. To see why,

let us investigate two examples. In the first one, let us assume that
e1 = (i, k), e2 = (i, j) and that f is the maximum cost edge in the
unique path in T connecting k and j. It is clear that whenever di +
cf − ce1

− ce2
> 0 the insertion of i is profitable. Now, look at the

tree T indicated in Figure 3. Note that if we remove the path P =
{(k, z1), (z1, z2), (z2, z3)} (as well as all its internal nodes) and add
edges (i, k) and (i, j) to T , the resulting structure is a cost improving
tree. Following Duin [12], we call both the edge f in the first example
and the path P in the second as a key-path between j and k. More
precisely, a key-path between two vertices j and k in a tree T is either
an edge in the unique path connecting them or, else, any subpath
between k and j such that all its internal nodes have degree two. Let
us now define the net weight of a key-path as the sum of its edges costs
minus the sum of the penalties for its internal vertices. For example,
the net weight of P in Figure 3 is w(P ) = c(k,z1) + c(z1,z2) + c(z2,z3) −
dz2

= 14. Thus, all we have to do when evaluating the inclusion of i
is to find a maximal-weight key-path P∗ between j and k and check
whether P∗ is profitable, i.e., di+w(P∗)−ce1

−ce2
> 0. In positive case,

as the current PCS tree satisfies OC, the tree obtained after removing
P∗ and including e1, e2 also does. Thus, the new (cost-improving) tree
replaces the previous one and the search goes on. To find a maximal
weight key-path, we implemented a Dynamic Programming procedure
that runs at O(|VT |) time.

(4) If |δT (i)| ≥ 3, one should first introduce edge e1 = (i, k) into T . Denote
by Ti the resulting PCS tree. In the sequel, one should add another edge
ep = (i, j) ∈ δT (i)\{e1} into Ti. Then one finds the largest cost edge f in the
unique path of Ti connecting i and j and compute the gain di+cf−ce1

−cep
.

After evaluating, in turn, the gain provided by the inclusion in Ti of every
edge ep ∈ {e2, ...., e|δT (i)|}, as described above, the least cost PCS tree
thus obtained should be submitted to BestSubTree, no matter if its gain
is positive or not. Denote by Tδ(i) the PCS tree thus obtained. Provided
Tδ(i) has less weight than T , Tδ(i) should then be re-labelled T .

Our LS procedure is initiated with the insertion moves described above. In case
they fail, exclusion moves, which are computationally more expensive, should then
be attempted. However, prior to describing exclusion moves, we will first describe
some dominance tests associated with them.
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i

k z1 z2

z3

z4j

di = 9

c(i,k) = 10
c(k,z1) = 5

dz1
= 0

c(z1,z2) = 4

dz2
= 3

c(z2,z3) = 8

c(i,j) = 12

Figure 3. An example of a cost improving key-path involving
more than one edge.

First of all, let us focus on the analysis carried out in [30] for the exclusion of
a Steiner vertex, say vertex j, from a Steiner tree S = (VS , ES). In connection
with that, assume that {(i1, j), ..., (ik, j)} are the k ≥ 1 edges of S incident to j.
Accordingly, if vertex j is removed from S, k trees denoted by {Sl : l = 1, . . . , k}
would result. Let il, iv be any pair of adjacent vertices to j in the current Steiner
tree. Assume that j is indeed removed from S and define (p, q) as the minimum
weight edge among all those connecting Sl to the other k − 2 trees St : t 6= l, as
defined above. It has been proved, see Theorem 1 in [30], that η(j) := c(p,q) −
c(il,j) − c(iv ,j) gives a lower bound on the additional cost of a Steiner tree obtained
after eliminating vertex j from S. Clearly, whenever η(j) ≥ 0, the cost of such a
Steiner tree is larger than that of S.

It is quite straightforward to adapt the result above to PCSPG. To that order,
consider a PCS tree T , a vertex j ∈ VT , and the corresponding associated trees
{Tl : l = 1, . . . , k}, obtained after eliminating j from T . Additionally, redefine η(j)
as c(p,q) − c(il,j) − c(iv ,j) + dj , where, once again, vertices il and iv are any two
adjacent vertices to j in T and (p, q) is the least cost edge connecting Tl to the
other k − 2 trees Tt : t 6= l. In doing so, η(j) now gives a lower bound on the
additional weight of a PCS tree obtained after eliminating vertex j from T . Based
on the arguments above, prior to embarking on an analysis to attempt to exclude
vertex j from T , one should first determine η(j). To do that, one may consider the
same choices suggested in [30] for vertices il and iv. Accordingly, iv must be chosen
as the immediate predecessor of j in the path of T that links j to the root of that
tree. Likewise, il is taken as the end vertex, other than iv, of the maximum cost
edge of T incident to j.

