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ABSTRACT. A Greedy Randomized Adaptive Search Procedure (GRASP) is a metaheuris-
tic for combinatorial optimization. It usually consists of a construction procedure based on
a greedy randomized algorithm and a local search. Path-relinking is an intensification
strategy that explores trajectories that connect high quality solutions. We analyze two par-
allel strategies for GRASP with path-relinking and propose a criterion to predict parallel
speedup based on experiments with a sequential implementation of the algorithm. Inde-
pendent and cooperative parallel strategies are described and implemented for the 3-index
assignment problem and the job-shop scheduling problem. The computational results for
independent parallel strategies are shown to qualitatively behave as predicted by the crite-
rion.

1. INTRODUCTION

GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic for com-
binatorial optimization [12, 13, 15, 33]. A GRASP is an iterative process, where each
iteration usually consists of two phases: construction and local search. The construction
phase builds a feasible solution that is used as the starting solution for local search. The
best solution over all GRASP iterations is returned as the result.

In the construction phase, a feasible solution is built, one element at a time. The set of
candidate elements is made up of those elements that can be added to the current solution
under construction without causing infeasibilities. A candidate element is evaluated by a
greedy function that measures the local benefit of including that element in the partially
constructed solution. The value-based restricted candidate list (RCL) is made up of candi-
date elements having a greedy function value at least as good as a specified threshold. The
next element to be included in the solution is selected at random from the RCL. Its inclu-
sion in the solution alters the greedy functions and the set of candidate elements used to
determine the next RCL. The construction procedure terminates when the set of candidate
elements is empty.

A local search algorithm successively replaces the current solution by a better solu-
tion in its neighborhood, if one exists. It terminates with a locally optimal solution when
there is no better solution in the neighborhood. Since the solutions generated by a GRASP
construction phase are usually sub-optimal, local search almost always improves the con-
structed solution.

GRASP has been used to find quality solutions for a wide range of combinatorial op-
timization problems [15]. Furthermore, many extensions and improvements have been
proposed for GRASP. Many of these extensions consist in the hybridization of the method
with other methaheuristics. We observe that hybrid strategies usually find better solutions
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than those obtained using the pure GRASP, having in some cases improved the solution for
open problems in the literature [35, 36, 38].

Hybrid strategies of GRASP with path-relinking have been leading to significant im-
provements in solution quality when compared to the solutions obtained by the pure method.
Path-relinking was originally proposed by Glover [18] as an intensification strategy explor-
ing trajectories connecting elite solutions obtained by tabu search or scatter search [19, 20,
21]. The use of path-relinking within a GRASP procedure, as an intensification strategy ap-
plied to each locally optimal solution, was first proposed by Laguna and Martı́ [22]. It was
followed by several extensions, improvements, and successful applications [1, 2, 9, 34, 38].

The path-relinking approach consists in exploring trajectories that connect an initial
solution and a guiding solution. This is done by introducing in the initial solution attributes
of the guiding solution. At each step, all moves that incorporate attributes of the guiding
solution are analyzed and the best move is chosen. In GRASP with path-relinking, one of
these solutions is obtained by the local search phase of GRASP and the other is chosen
among the solutions kept in an elite set of solutions found during the iterations of the
algorithm.

Parallel computers have increasingly found their way into metaheuristics [11]. A fre-
quent question raised during the development of a parallel strategy is how the algorithm
will behave when implemented in parallel as compared to a sequential implementation.
The ideal situation is achieving linear speedup, i.e. when the execution time of the sequen-
tial program divided by the execution time of the parallel program running in ρ processors
is equal to ρ. Methodologies to help analyze the behavior of parallel strategies are signifi-
cant in the development of a parallel application.

Most of the parallel implementations of GRASP found in the literature consist in either
partitioning the search space or partitioning the GRASP iterations and assigning each par-
tition to a processor. GRASP is applied to each partition in parallel. Examples of these
strategies can be found in [4, 5, 14, 24, 25, 26, 27, 28, 29, 30, 32].

For hybrid strategies of GRASP with path-relinking, two general parallelization ap-
proaches have been proposed. In the first one, named the independent approach, the com-
munication among processors during GRASP iterations is limited to the detection of pro-
gram termination. In the second approach, called the cooperative approach, processors
share information on elite solutions visited during GRASP iterations. These strategies are
classified according to Verhoeven and Aarts [43] as multiple independent trajectories and
multiple cooperative trajectories, respectively. Examples of parallel GRASP with path-
relinking can be found in [1, 2, 9, 37].

In this paper, we analyze two parallel strategies for GRASP with path-relinking and pro-
pose a criterion to predict parallel efficiency based on experiments with a sequential imple-
mentation of the algorithm. Independent and cooperative parallel strategies are described
and implemented for the 3-index assignment problem (AP3) and the job-shop scheduling
problem (JSP).

The remainder of this paper is organized as follows. In Section 2, the sequential imple-
mentations of GRASP and of path-relinking are described for both the AP3 and the JSP.
Section 3 shows how GRASP and path-relinking are combined. The parallel approaches
are discussed in Section 4. The computational results are reported and analyzed in Section
5. Concluding remarks are made in Section 6.
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2. SEQUENTIAL GRASP

In this section, the GRASP implementations developed for the 3-index assignment prob-
lem in Aiex et al. [2] and for the job-shop scheduling problem in Aiex, Binato, and Re-
sende [1] are reviewed in Subsections 2.1 and 2.2, respectively. Path-relinking is general-
ized for these problems in Subsection 2.3.

2.1. GRASP for the AP3. The three-index assignment problem (AP3) was first stated by
Pierskalla [31] as a straightforward extension of the classical two-dimensional assignment
problem. The AP3 is NP-Hard [16, 17].

A formulation of the AP3 (often called the three-dimensional matching problem) is
the following: Given three disjoint sets I, J, and K, such that |I| = |J| = |K| = n and a
weight ci jk associated with each ordered triplet (i, j,k)∈ I×J×K, find a minimum weight
collection of n disjoint triplets (i, j,k) ∈ I× J×K.

The AP3 can also be formulated using permutation functions. There are n3 cost ele-
ments and the optimal solution of the AP3 consists of the n smallest, such that the con-
straints are not violated. Assign to each set I, J, and K, the numbers 1,2, . . . ,n. None
of the chosen triplets (i, j,k) is allowed to have the same value for indices i, j, and k as
another. For example, the choice of triplets (1,2,4) and (3,2,5) is infeasible, since these
triplets share index j = 2. The permutation-based formulation for the AP3 is

min
p,q∈πN

n

∑
i=1

cip(i)q(i)

where πN denotes the set of all permutations of the set of integers N = {1,2, . . . ,n}.

