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Abstract. In the job shop scheduling problem (JSP), a finite set of jobs is
processed on a finite set of machines. Each job is required to complete a
set of operations in a fixed order. Each operation is processed on a specific
machine for a fixed duration. A machine can process no more than one job at
a time and once a job initiates processing on a given machine it must complete
processing without interruption. A schedule is an assignment of operations to
time slots on the machines. The objective of the JSP is to find a schedule that
minimizes the maximum completion time, or makespan, of the jobs. In this
paper, we describe a parallel greedy randomized adaptive search procedure
(GRASP) with path-relinking for the JSP. A GRASP is a metaheuristic for
combinatorial optimization. It usually consists of a construction procedure
based on a greedy randomized algorithm and of a local search. Path-relinking is
an intensification strategy that explores trajectories that connect high quality
solutions. Independent and cooperative parallelization strategies are described
and implemented. Computational experience on a large set of standard test
problems indicates that the parallel GRASP with path-relinking finds good-
quality approximate solutions of the job shop scheduling problem.

1. Introduction

The job shop scheduling problem (JSP) is a well-studied problem in combina-
torial optimization. It consists in processing a finite set of jobs on a finite set of
machines. Each job is required to complete a set of operations in a fixed order.
Each operation is processed on a specific machine for a fixed duration. Each ma-
chine can process at most one job at a time and once a job initiates processing on a
given machine it must complete processing on that machine without interruption.
A schedule is a mapping of operations to time slots on the machines. The makespan
is the maximum completion time of the jobs. The objective of the JSP is to find a
schedule that minimizes the makespan.

Mathematically, the JSP can be stated as follows. Given a set M of machines
(where we denote the size ofM by |M|) and a set J of jobs (where the size of J is

denoted by |J |), let σj1 ≺ σj2 ≺ · · · ≺ σj|M| be the ordered set of |M| operations of

job j, where σjk ≺ σ
j
k+1 indicates that operation σjk+1 can only start processing after

the completion of operation σjk . Let O be the set of operations. Each operation

σjk is defined by two parameters: Mj
k is the machine on which σjk is processed and
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pjk = p(σjk) is the processing time of operation σjk. Defining t(σjk) to be the starting

time of the k-th operation σjk ∈ O, the JSP can be formulated as follows:

minimize Cmax

subject to: Cmax ≥ t(σjk) + p(σjk), for all σjk ∈ O,
t(σjk) ≥ t(σjl ) + p(σjl ), for all σjl ≺ σ

j
k,(1a)

t(σjk) ≥ t(σil ) + p(σil ) ∨(1b)

t(σil ) ≥ t(σjk) + p(σjk), for all σil , σ
j
k ∈ O such that Mσil

=Mσjk
,

t(σjk) ≥ 0, for all σjk ∈ O,
where Cmax is the makespan to be minimized.

A feasible solution of the JSP can be built from a permutation of J on each
of the machines in M, observing the precedence constraints, the restriction that a
machine can process only one operation at a time, and requiring that once started,
processing of an operation must be uninterrupted until its completion. Once the
permutation of J is given, its feasibility status can be determined in O(|J | · |M|)
time. The feasibility-checking procedure determines the makespan Cmax for feasible
schedules [36]. Since, each set of feasible permutations has a corresponding schedule,
the objective of the JSP is to find, among the feasible permutations, the one with
the smallest makespan.

The JSP is NP-hard [26] and has also proven to be computationally challeng-
ing. Exact methods [4, 7, 9, 10, 19] have been successful in solving small instances,
including the notorious 10× 10 instance of Fisher and Thompson [16], proposed in
1963 and only solved twenty years later. Problems of dimension 15 × 15 are still
considered to be beyond the reach of today’s exact methods. For such problems
there is a need for good heuristics. Surveys of heuristic methods for the JSP are
given in [30,37]. These include dispatching rules reviewed in [18], the shifting bot-
tleneck approach [1, 4], local search [27, 28, 37], simulated annealing [27, 38], tabu
search [28,29,36], and genetic algorithms [12]. Recently, Binato et al. [6] described a
greedy randomized adaptive search procedure (GRASP) for the JSP. A comprehen-
sive survey of job shop scheduling techniques can be found in Jain and Meeran [24].
In this paper, we present a new parallel GRASP with path-relinking for the job
shop scheduling problem.

The remainder of the paper is organized as follows. In Section 2, we describe the
new GRASP, describing two construction mechanisms and a local search algorithm.
Path-relinking for the JSP and its incorporation to a GRASP are described in
Section 3. Two parallelization schemes are presented in Section 4. Computational
results are reported in Section 5 and concluding remarks are made in Section 6.

2. GRASP for JSP

GRASP [13–15,32] is an iterative process, where each GRASP iteration usually
consists of two phases: construction and local search. The construction phase
builds a feasible solution, whose neighborhood is explored by local search. The
best solution over all GRASP iterations is returned as the result.

In the construction phase, a feasible solution is built, one element at a time.
The set of candidate elements is made up of those elements that can be added to
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the current solution under construction without causing infeasibilities. A candi-
date element is evaluated by a greedy function which measures the local benefit
of including that element in the constructed solution. The restricted candidate
list (RCL) is made up of candidate elements with a greedy function value above a
specified threshold. The next element to be included in the solution is selected at
random from the RCL. Its inclusion in the solution alters the greedy functions and
the set of candidate elements used to determine the next RCL. The construction
procedure terminates when the set of candidate elements is empty.

Since the solutions generated by a GRASP construction phase are not guaranteed
to be locally optimal, it is almost always beneficial to apply a local search to attempt
to improve each constructed solution. A local search algorithm successively replaces
the current solution by a better solution from its neighborhood. It terminates when
there is no better solution found in the neighborhood.

In the remainder of this section, we describe two construction procedures and a
commonly used local search strategy.

2.1. Construction procedures. For the JSP, we consider a single operation to be
the building block of the construction phase. That is, we build a feasible schedule by
scheduling individual operations, one at a time, until all operations are scheduled.

Recall that σjk denotes the k-th operation of job j and is defined by the pair

(Mj
k, p

j
k), where Mj

k is the machine on which operation σjk is performed and pjk is

the processing time of operation σjk. While constructing a feasible schedule, not all

operations can be selected at a given stage of the construction. An operation σjk
can only be scheduled if all prior operations of job j have already been scheduled.
Therefore, at each construction phase iteration, at most |J | operations are candi-
dates to be scheduled. Let this set of candidate operations be denoted by Oc and
the set of already scheduled operations by Os and denote the value of the greedy
function for candidate operation σjk by h(σjk).

The greedy choice is to next schedule operation σjk = argmin(h(σjk) | σjk ∈ Oc).
Let σjk = argmax(h(σjk) | σjk ∈ Oc), h = h(σjk), and h = h(σjk). Then, the GRASP

restricted candidate list (RCL) is defined as

RCL = {σjk ∈ Oc | h ≤ h(σjk) ≤ h+ α(h− h)},
where α is a parameter such that 0 ≤ α ≤ 1.

A typical iteration of the GRASP construction is summarized as follows: a partial
schedule (which is initially empty) is on hand, the next operation to be scheduled
is selected from the RCL and is added to the partial schedule, resulting in a new
partial schedule. The selected operation is inserted in the earliest available feasible
time slot on machine Mσjk

. Let a and b denote the start and end times of an

available time slot onMσjk
and let e = t(σjk−1) + pjk−1 denote the completion time

of operation σjk−1. Insertion in this time slot at time point max{a, e} is feasible

if and only if b −max{a, e} ≥ pjk. Construction ends when the partial schedule is
complete, i.e. all operations have been scheduled.

In Binato et al. [6], the greedy function h(σjk) is the makespan resulting from the

inclusion of operation σjk to the already-scheduled operations, i.e. h(σjk) = Cmax
for O = {Os ∪ σjk}. We will refer to this greedy function as the makespan greedy
function.
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In this paper, we propose another greedy function, which, as we will see later,
is used in conjunction with the makespan greedy function. This function favors
operations from jobs having long remaining processing times by using the greedy
function h(σjk) = −∑σj

l
6∈Os p

j
l , which measures the remaining processing time for

job j. We refer to it as the time-remaining greedy function.

2.2. Local search phase. Since there is no guarantee that the schedule obtained
in the construction phase is optimal, local search should be applied to attempt to
decrease its makespan.