5. Reduction tests and the pricing out of suboptimal variables

Prior to using the PCSPG NDRC lower and upper bound procedures in Section
4, a few tests are applied to reduce problem input size. Additionally, throughout
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SM, tests which attempt to price out suboptimal edges are also used. Details of
these two different types of tests are presented next.

5.1. Reduction tests. A reduction test for PCSPG attempts to find vertices and
edges of G that are guaranteed not to be in any optimal solution to the problem.
The tests that follow were adapted from SPG reduction tests found in the literature
(see Duin [11], for instance). In the order they are presented, the first four tests
come from [27], the fifth was suggested in [21] while the last is introduced in this
study.

5.1.1. Shortest path test. The test is only applied if ce > 0 for all e ∈ E. Let
dist(i, j) be the length of the shortest path linking vertices i and j, for i, j,∈ V .
If dist(i, j) < ce, where e = (i, j) ∈ E, then edge e is suboptimal and could be
eliminated from G.

5.1.2. Cardinality-one test. Assume that a given vertex, say vertex i ∈ V , has an
edge cardinality of one, i.e., |δ(i)| = 1. Denote by e the only edge incident to i.
If ce > di, then vertex i and, consequently, edge e are suboptimal and could be
eliminated from G.

5.1.3. Cardinality-two test. Assume that the edge cardinality of i ∈ V equals two
and denote respectively by e1 = (i, i1) and e2 = (i, i2) the two edges of G that are
incident to i. If ce1

> 0, ce2
> 0 and di = 0, either e1 and e2 must simultaneously

appear at an optimal PCS tree or else neither of these edges may be part of such
a tree. The reasoning behind this test, as explained before, follows from the sub-
optimality of any PCS tree containing vertex i as a leaf. Recall, in that case, that
the only edge incident to i may be eliminated from the tree and a lesser cost PCS
tree would then result.

Provided the conditions set above are met, vertex i could be pseudo eliminated

by replacing the two edges incident to it by a single edge (i1, i2) of cost c(i,i1)+c(i,i2).
Whenever two edges (i1, i2) result from this operation, only the edge with the least
cost should be kept.

5.1.4. Cardinality-larger-than-two test. Provided certain conditions are met, pseudo
elimination could also be extended to vertices with edge degrees larger than 2. As-
sume, for instance, that vertex i ∈ V has |δ(i)| = 3, all edges incident to i are
positive valued and di = 0. Assume as well that it was somehow established that
no optimal PCS tree exists with 3 edges incident to i. Therefore, under these con-
ditions, either vertex i is part of no optimal PCS tree or else it appears at such a
tree with an edge degree of 2 (recall that i could not have an edge degree of 1 at an
optimal PCS tree). Vertex i could thus be pseudo eliminated by joining together
into single edges each of the 3 possible combinations of two edges incident to i.
Clearly, in doing so, no optimal PCS tree would be eliminated from the original
solution space.

For a vertex i ∈ V with edge degree k ≥ 4, testing for pseudo elimination is
considerably more demanding than the situation described above for k = 3. For
k ≥ 4, pseudo elimination may only be carried out if it could be established that
no optimal PCS tree exists containing exactly l edges incident to i, for 3 ≤ l ≤ k.
However, due to the combinatorial explosion implied by checking that condition,
the test should be restricted, in practice, to vertices where k is not very large.
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Following the outline suggested above, we will now formally describe the test.
For convenience, it will be split in two cases. The first is for vertices i ∈ V with
edge degree k = 3. The second is for those vertices i ∈ V with k ≥ 4. In either
case, the cost of all edges incident to i must be non negative and di = 0.

Assume first that |δ(i)| = 3 and let i1, i2 and i3 be the three vertices of G sharing
an edge with i. Denote respectively by e1 = (i, i1), e2 = (i, i2), and e3 = (i, i3),
these edges. Then, see [11] for details, if

(30) min{dist(i1, i2) + dist(i1, i3), dist(i2, i1) + dist(i2, i3),

dist(i3, i1) + dist(i3, i2)} ≤ ce1
+ ce2

+ ce3
,

no optimal PCS tree exists involving 3 edges incident to i. As such, i could be
pseudo eliminated from G. As explained before, that is accomplished by replacing
every combination of two distinct edges incident to i by an associated, conveniently
defined, single edge.