2.1.1. GRASP for the AP3 – Construction phase. The GRASP construction phase builds
a feasible solution S by selecting n triplets, one at a time.

A restricted candidate list parameter α is selected at random from the interval [0,1]. This
value is not changed during the construction phase. Solution S is initially empty and the set
C of candidate triplets is initially the set of all triplets. To select the p-th (1 ≤ p ≤ n− 1)
triplet to be added to the solution, a restricted candidate list C′ is defined to include all
triplets (i, j,k) in the candidate set C having cost ci jk ≤ c + α(c− c), where

c = min{ci jk
∣∣ (i, j,k) ∈C} and c = max{ci jk

∣∣ (i, j,k) ∈C}.
Triplet (ip, jp,kp) ∈ C′ is chosen at random and is added to the solution, i.e. S = S∪
{(ip, jp,kp)}.

Once (ip, jp,kp) is selected, the set of candidate triplets must be adjusted to take into
account that (ip, jp,kp) is part of the solution. Any triplet (i, j,k) such that i = ip or j =
jp or k = kp must be removed from the current set of candidate triplets. This updating
procedure is the computational bottleneck of the construction phase. A straightforward
implementation would scan all n3 cost elements n−1 times in order to update the candidate
list. In Aiex et al. [2], four doubly linked lists are used to implement this process more
efficiently, reducing the complexity from O(n4) to O(n3).

After n− 1 triplets have been selected, the set C of candidate triplets contains one last
triplet which is added to S, thus completing the construction phase.

2.1.2. GRASP for the AP3 – Local search phase. The solution of the AP3 can be repre-
sented by a pair of permutations (p,q). Therefore, the solution space consists of all (n!)2

possible combinations of permutations.
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Let us first define the difference between two permutations s and s′ to be

δ(s,s′) = {i | s(i) 6= s′(i)},
and the distance between them to be

d(s,s′) = |δ(s,s′)|.
In this local search, a 2-exchange neighborhood is adopted. A 2-exchange neighborhood
is defined to be

N2(s) = {s′ | d(s,s′) = 2}.
The definition of the neighborhood N(s) is crucial for the performance of the local search.
In the 2-exchange neighborhood scheme used in this local search, the neighborhood of a
solution (p,q) consists of all 2-exchange permutations of p plus all 2-exchange permuta-
tions of q. This means that for a solution p,q ∈ πN , the 2-exchange neighborhood is

N2(p,q) = {p′,q′ | d(p, p′) + d(q,q′) = 2}.
Hence, the size of the neighborhood is |N2(p)|+ |N2(q)| = 2

(n
2

)
. In the local search, the

cost of each neighborhood solution is compared with the cost of the current solution. If
the cost of the neighbor is lower, then the solution is updated, the search is halted, and a
search in the new neighborhood is initialized. The local search ends when no neighbor of
the current solution has a lower cost than the current solution.

2.2. GRASP for the JSP. The job shop scheduling problem (JSP) is a well-studied prob-
lem in combinatorial optimization. It consists in processing a finite set of jobs on a finite
set of machines. Each job is required to complete a set of operations in a fixed order. Each
operation is processed on a specific machine for a fixed duration. Each machine can pro-
cess at most one job at a time and once a job initiates processing on a given machine it must
complete processing on that machine without interruption. A schedule is a mapping of op-
erations to time slots on the machines. The makespan is the maximum completion time of
the jobs. The objective of the JSP is to find a schedule that minimizes the makespan. The
JSP is NP-hard [23] and has also proven to be computationally challenging.

Mathematically, the JSP can be stated as follows. Given a set M of machines (where
we denote the size of M by |M |) and a set J of jobs (where the size of J is denoted by |J |),
let σ j

1 ≺ σ j
2 ≺ ·· · ≺ σ j

|M | be the ordered set of |M | operations of job j, where σ j
k ≺ σ j

k+1

indicates that operation σ j
k+1 can only start processing after the completion of operation

σ j
k. Let O be the set of operations. Each operation σ j

k is defined by two parameters: M j
k is

the machine on which σ j
k is processed and p j

k = p(σ j
k) is the processing time of operation

σ j
k. Defining t(σ j

k) to be the starting time of the k-th operation σ j
k ∈ O, the JSP can be

formulated as follows:

minimize Cmax

subject to: Cmax ≥ t(σ j
k) + p(σ j

k), for all σ j
k ∈ O,

t(σ j
k)≥ t(σ j

l ) + p(σ j
l ), for all σ j

l ≺ σ j
k,(1a)

t(σ j
k)≥ t(σi

l) + p(σi
l)∨(1b)

t(σi
l)≥ t(σ j

k) + p(σ j
k), for all σi

l ,σ
j
k ∈ O such that Mσi

l
= Mσ j

k
,

t(σ j
k)≥ 0, for all σ j

k ∈ O,
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where Cmax is the makespan to be minimized.
A feasible solution of the JSP can be built from a permutation of J on each of the

machines in M , observing the precedence constraints, the restriction that a machine can
process only one operation at a time, and requiring that once started, processing of an
operation must be uninterrupted until its completion. Since each set of feasible permuta-
tions has a corresponding schedule, the objective of the JSP is to find, among the feasible
permutations, the one with the smallest makespan.

2.2.1. GRASP for the JSP – Construction phase. Consider the GRASP construction phase
for the JSP, proposed in Binato et al. [8] and Aiex, Binato, and Resende [1], where a single
operation is the building block of the construction phase. That is, a feasible schedule is
built by scheduling individual operations, one at a time, until all operations have been
scheduled.

While constructing a feasible schedule, not all operations can be selected at a given
stage of the construction. An operation σ j

k can only be scheduled if all prior operations
of job j have already been scheduled. Therefore, at each construction phase iteration, at
most |J | operations are candidates to be scheduled. Let this set of candidate operations be
denoted by Oc and the set of already scheduled operations by Os and denote the value of
the greedy function for candidate operation σ j

k by h(σ j
k).