We employ the two exchange local search, based on the disjunctive graph model
of Roy and Sussmann [34], and used in Binato et al. [6]. The disjunctive graph
G = (V,A,E) is defined such that

V = {O ∪ {0, |J | · |M|+ 1}}
is the set of nodes, where {0} and {|J | · |M| + 1} are artificial source and sink
nodes, respectively,

A = {(v, w) | v, w ∈ O, v ≺ w} ∪
{(0, w) | w ∈ O,

�
v ∈ O 3 v ≺ w} ∪

{(v, |J | · |M|+ 1) | v ∈ O,
�
w ∈ O 3 v ≺ w}

is the set of directed arcs connecting consecutive operations of the same job, and

E = {(v, w) | Mv =Mw}
is the set of edges that connect operations on the same machine. Vertices in the
disjunctive graph model are weighted. Vertices 0 and |J | · |M| + 1 have weight
zero, while the weight of vertex i ∈ {1, . . . , |J | · |M|} is the processing time of
the operation corresponding to vertex i. Notice that the edges of A and E corre-
spond, respectively, to constraints (1a) and (1b) of the disjunctive programming
formulation of the JSP.

An orientation for the edges in E corresponds to a feasible schedule. Given
an orientation of E, one can compute the earliest start time of each operation by
computing the longest (weighted) path from node 0 to the node corresponding to
the operation. Consequently, the makespan of the schedule can be computed by
finding the critical (longest) path from node 0 to node |J | · |M| + 1. Thus, the
objective of the JSP is to find an orientation of E such that the longest path in G
is minimized.

Taillard [36] describes an O(|J | · |M|) algorithm to compute the longest path on
G and an O(|J | · |M|) procedure to recompute the makespan when two consecutive
operations on the same machine in the critical path (on the same machine) are
swapped. He also shows that the entire neighborhood of a given schedule, where
the neighborhood is defined by the swap of two consecutive operations in the crit-
ical path, can be examined, i.e. have their makespan computed, in complexity
O(|J ·M|) given that the longest path of G was evaluated. These procedures were
implemented in Binato et al. [6] and are borrowed in our implementation.

Given the schedule produced in the construction phase, the local search proce-
dure initially identifies the critical path in the disjunctive graph corresponding to
that schedule. All pairs of consecutive operations sharing the same machine in the
critical path are tentatively exchanged. If the exchange improves the makespan,
the move is accepted. Otherwise, the exchange is undone. Once an exchange is
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procedure PATH RELINKING (M,J ,O, p,Makespan, S, T )
1 S = {(jS1,1, jS1,2, . . . , jS1,|J |), (jS2,1, jS2,2, . . . , jS2,|J |), . . . ,

(jS|M|,1, j
S
|M|,2, . . . , j

S
|M|,|J |)};

2 T = {(jT1,1, jT1,2, . . . , jT1,|J |), (jT2,1, jT2,2, . . . , jT2,|J |), . . . ,
(jT|M|,1, j

T
|M|,2, . . . , j

T
|M|,|J |)};

3 cgmin = Makespan; Sgmin = S;
4 for k = 1, . . . , |M| do

5 δS,Tk = {i = 1, . . . , |J |
∣∣ jSk,i 6= jTk,i};

6 od;

7 while (
∑|M|
k=1 |δ

S,T
k | > 2) do

8 cmin =∞;
9 for k = 1, . . . , |M| do

10 for i ∈ δS,Tk do
11 Let q be such that jTk,q == jSk,i;

12 S̄ = S \ {(. . . , jSk,i, jSk,i+1, . . . , j
S
k,q−1, j

S
k,q , . . . )};

13 S̄ = S̄ ∪ {(. . . , jSk,q , jSk,i+1, . . . , j
S
k,q−1, j

S
k,i, . . . )};

14 c̄= CALCULATE MAKESPAN (S̄);
15 if c̄ ≤ cmin then
16 cmin = c̄;
17 Smin = S̄;
18 imin = i;
19 kmin = k;
20 fi;
21 rof;
22 rof;
23 S = Smin; Makespan = cmin;

24 δS,Tkmin = δS,Tkmin \ {imin};
25 if Makespan ≤ cgmin then
26 cgmin = Makespan;
27 Sgmin = S;
28 fi;
29 elihw;
30 return (Sgmin);
end PATH RELINKING;

Figure 1. Path-relinking between initial solution S and guiding
solution T .

accepted, the critical path may change and a new critical path must be identified.
If no pairwise exchange of consecutive operations in the critical path improves the
makespan, the current schedule is locally optimal and the local search ends.

3. Path-relinking for JSP

Path-relinking is an enhancement to the basic GRASP procedure, leading to sig-
nificant improvements in solution quality. Path-relinking was originally proposed by
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procedure GRASP PR (M,J ,O, p, look4, maxitr, maxpool, freq)
1 P = ∅;
2 for i = 1, . . . , maxitr do
3 if mod (i, 2) == 0 then
4 GREEDY MASKESPAN(S,M, p, |M|, |J |,Makespan);
5 else
6 GREEDY TIME REMAINING(S,M, p, |M|, |J |,Makespan);
7 fi;
8 LOCAL(S,M, p, |M|, |J |,Makespan);
9 if |P | == maxpool then
10 accepted = VERIFY QUALITY(S, i);
11 if accepted then
12 for T ∈ P ′ ⊆ P do
13 Sgmin = PATH RELINKING(M,J ,O, p,Makespan, S, T );
14 UPDATE POOL(Sgmin, cgmin, P );
15 Sgmin = PATH RELINKING(M,J ,O, p,Makespan, T, S);
16 UPDATE POOL(Sgmin, cgmin, P );
17 rof;
18 fi;
19 else P = P ∪ {S} fi;
20 if mod (i, ifreq) == 0 then INTENSIFY(P ) fi;
21 Sbest = POOLMIN(P );
22 if MAKESPAN(Sbest) ≤ look4 then return (Sbest) fi;
23 rof;
24 POST OPTIMIZATION(P );
25 Sbest = POOLMIN(P );
26 return (Sbest);
end GRASP PR;

Figure 2. GRASP with bidirectional path-relinking for JSP.

Glover [20] as an intensification strategy exploring trajectories connecting elite so-
lutions obtained by tabu search or scatter search [21–23]. The use of path-relinking
within a GRASP procedure, as an intensification strategy applied to each locally
optimal solution, was first proposed by Laguna and Mart́ı [25]. It was followed by
several extensions, improvements, and successful applications [2, 8, 31, 33].

In this section, we propose a path-relinking strategy for the JSP. In our de-
scription, a schedule is represented by the permutation of operations in J on the
machines inM. The schedule is represented by |M| permutation arrays, each with
|J | operations. Each permutation implies an ordering of the operations. A solution
of the JSP is represented as follows:

S = {(jS1,1, jS1,2, . . . , jS1,|J |), (jS2,1, jS2,2, . . . , jS2,|J |), . . . , (jS|M|,1, jS|M|,2, . . . , jS|M|,|J |)},
where jSi,k is the k-th operation executed on machine i in solution S.

The path-relinking approach consists in exploring trajectories that connect a
initial solution and a guiding solution. This is done by introducing in the initial
solution attributes of the guiding solution. At each step, all moves that incorporate
attributes of the guiding solution are analyzed and the best move is chosen. Usually
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Figure 3. Empirical probability distributions of time to target
value for GRASP and GP+PR: problems abz6, mt10, orb5 and la21.

the guiding solution is of high quality. For the JSP, path-relinking is done between
an initial solution

S = {(jS1,1, jS1,2, . . . , jS1,|J |), (jS2,1, jS2,2, . . . , jS2,|J |), . . . , (jS|M|,1, jS|M|,2, . . . , jS|M|,|J |)}
and a guiding solution

T = {(jT1,1, jT1,2, . . . , jT1,|J |), (jT2,1, jT2,2, . . . , jT2,|J |), . . . , (jT|M|,1, jT|M|,2, . . . , jT|M|,|J |)}.
Pseudo-code for this procedure is shown in Figure 1.

Let the symmetric difference between S and T be defined by the |M| sets of
indices

δS,Tk = {i = 1, . . . , |J |
∣∣ jSk,i 6= jTk,i}, k = 1, . . . , |M|.

These sets are computed in lines 4 to 6 in the pseudo-code.
An intermediate solution of the path-relinking trajectory is visited at each step

of the loop from line 7 to 29. During a move, a permutation array in S, given by

(. . . , jSk,i, j
S
k,i+1, . . . , j

S
k,q−1, j

S
k,q , . . . ),

is replaced by a permutation array

(. . . , jSk,q , j
S
k,i+1, . . . , j

S
k,q−1, j

S
k,i, . . . ),

by exchanging operations jSk,i and jSk,q , where i ∈ δS,Tk and q are such that jTk,q =

jSk,i. Note that solutions that violate the precedence constraints can be produced
by these moves. The feasibility of solution S is verified during procedure Calcu-
late Makespan(S) (line 14), which consists in computing the critical path in the
disjunctive graph presented in Section 2.2, using the algorithm proposed in [36].
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Figure 4. Empirical probability distributions of time to target
value for GRASP and GP+PR: problem mt10 and target values 970,
960 and 950.