Let us know extend the test for vertices i ∈ V with |δ(i)| = k, where k ≥ 4.
To understand this generalization, one should notice that the left hand side of
(30) equals the cost of the MST for the distance subgraph of G implied by vertices
i1, i2 and i3. Thus, in general terms, one should first compute a MST for the
distance subgraph of G associated with the k vertices that share and edge with i.
Having done that, one should then compare the cost of that MST against the sum
of the costs for the k edges incident to i. In case the MST has the smallest cost,
a guarantee is obtained that no optimal PCS tree exists involving exactly k edges
incident to i. However, at that point, to allow i to be pseudo eliminated, a similar
test must also be successful for every distinct combination involving l of the k edges
incident to i, for 3 ≤ l ≤ (k − 1).

5.1.5. Minimum adjacency test. Assume that an edge (i, j) ∈ E exists linking two
positive penalty vertices i, j ∈ V . If min{di, dj}− c(i,j) > 0 and c(i,j) = min{c(i,u) :
(i, u) ∈ E}, then vertices i and j may be shrunk into a single vertex of penalty
di + dj − c(i,j). As a result of this shrinking, whenever edges (i, v) and (j, v) belong
to E, two parallel edges linking v to the new vertex will result. These should then
be merged into a single edge of cost min{c(i,v), c(j,v)}.

5.1.6. Net weight gain cardinality two path test. For three given vertices of V , say
i, j, and k, assume that edges (i, j), (i, k), and (j, k) belong to E. Assume as
well that c(i,k) + c(j,k) − dk < c(i,j) and c(i,j) ≥ min{c(i,k), c(j,k)} apply. Then, in
this Net Weight Gain Cardinality Two Path Test (NWGC2), edge (i, j) must be
suboptimal since the path formed by edges (i, k) and (j, k) offers an alternative
to spanning vertices i and j through edge (i, j), at a positive net weight gain of
(c(i,j) − c(i,k) − c(j,k) + dk). It should be noticed that the NWGC2 improves on
the minimum distance test. That applies since NWGC2 may eventually succeed in
proving that an edge (i, j) ∈ E for which dist(i, j) = c(i,j), is suboptimal.

5.2. Variable fixing tests. As indicated before, feasible solutions to LRP(λk),
defined as suggested in Section 4, imply forests of G′ with exactly (|V ′| − 2) edges.
For this type of structure, LP reduced costs are quite straightforward to compute.
Indeed, this task could be accomplished by performing some simple, conveniently
defined, edge exchanges. These exchanges, in turn, directly follow from exchanges
previously suggested for computing LP reduced costs for spanning trees [32].
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For our particular application, assume that the k-th iteration of SM is being
implemented and let (xk, zk) ∈ B

|E|+|V | be an optimal solution to LRP(λk), for-
mulated at that iteration. Accordingly, the |E| components in xk are associated
with the edges of E. Likewise, the |V | components in zk are associated with the
edges {(n + 1, i) : i ∈ V } of the expanded graph G′ = (V ′, E′). As one may recall,
edges {(n + 1, i) : i ∈ V } are part of our reformulation and reinterpretation of
PCSPG in terms of G′.

For (xk, zk), as defined above, assume that ck
e , for e = (i, j) ∈ E′, is the corre-

sponding LP reduced cost for the variables involved. Then, ck
e is computed as

(31) ck
e = ck

e − ck
e0

,

where e0 is an edge that is dependent on the forest topology that (xk, zk) implies
on G′. Assume first that i and j share a same component in that forest. Then a
unique path must exist linking i and j in that component and e0 should be taken
as the largest Lagrangian edge cost for this path. Otherwise, if i and j appear in
different components, e0 should be taken as the largest overall Lagrangian cost for
an edge in the solution forest.

Denote by wλk the value of solution (xk, zk) to LRP(λk) and by w a known valid
PCSPG upper bound. Then, if (ck

e + wλk ) > w, the variable associated with e is
guaranteed not to appear at an optimal PCSPG solution. As such, that variable
(respectively edge e) could thus be eliminated from the formulation (respectively
from G′). The Lagrangian variable fixing test we have just described became stan-
dard in the literature and could be traced back at least to [34, 32].

6. Computational experiments

Computational tests were carried out for a total of 168 PCSPG instances taken
from the literature. These instances belong to the following sets:

• Sets P and K, respectively with 11 and 23 instances, as proposed in [18].
• Sets C and D with 40 instances each, as proposed in [7]. These instances

originate from the OR-Library SPG test sets C and D [2].
• Set E with 40 instances, as proposed in [21]. Instances in this set also

originate from the OR-Library [2] and were generated exactly as sets C
and D, above (see [7], for details).

• Set H with 14 instances, as proposed in [21]. These instances originate from
the SPG hypercube instances introduced in [31].

All algorithms used in our computational experiments were coded in C. Exper-
iments were carried out on a Pentium IV machine running at 3GHz and having
512 Mb of RAM memory. Linux was the operational system used and code was
compiled under GNU gcc compiler, with flag -O3 activated.