The greedy choice is to next schedule operation σ j
k = argmin(h(σ j

k) | σ j
k ∈ Oc). Let

σ j
k = argmax(h(σ j

k) | σ
j
k ∈ Oc), h = h(σ j

k), and h = h(σ j
k). Then, the GRASP restricted

candidate list (RCL) is defined as

RCL = {σ j
k ∈ Oc | h≤ h(σ j

k)≤ h + α(h−h)},

where α is a parameter such that 0≤ α≤ 1.
A typical iteration of the GRASP construction is summarized as follows: a partial

schedule (which is initially empty) is on hand, the next operation to be scheduled is se-
lected from the RCL and is added to the partial schedule, resulting in a new partial sched-
ule. The selected operation is inserted in the earliest available feasible time slot on machine
Mσ j

k
. Construction ends when the partial schedule is complete, i.e. all operations have been

scheduled.
The algorithm uses two greedy functions. Even numbered iterations use a greedy func-

tion based on the makespan resulting from the inclusion of operation σ j
k to the already-

scheduled operations, i.e. h(σ j
k) = Cmax for O = {Os ∪σ j

k}. In odd numbered iterations,
solutions are constructed by favoring operations from jobs having long remaining process-
ing times. The greedy function used is given by h(σ j

k) =−∑σ j
l 6∈Os

p j
l , which measures the

remaining processing time for job j. The use of two different greedy functions produce a
greater diversity of initial solutions to be used by the local search.

2.2.2. GRASP for the JSP – Local search phase. To attempt to decrease the makespan of
the solution produced in the construction phase, we employ the 2-exchange local search
used in [1, 8, 42], that is based on the disjunctive graph model of Roy and Sussmann [39].

The disjunctive graph G = (V,A,E) is defined such that

V = {O ∪{0, |J | · |M |+ 1}}
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is the set of nodes, where {0} and {|J | · |M |+ 1} are artificial source and sink nodes,
respectively,

A = {(v,w) | v,w ∈ O,v≺ w}∪
{(0,w) | w ∈ O, 6 ∃v ∈ O 3 v≺ w}∪

{(v, |J | · |M |+ 1) | v ∈ O, 6 ∃w ∈ O 3 v≺ w}
is the set of directed arcs connecting consecutive operations of the same job, and

E = {(v,w) |Mv = Mw}
is the set of edges that connect operations on the same machine. Vertices in the disjunctive
graph model are weighted. Vertices 0 and |J | · |M |+ 1 have weight zero, while the weight
of vertex i ∈ {1, . . . , |J | · |M |} is the processing time of the operation corresponding to
vertex i. Notice that the edges of A and E correspond, respectively, to constraints (1a) and
(1b) of the disjunctive programming formulation of the JSP.

An orientation for the edges in E corresponds to a feasible schedule. Given an orien-
tation of E, one can compute the earliest start time of each operation by computing the
longest (weighted) path from node 0 to the node corresponding to the operation. Conse-
quently, the makespan of the schedule can be computed by finding the critical (longest)
path from node 0 to node |J | · |M |+1. The objective of the JSP is to find an orientation of
E such that the longest path in G is minimized.

Taillard [41] described an O(|J | · |M |) algorithm to compute the longest path on G. He
also showed that the entire neighborhood of a given schedule, where the neighborhood is
defined by the swap of two consecutive operations in the critical path, can be examined
(i.e. have their makespan computed) in time O(|J | · |M |) given that the longest path of G
was evaluated.

Given the schedule produced in the construction phase, the local search procedure ini-
tially identifies the critical path in the disjunctive graph corresponding to that schedule. All
pairs of consecutive operations sharing the same machine in the critical path are tentatively
exchanged. If the exchange improves the makespan, the move is accepted. Otherwise, the
exchange is undone. Once an exchange is accepted, the critical path may change and a new
critical path must be identified. If no pairwise exchange of consecutive operations in the
critical path improves the makespan, the current schedule is locally optimal and the local
search ends.

2.3. Path-relinking. Using permutation arrays, we generalize path-relinking in this sub-
section for both the AP3 and the JSP.

A solution of the AP3 can be represented by two permutation arrays of numbers 1,2, . . . ,n
in sets J and K, respectively, as follows:

S = {( jS
1,1, jS

1,2, . . . , jS
1,n),( jS

2,1, jS
2,2, . . . , jS

2,n)},
where jS

i,k is the k-th number assigned to permutation i in solution S.
Analogously, for the JSP, a schedule can be represented by the permutation of operations

in J on the machines in M . The schedule is represented by |M | permutation arrays, each
with |J | operations. Each permutation implies an ordering of the operations. A solution of
the JSP is represented as follows:

S = {( jS
1,1, jS

1,2, . . . , jS
1,|J |),( jS

2,1, jS
2,2, . . . , jS

2,|J |), . . . ,( jS
|M |,1, jS

|M |,2, . . . , jS
|M |,|J |)},

where jS
i,k is the k-th operation executed on machine i in solution S.
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A path-relinking strategy for permutation arrays is carried out as follows. For a problem
represented with R permutation arrays of elements from a set E, path-relinking is done
between an initial solution

S = {( jS
1,1, jS

1,2, . . . , jS
1,|E|),( jS

2,1, jS
2,2, . . . , jS

2,|E|), . . . ,( jS
R,1, jS

R,2, . . . , jS
R,|E|)}

and a guiding solution

T = {( jT
1,1, jT

1,2, . . . , jT
1,|E|),( jT

2,1, jT
2,2, . . . , jT

2,|E|), . . . ,( jT
R,1, jT

R,2, . . . , jT
R,|E|)},

where jS′
i,k is the k-th element of permutation i in solution S′.

Let the difference between S and T be defined by the R sets of indices

δS,T
k = {i = 1, . . . , |E|

∣∣ jS
k,i 6= jT

k,i},k = 1, . . . ,R.

During a path-relinking move, a permutation array in S, given by

(. . . , jS
k,i, jS

k,i+1, . . . , jS
k,q−1, jS

k,q, . . .),

is replaced by a permutation array

(. . . , jS
k,q, jS

k,i+1, . . . , jS
k,q−1, jS

k,i, . . .),

by exchanging permutation elements jS
k,i and jS

k,q, where i ∈ δS,T
k and q are such that jT

k,q =
jS
k,i.

At each step of the algorithm, the move that produces the lowest cost solution is selected
and its index is removed from the corresponding set δS,T

k . This continues until there are
only two move indices left in one of the sets δS,T

k . At this point, the move obtained by
exchanging these elements will produce the guiding solution. The best solution found
during the path traversal is returned by the procedure.