An infeasible schedule is detected when a cycle is found in the corresponding graph.
The makespan of an infeasible solution is defined to be infinite so as to bias the
search toward feasible regions.

At each step of the algorithm, the move that produces the lowest cost solution
is selected and its index is removed from the corresponding set δS,Tk (line 24). This

continues until there are only two move indices left in one of the sets δS,Tk . At this
point, the move obtained by exchanging these elements will produce the guiding
solution. The best solution (Sgmin) found during the path traversal is returned by
the procedure.

In the implementation proposed for the JSP, a pool P of elite solutions is built
with the GRASP solutions produced during the first |P | GRASP iterations. After
this initial phase, a solution sg produced by GRASP is relinked with one or more
elite solutions se in P . Path-relinking can be applied from GRASP solution sg to
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Figure 5. Empirical probability distributions of time to target
value for GP+C-INT and GP+PR: problems abz6, mt10, orb5 and
la21.

pool solution se, from pool solution se to GRASP solution sg , or in both directions.
These two trajectories very often visit different intermediate solutions.

The hybrid strategy proposed uses an approach developed by Fleurent and
Glover [17] to incorporate elite solutions to a GRASP. Let cbest and cworst be
the values of the objective functions of the best and the worst solution in P , re-
spectively. Given two solutions

S = {(jS1,1, jS1,2, . . . , jS1,|J |), (jS2,1, jS2,2, . . . , jS2,|J |), . . . , (jS|M|,1, jS|M|,2, . . . , jS|M|,|J |)}

and

T = {(jT1,1, jT1,2, . . . , jT1,|J |), (jT2,1, jT2,2, . . . , jT2,|J |), . . . , (jT|M|,1, jT|M|,2, . . . , jT|M|,|J |)},
let

∆(S, T ) =

|M|∑

k=1

|δS,Tk |

be a measure of the non-similarity between S and T .
A solution Sgmin produced by path-relinking is a candidate for insertion in the

pool. Sgmin will be accepted if it satisfies one of the following acceptance criteria:

1. cgmin < cbest, i.e., Sgmin is the best solution found so far;
2. cbest ≤ cgmin < cworst and for all elite solutions Sp ∈ P , ∆(Sgmin, Sp) > ∆min,

i.e., Sgmin is better then the worst solution in P and differs significantly from
all elite solutions.
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Figure 6. Q-Q plots for GRASP: problems abz6, mt10, orb5 and la21.

Once accepted for insertion in P , Sgmin will replace the worst elite solution, which
will be discarded from P .

Note that if the number of moves needed to traverse the path from S ∈ P to
Sgmin is at most ∆min/2, then path solution Sgmin must satisfy ∆(S, Sgmin) ≤ ∆min

and there is no need to compute the symmetric difference since Sgmin can only be
included in the elite set if it is better than the best elite solution.

In the GRASP with path-relinking for the 3-index assignment problem [2], the
cost of a solution in the neighborhood of S can be computed from the cost of S



PARALLEL GRASP WITH PATH-RELINKING FOR JOB SHOP SCHEDULING 11

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=abz6, look4=970

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=abz6, look4=960

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=abz6, look4=950

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=mt10, look4=970

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=mt10, look4=960

0

0.2

0.4

0.6

0.8

1

0 1500 3000 4500 6000 7500 9000 10500

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=mt10, look4=950

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=orb5, look4=930

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=orb5, look4=920

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400 1600 1800

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=orb5, look4=910

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=la21, look4=1130

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=la21, look4=1120

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000

 p
ro

ba
bi

lit
y

time to sub-optimal

prob=la21, look4=1110

Figure 7. Empirical and theoretical probability distributions of
time to target for GRASP: problems abz6, mt10, orb5 and la21.

in O(1) time. For the JSP, the cost of each solution visited by path-relinking is
computed in O(|J |·|M|), using the algorithm proposed in [36]. Therefore, it is com-
putationally expensive to apply path-relinking after each iteration of the GRASP.
Instead, we propose to apply path-relinking only when the GRASP solution satisfies
a given quality criteria.
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Figure 8. Q-Q plots for GP+PR: problems abz6, mt10, orb5 and la21.

The quality criteria proposed uses the mean value µn and the standard deviation
σn of the costs of the GRASP solutions produced during the first n iterations. A
solution Si takes part in path-relinking if

1. c(Si) ≤ cworst, for i ≤ n;
2. c(Si) ≤ max(cworst, µn − 2 ∗ σn), for i > n.

Path-relinking can also be used in an intensification scheme for the elite set [2].
This is accomplished by applying path-relinking to each pair of elite solutions in P
and updating the pool when necessary. The procedure is repeated until no further
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Figure 9. Empirical and theoretical probability distributions of
time to target for GP+PR: problems abz6, mt10, orb5 and la21.

change in P occurs. This type of intensification can be done in a post-optimization
phase (using the final pool of elite solutions), or periodically during the optimization
(using the the current set of elite solutions).

The intensification procedure is executed after each interval of ifreq iterations
during the optimization. After each intensification phase, if no change in P occurs
for at least ifreq iterations, the costs of the |P |/2 worst solutions in P are set
to infinity. This is done to guarantee that the solutions in P are renewed. The
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Table 1. Probability estimates of finding a solution at least as
good as the target solution, as a function of maximum solution
time for GRASP and GP+PR. Instances are abz6, mt10, orb5 and
la21, with target values 947, 950, 910 and 1110, respectively.

abz6 mt10 orb5 la21

time GRASP GP+PR GRASP GP+PR GRASP GP+PR GRASP GP+PR

100s .09 .39 .03 .01 .42 .67 .10 .10
500s .48 .93 .19 .71 .92 1.00 .36 .92

1000s .74 1.00 .37 .97 .98 1.00 .56 1.00
1500s .84 1.00 .54 1.00 .99 1.00 .69 1.00

|P |/2 worst solutions are eventually replaced by solutions generated in the following
GRASP with path-relinking iterations. Hence, solutions with a high makespan, but
sufficiently different from the solutions in P , are accepted for insertion in the pool.

Path-relinking as a post-optimization step was introduced in [2]. After applying
path-relinking between all pairs of elite solutions and no further change in the elite
set occurs, the local search procedure of Subsection 2.2 is applied to each elite
solution, as the solutions produced by path-relinking are not always local optima.
The local optima found are candidates for insertion into the elite set. If a change
in the elite set occurs, the entire post-processing step is repeated.

3.1. GRASP with path-relinking. We describe how we combined path-relinking
and GRASP to form a hybrid GRASP with path-relinking. Pseudo-code for the
GRASP with path-relinking for JSP is presented in Figure 2. Let maxpool be the
size of the elite set. The first maxpool GRASP iterations contribute one solution
to the elite set per GRASP iteration (line 19). Path-relinking is not done until the
pool of elite solutions is full.

GRASP alternates between the two construction procedures described in Sec-
tion 2. Odd numbered iterations use the randomized time-remaining greedy func-
tion (line 6), while even iterations use randomized makespan greedy (line 4). The
local search used is the one proposed by Taillard [36] (line 8).

Once the pool of elite solutions is full, the solution S produced by the local search
phase of GRASP is tested to verify its quality (line 10), using the quality criteria
described in Section 3. If S passes the quality test, bidirectional path-relinking
is done between S and all elements of a subset P ′ ⊆ P (lines 11 to 18). After
each path-relinking phase, the best solution obtained by path-relinking is tested for
inclusion in the elite pool (lines 14 and 16).

Every ifreq GRASP iterations the path-relinking intensification process is car-
ried out (lines 20).

The GRASP with path-relinking loop from line 2 to 23 continues for at most
maxitr iterations, but can be terminated when a schedule having a makespan of at
most look4 is found (line 22).

Finally, path-relinking post optimization is done on the elite set (line 24).

4. Parallel GRASP with path-relinking for the JSP

In this section, we describe two parallel implementations of GRASP with path-
relinking for the JSP. The first scheme (called non-collaborative) limits communi-
cation between processors only for problem input, detection of process termination,
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Figure 10. Speedup and empirical distributions for parallel im-
plementation of GRASP: problems abz6, mt10, orb5 and la21.

and determination of best overall solution. In addition to the communication al-
lowed in the non-collaborative scheme, the second scheme (called collaborative)
allows processes to exchange information regarding their elite sets.
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Figure 11. Speedup and empirical distributions for parallel im-
plementations of GP+PR: problem abz6 with target value 943.

4.1. Non-collaborative scheme. We revisit a basic parallelization scheme for
GRASP with path-relinking proposed in [2]. Figure 15 shows pseudo-code for this
multiple independent walks scheme [39].