Due to the large volume of data involved, for convenience, we have chosen to
present detailed computational results in Tables 4 - 8 of Appendix A. Condensed
aggregate results, that indicate more general trends, are presented in the main text
body. However, whenever necessary, specific Appendix A results will also be quoted
throughout the text.

6.1. Pre-processing results. Table 1 presents a summary of pre-processing re-
sults for each test set considered. Entries in that table, under the headings “nb-v”
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and “nb-e”, respectively give the percentage of vertices and edges remaining after
the pre-processing tests of Section 5 were performed. Results are associated with
two different types of experiments. One where all pre-processing tests are carried
out and another where, among all available tests, only NWGC2 is omitted. In doing
so, benefits from using pre-processing test NWGC2 become more evident. Average
CPU times are presented for each type of experiment conducted.

Benefits from using test NWGC2 are more pronounced for test set K where,
on the average, 24% more edges ended up being eliminated. For instances in test
sets C, D, and E, benefits from using NWGC2 increase with the increase in the
proportion of non zero penalty vertices. For this group of instances, the average
times quoted in Table 1 were positively influenced by the vigorous performance
of NWGC2 for some of the largest instances in the group, namely, C20A, C20B,
D20A, and D20B. Preprocessing tests totally failed for set H instances, where not
a single edge could be eliminated.

Table 1. Summary of preprocessing results

NWGC2 in NWGC2 out

nb-v nb-e t(s) nb-v nb-e t(s)

P 0.84 0.79 0.17 0.84 0.79 0.14
K 0.44 0.38 0.23 0.47 0.50 0.27
C 0.70 0.39 0.75 0.71 0.42 1.17
D 0.72 0.44 3.04 0.72 0.46 4.31
E 0.72 0.20 33.0 0.72 0.21 31.98

6.2. NDRC lower and upper bounds. Table 2 presents a summary of the lower
and upper bounds obtained after allowing up to MAXITER=2000 SM iterations to
be performed. For these experiments, parameter EXTRA was set to 1 while step-size
parameter α, see (27), was initially set to 2, being progressively halved after ξ = 100
consecutive SM iterations without an overall improvement on the best Lagrangian
lower bound.

The first column in Table 2 identifies the corresponding test set. Columns that
follow respectively give the number of instances involved, the number of instances
for which NDRC was able to present optimality certificates, i.e., wd = w, the
number of instances where NDRC upper bounds matched known optimal solution
values, i.e., w = w, the percentage average gaps between upper and lower bounds,
and the average CPU times.

For the same parameter settings above, detailed computational results are pre-
sented in Tables 4 - 8 of Appendix A. For each of these tables, the first column
identifies the instance under investigation. The second indicates the best NDRC
lower bound attained, wd. That is followed by the best upper bound, w, in column
three, the corresponding duality gap, (w − wd)/wd, in column four, and the CPU
time (in seconds) to either perform MAXITER SM iterations or else to exhibit an
optimality certificate, in column five. For Tables 4–7, the last column, w, is the
optimal solution value. In Table 8, however, we indicate the best known upper
bound. Furthermore, for that table, in the last column, headings “*” indicate that
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Table 2. Average Relax-and-Cut results - MAXITER=2000, ξ =
100, EXTRA = 1

.

Number of instances Average
in the set wd = w w = w % dual gap t(s)

P 11 5 11 0.324 3.053
K 23 11 22 3.829 1.540
C 40 17 40 0.916 5.914
D 40 9 40 1.256 34.832
E 40 6 36 1.480 427.775
H (d ≤ 10) 10 - - 6.746 21.630
H (d = 11, 12) 4 - - 10.46 1603.480

the corresponding upper bound was proved to be optimal. Headings “+” indicate
that the best upper bound available was found in this study.

As can be appreciated from the computational results presented here, for in-
stances P, K, C, D, and E, NDRC upper bounds are always very sharp. Indeed,
for 149 of the 154 instances involved, they matched corresponding optimal solution
values. For the remaining 5 instances, the gaps between NDRC upper bounds and
corresponding optimal solution values were smaller than 1.5%.

NDRC upper bounds compare favorably with the results reported in [7] in terms
of solution quality for test sets P, K, C, and D (test sets E and H were not available
at the time [7] was published). Out of the 114 instances involved, NDRC managed
to find optimal solutions for 113 of them. Even when pre-processing tests were not
used, NDRC upper bounds matched optimal solution values for 109 instances. By
comparison, the algorithm in [7] only succeeded in finding optimal solutions for 91
of these instances. When pre-processing is switched off our CPU times increase
by an order of magnitude. We refrain from comparing our CPU times with those
quoted in [7] since quite different machines were used in the two experiments (a
3.0 GHz Pentium IV processor, for our application, and a 400 MHz Pentium II
processor in [7]). However, it is clear that one should expect CPU times in [7] to
drop considerably if our pre-processor tests were used.