3. GRASP WITH PATH-RELINKING

This section describes how path-relinking and GRASP can be combined to form a hy-
brid GRASP with path-relinking. We limit this discussion to single processor implemen-
tations and consider parallel strategies in the next section. Pseudo-code for the GRASP
with path-relinking is presented in Figure 1. Let |P| be the size of the current elite set
and let maxpool be the the elite set’s maximum size. The first maxpool GRASP iterations
contribute one solution to the elite set per GRASP iteration (line 16). Path-relinking is not
done until the pool of elite solutions is full.

In lines 3 and 4, GRASP construction and local search phases are carried out. Each of
these phases can be replaced by more elaborated mechanisms, as for example, the construc-
tion phase developed for the JSP that alternates between two different greedy functions.

Once the pool of elite solutions is full, solution S produced by the local search phase
of GRASP is tested to verify its quality (line 6). This is done to avoid relinking low-
quality solutions. If S passes the quality test used, bidirectional path-relinking is done
between S and all elements of a subset P′⊆P (lines 7 to 15). In bidirectional path-relinking
[2], two paths are analyzed: one from the GRASP solution to the selected solution from
the pool; another from the selected pool solution to the GRASP solution. The degree
of restrictiveness of the quality test is a function of the computational time necessary to
do path-relinking. For the AP3, the cost of a solution in the neighborhood of S can be
computed from the cost of S in O(1) time and therefore, path-relinking is applied to all
solutions obtained in the local search phase of GRASP. For the JSP, on the other hand,
the cost of each solution visited by path-relinking is computed in O(|J | · |M |) using the
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procedure GRASP PR(seed, look4,maxitr,maxpool,ifreq, problem data)
1 P = /0;
2 for i = 1, . . . ,maxitr do
3 CONSTRUCTION(seed,S, problem data);
4 LOCAL(S, problem data);
5 if |P|== maxpool then
6 accepted = VERIFY QUALITY(S);
7 if accepted then
8 select P′ ⊆ P;
9 for T ∈ P′ do
10 Sgmin = PATH RELINKING(costS,S,T, problem data);
11 UPDATE POOL(Sgmin,costgmin,P);
12 Sgmin = PATH RELINKING(costT ,T,S, problem data);
13 UPDATE POOL(Sgmin,costgmin,P);
14 rof;
15 fi;
16 else P = P∪{S} fi;
17 if mod (i,ifreq) == 0 then
18 INTENSIFY(P);
19 fi;
20 Sbest = argmin(P);
21 if costbest ≤ look4 then
22 break;
23 fi;
24 rof;
25 POSTOPT(P);
26 Sbest = argmin(P);
27 return (Sbest );
end GRASP PR;

FIGURE 1. GRASP with path-relinking.

algorithm proposed in Taillard [41]. Therefore, it is computationally expensive to apply
path-relinking after each GRASP iteration, and path-relinking is applied only when the
GRASP solution satisfies a given quality criterion [1]. After each path-relinking phase, the
best solution traversed during path-relinking is tested for inclusion in the elite pool (lines
11 and 13).

Every ifreq GRASP iterations, an intensification procedure is carried out (lines 17 to
19). The intensification procedure [2] is accomplished by applying path-relinking to each
pair of elite solutions in P and updating the pool when necessary. The procedure is repeated
until no further change in P occurs.

The GRASP with path-relinking loop from line 2 to 24 continues for at most maxitr
iterations, but can be terminated when a solution having a cost less than or equal to look4
is found (lines 21 to 23).

Finally, a path-relinking post optimization is done on the elite set (line 25). Path-
relinking as a post-optimization step was introduced in Aiex et al. [2] and Ribeiro, Uchoa,
and Werneck [38] and has been also used in Resende and Werneck [35, 36]. After ap-
plying path-relinking between all pairs of elite solutions without any change in the elite
set, the local search procedure is applied to each elite solution, as the solutions produced
by path-relinking are not always local optima. The local optima found are candidates for
insertion into the elite set. If a change in the elite set occurs, the entire post-processing step
is repeated.
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4. PARALLEL GRASP STRATEGIES

In this section, two parallel strategies for the GRASP with path-relinking algorithm
shown in Figure 1 are described. The first scheme, called independent, limits communi-
cation between processors only to problem input, detection of process termination, and
determination of best overall solution. In addition to the communication allowed in the
independent scheme, the second scheme, called cooperative, allows processes to exchange
information about their elite sets.

4.1. Independent parallel strategy. We revisit a basic parallelization scheme for GRASP
with path-relinking used in Aiex et al. [2]. Figure 2 shows pseudo-code for this multiple
independent walks scheme.

Our implementations use message passing for communication among processors. This
communication is limited to program initialization and termination. When ρ processors are
used, a single process reads the problem data and passes it to the remaining ρ−1 processes.
Processes send a message to all others when they either stop upon finding a solution at least
as good as the target value look4 or complete the maximum number of allotted iterations.

The independent parallel GRASP with path-relinking is built upon the sequential algo-
rithm of Figure 1. Each process executes a copy of the program. We discuss the differences
between the sequential algorithm and this parallel variant. In line 1 of Figure 2, the rank
my rank of the process and the number ρ of processes are determined. Each GRASP
construction phase is initialized with a random number generator seed. To assure indepen-
dence of processes, identical seeds of the random number generator (rand()) must not be
used by more than one process to initiate a construction phase. The initial seed for process
my rank is computed in lines 2 to 4. We attempt, this way, to increase the likelihood that
each process has a disjunct sequence of maxitr/ρ initial seeds.

The for loop from line 6 to line 36 executes the iterations. The construction, local
search, and path-relinking phases are identical to the those of the sequential algorithm.
In line 23, if a process finds a solution with cost less than or equal to look4, it sends a
flag to each of the other processes indicating that it has found the solution. Likewise,
when a process completes maxitr/ρ iterations, it sends a different flag to each of the other
processes indicating that it has completed the preset number of iterations (lines 24 to 27).
In line 28, the process checks if there are any status flags to be received. If there is a flag
indicating that a solution with cost not greater than look4 has been found, the iterations
are terminated in line 30. If a flag indicating that some process has completed the preset
number of iterations has been received, then a counter num proc stop of the number of
processes that are ready to be terminated is incremented (line 32). If all processes have
completed their iterations, the execution of the main for loop is terminated (line 35).