Our implementation uses message passing for communication between proces-
sors. This communication is limited to program initialization and termination. A
single process reads the problem data and passes it to the remaining nproc − 1
processes. Processes send a message to all others when they either stop upon find-
ing a solution at least as good as the target or complete the maximum number of
allotted iterations.

The non-collaborative parallel GRASP with path-relinking is built upon the
sequential algorithm of Figure 2. Each process executes a copy of the program. We
discuss the differences between the sequential algorithm and this parallel algorithm.
In line 1 of Figure 15, the rank of the process and the number of processes are
determined. Each GRASP construction phase is initialized with a random number
generator seed. To assure independence of processes, identical seeds of the random
number generator (rand()) must not be used by more than one process. The initial
seed for process my rank is computed in lines 2 to 4. This way, each process has a
sequence of maxitr initial seeds.

The for loop from line 6 to line 37 executes the iterations. The construction,
local search, and path-relinking phases are identical to the those of the sequential
algorithm. In line 26, if a process finds a schedule with makespan not greater than
look4, it sends a flag to each of the other processes indicating that it has found
the solution. Likewise, when a process completes maxitr iterations, it sends a flag
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Figure 12. Speedup and empirical distributions for parallel im-
plementations of GP+PR: problem mt10 with target value 938.

to each of the other processes indicating that it has completed the preset number
of iterations (lines 27 to 30).

In line 31, the process checks if there are any status flags to be received. If there
is a flag indicating that a schedule with makespan not greater than look4 has been
found, then execution of for loop from line 6 to line 37 is terminated (line 33). If a
flag indicating that some process has completed the preset number of iterations, a
counter (num stop) of the number of processes that have completed the iterations is
incremented (line 34). If all processes have completed their iterations, the execution
of the for loop is terminated (line 36).

Each process, upon terminating for loop going from line 6 to line 37, runs the
post-optimization phase on the pool of elite solutions (line 38). A reduce opera-
tor (GET GLOBAL BEST) determines the global best solution among all processes in
line 39 and returns this solution.

A parallel pure GRASP can be obtained from the algorithm in Figure 15 by
skipping the execution of lines 13 to 23. As in a basic GRASP, it is necessary to
keep track of the best solution found and no pool handling operations are necessary.
Therefore, intensification and post-optimization are not carried out during a pure
GRASP parallel approach.

4.2. Collaborative scheme. In the collaborative parallel GRASP with path-
relinking, processes share elite set information. We now describe this scheme, whose
pseudo-code is presented in Figure 16. This algorithm is built on top of the non-
collaborative scheme presented in the previous subsection. We limit our discussion
to the differences between the two schemes.
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Figure 13. Speedup and empirical distributions for parallel im-
plementations of GP+PR: problem orb5 with target value 895.

The differences between the non-collaborative and collaborative schemes occur
in the path-relinking phase. Before doing path-relinking between solutions S and
T , each process checks if one or more other processes have sent new elite solutions
to it. If there are new elite solutions to be received, RECEIVE SOLUTIONS (in lines
17 and 21) receives the elite solutions, tests if each elite solution can be accepted
for insertion into its local elite set, and inserts any accepted elite solution. Upon
termination of each path-relinking leg, if the local elite set is updated, then (in lines
20 and 24) the process writes the new elite set solutions to a local send buffer. In
line 26, if the local send buffer is not empty, the process sends the buffer contents
to the other processes.

Another difference between the non-collaborative and the collaborative schemes
concerns the INTENSIFY procedure. In the collaborative scheme, whenever the local
elite set pool is updated, the new elite set solutions are written to the send buffer.
These bufferized solutions will be sent to the other processes the next time that
procedure SEND SOLUTIONS is invoked.

5. Computational results

This section reports on results of computational experiments done with sequen-
tial and parallel versions of the pure GRASP and GRASP with path-relinking
heuristics proposed in this paper.

5.1. Computer environment. The experiments were done on an SGI Challenge
computer (16 196-MHz MIPS R10000 processors and 12 194-MHz R10000 proces-
sors) with 7.6 Gb of memory. Each run of the sequential implementations used a
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Figure 14. Speedup and empirical distributions for parallel im-
plementations of GP+PR: problem la21 with target value 1100.

Table 2. Time to find a solution with cost at least as good as the
target value, as a function of probability. Problem mt10 was tested
for target values 970, 960 and 950. The percentage reduction in
solution time of GP+PR with respect of GRASP is shown for each
target value.

look4=970 look4=960

prob. GRASP GP+PR red.(%) GRASP GP+PR red.(%)

0.2 44.92s 144.61s -221.92 214.94s 198.75s 7.53
0.5 163.93s 211.66s -29.11 667.41s 295.71s 55.69
0.8 386.94s 292.98s 24.28 1362.65s 416.35s 69.44

look4=950

prob. GRASP GP+PR red.(%)
0.2 546.45s 263.02s 51.86
0.5 1422.20s 394.51s 72.26
0.8 2951.01s 578.53s 80.39

single processor. The parallel implementations were run on 1, 2, 4, 8, and 16 pro-
cessors. Load on the machine was low throughout the experiments and therefore
processors were always available.

The algorithms were coded in Fortran and were compiled with the SGI MIP-
Spro F77 compiler using flags -O3 -r4 -64. The Message-Passing Interface (MPI)
specification has become a common standard for message-passing libraries for par-
allel computations [35]. The parallel codes used SGI’s Message Passing Toolkit 1.4,
which contains a fully compliant implementation of the MPI 1.2 specification. CPU
times for the sequential implementation were measured with the system function
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procedure NON-COLLAB GRASP PR(M,J ,O, p, seed, look4, maxitr, maxpool, freq)
1 my rank = GET RANK(); nprocs = GET NUM PROCS();
2 for i = 1, . . . , (maxitr/nprocs) ∗my rank do
3 seed = rand(seed);
4 rof;
5 P = ∅; num stop = 0;
6 for i = 1, . . . ,∞ do
7 if mod (i, 2) == 0 then
8 GREEDY MASKESPAN(seed, S,M, p, |M|, |J |,Makespan);
9 else
10 GREEDY TIME REMAINING(seed, S,M, p, |M|, |J |,Makespan);
11 fi;
12 LOCAL(S,M, p, |M|, |J |,Makespan);
13 if |P | == maxpool then
14 accepted = VERIFY QUALITY(S, i);
15 if accepted then
16 for T ∈ P ′ ⊆ P do
17 Sgmin = PATH RELINKING(M,J ,O, p,Makespan, S, T );
18 UPDATE POOL(Sgmin, cgmin, P );
19 Sgmin = PATH RELINKING(M,J ,O, p,Makespan, T, S);
20 UPDATE POOL(Sgmin, cgmin, P );
21 rof;
22 fi;
23 else P = P ∪ {S} fi;
24 if mod (i, ifreq) == 0 then INTENSIFY(P ) fi;
25 Sbest = POOLMIN(P );
26 if MAKESPAN(Sbest) ≤ look4 then SEND ALL(look4 stop) fi;
27 if i == maxitr then
28 num stop = num stop+ 1;
29 SEND ALL(maxitr stop);
30 fi;
31 received = VERIFY RECEIVING(flag);
32 if received then
33 if flag == look4 stop then break;
34 else if flag == maxitr stop then num stop = num stop+ 1 fi;
35 fi;
36 if num stop == nprocs then break fi;
37 rof;
38 POSTOPT(POOL);
39 SGlobalBest = GET GLOBAL BEST(Sbest);
40 return (SGlobalBest);
end NON-COLLAB GRASP PR;