Lower bounds attained by our NDRC algorithm were, in general, quite good.
The only exception being the lower bounds for instances in set K. As previously
mentioned in a conference version of this paper [8], these instances exhibit a high
degree of symmetry and, possibly, this is to blame for the poor NDRC performance.

One should notice that, from a theoretical point of view, the best NDRC lower
bounds capable of being attained are those implied by the LP relaxation of (16).
From the computational experiments in [27], LP relaxation bounds for (16) are
known for instances in test sets C, D, K, and P. For all instances in sets K and
P and for almost all instances in sets C and D, LP relaxations in [27] turned
out to be naturally integral. Thus, for these instances, LP relaxations correspond
to optimal PCSPG solutions. Comparing the NDRC lower bounds in this study
with the LP relaxation bounds in [27], it is clear that our bounds are not that
far away from the best values they could possibly attain. However, clearly, there
is still room for improvements. This is particularly true for instance K400 where
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larger than expected duality gaps were obtained. It is possible that such a gap
resulted from the Subgradient Method inadequacy to deal with highly symmetrical
PCSPG instances. However, one could not be completely sure about that since
we also faced some difficulties in choosing the GSECs to dualize (see discussion in
Section 4). Recall, from Section 4, that we only dualize at most one GSEC for each
candidate vertex set Si. Recall as well that when violations indeed occur, |Si| − 1
maximal violated GSECs are associated with Si. For that reason, we have then
decided to investigate alternative dualization strategies in an attempt to improve
NDRC lower bounds for set K instances. In particular, the following alternatives
were tested for every SM iteration where violations occur for vertex set Si:

• Dualize all associated |Si| − 1 maximal GSECs.
• Dualize a surrogate of the associated |Si| − 1 maximal GSECs.

None of these strategies resulted in a consistent lower bound improvement over
the strategy we had before. However, another approach was devised that allowed us
to partially bridge the gaps between the previously obtained NDRC lower bounds
and corresponding best theoretical values. Namely, we have extended the life of
a dynamically dualized GSEC, as described in Section 3.3. Under this strategy,
additional experiments were carried out for the K200 and K400 instances, under
different values for parameter EXTRA. Corresponding results appear in Table 3 and
show that NDRC lower bounds improved, on the average, by 2.32% and 2.54% over
their previous values, after EXTRA was respectively set to 5 and 10. Motivated by
these results, we performed similar experiments for those instances in sets K, P, C,
D, and E set for which a duality gap greater or equal to 1% was previously attained.
However, for this experiment, the following parameters were used: MAXITER=5000,
ξ = 250 and EXTRA = 5. In this experiment, four additional optimality certificates
were obtained. Furthermore, average duality gaps were reduced by one third.

Table 3. Experiments for K200 and K400 under different values
for EXTRA: MAXITER = 2000, ξ= 100

EXTRA= 1 EXTRA= 5 EXTRA= 10

wd t(s) wd t(s) wd wd t(s) wd

gain [%] gain [%]

K200 316673.9170 0.74 325021.7152 0.87 2.64 323684.0345 1.16 2.21
K400 326913.4753 2.73 335354.6354 3.42 2.58 335059.1583 4.03 2.49
K400.1 448931.0463 2.75 456311.7096 4.00 1.64 463199.9214 6.18 3.18
K400.2 426979.2349 5.57 441538.5219 6.87 3.41 443030.7666 9.88 3.76
K400.3 391085.1170 2.39 401146.9746 2.78 2.57 399468.6341 3.95 2.14
K400.4 366707.8591 2.07 373036.3271 2.84 1.73 375097.5467 3.90 2.29
K400.5 495385.8162 2.33 502802.1897 3.45 1.50 505274.0306 5.33 2.00
K400.6 352497.1554 3.34 358232.1295 3.93 1.63 358363.4084 5.35 1.66
K400.7 441518.7576 3.07 451524.8872 4.44 2.27 453673.8149 7.01 2.75
K400.8 398891.5238 3.42 404459.2169 4.26 1.40 404816.8895 6.13 1.49
K400.9 357336.0506 3.00 371505.2503 4.16 3.97 371384.5287 6.44 3.93
K400.10 350741.3267 2.76 359434.9675 3.77 2.48 359876.6518 6.13 2.60