Each process, upon terminating the for loop going from line 6 to line 36, runs the post-
optimization phase on the pool of elite solutions (line 37). A reduce operator (GET GLOBAL -
BEST) determines the global best solution among all processes in line 38.

A pure GRASP parallel algorithm can be obtained from the algorithm in Figure 2 by
skipping the execution of lines 9 to 19. As in a basic GRASP, it is necessary to keep
track of the best solution found and no pool handling operations are necessary. Therefore,
intensification and post-optimization are not defined in a parallel implementation of pure
GRASP.

4.2. Cooperative parallel strategy. In the cooperative parallel GRASP with path-relinking,
processes share elite set information. We now describe this scheme, whose pseudo-code is
presented in Figure 3. This algorithm is built on top of the independent scheme presented
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procedure INDEPENDENT GRASP PR(seed, look4,maxitr,maxpool,ifreq, problem data)
1 my rank = GET RANK(); ρ = GET NUM PROCS();
2 for i = 1, . . . ,(maxitr/ρ)∗my rank do
3 seed = rand(seed);
4 rof;
5 P = /0; num proc stop = 0;
6 for i = 1, . . . ,∞ do
7 CONSTRUCTION(seed,S, problem data);
8 LOCAL(S, problem data);
9 if |P|== maxpool then
10 accepted = VERIFY QUALITY(S);
11 if accepted then
12 select P′ ⊆ P;
13 for T ∈ P′ do
14 Sgmin = PATH RELINKING(costS,S,T, problem data);
15 UPDATE POOL(Sgmin,costgmin,P);
16 Sgmin = PATH RELINKING(costT ,T,S, problem data);
17 UPDATE POOL(Sgmin,costgmin,P);
18 rof;
19 fi;
20 else P = P∪{S} fi;
21 if mod (i,ifreq) == 0 then INTENSIFY(P); fi;
22 Sbest = argmin(P);
23 if costbest ≤ look4 then SEND ALL(look4 stop) fi;
24 if i == maxitr/ρ then
25 num proc stop = num proc stop + 1;
26 SEND ALL(maxitr stop);
27 fi;
28 received = VERIFY RECEIVING( f lag);
29 if received then
30 if f lag == look4 stop then break;
31 else if f lag == maxitr stop then
32 num proc stop = num proc stop + 1;
33 fi;
34 fi;
35 if num proc stop == ρ then break fi;
36 rof;
37 POSTOPT(P);
38 SGlobalBest = GET GLOBAL BEST(Sbest );
39 return (SGlobalBest );
end INDEPENDENT GRASP PR;

FIGURE 2. Pseudo-code for the independent parallel GRASP with path-relinking.

in the previous subsection. We limit our discussion to the differences between the two
schemes, which occur in the path-relinking phase.

Before doing path-relinking between solutions S and T , each process checks if one or
more other processes have sent it new elite solutions. If there are new elite solutions to be
received, RECEIVE SOLUTIONS (in lines 14 and 18) receives the elite solutions, tests if each
elite solution can be accepted for insertion into its local elite set, and inserts any accepted
elite solution. Upon termination of each path-relinking leg, if the local elite set is updated,
then (in lines 17 and 21) the process writes the new elite solutions to a local send buffer. In
line 23, if the local send buffer is not empty, the process sends the buffer’s contents to the
other processes.
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procedure COOPERATIVE GRASP PR(seed, look4,maxitr,maxpool,ifreq, problem data)
1 my rank = GET RANK(); ρ = GET NUM PROCS();
2 for i = 1, . . . ,(maxitr/ρ)∗my rank do
3 seed = rand(seed);
4 rof;
5 P = /0; num proc stop = 0;
6 for i = 1, . . . ,∞ do
7 CONSTRUCTION(seed,S, problem data);
8 LOCAL(S, problem data);
9 if |P|== maxpool then
10 accepted = VERIFY QUALITY(S);
11 if accepted then
12 select P′ ⊆ P;
13 for T ∈ P′ do
14 RECEIVE SOLUTIONS(P);
15 Sgmin = PATH RELINKING(costS,S,T, problem data);
16 updated = UPDATE POOL(Sgmin,costgmin,P);
17 if (updated) then INSERT SEND BUFFER(Sgmin,costgmin,buffer) fi;
18 RECEIVE SOLUTIONS(P);
19 Sgmin = PATH RELINKING(costT ,T,S, problem data);
20 updated = UPDATE POOL(Sgmin,costgmin,P);
21 if (updated) then INSERT SEND BUFFER(Sgmin,costgmin,buffer) fi;
22 rof;
23 SEND SOLUTIONS(buffer);
24 fi;
25 else P = P∪{S} fi;
26 if mod (i,ifreq) == 0 then INTENSIFY(P) fi;
27 Sbest = argmin(P);
28 if costbest ≤ look4 then SEND ALL(look4 stop) fi;
29 if i == maxitr/ρ then
30 num proc stop = num proc stop + 1;
31 SEND ALL(maxitr stop)
32 fi;
33 received = VERIFY RECEIVING( f lag);
34 if received then
35 if f lag == look4 stop then break;
36 else if f lag == maxitr stop then
37 num proc stop = num proc stop + 1;
38 fi;
39 fi;
40 if num proc stop == ρ then break fi;
41 rof;
42 POSTOPT(P);
43 SGlobalBest = GET GLOBAL BEST(Sbest );
44 return (SGlobalBest );
end COOPERATIVE GRASP PR;

FIGURE 3. Pseudo-code for the cooperative parallel GRASP with path-relinking.

Another difference between the independent and the cooperative schemes concerns the
INTENSIFY procedure. In the cooperative scheme, whenever the local elite set pool is up-
dated, the new elite solutions are written to the send buffer. These bufferized solutions will
be sent to the other processes the next time that procedure SEND SOLUTIONS is invoked.
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FIGURE 4. Exponential distribution and Q-Q plot for GRASP for the
AP3: problem B-S 26.1 with target value (look4) of 17.
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FIGURE 5. Exponential distribution and Q-Q plot for GRASP with path-
relinking for the AP3: problem B-S 26.1 with target value (look4) of
17.
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FIGURE 6. Exponential distribution and Q-Q plot for GRASP for the
JSP: problem orb5 with target value (look4) of 910.