Figure 15. Pseudo-code for the non-collaborative parallel
GRASP with path-relinking.
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procedure COLLAB GRASP PR(M,J ,O, p, seed, look4, maxitr, maxpool, freq)
1 my rank = GET RANK(); nprocs = GET NUM PROCS();
2 for i = 1, . . . , (maxitr/nprocs) ∗my rank do
3 seed = rand(seed);
4 rof;
5 P = ∅; num stop = 0;
6 for i = 1, . . . ,∞ do
7 if mod (i, 2) == 0 then
8 GREEDY MASKESPAN(seed, S,M, p, |M|, |J |,Makespan);
9 else
10 GREEDY TIME REMAINING(seed, S,M, p, |M|, |J |,Makespan);
11 fi;
12 LOCAL(S,M, p, |M|, |J |,Makespan);
13 if |P | == maxpool then
14 accepted = VERIFY QUALITY(S, i);
15 if accepted then
16 for T ∈ P ′ ⊆ P do
17 RECEIVE SOLUTIONS(P );
18 Sgmin = PATH RELINKING(M,J ,O, p,Makespan, S, T );
19 updated = UPDATE POOL(Sgmin, cgmin, P );
20 if (updated) then INSERT SEND BUFFER(Sgmin, cgmin,buffer) fi;
21 RECEIVE SOLUTIONS(P );
22 Sgmin = PATH RELINKING(M,J ,O, p,Makespan, T, S);
23 updated = UPDATE POOL(Sgmin, cgmin, P );
24 if (updated) then INSERT SEND BUFFER(Sgmin, cgmin,buffer) fi;
25 rof;
26 SEND SOLUTIONS(buffer);
27 fi;
28 else P = P ∪ {S} fi;
29 if mod (i, ifreq) == 0 then INTENSIFY(P ) fi;
30 Sbest = POOLMIN(P );
31 if MAKESPAN(Sbest) ≤ look4 then SEND ALL(look4 stop) fi;
32 if i == maxitr then
33 num stop = num stop+ 1;
34 SEND ALL(maxitr stop)
35 fi;
36 received = VERIFY RECEIVING(flag);
37 if received then
38 if flag == look4 stop then break;
39 else if flag == maxitr stop then num stop = num stop+ 1 fi;
40 fi;
41 if num stop == nprocs then break fi;
42 rof;
43 POSTOPT(POOL);
44 SGlobalBest = GET GLOBAL BEST(Sbest);
45 return (SGlobalBest);
end COLLAB GRASP PR;

Figure 16. Pseudo-code for collaborative parallel GRASP with
path-relinking.
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Table 3. Probability estimates of finding a solution at least as
good as the target solution, as a function of maximum solution
time for GP+C-INT and GP+PR. Instances are abz6, mt10, orb5 and
la21, with target values 965, 960, 930 and 1130, respectively.

abz6 mt10 orb5 la21

time GP+C-INT GP+PR GP+C-INT GP+PR GP+C-INT GP+PR GP+C-INT GP+PR

100s .49 1.00 .04 .02 .16 .95 .09 .53
500s .94 1.00 .17 .90 .46 1.00 .37 1.00

1000s 1.00 1.00 .27 1.00 .75 1.00 .55 1.00
1500s 1.00 1.00 .34 1.00 .86 1.00 .69 1.00

Table 4. Experimental results on problem classes abz, car, mt,
and orb. Table shows problem name, problem dimension (jobs
and machines), the best known solution (BKS), the best solution
found by GP+C-INT, total number of GP+PR iterations performed,
CPU time per 1000 GP+PR iterations, the best solution found by
GP+PR, and the relative percentage error of the GP+PR solution with
respect to the BKS.

GP+PR

iterations time error
problem |J | |M| BKS GP+C-INT (×106) (103 iter) solution (%)

abz5 10 10 1234 1238 1.0 2.53s 1234 0.0
abz6 10 10 943 947 0.3 2.26s 943 0.0
abz7 15 20 665 723 50.0 11.66s 692 4.1
abz8 15 20 670 729 10.0 49.78s 705 5.2
abz9 15 20 691 758 1.0 875.92s 740 7.1

car1 11 5 7038 7038 0.001 15.31s 7038 0.0
car2 13 4 7166 7166 0.001 52.14s 7166 0.0
car3 12 5 7312 7366 50.7 2.08s 7312 0.0
car4 14 4 8003 8003 0.01 2.79s 8003 0.0
car5 10 6 7702 7702 0.5 4.40s 7702 0.0
car6 8 9 8313 8313 0.01 11.85s 8313 0.0
car7 7 7 6558 6558 0.001 16.05s 6558 0.0
car8 7 7 8264 8264 0.02 4.66s 8264 0.0

mt06 6 6 55 55 0.00001 1.74s 55 0.0
mt10 10 10 930 938 2.5 4.05s 930 0.0
mt20 20 5 1165 1169 4.5 46.48s 1165 0.0

orb1 10 10 1059 1070 1.2 46.75s 1059 0.0
orb2 10 10 888 889 1.1 11.45s 888 0.0
orb3 10 10 1005 1021 6.5 33.32s 1005 0.0
orb4 10 10 1005 1031 100.0 1.94s 1011 0.6
orb5 10 10 887 891 20.0 14.61s 889 0.2
orb6 10 10 1010 1013 3.5 43.75s 1012 0.2
orb7 10 10 397 397 0.03 18.72s 397 0.0
orb8 10 10 899 909 1.6 24.26s 899 0.0
orb9 10 10 934 945 11.1 4.38s 934 0.0
orb10 10 10 944 953 0.3 33.25s 944 0.0

etime. In the parallel experiments, times measured were wall clock times, and were
done with the MPI function MPI WT. This is also the case for runs with a single pro-
cessor that are compared to 2, 4, 8, and 16 parallel processor runs. Timing in



PARALLEL GRASP WITH PATH-RELINKING FOR JOB SHOP SCHEDULING 23

Table 5. Experimental results on problem class la. Table shows
problem name, problem dimension (jobs and machines), the best
known solution (BKS), the best solution found by GP+C-INT, total
number of GP+PR iterations performed, CPU time per 1000 GP+PR

iterations, the best solution found by GP+PR, and the relative per-
centage error of the GP+PR solution with respect to the BKS.

GP+PR

iterations time error
problem |J | |M| BKS GP+C-INT (×106) (103 iter) solution (%)

la01 10 5 666 666 0.0001 0.82s 666 0.0
la02 10 5 655 655 0.004 2.74s 655 0.0
la03 10 5 597 604 0.01 2.95s 597 0.0
la04 10 5 590 590 0.001 15.71s 590 0.0
la05 10 5 593 593 0.0001 1.09s 593 0.0

la06 15 5 926 926 0.0001 8.00s 926 0.0
la07 15 5 890 890 0.0001 1.58s 890 0.0
la08 15 5 863 863 0.0003 5.49s 863 0.0
la09 15 5 951 951 0.0001 3.40s 951 0.0
la10 15 5 958 958 0.0001 11.50s 958 0.0

la11 20 5 1222 1222 0.0001 3.14s 1222 0.0
la12 20 5 1039 1039 0.0001 2.89s 1039 0.0
la13 20 5 1150 1150 0.0001 3.20s 1150 0.0
la14 20 5 1292 1292 0.0001 5.70s 1292 0.0
la15 20 5 1207 1207 0.0002 122.75s 1207 0.0

la16 10 10 945 946 1.3 2.27s 945 0.0
la17 10 10 784 784 0.02 3.29s 784 0.0
la18 10 10 848 848 0.05 9.07s 848 0.0
la19 10 10 842 842 0.02 15.14s 842 0.0
la20 10 10 902 907 17.0 1.63s 902 0.0

la21 15 10 1047 1091 100.0 3.51s 1057 1.0
la22 15 10 927 960 26.0 3.45s 927 0.0
la23 15 10 1032 1032 0.01 39.39s 1032 0.0
la24 15 10 935 978 125.0 3.26s 954 2.0
la25 15 10 977 1028 32.0 3.29s 984 0.7

la26 20 10 1218 1271 3.5 6.35s 1218 0.0
la27 20 10 1235 1320 10.5 27.51s 1269 2.8
la28 20 10 1216 1293 20.0 17.77s 1225 0.7

la29 20 10 1157 1293 50.0 6.17s 1203 4.0
la30 20 10 1355 1368 3.0 7.61s 1355 0.0

la31 30 10 1784 1784 0.01 267.60s 1784 0.0
la32 30 10 1850 1850 0.0001 12.66s 1850 0.0
la33 30 10 1719 1719 0.001 875.11s 1719 0.0
la34 30 10 1721 1753 0.05 80.33s 1721 0.0
la35 30 10 1888 1888 0.01 348.32s 1888 0.0

la36 15 15 1268 1334 51.0 5.54s 1287 1.5
la37 15 15 1397 1457 20.0 12.51s 1410 0.9
la38 15 15 1196 1267 20.0 32.87s 1218 1.8
la39 15 15 1233 1290 6.0 59.06s 1248 1.2
la40 15 15 1222 1259 2.0 104.18s 1244 1.8

the parallel runs excludes the time to read the problem data, initialize the random
number generator seeds, and to output the solution.



24 R.M. AIEX, S. BINATO, AND M.G.C. RESENDE

Table 6. Experimental results: Overall solution quality by prob-
lem class. Sum of all best known solutions (BKS) for each class is
compared with sum of best GP+PR solutions. Relative error is of
GP+PR solution with respect to BKS.

sum of sum of relative
problem BKS GP+PR sol. error (%)

abz 4203 4314 2.64
car 60356 60356 0.00
mt 2150 2150 0.00
orb 9028 9038 0.11
la 44297 44513 0.49

Table 7. Experimental results: Percentage of GP+PR solutions
within a tolerance of the best known solution (BKS).

percentage of GP+PR solutions within
problem 0% of BKS .5% of BKS 1% of BKS 2% of BKS 5% of BKS 10% of BKS

abz 40.0 40.0 40.0 40.0 60.0 100.0
car 100.0 100.0 100.0 100.0 100.0 100.0
mt 100.0 100.0 100.0 100.0 100.0 100.0
orb 70.0 90.0 100.0 100.0 100.0 100.0
la 72.5 72.5 82.5 95.0 100.0 100.0

5.2. Test Problems. The experiments were done on 66 instances from five classes
of standard JSP test problems: abz, car, la, mt, and orb. The problem dimensions
vary from 6 to 30 jobs and from 4 to 20 machines. All instances tested were
downloaded from Beasley’s OR-Library 1 [5].