Among PCSPG instances in the literature, those in set H are undoubtedly the
hardest to solve to proven optimality. In [21] computational results are presented for
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set H instances where d ≤ 10. These results were obtained under a 1800 seconds
CPU time limit imposed on the Branch and Cut algorithm used. For a few of
these instances, optimality certificates were obtained in [21]. However, results for
the d = 11 and d = 12 set H instances were not quoted in [21]. Using results
in [21] as a basis for comparison, one should notice, from the results in Table 8
(see also Appendix A), that, for the d ≤ 10 set H instances, good quality NDRC
upper bounds were obtained under acceptable CPU times. In particular, for three of
these instances, new best upper bounds were attained. For the remaining instances
in that set, i.e. for the d = 11 and d = 12 instances, NDRC duality gaps were
attained with a magnitude comparable to those quoted in [21] for the d = 10
instances. Furthermore, these gaps were obtained under CPU times comparable to
those quoted in [21] for the, smaller, d = 10 instances.

For instances in sets C, D, and E, we have have also compared NDRC CPU times
with those given in [21]. Average CPU times quoted in that reference are for a 2.8
Ghz Intel Pentium IV based machine with 2 Gb of RAM memory. The average
CPU time required by the Branch and Cut algorithm in [21] to solve all instances
in sets C, D, and E, was respectively 4.9, 22.3, and 253.4 seconds. Comparing these
results with those required by NDRC to attain the duality gaps we quote here,
it is estimated that the algorithm in [21] is already about 1.7 times faster than
ours. This result clearly indicates the efficiency of the algorithm in [21] (we believe
that LP relaxation bounds for the two formulations should not be that different).
Although our NDRC algorithm compares unfavorably with the algorithm in [21]
for instance sets C, D, and E, that is not the case for instances in set H, the hardest
in the literature. As a general rule, for instances in set H, our heuristic managed
to find better solutions in CPU times that were up to 2 orders of magnitude less
than those reported in [21].

7. Conclusions

Algorithms to generate primal and dual PCSPG bounds were proposed in this
paper. These algorithms originate from a Lagrangian NDRC based approach and
incorporate ingredients such as a new PCSPG reduction test, an effective Local
Search procedure and a modification in the NDRC framework which allowed addi-
tional reductions in duality gaps to be attained.

NDRC upper bounds for PCSPG turned out very sharp for almost all instances
tested. In particular, optimal solutions were generated for 149 out of the 154 in-
stances tested in sets K, P, C, D, and E. The Lagrangian heuristic that produced
these bounds thus appear to dominate the best PCSPG heuristic available in the
literature [7]. On the other hand, in terms of CPU time and lower bound quality,
for test sets C, D, and E, NDRC was easily outperformed by the Branch-and-Cut
algorithm in [21], which is the best exact solution algorithm available for PCSPG.
However, for test set H, the hardest to solve to proven optimality, NDRC outper-
formed the algorithm in [21]. In particular, while requiring less CPU time than that
quoted in [21], NDRC generated new best upper bounds for seven set H instances.

A possible extension of the work presented here is to use the PCSPG NDRC
algorithm simultaneously as a pre-processor and a warm start to a corresponding
Branch-and-Cut algorithm. In doing so, one would be able to reduce instance input
size and also benefit from good quality PCSPG upper bounds. Most important of
all, one would additionally be able to carry over to Branch-and-Cut some attractive
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GSECs dualized at the NDRC algorithm. One would thus be able to match, and
sometimes even improve upon, at the very first Linear Programming relaxation
solved, the best lower bounds attained at NDRC. An example of the scheme just
outlined, tailored to the Degree-Constrained Minimum Spanning Tree Problem,
could be found in [9].
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Appendix A. Detailed computational results

Table 4. Relax-and-Cut results - Sets K,P - MAXITER=2000, ξ =
100, EXTRA = 1

Instance wd w gap [%] t(s) w

P100 803300.0000 803300 Opt 0.25 803300
P100.1 926238.0000 926238 Opt 0.32 926238
P100.2 401641.0000 401641 Opt 0.31 401641
P100.3 659644.0000 659644 Opt 0.23 659644
P100.4 827419.0000 827419 Opt 0.18 827419

P200 1311970.4538 1317874 0.450 1.58 1317874

P400 2450885.8128 2459904 0.368 5.74 2459904
P400.1 2776739.1010 2808440 1.142 7.52 2808440
P400.2 2512006.9007 2518577 0.262 5.18 2518577
P400.3 2938688.2638 2951725 0.444 5.99 2951725
P400.4 2827694.8332 2852956 0.893 6.28 2852956

