
A parallel multi-population genetic

algorithm for a constrained

two-dimensional orthogonal packing

problem∗

José Fernando Gonçalves

Faculdade de Economia do Porto, LIAAD

Rua Dr. Roberto Frias, s/n, 4200-464 Porto, Portugal

Mauricio G. C. Resende

Algorithms and Optimization Research Department, AT&T Labs Research,

180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.

This paper addresses a constrained two-dimensional (2D), non-guillotine
restricted, packing problem, where a �xed set of small rectangles has to be
placed into a larger stock rectangle so as to maximize the value of the rectan-
gles packed. The algorithm we propose hybridizes a novel placement proce-
dure with a genetic algorithm based on random keys. We propose also a new
�tness function to drive the optimization. The approach is tested on a set of
instances taken from the literature and compared with other approaches. The
experimental results validate the quality of the solutions and the e�ectiveness
of the proposed algorithm.

Keywords: Packing, cutting, two-dimensional packing, two-dimensional cut-
ting, non-guillotine cutting, genetic algorithm.

1 Introduction

The constrained two-dimensional (2D), non-guillotine restricted, packing problem ad-
dressed in this paper consists of packing rectangular pieces into a large rectangular sheet

∗ Supported by Fundação para a Ciência e Tecnologia (FCT) project PTDC/GES/72244/2006.
AT&T Labs Research Technical Report TD-7M7QJG.
Date: 2008-12-10

1

of material (stock rectangle) in order to maximize the value of the rectangles packed. We
consider the special case in which the items cannot be rotated and must be packed with
their edges always parallel to the edges of the large rectangular sheet. The problem is rel-
evant both from a theoretical point of view as well as practical one. It is NP-hard (Garey
and Johnson, 1979) and arises in various production processes with applications varying
from the home-textile to the glass, steel, wood, and paper industries, where rectangular
�gures are cut from large rectangular sheets of materials.
Various types of two-dimensional cutting problems have been considered in the litera-

ture. Dyckho� (1990) provided a classi�cation of the various types of cutting problems.
Surveys for multidimensional cutting and packing problems are given by Dowsland and
Dowsland (1992), Haessler and Sweeney (1991), and Sweeney and Paternoster (1992).
Few authors have considered general two-dimensional non-guillotine cutting problems
(constrained or unconstrained). The unconstrained non-guillotine cutting problem has
been considered by a few authors, namely: Tsai et al. (1988) presented an integer pro-
gramming approach; Arenales and Morabito (1995) developed an approach based on an
AND/OR graph together with a branch and bound search; and Healy et al. (1999) in-
troduced an algorithm based on the identi�cation of the empty space that can be used
to cut new items.
Optimal procedures for the constrained two-dimensional non-guillotine cutting prob-

lem have been proposed by several authors. Beasley (1985) proposed a branch and bound
algorithm with an upper bound derived from a Lagrangian relaxation of a 0-1 integer
linear programming formulation. Scheithauer and Terno (1993) presented an integer
programming formulation in which binary variables are used to indicate whether a piece
item is cut above/below or to the right/left of another piece. Hadjiconstantinou and
Christo�des (1995) developed a branch and bound algorithm in which the search was
limited by using an upper bound based on a Lagrangian relaxation procedure and im-
proved it using subgradient optimization. Computational gains were achieved by apply-
ing new reduction tests. Fekete and Schepers (1997a,b,c, 2004a,b) developed a two-level
tree search algorithm for solving the d-dimensional knapsack problem. In this algorithm,
projections of cut items were made onto both the horizontal and vertical edges of the
stock rectangle. These projections were represented by graphs in which the nodes are the
cut items and an edge joins two nodes if the projections of the corresponding cut items
overlap. By looking at the properties of the graphs, the authors were able to check the
feasibility of the corresponding patterns. Amaral and Letchford (2001) presented an up-
per bound which involved the solution of a large linear program by a column generation
algorithm. Boschetti et al. (2002) proposed new upper bounds derived from di�erent re-
laxations of a new integer programming formulation of the constrained two-dimensional
non-guillotine cutting problem. The new formulation is based on the observation that
any feasible solution can be represented by two sequences in which each element is the
subset of items covering the x and y positions of the master surface, respectively. Caprara
and Monaci (2004) compared four new algorithms based on the natural relaxation of the
two-dimensional knapsack problem. In the relaxation, the knapsack has a capacity equal
to the area of the master surface and the item weights are equal to their areas.
Heuristic procedures for the constrained two-dimensional non-guillotine cutting prob-