5.3. The sequential experiments. The goal of the sequential experiments was
to observe the general behavior of the implementations of the proposed algorithms.
In these experiments, we present results comparing the following heuristics:

1. GRASP: Pure GRASP alternating between makespan and time-remaining ran-
domized greedy constructions;

2. GP+PR: GRASP with path-relinking described in Section 3;
3. GP+C-INT: The GRASP with construction intensification and POP, described

in Binato et al. [6].

We aim to verify how the solutions obtained by GP+PR compare to the best
known solutions for a set of standard test problems. To illustrate the effectiveness
of the proposed hybrid GRASP, the solution times to target solution of GP+PR are
compared to the solution times of GRASP and GP+C-INT.

On all sequential (and parallel) implementations tested in this paper, the re-
stricted candidate list parameter α is chosen at random from the uniform distribu-
tion in the interval [0, 1] at each GRASP iteration and remains fixed throughout
the iteration.

For the experiments performed with GP+PR, we used a pool of size |P |=30 and a
differentiation factor for insertion into the pool of dif=25%. In all experiments done
with GP+PR, path-relinking was applied between the solution obtained by GRASP
and all solutions in the pool. The standard deviation used to verify if a solution

1http://mscmga.ms.ic.ac.uk/jeb/orlib/jobshopinfo.html
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obtained by the local search will take part in path-relinking is computed from the
costs of the first n=10,000 GRASP solutions. In the runs of GP+PR, used to generate
the plots shown in this paper, intensification and post-optimization are not applied.
In the runs of GP+PR shown in Tables 4 and 5, the intensification is applied after
each interval of freq=500,000 iterations.

In all experiments performed with GP+C-INT, the program was configured to use
the same parameter values used in the tests reported in [6]. Therefore, a pool of 30
elite solutions was used in the intensification phase and a differentiation factor of
dif=80% was used to control the insertion into the pool. POP was activated with
a parameter freq = 40, i.e., it was applied after the construction of 40% and 80%
of the partial solution. A linear distribution function was used to bias the selection
of candidate elements in the RCL.

To study the effect of path-relinking on GRASP, we compared GRASP and GP+PR

on problems abz6, mt10, orb5, and la21. Two hundred independent runs of the two
heuristics were done for each of the four problems. Execution was interrupted when
a solution with cost at least as good as look4 was found. The look4 values used for
problems abz6, mt10, orb5, and la21 were 947, 950, 910, and 1110, respectively.
These values are far from the optimal values, and in general, can be obtained after
a few iterations. Figure 3 shows the empirical distributions for solution time of
GRASP and GP+PR. To plot these empirical distributions, we associate with the i-th
sorted running time (ti) a probability pi = (i − 1

2 )/200. The points zi = (ti, pi)
are then plotted for i = 1, . . . , 200. We observe in the plots that GP+PR finds the
target solution faster than GRASP. Table 1 shows estimated probabilities of finding
the target solution as a function of CPU time for the four instances tested. For
example, for a computational time of at most 500 seconds, the estimated probability
of finding a solution at least as good as the target solution for problem abz6 is 93%
for GP+PR, while for GRASP it is 48%. On problem la21, the estimated probability
of finding a solution at least as good as the target solution in time at most 1000
seconds is 56% for GRASP and 100% for GP+PR. These results illustrate for the JSP,
the fact observed in [2], that although each iteration of a hybrid approach of GRASP
with path-relinking takes more computational time when compared to an iteration
of a pure GRASP, it is compensated by the reduced number of iterations needed
to find the target solution.

Figure 4 shows a comparison between GRASP and GP+PR for problem mt10, using
three target values: 970, 960, and 950. These target values are 4.3%, 3.2%, and
2.1% away from the best known value, respectively. The figure is composed of three
plots, where the difficulty of obtaining the target solution grows from top to bottom.
The empirical distributions are plotted the same way as in the plots of Figure 3. For
the topmost plot, we observe that GRASP finds the target solution before GP+PR for
probabilities below 68%. This occurs because the target value sought is easy to find
and GRASP iterations are faster than GP+PR iterations. By gradually increasing the
difficulty to find the target values on the two remaining plots (middle and bottom),
we observe that the probabilities for which GRASP still finds the target solution faster
than GP+PR decrease to 19% and 9%, respectively. Table 2 shows the computational
times for GRASP and GP+PR to find each of the three target values with probabilities
20%, 50%, and 80%. For each pair of GRASP variant and target value, the table
also shows the percentage reduction in solution time of GP+PR with respect to the
solution time of GRASP, as a function of the probability. The difficulty to obtain the
target solution grows from left to right and top to bottom in the table. We observe,
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that as the target value approaches the best known value, the percentage reduction
in solution time of GP+PR grows. For example, for a target value of 960, and a
probability of 50%, the percentage reduction in solution time is 55.6%. Decreasing
the target value to 950, the percentage reduction in solution time increases to 72.3%
for the same probability of 50%.

Variants GP+PR and GP+C-INT are compared in Figure 5. The empirical distribu-
tions are plotted for these GRASPs using the same methodology used to plot the
empirical distributions in Figures 3 and 4. The same test problems, abz6, mt10,
orb5, and la21, are used in this experiment, with target values 965, 960, 930, and
1130, respectively. Notice that the target values used in this experiment are easier
to obtain than the target values used to compare GRASP and GP+PR for the same
four instances. This was necessary because of the high computational time needed
for GP+C-INT to obtain target solutions of quality comparable to the quality of the
solutions found in the first experiment. Table 3 shows, for GP+C-INT and GP+PR, es-
timates of probabilities of finding a solution with cost at least as good as the target
value, as a function of maximum solution time. For example, for problem la21, we
observe that the estimated probability for GP+C-INT to obtain a solution with cost
at most 1130 in less than 500 seconds is 37%, while for GP+PR this probability is
100%. For problem mt10, we observe that the estimated probabilities for GP+C-INT
and GP+PR to find the target solution in less than 1000 seconds are 27% and 100%,
respectively. Therefore, we verify that the use of intensification in a GRASP shows
better results when this phase is carried out after the local search phase, i.e., after
a pure GRASP iteration. This happens because a premature intensification, i.e.,
an intensification phase done during the GRASP construction phase, might reduce
drastically the number of local minima visited during a run of GRASP.

To verify the behavior of the proposed algorithm in terms of solution quality,
GP+PR was extensively executed for all test problems considered. The number of
GRASP iterations was frequently in the millions (where each GRASP iteration
uses a different seed of the random number generator). These results are shown in
Tables 4 and 5. Each table shows problem name, problem dimension (number of
jobs and machines), the best known solution (BKS), the cost of the solution found
by GP+C-INT, and, for GP+PR, the total number of GRASP iterations executed, CPU
time in seconds to run 1000 GRASP iterations, the cost of the best solution found,
and the percentage relative error of the GP+PR solution with respect to the BKS.

Of the 66 tested instances, GP+PR found the BKS in 49 cases (74.2%). It found a
solution within 0.5% of the BKS for 50 instances (75.7%). In 56 instances (84.8%),
GP+PR solution was within 1% of the BKS and in 61 cases (92.4%) it was within
2% of the BKS. GP+PR solution was within 5% of the BKS in 64 instances (97%),
while for all other cases, the solution found was within 7.5% of the BKS.

Tables 6 and 7 summarizes the results for each problem class. Table 6 shows, for
each problem class, its name, the sum of the BKS values, the sum of the values of
the best solutions found by GP+PR, and the percentage relative error of the sum of
the values of the best GP+PR solutions with respect to the sum of the BKS values.
Table 7 shows, for each problem class, its name, and the percentage of instances
for which a GP+PR solution within 0%, 0.5%, 1%, 2%, 5%, and 10% of the BKS was
produced. From these tables, one can conclude that the easiest classes are car and
mt, for which GP+PR obtained the BKS for all instances. For classes orb and la,
the average relative errors are within 0.5% of the BKS and therefore, GP+PR was
capable of producing solutions of high quality for most problems in these classes.



PARALLEL GRASP WITH PATH-RELINKING FOR JOB SHOP SCHEDULING 27

The most difficult class was abz, where the average relative error with respect to
the BKS achieved 2.64%.