K100 135511.0000 135511 Opt 0.11 135511
K100.1 124108.0000 124108 Opt 0.09 124108
K100.2 200262.0000 200262 Opt 0.18 200262
K100.3 115953.0000 115953 Opt 0.25 115953
K100.4 87498.0000 87498 Opt 0.04 87498
K100.5 119078.0000 119078 Opt 0.06 119078
K100.6 132886.0000 132886 Opt 0.02 132886
K100.7 172457.0000 172457 Opt 0.10 172457
K100.8 210869.0000 210869 Opt 0.34 210869
K100.9 122917.0000 122917 Opt 0.02 122917
K100.10 133567.0000 133567 Opt 0.03 133567

K200 316673.9170 329211 3.959 0.74 329211

K400 326913.4753 350093 7.090 2.73 350093
K400.1 448931.0463 490771 9.320 2.75 490771
K400.2 426979.2349 477073 11.732 5.57 477073
K400.3 391085.1170 415328 6.199 2.39 415328
K400.4 366707.8591 389451 6.202 2.07 389451
K400.5 495385.8162 519526 4.873 2.33 519526
K400.6 352497.1554 374849 6.341 3.34 374849
K400.7 441518.7576 474466 7.462 3.07 474466
K400.8 398891.5238 418614 4.944 3.42 418614
K400.9 357336.0506 383105 7.211 3.00 383105
K400.10 350741.3267 395413 12.736 2.76 394191
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Table 5. Relax-and-Cut results - Set C - MAXITER=2000, ξ = 100,
EXTRA = 1

Instance wd w gap [%] t(s) w

c1A 18.0000 18 Opt 0.18 18
c1B 83.0874 85 2.302 0.84 85
c2A 49.4865 50 Opt 0.18 50
c2B 139.4014 141 1.147 0.85 141
c3A 413.1276 414 Opt 0.50 414
c3B 733.5273 737 0.473 2.16 737
c4A 616.9955 618 0.163 1.60 618
c4B 1054.3364 1063 0.822 3.49 1063
c5A 1079.0071 1080 Opt 1.48 1080
c5B 1525.6234 1528 0.156 2.56 1528

c6A 17.5147 18 Opt 0.21 18
c6B 50.4103 55 9.105 3.28 55
c7A 49.2453 50 Opt 0.38 50
c7B 101.0692 102 Opt 2.36 102
c8A 359.7694 361 0.342 4.78 361
c8B 496.5290 500 0.699 6.52 500
c9A 530.0124 533 0.564 6.57 533
c9B 689.9805 694 0.583 10.28 694
c10A 856.9452 859 0.240 5.90 859
c10B 1067.1803 1069 0.171 6.67 1069

c11A 17.0926 18 Opt 1.00 18
c11B 29.7161 32 7.686 5.50 32
c12A 37.0331 38 Opt 2.24 38
c12B 43.8827 46 4.825 6.38 46
c13A 234.7131 236 0.548 11.08 236
c13B 255.9738 258 0.792 14.71 258
c14A 290.1036 293 0.998 13.20 293
c14B 315.1460 318 0.906 13.69 318
c15A 498.1160 501 0.579 16.49 501
c15B 549.0151 551 0.362 14.89 551

c16A 10.0490 11 Opt 5.09 11
c16B 10.5539 11 Opt 9.38 11
c17A 17.0040 18 Opt 7.84 18
c17B 17.0590 18 Opt 7.80 18
c18A 109.3350 111 1.523 15.52 111
c18B 111.1436 113 1.670 16.75 113
c19A 145.0291 146 Opt 5.58 146
c19B 145.0766 146 Opt 4.33 146
c20A 265.0154 266 Opt 2.88 266
c20B 266.0868 267 Opt 1.41 267
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Table 6. Relax-and-Cut results - Set D - MAXITER=2000, ξ = 100,
EXTRA = 1

Instance wd w gap [%] t(s) w

d1A 18.0000 18 Opt 0.75 18
d1B 104.0882 106 1.837 2.34 106
d2A 49.2103 50 Opt 0.74 50
d2B 217.0053 218 Opt 1.98 218
d3A 806.0212 807 Opt 2.75 807
d3B 1504.1409 1509 0.323 8.21 1509
d4A 1200.0942 1203 0.242 5.10 1203
d4B 1878.0088 1881 0.159 7.46 1881
d5A 2155.0896 2157 0.089 8.07 2157

d5B 3124.1323 3135 0.348 10.16 3135
d6A 17.2068 18 Opt 0.93 18
d6B 61.6590 67 8.662 11.40 67
d7A 49.2524 50 Opt 1.78 50
d7B 100.7147 103 2.269 11.11 103
d8A 751.9670 755 0.403 17.84 755
d8B 1031.7074 1036 0.416 33.46 1036
d9A 1065.6080 1070 0.412 22.52 1070
d9B 1415.4595 1420 0.321 47.73 1420
d10A 1668.1245 1671 0.172 37.11 1671
d10B 2074.9530 2079 0.195 43.25 2079