5. COMPUTATIONAL RESULTS

This section reports on computational experiments with the parallel versions of the pure
GRASP and GRASP with path-relinking proposed in Section 4. The parallel strategies
have been implemented for both the AP3 and the JSP described in Section 2.

5.1. Computer environment. The experiments were done on an SGI Challenge computer
(16 196-MHz MIPS R10000 processors and 12 194-MHz MIPS R10000 processors) with
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FIGURE 7. Exponential distribution and Q-Q plot for GRASP with path-
relinking for the JSP: problem orb5 with target value (look4) of 895.

7.6 Gb of memory. The algorithms were coded in Fortran and were compiled with the
SGI MIPSpro F77 compiler using flags -O3 -static -u. The parallel codes used SGI’s
Message Passing Toolkit 1.4, which contains a fully compliant implementation of version
1.2 of the Message-Passing Interface (MPI) [40] specification. In the parallel experiments,
wall clock times were measured with the MPI function MPI WT. This is also the case for
runs with a single processor that are compared to multiple-processor runs. Timing in the
parallel runs excludes the time to read the problem data, to initialize the random number
generator seeds, and to output the solution.

The parallel implementations were run on 2, 4, 8, and 16 processors. Load on the ma-
chine was low throughout the experiments, therefore processors were always available.
The average speedups were computed dividing the sum of the execution times of the inde-
pendent parallel program executing on one processor by the sum of the execution times of
the parallel program on 2, 4, 8, and 16 processors, for 60 runs. The execution times of the
independent parallel program executing on one processor and the execution times of the
sequential program are approximately the same.

5.2. The parallel GRASP strategies. The following parallel algorithms were studied in
these experiments:

(1) pure GRASP;
(2) independent GRASP with path-relinking;
(3) cooperative GRASP with path-relinking.

Path-relinking was always applied between the GRASP solution and all solutions in the
elite set.

The parallel GRASP as well as the parallel GRASP with path-relinking used in the ex-
periments are named GRASP(prob) and GRASP+PR(prob), where prob indicates the prob-
lem type (AP3 or JSP). The parameters of the procedures used in the parallel approaches of
GRASP for the AP3 and for the JSP are the same used for testing the sequential algorithms
in Aiex et al. [2] and Aiex, Binato, and Resende [1], respectively. Intensification and post-
optimization are not carried out during the experiments with the parallel implementations.

5.3. Test problems. For the AP3, we tested one problem of each size n = 20,22,24,26,
generated by Balas and Saltzman [6]. We named these problems B-S 20.1, B-S 22.1,
B-S 24.1 and B-S 26.1. For the JSP we tested problems abz6, mt10, orb5, and la21
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from four classes of standard problems for the JSP. These problems were obtained from
Beasley’s OR-Library 1 [7].

5.4. Probability distribution of solution time to target value. Aiex, Resende, and Ribeiro
[3] studied the empirical probability distributions of the random variable time to target
value in GRASP. They showed that, given a target solution value, the time GRASP takes to
find a solution with cost at least as good as the target fits a two-parameter exponential dis-
tribution. Empirical distributions are produced from experimental data and corresponding
theoretical distributions are estimated from the empirical distributions.

A quantile-quantile plot (Q-Q plot) and a plot showing the empirical and the theoretical
distributions of the random variable time to target value for sequential GRASP and GRASP
with path-relinking for the AP3 are shown in Figures 4 and 5, respectively. Analogously,
Figures 6 and 7 show the same plots for the JSP. These plots are computed by running the
algorithms for 200 independent runs. Each run ends when the algorithm finds a solution
with value less than or equal to a specified target value (look4). Each running time is
recorded and the times are sorted in increasing order. We associate with the i-th sorted
running time (ti) a probability pi = (i− 1

2 )/200, and plot the points zi = (ti, pi), for i =
1, . . . ,200 as the empirical distribution.

Following Chambers et al. [10], we determine the theoretical quantile-quantile plot
for the data to estimate the parameters of the two-parameter exponential distribution. To
describe Q-Q plots, recall that the cumulative distribution function for the two-parameter
exponential distribution is given by

F(t) = 1− e−(t−µ)/λ,

where λ is the mean and standard deviation of the distribution data and µ is the shift of
the distribution with respect to the ordinate axis. For each value pi, i = 1, . . . ,200, we
associate a pi-quantile Qt(pi) of the theoretical distribution. For each pi-quantile we have,
by definition, that

F((Qt(pi)) = pi.

Hence, Qt(pi) = F−1(pi) and therefore, for the two-parameter exponential distribution, we
have

Qt(pi) =−λ ln(1− pi) + µ.

The quantiles of the data of an empirical distribution are simply the (sorted) raw data.
A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by plotting

the quantiles of the data of an empirical distribution against the quantiles of a theoretical
distribution. This involves three steps. First, the data (in our case, the measured times) are
sorted in ascending order. Second, the quantiles of the theoretical exponential distribution
are obtained. Finally, a plot of the data against the theoretical quantiles is made.

When the theoretical distribution is a close approximation of the empirical distribution,
the points in the Q-Q plot will have a nearly straight configuration. If the parameters λ
and µ of the theoretical distribution that best fits the measured data could be estimated a
priori, the points in a Q-Q plot would tend to follow the line x = y. Alternatively, in a plot
of the data against a two-parameter exponential distribution with λ′ = 1 and µ′ = 0, the
points would tend to follow the line y = λx + µ. Consequently, parameters λ and µ of the
two-parameter exponential distribution can be estimated, respectively, by the slope and the
intercept of the line depicted in the Q-Q plot.

1http://mscmga.ms.ic.ac.uk/jeb/orlib/jobshopinfo.html
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To avoid possible distortions caused by outliers, we do not estimate the distribution
mean by linear regression on the points of the Q-Q plot. Instead, we estimate the slope λ̂
of line y = λx + µ using the upper quartile qu and lower quartile ql of the data. The upper
and lower quartiles are, respectively, the Q( 1

4 ) and Q( 3
4 ) quantiles, respectively. We take

λ̂ = (zu− zl)/(qu−ql)

as an estimate of the slope, where zu and zl are the u-th and l-th points of the ordered
measured times, respectively. These estimates are used to plot the theoretical distributions
on the plots on the right side of the figures.

The lines above and below the estimated line on the Q-Q plots correspond to plus and
minus one standard deviation in the vertical direction from the line fitted to the plot. This
superimposed variability information is used to analyze the straightness of the Q-Q plots.