5.4. Probability distribution for solution time. Aiex, Resende, and Ribeiro
[3] studied the empirical probability distributions of the random variable time to
target solution in five GRASP implementations. They showed that, given a tar-
get solution value, the time it takes GRASP to find a solution at least as good as
the target fits a two-parameter exponential distribution. Standard methodology
for graphical analysis [11] was used to compute the empirical and theoretical dis-
tributions and to estimate the parameters of the distributions. We use the same
methodology to study time to target value for GRASP and GP+PR. Our objective is
to show that these variants of GRASP have time to target value distributions that
fit a two-parameter exponential distribution.

The quantile-quantile plots (Q-Q plots) and the plots showing the empirical and
theoretical distributions of the random variable time to target solution for GRASP are
shown in Figures 6 and 7, respectively. Analogously, Figures 8 and 9 show the Q-Q
plots and the plots with the empirical and theoretical distributions of the random
variable time to target solution for GP+PR. Three target values are considered for
each of the test problems, abz6, mt10, orb5, and la21, for the two GRASP variants.
All plots are computed with 200 runs of the GRASP variant. For each of the 200
runs of each combination, the random number generator is initialized with a distinct
seed and therefore the runs are independent.

Figures 6 and 8 are made up of 12 quantile-quantile plots, one for each pair
of problem instance/target value for GRASP and GP+PR, respectively. Analogously,
Figures 7 and 9 are made up of 12 plots showing the empirical and theoretical
distributions of the random variable time to target solution, each corresponding to
a pair of problem instance/target value for GRASP and GP+PR, respectively. Each
figure is made up of four rows, each corresponding to a different problem. Each
row of the figure depicts three plots, where the difficulty to find the target value
increases from left to right. Our description of each plot follows [3] closely. For
each instance/variant pair, the running times are sorted in increasing order. To
plot the empirical distribution, we associate with the i-th sorted running time (ti)
a probability pi = (i− 1

2 )/200, and plot the points zi = (ti, pi), for i = 1, . . . , 200.
Tables 9 and 12 show the target values and the parameters estimated by the

methodology for GRASP and GP+PR, respectively. Following the methodology pro-
posed in [11], we first draw the theoretical quantile-quantile plot for the data to
estimate the parameters of the two-parameter exponential distribution. To describe
Q-Q plots, recall that the cumulative distribution function for the two-parameter
exponential distribution is given by

F (t) = 1− e−(t−µ)/λ,

where λ is the mean of the distribution data (and indicates the spread of the data)
and µ is the shift of the distribution with respect to the ordinate axis.

For each value pi, i = 1, . . . , 200, we associate a pi-quantile Qt(pi) of the theo-
retical distribution. For each pi-quantile we have, by definition, that

F ((Qt(pi)) = pi.
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Hence, Qt(pi) = F−1(pi) and therefore, for the two-parameter exponential distri-
bution, we have

Qt(pi) = −λ ln(1− pi) + µ.

The quantiles of the data of an empirical distribution are simply the (sorted) raw
data.

A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by
plotting the quantiles of the data of an empirical distribution against the quantiles
of a theoretical distribution. This involves three steps. First, the data (in our
case, the measured times) are sorted in ascending order. Second, the quantiles of
the theoretical exponential distribution are obtained. Finally, a plot of the data
against the theoretical quantiles is made.

In a situation where the theoretical distribution is a close approximation of
the empirical distribution, the points in the Q-Q plot will have a nearly straight
configuration. If the parameters λ and µ of the theoretical distribution that best
fits the measured data could be estimated a priori, the points in a Q-Q plot would
tend to follow the line x = y. Alternatively, in a plot of the data against a two-
parameter exponential distribution with λ′ = 1 and µ′ = 0, the points would tend to
follow the line y = λx+µ. Consequently, parameters λ and µ of the two-parameter
exponential distribution can be estimated, respectively, by the slope and intercept
of the line depicted in the Q-Q plot.

To avoid possible distortions caused by outliers, we do not estimate the distribu-
tion mean by linear regression on the points of the Q-Q plot. Instead, we estimate
the slope λ̂ of line y = λx + µ using the upper quartile qu and lower quartile ql
of the data. The upper and lower quartiles are, respectively, the Q( 1

4 ) and Q( 3
4 )

quantiles, respectively. We take

λ̂ = (zu − zl)/(qu − ql)
as an estimate of the slope, where zu and zl are the u-th and l-th points of the
ordered measured times, respectively. This informal estimation of the distribution
of the measured data mean is robust since it will not be distorted by a few outliers
[11]. These estimates are used to plot the theoretical distributions on the plots on
the left side of the figures.

To analyze the straightness of the Q-Q plots, we superimpose them with vari-
ability information. For each plotted point, we show plus and minus one standard
deviation in the vertical direction from the line fitted to the plot. An estimate of
the standard deviation for point zi, i = 1, . . . , 200, of the Q-Q plot is

σ̂ = λ̂

√
pi

(1− pi)200
.

Figures 6 and 8 show that there is little departure from straightness in the Q-Q
plots for GRASP, as well as for GP+PR. We also observe that as the difficulty of finding
the target value increases, the plotted points become more fitted to the estimated
line. Therefore, we verify that the distributions fit a two-parameter exponential
distribution.

Binato et al. [6] show that the probability distribution of solution time of GP+C-INT
fits a two-parameter exponential distribution. In this section, we show that the
probability distributions of solution time of a GRASP where the construction phase
is computed alternating between two greedy functions (GRASP) and of a GRASP
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Table 8. Speedup with respect to a single processor implemen-
tation and efficiency (speedup divided by number of processors).
Algorithm is the parallel implementation of GRASP. Instances are
abz6, mt10, orb5, and la21, with target values 960, 960, 920, and
1120, respectively.

number of processors
2 4 8 16

problem speedup eff. speedup eff. speedup eff. speedup eff.

abz6 2.04 1.02 4.75 1.18 8.87 1.10 19.17 1.19
mt10 1.62 .81 4.07 1.01 7.34 .91 14.81 .92
orb5 2.12 1.06 3.97 .99 7.63 .95 14.10 .88
la21 1.94 .97 4.98 1.24 8.13 1.01 19.63 1.22

average: 1.93 .96 4.44 1.10 7.99 .99 16.92 1.05

with path-relinking restricted to iterations where the local search obtained high
quality solutions (GP+PR) also fit a two-parameter exponential distribution. These
results reinforce the conclusions drawn in [3] for pure GRASPs.

The following can be stated for a two parameter (shifted) exponential distri-
bution [3, 39]. Let Pρ(t) be the probability of not having found a given (target)

solution in t time units with ρ independent processes. If P1(t) = e−(t−µ)/λ with
λ ∈ � + and µ ∈ � , i.e. P1 corresponds to a two parameter exponential distribu-
tion, then Pρ(t) = e−ρ(t−µ)/λ. This follows from the definition of the two-parameter
exponential distribution. It implies that the probability of finding a solution of a
given value in time ρt with a sequential process is equal to 1− e−(ρt−µ)/λ while the
probability of finding a solution at least as good as that given value in time t with
ρ independent parallel processes is 1 − e−ρ(t−µ)/λ. Note that if µ = 0, then both
probabilities are equal and correspond to the non-shifted exponential distribution.
Furthermore, if ρµ � λ, then the two probabilities are approximately equal and
it is possible to approximately achieve linear speed-up in solution time to target
solution by multiple independent processes.

5.5. The parallel experiments. The parallel algorithms used in these experi-
ments are:

1. the pure GRASP;
2. the non-collaborative GRASP with path-relinking;
3. the collaborative GRASP with path-relinking.