d11A 17.2934 18 Opt 4.82 18
d11B 25.9028 29 11.957 20.58 29
d12A 40.4884 42 3.733 28.64 42
d12B 40.6799 42 3.245 23.98 42
d13A 442.7795 445 0.501 58.28 445
d13B 483.9459 486 0.424 81.47 486
d14A 598.2902 602 0.620 86.95 602
d14B 662.3140 665 0.406 121.85 665
d15A 1038.9896 1042 0.290 105.53 1042
d15B 1105.9666 1108 0.184 92.06 1108

d16A 12.0134 13 Opt 22.83 13
d16B 12.0453 13 Opt 23.47 13
d17A 21.8721 23 5.157 43.90 23
d17B 21.8639 23 5.196 47.58 23
d18A 216.1264 218 0.867 76.55 218
d18B 221.5386 223 0.660 71.48 223
d19A 304.9376 306 0.348 89.42 306
d19B 308.6635 310 0.433 71.23 310
d20A 534.9921 536 0.188 38.75 536
d20B 535.9886 537 0.189 9.21 537
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Table 7. Relax-and-Cut results - Set E - MAXITER=2000, ξ = 100,
EXTRA = 1

Instance wd w gap [%] t(s) w

e01A 13.0000 13 Opt 5.25 13
e01B 105.1852 109 3.627 13.81 109
e02A 30.0000 30 Opt 5.25 30
e02B 164.3261 170 3.453 16.25 170
e03A 2227.8590 2231 0.141 24.81 2231
e03B 3796.3260 3806 0.255 82.52 3806
e04A 3146.5045 3151 0.143 35.57 3151
e04B 4876.7883 4888 0.230 94.24 4888
e05A 5651.8605 5657 0.091 57.24 5657
e05B 7990.8468 7998 0.090 103.73 7998

e06A 18.3809 19 Opt 5.79 19
e06B 67.3600 70 3.919 66.35 70
e07A 39.3128 40 Opt 8.34 40
e07B 130.2630 136 4.404 70.47 136
e08A 1872.8424 1878 0.275 152.55 1878
e08B 2547.5657 2555 0.292 424.04 2555
e09A 2781.8277 2787 0.186 196.88 2787
e09B 3535.8632 3541 0.145 761.16 3541
e10A 4580.8285 4586 0.113 439.38 4586
e10B 5496.8508 5502 0.094 696.69 5502

e11A 20.2059 21 Opt 67.74 21
e11B 31.6056 34 7.576 190.08 34
e12A 48.0288 49 Opt 164.91 49
e12B 64.1235 68 6.045 214.32 67
e13A 1167.0608 1169 0.166 933.14 1169
e13B 1266.1192 1270 0.307 1075.74 1269
e14A 1575.6258 1579 0.214 875.29 1579
e14B 1712.9595 1716 0.177 1732.24 1716
e15A 2607.9719 2610 0.078 1355.50 2610
e15B 2764.9737 2767 0.073 1315.38 2767

e16A 13.9277 15 7.699 330.50 15
e16B 13.9762 15 7.325 341.25 15
e17A 23.7220 25 5.387 371.07 25
e17B 23.8987 25 4.608 373.75 25
e18A 552.5118 557 0.812 1264.09 555
e18B 562.0238 566 0.707 1274.03 564
e19A 745.6350 747 0.183 908.66 747
e19B 756.1145 758 0.249 528.91 758
e20A 1329.9984 1331 0.075 429.85 1331
e20B 1340.9730 1342 0.077 104.21 1342
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Table 8. NDRC results - Set H

Instance wd w gap [%] t(s) best known
upper bound

hc6p 3822.49 3985 4.25 0.50 3908 (*)
hc6u 35.46 37 4.33 0.48 36 (*)
hc7p 7551.41 8134 7.72 1.49 7739
hc7u 70.48 73 3.57 1.17 72 (*)
hc8p 14955.75 16023 7.13 5.20 15274
hc8u 140.43 151 7.53 4.14 150
hc9p 29598.42 32151 8.62 16.06 32151 (+)
hc9u 278.78 296 6.18 13.13 296 (+)
hc10p 58865.31 64974 10.38 114.36 64974 (+)
hc10u 551.28 594 7.75 59.77 594

hc11p 116751.68 130252 11.56 629.92 130252 (+)
hc11u 1099.82 1199 9.02 360.61 1199 (+)
hc12p 231727.31 257833 11.27 3507.70 257833 (+)
hc12u 2184.48 2403 10.00 1915.72 2403 (+)
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