The following can be stated for a two parameter (shifted) exponential distribution [3,
43]. Let Pρ(t) be the probability of not having found a given (target) solution in t time
units with ρ independent processes. If P1(t) = e−(t−µ)/λ with λ ∈ R+ and µ ∈ R, i.e. P1
corresponds to a two parameter exponential distribution, then Pρ(t) = e−ρ(t−µ)/λ. This fol-
lows from the definition of the two-parameter exponential distribution. It implies that the
probability of finding a solution of a given value in time ρt with a sequential process is
equal to 1− e−(ρt−µ)/λ while the probability of finding a solution at least as good as that
given value in time t with ρ independent parallel processes is 1− e−ρ(t−µ)/λ. Note that
if µ = 0, then both probabilities are equal and correspond to the non-shifted exponential
distribution. Furthermore, since ρ ≥ 1, if ρ|µ| � λ, then the two probabilities are approx-
imately equal and it is possible to approximately achieve linear speed-up in solution time
to target value using multiple independent processes.

5.5. A test to predict speedup of parallel implementations. The observation above sug-
gests a test using a sequential implementation to determine whether it is likely that a par-
allel implementation using multiple independent processors will be efficient. We say a
parallel implementation is efficient if it achieves linear speedup (with respect to wall time)
to find a solution at least as good as a given target value (look4). The test consists in K
(200, for example) independent runs of the sequential program to build a Q-Q plot and
estimate the parameters µ and λ of the shifted exponential distribution. If ρ|µ| � λ, then
we predict that the parallel implementation will be efficient.

5.6. The parallel experiments. The goals of the experiments in this subsection are three-
fold. First, we attempt to verify computationally the validity of the test to predict speedup
of parallel implementations proposed above. Second, we contrast independent parallel
implementations of pure GRASP with GRASP with path-relinking. Finally, we compare
independent parallel implementations of GRASP with path-relinking with cooperative im-
plementations. Because of the nature of these experiments, the stopping criterion for maxi-
mum number of iterations was disabled, and the programs terminated only when a solution
with cost as good as the target value was found.

In Aiex et al. [2] and Aiex, Binato, and Resende [1], we verified that the times to target
solution in the GRASP variants for the AP3 and the JSP fit a two-parameter exponential
distribution.

5.6.1. Parallel results for the AP3. To study the parallel implementation of GRASP(AP3),
we tested problems B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1 with target values
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FIGURE 8. Speedups for the parallel implementations of independent
and cooperative GRASP with path-relinking for the AP3: problems
B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1 with target values 7,
8, 7, and 8, respectively.

TABLE 1. Speedup and efficiency for instances of the AP3. Algo-
rithm is the parallel implementation of GRASP. Instances are B-S 20.1,
B-S 22.1, B-S 24.1, and B-S 26.1, with target values 16, 16, 16, and
17, respectively. The estimated parameters for the exponential distribu-
tions are shown for each pair of instance/target value.

estimated number of processors
parameter 2 4 8 16

prob. µ λ |µ|/λ spdup effic. spdup effic. spdup effic. spdup effic.
B-S 20.1 1.28 90.18 .014 2.02 1.01 3.66 .91 6.05 .75 16.30 1.01
B-S 22.1 -2.607 185.21 .014 2.03 1.01 4.58 1.14 10.33 1.29 17.88 1.11
B-S 24.1 -2.890 246.55 .011 2.16 1.08 4.27 1.06 7.89 .98 13.91 .86
B-S 26.1 26.36 252.90 .104 1.62 .81 3.22 .80 6.23 .77 11.72 .73
average: .034 1.95 .97 3.93 .97 7.62 .95 14.95 .93

16, 16, 16, and 17, respectively. The independent and cooperative parallel implementa-
tions of GRASP+PR(AP3) were studied for problems B-S 20.1, B-S 22.1, B-S 24.1,
and B-S 26.1, with target values 7, 8, 7, and 8, respectively.

The speedups and efficiencies (speedup divided by the number of processors used) ob-
served for GRASP(AP3) are shown in Table 1. We also show the estimates for parame-
ters µ and λ of the two-parameter exponential distribution, as well as the value of |µ|/λ
for each pair of instance/target value tested. By examining the parameters estimated for
GRASP(AP3), we can group the instances into two categories: { B-S 20.1, B-S 22.1,
B-S 24.1 } and { B-S 26.1 }. For instances B-S 20.1, B-S 22.1, and B-S 24.1, the
ratio |µ|/λ is approximately 0.01, while for runs on problem B-S 26.1, it is about 10 times
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TABLE 2. Speedups for instances of the AP3. Algorithms are indepen-
dent and cooperative implementations of GRASP with path-relinking.
Instances are B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1, with tar-
get values 7, 8, 7, and 8, respectively.

estimated speedup independent speedup cooperative
parameter (number of processors) (number of processors)

prob. µ λ |µ|/λ 2 4 8 16 2 4 8 16
B-S 20.1 -26.46 1223.80 .021 1.67 3.34 6.22 10.82 1.56 3.47 7.37 14.36
B-S 22.1 -135.12 3085.32 .043 2.25 4.57 9.01 14.37 1.64 4.22 8.83 18.78
B-S 24.1 -16.76 4004.11 .004 1.71 4.00 7.87 12.19 2.16 4.00 9.38 19.29
B-S 26.1 32.12 2255.55 .014 2.11 3.89 6.10 11.49 2.16 5.30 9.55 16.00
average: .020 1.935 3.95 7.3 12.21 1.88 4.24 8.78 17.10

greater. By our proposed criterion, we would expect that the runs in the first category
present better speedups than the one in the other category, which indeed is what one ob-
serves. The super-linear speedups observed in problem B-S 22.1 are probably explained
by statistical fluctuation. Some negative estimates for µ observed in the table should be
expected whenever the shift in the exponential distribution is small, since µ is the intercept
of the ordinate axis of the line defined by the first and third quartiles of the Q-Q plot.

The speedups for the independent and cooperative parallel approaches of GRASP+PR(AP3)
are shown in Figure 8. In Table 2, the speedups observed in the plots of Figure 8 are
summarized. The estimated values of µ, λ, and |µ|/λ, using 200 independent runs of the
sequential GRASP+PR(AP3) are also shown. An approximately linear speedup is observed
for the independent GRASP+PR(AP3) for up to 8 processors. With 16 processors, we ob-
serve a reduction in the speedup, although we can still consider that the program scales
well for up to 16 processors. The gradual degradation in speedup as the number of proces-
sors increases is expected and is due to the fact that the number of processors ρ offsets the
ratio |µ|/λ, i.e. |µ|/λ≤ 2|µ|/λ≤ 4|µ|/λ≤ 8|µ|/λ≤ 16|µ|/λ.