In these experiments, we disable stopping due to maximum number of iterations,
i.e. the algorithms terminate only when a solution of value at least as good as
look4 is found. The parallel GRASP was studied for problems abz6, mt10, orb5, and
la21, with look4 values 960, 960, 920, and 1120, respectively. The independent
and cooperative parallel implementations of GP+PR were also tested for problems
abz6, mt10, orb5, and la21, but with more difficult look4 values 943, 938, 895,
and 1100, respectively. The parameters of the procedures used in the parallel
approaches were the same used for testing the sequential algorithm. Intensification
and post-optimization are not carried out during the experiments with the parallel
implementations. Figure 10 shows speedup and empirical distributions for the
parallel implementations of GRASP. Analogously, Figures 11, 12, 13, and 14 show
speedup and empirical distributions for both parallel implementations of GP+PR.
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Table 9. Test problems used to study the empirical probabil-
ity distributions of the random variable time to target solution
of GRASP. Table shows for each tested problem, cost of the BKS,
target value and estimated parameters.

estimated parameters

problem BKS target µ̂ λ̂

abz6 943 970 0.203 3.804
960 0.428 15.567
950 -1.323 68.490

mt10 930 970 -9.403 233.092
960 11.723 885.034
950 109.528 1827.882

orb5 887 930 -0.783 15.757
920 1.249 38.273
910 -1.011 191.111

la21 1047 1130 -4.115 50.343
1120 -1.015 206.836
1110 -87.594 1268.081

Table 10. Estimates of probability of finding a solution at least
as good as the target solution in a given running time, as a function
of number of processors. Algorithm is the parallel implementation
of GRASP. Instances are abz6, mt10, orb5, and la21, with target
values 960, 960, 920, and 1120, respectively.

probab. parallel GRASP
number of processors

problem time 1 2 4 8 16

abz6 10s .34 .67 .93 1.00 1.00
20s .61 .90 .98 1.00 1.00
50s .90 .98 1.00 1.00 1.00

mt10 10s .04 .02 .04 .07 .19

100s .16 .20 .45 .64 .82
500s .46 .60 .92 1.00 1.00

orb5 10s .20 .37 .62 .87 .99
20s .36 .62 .84 .96 1.00
50s .70 .94 1.00 1.00 1.00

la21 10s .04 .08 .18 .30 .54
100s .29 .57 .87 .96 1.00
500s .89 .97 1.00 1.00 1.00

The plots were generated with 60 independent runs for each number of processors
considered (1, 2, 4, 8, and 16 processors).

Table 8 summarizes the speedups shown in the plots. The table also shows
efficiency (speedup divided by number of processors) values. Speedups are on av-
erage approximately linear. Table 9 shows the values of the parameters µ and λ of
the two-parameter exponential distributions plotted for the pairs of instance/target
values used to study the behavior of GRASP. The parameter µ is an estimate of the
minimum time needed for GRASP to find the target value for the instances. The
parameter λ is an estimate of the spread of the measured times for pair of in-
stance/target value. The sum µ+ λ is an estimate of the average solution time for
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Table 11. Speedup with respect to a single processor implemen-
tation. Algorithms are independent and cooperative implementa-
tions of GP+PR. Instances are abz6, mt10, orb5, and la21, with
target values 943, 938, 895, and 1100, respectively.

speedup independent speedup cooperative
(number of processors) (number of processors)

problem 2 4 8 16 2 4 8 16

abz6 2.00 3.36 6.44 10.51 2.40 4.21 11.43 23.58
mt10 1.57 2.12 3.03 4.05 1.75 4.58 8.36 16.97
orb5 1.95 2.97 3.99 5.36 2.10 4.91 8.89 15.76
la21 1.64 2.25 3.14 3.72 2.23 4.47 7.54 11.41

average: 1.79 2.67 4.15 5.91 2.12 4.54 9.05 16.93

Table 12. Test problems used to study the empirical probabil-
ity distributions of the random variable time to target solution
of GP+PR. Table shows for each tested problem, cost of the BKS,
target value and estimated parameters.

estimated parameters

problem BKS target µ̂ λ̂

abz6 943 950 25.067 40.348
947 30.652 140.487
943 92.220 744.247

mt10 930 950 206.950 249.865
940 255.666 334.774
938 305.281 524.236

orb5 887 910 47.322 44.268
900 82.006 200.680
895 131.435 418.053

la21 1047 1110 140.530 155.441
1105 140.399 248.812
1100 181.539 390.571

pair of instance/target value. For a small value of parameter µ, a two-parameter
exponential distributions can be approximated by a simple exponential distribu-
tion. Therefore, approximate linear speedups were expected for the parallel GRASP
on this set of instance/target values.

Table 10 shows, for given running times, the estimated probability of finding
a solution at least as good as the target solution in that time, as a function of
number of processors. The table shows, for example, that the probability of finding
a solution of value at most 920 on problem orb5 in at most 10 seconds, goes from
20% with one processor, to 62% with four processors, and to 99% with sixteen
processors.

Table 11 summarizes the speedups shown in the plots for the independent and
cooperative parallel approaches of GP+PR. Sublinear speedups are observed for the
independent approach. Table 12 shows the values of parameters µ and λ of the
two-parameter exponential distributions plotted for the pairs of instance/target
values used to study GP+PR. We notice that the ratios λ/µ computed with the
parameters in this table are much lower than the values of λ/µ, for the parameters
estimated for the pairs of instance/target values used to study GRASP. As stated
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Table 13. Estimates of probability of finding a solution at least as
good as the target solution in a given running time, as a function of
number of processors. Algorithms are independent and cooperative
implementations of GP+PR. Instances are abz6, mt10, orb5, and
la21, with target values 943, 938, 895, and 1100, respectively.

probab. independent probab. cooperative
(number of processors) (number of processors)

problem time 1 2 4 8 16 1 2 4 8 16

abz6 100s .01 .03 .12 .25 .47 .01 .12 .24 .64 .94
500s .30 .59 .79 .95 1.00 .30 .61 .79 1.00 1.00

1000s .57 .85 .97 .99 1.00 .57 .92 .98 1.00 1.00

mt10 100s 0.0 0.0 0.0 .02 0.05 0.0 0.0 .05 .34 .82
500s .17 .32 .55 .82 .98 .17 .49 .95 1.00 1.00

1000s .54 .79 .95 1.00 1.00 .54 .85 1.00 1.00 1.00

orb5 100s 0.0 0.0 .02 .03 .19 0.0 .07 .42 .74 .92
500s .35 .75 .93 1.00 1.00 .35 .80 .97 1.00 1.00

1000s .75 .97 1.00 1.00 1.00 .75 .95 1.00 1.00 1.00

la21 100s 0.0 0.0 0.0 .02 .06 0.0 .02 .08 .44 .87
500s .29 .52 .82 .98 1.00 .29 .79 1.00 1.00 1.00

1000s .75 .98 1.00 1.00 1.00 .75 .98 1.00 1.00 1.00

before, although GP+PR finds the target solution faster than GRASP, its iterations
need higher CPU times, which corresponds to higher values of µ. Path-relinking
also speedups GRASP, reducing the spread of the solution time, i.e., the parameter
λ. Therefore, µ values are higher and λ values are lower for GP+PR with respect to
GRASP parameters. For these reasons, the distributions plotted for GP+PR cannot
be approximated by a simple exponential distribution. As noted in the observation
about the two-parameter exponential distribution, as the number of used processors
ρ increases, the speedup of the algorithm degrades. That observation does not take
into account sharing of information by the processes. Therefore, no conclusions from
the distributions plotted for the sequential GP+PR can be drawn for the cooperative
approach. However, we observe an approximate linear speedup for all instances
tested for the cooperative approach, outperforming the independent variant.

In Table 13, the estimated probability of finding a solution at least as good as
the target solution before a specified time is shown as a function of number of
processors. For example, the table shows, for problem mt10, that the probability of
finding a solution of value at least as good as 938 in at most 500 seconds, goes from
32% with two processor, to 55% with four processors, and to 98% with 16 processors,
on the independent approach. For the cooperative approach, these values increase
to 49%, 95% and 100%, for two, four and sixteen processors, respectively.

6. Concluding remarks

We describe a new algorithm for finding approximate solutions to the job shop
scheduling problem. This GRASP uses some of the ideas proposed in the GRASP
of Binato et al. [6]. That GRASP applies an intensification strategy during the
construction phase that uses information obtained from “good” solutions to im-
plement a memory-based procedure to influence the construction phase. In the
hybrid GRASP proposed in this paper, the intensification phase is moved to the
end of each GRASP iteration and is done using path-relinking. Due to the high
computational requirements of path-relinking, only solutions accepted by a quality
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criteria undergo this procedure. Furthermore, the new GRASP alternates between
two semi-greedy algorithms to construct solutions, which produces a higher variety
of initial solutions for the local search. The algorithm was evaluated on 66 standard
test problems and was shown to produce optimal or near-optimal solutions on all
instances.

We observe that the hybrid GRASP with path-relinking obtains a solution of a
given quality faster than the pure GRASP. Therefore, the increase in the compu-
tational time of each GRASP iteration due to the computation of path-relinking
is compensated by an increase in the method’s robustness. We also verify that
the intensification applied after each GRASP iteration using path-relinking outper-
forms the intensification strategy used in Binato et al., which is applied during the
construction phase.

We verify that the time to target sub-optimal solution of the proposed GRASPs
fit well a two-parameter exponential distribution. Two parallelization strategies
were proposed for the GRASP with path-relinking: an independent and a cooper-
ative. The independent parallel strategy, as expected, shows a sub-linear speedup.
The cooperative approach shows an approximate linear speedup for all instances
tested, thus attesting that the extra time spent in communication among processes
is compensated by an increase in solution quality.
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