For the cooperative parallel GRASP+PR(AP3), we cannot make any prediction based
on the ratio |µ|/λ, since the processors share information and are therefore not indepen-
dent. We observe that the cooperative approach benefited more than the independent ap-
proach from the increase in the number of processors. The increase in sharing of elite so-
lutions compensated for the increase in inter-process communication. In fact, super-linear
speedups can occur for the cooperative approach.

5.6.2. Parallel results for the JSP. The parallel GRASP(JSP) was tested on instances abz6,
mt10, orb5, and la21, with target values 960, 960, 920, and 1120, respectively. The in-
dependent and cooperative parallel GRASP+PR(JSP), were also tested on instances abz6,
mt10, orb5, and la21, but with more difficult target values 943, 938, 895, and 1100, re-
spectively.

Table 3 lists the values of µ, λ, and |µ|/λ for each tested pair of instance and target value,
as well as the speedups and efficiencies for the 2, 4, 8, and 16-processor runs. Speedups
are, on average, approximately linear, in accordance with the low values observed for |µ|/λ
in the table.

The plots in Figure 9 show speedup for both parallel implementations of GRASP+PR(JSP).
Table 4 summarizes the speedups in Figure 9. The values of µ, λ, and |µ|/λ are also shown.
In accordance with the speedup prediction test, sub-linear speedups are observed for the
independent approach of GRASP+PR(JSP). We notice that the ratios |µ|/λ are much higher
than those in Table 3 for GRASP(JSP), as well as for ratios computed for the AP3 instances.
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FIGURE 9. Speedups for the parallel implementations of independent
and cooperative GRASP with path-relinking for the JSP: problems abz6,
mt10, orb5, and la21 with target values 943, 938, 895, and 1100, re-
spectively.

TABLE 3. Speedup and efficiency for instances of the JSP. Algorithm is
the parallel implementation of GRASP. Instances are abz6, mt10, orb5,
and la21, with target values 960, 960, 920, and 1120, respectively. The
estimated parameters for the exponential distributions are shown for each
pair of instance/target value.

estimated number of processors
parameter 2 4 8 16

prob. µ λ |µ|/λ spdup effic. spdup effic. spdup effic. spdup effic.
abz6 .42 15.56 .027 2.04 1.02 4.75 1.18 8.87 1.10 19.17 1.19
mt10 11.72 885.03 013 1.62 .81 4.07 1.01 7.34 .91 14.81 .92
orb5 1.24 38.27 .032 2.12 1.06 3.97 .99 7.63 .95 14.10 .88
la21 -1.01 206.83 .005 1.94 .97 4.98 1.24 8.13 1.01 19.63 1.22

average: .019 1.93 .96 4.44 1.10 7.99 .99 16.92 1.05

On the other hand, the table shows linear and super-linear speedups for most of the in-
stances tested with the cooperative approach. These speedups are considerably higher than
those observed for the independent approach. For example, for 16 processors, the average
speedups for the cooperative approach are almost three times higher than those of the inde-
pendent approach. These results show that cooperation is more critical in the JSP than in
the AP3. This perhaps is because path-relinking is applied less frequently in the JSP runs
than in the AP3 runs, due to the criterion used to avoid applying path-relinking to poor
quality solutions in the JSP.

Figure 10 shows the empirical distributions for the parallel GRASP(JSP), and the par-
allel independent and cooperative GRASP+PR(JSP), using 16 processors. The programs
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FIGURE 10. Empirical distributions for 16 processor parallel implemen-
tations of pure GRASP, independent GRASP with path-relinking, and
cooperative GRASP with path-relinking: problems abz6, mt10, orb5
and la21, for target values 943, 938, 895, and 1100, respectively.

TABLE 4. Speedups for instances of the JSP. Algorithms are indepen-
dent, and cooperative implementation of GRASP with path-relinking.
Instances are abz6, mt10, orb5, and la21, with target values 943, 938,
895, and 1100, respectively. The estimated parameters for the exponen-
tial distributions are shown for each pair of instance/target value.

estimated speedup independent speedup cooperative
parameter (number of processors) (number of processors)

prob. µ λ |µ|/λ 2 4 8 16 2 4 8 16
abz6 47.67 756.56 .06 2.00 3.36 6.44 10.51 2.40 4.21 11.43 23.58
mt10 305.27 524.23 .58 1.57 2.12 3.03 4.05 1.75 4.58 8.36 16.97
orb5 130.12 395.41 .32 1.95 2.97 3.99 5.36 2.10 4.91 8.89 15.76
la21 175.20 407.73 .42 1.64 2.25 3.14 3.72 2.23 4.47 7.54 11.41

average: .34 1.79 2.67 4.15 5.91 2.12 4.54 9.05 16.93

were tested for problems abz6, mt10, orb5 and la21, with target values 943, 938, 895,
and 1100, respectively. We notice that for 16 processors, although parallel GRASP(JSP)
scales better than the independent GRASP+PR(JSP), the execution times of the latter are
in general, lower than the execution times of the former. We also notice that the execution
times of the cooperative GRASP+PR(JSP) are considerably lower than the execution times
of the parallel GRASP(JSP) and of the independent GRASP+PR(JSP).
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6. CONCLUSION

Parallel computers have increasingly found their way into metaheuristics. In particular,
many parallel implementations of GRASP have been described in the literature. Recently,
parallel implementations of GRASP with path-relinking have been proposed. In this paper,
we contrast independent and cooperative parallel schemes for GRASP with path-relinking
with a parallel scheme for GRASP. We also propose a test using a sequential GRASP
implementation to predict the speedup of independent parallel implementations.

Implementations for the 3-index assignment problem and the job-shop scheduling prob-
lem are described. Computational experiments are done on four instances from each prob-
lem.

We conclude that the proposed test is useful for predicting the degree of speedup ex-
pected for parallel implementations of GRASP and GRASP with path-relinking. The re-
sults also show that parallel GRASP with path-relinking outperforms parallel GRASP and
that the cooperative scheme outperforms the independent approach, often achieving super-
linear speedups.
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