2

lem have also been developed by several authors. Lai and Chan (1997b) presented a
heuristic based on simulated annealing. They used a problem representation which en-
codes the order in which pieces should be cut. Lai and Chan (1997a) proposed a heuristic
based on an evolutionary strategy approach. They used the same representation as in
Lai and Chan (1997b). Their algorithm includes an improvement procedure based on
dividing the ordered list into active (cut) and inactive (uncut) pieces and seeing if any
(currently) uncut pieces can be cut. Their mutation process involves swapping two pieces
in the ordered list. Leung et al. (2001) used the ordered representation of Lai and Chan
(1997b) and discussed producing a cutting pattern from it using both the di�erence pro-
cess algorithm of Lai and Chan (1997b) and a standard bottom-left algorithm (see Jakobs
(1996)). They showed that there exist problems for which the optimal solution cannot
be found by these two approaches. They presented a simulated annealing heuristic with
a move corresponding to either swapping two pieces in the ordered representation or
moving a single piece to a new position in the representation. They also presented a
genetic algorithm involving �ve di�erent crossover operators. In an attempt to alleviate
the problem of premature convergence, Leung et al. (2003) developed a hybrid heuristic
blending simulated annealing with a genetic algorithm. Beasley (2004) proposes a genetic
algorithm based on a nonlinear formulation of the problem, where variables indicate if a
piece is cut or not and its position on the stock sheet. No placement algorithm is needed
since the solutions are lists of variables and show directly the cutting pattern. Alvarez-
Valdes et al. (2005) developed a new heuristic based on GRASP (Feo and Resende, 1989,
1995) for the non-guillotine two-dimensional cutting stock problem. The constructive
phase explicitly considers the possibility of simultaneously cutting several pieces of the
same type and forming a block, as one would do in the pallet loading problem. Alvarez-
Valdes et al. (2007) propose a tabu search algorithm that de�ne several moves based
on reducing and inserting blocks of pieces and include intensi�cation and diversi�cation
procedures based on long-term memory.
In this paper, we present a hybrid heuristic for a two-dimensional non-guillotine cutting

problem which combines a random-keys based genetic algorithm with a novel �tness
function and a new heuristic placement policy. The remainder of the paper is organized
as follows. In Section 2, we de�ne the problem formally, and in Section 3, propose the
new approach, describing the genetic algorithm, the placement strategy, and the �tness
function. In Section 4, we present experimental results and in Section 5 make concluding
remarks.

2 The problem

The two-dimensional packing problem addressed in this paper is the problem of packing
into a single large planar stock rectangle (W, H), of width W and height H, smaller
rectangles (wi, hi), i = 1, . . . , n, each of width wi and height hi. Each rectangle i has a
�xed orientation (i.e. cannot be rotated); must be packed with its edges parallel to the
edges of the stock rectangle; and the number xi of pieces of each rectangle type that are
to be packed must lie between Pi and Qi, i.e. 0 ≤ Pi ≤ xi ≤ Qi, for all i = 1, . . . , n.

3

Each rectangle i = 1, . . . , n has an associated value equal to vi and the objective is to
maximize the total value of the rectangles cut

∑n
i=1 vixi. Without signi�cant loss of

generality, it is usual to assume that all dimensions W, H, and (wi, hi), i = 1, . . . , n, are
integers. To simplify notation, we shall use M =

∑n
i=1 Qi as the maximum number of

rectangles that can be packed. According to the newly developed typology by Wäscher
et al. (2007), the problem falls into the output maximization assignment kind and can be
classi�ed as a 2D-SKP problem type (two-dimensional single knapsack problem) given
that it handles instances where a strong heterogeneous assortment of small items exist.
Depending on the values of Pi and Qi, we can distinguish the following three types of

problems:

1. In the unconstrained type, we have Pi = 0, Qi = b(W ×H)/(wi × hi)c, for i =
1, . . . , n, which is a trivial bound;

2. In the constrained type, we have: for all i = 1, . . . , n, Pi = 0 and ∃ j ∈ {1, . . . , n}
such that Qj < b(W ×H)/(wj × hj)c;

3. In the doubly constrained type, we have: ∃ i ∈ {1, . . . , n} such that Pi > 0 and
∃ j ∈ {1, . . . , n} such that Qj < b(W ×H)/(wj × hj)c.

A simple upper bound for the problem can be obtained by solving the following bounded
knapsack problem, where variable xi represents the number of pieces of type i to be cut
in excess of its lower bound Pi:

max
n∑

i=1
vi xi +

n∑
i=1

vi Pi

subject to
n∑

i=1
(wi · hi) xi ≤W ·H −

n∑
i=1

(wi · hi) Pi

xi ≤ Qi − Pi, i = 1, ... , n,
xi ≥ 0, integer, i = 1, ... , n.

This simple upper bound will be used to evaluate the performance of the hybrid genetic
algorithm described in this paper.

3 New approach

3.1 Overview about the new approach

The new approach proposed in this paper combines a random-keys based multi population
genetic algorithm, a new placement strategy, and a novel measure of solution quality
that we call modi�ed total value. Instead of describing the algorithms directly as cutting
problems, we use the equivalent notion of packing, where we are given rectangles and
wish to pack them on the stock rectangle.
The role of the genetic algorithm is to evolve the encoded solutions, or chromosomes,

which represent the rectangle packing sequence and the type of placement procedure used
to place each rectangle. For each chromosome, the following four phases are applied:

4

Generate
Type Packing Sequence

PhaseChromosome

E
vo

lu
ti

o
n

ar
y

P
ro

ce
ss

 o
f

th
e

G
en

et
ic

 A
lg

o
ri

th
m

Placement Strategy

Feedback Quality of Chromosome
(Modified Total Value)

Compute Fitness

Generate Vector
of Placement Procedures

Decoding of the
Rectangle Type Packing Sequence (RTPS)

Use RTPS and VPP
to obtain a packing of the rectangles

Use a novel procedure to compute
Modified Total Value

Decoding of Vector
of Placement Procedures (VPP)

Generate
Type Packing Sequence

PhaseChromosome

E
vo

lu
ti

o
n

ar
y

P
ro

ce
ss

 o
f

th
e

G
en

et
ic

 A
lg

o
ri

th
m

Placement Strategy

Feedback Quality of Chromosome
(Modified Total Value)

Compute Fitness

Generate Vector
of Placement Procedures

Decoding of the
Rectangle Type Packing Sequence (RTPS)

Use RTPS and VPP
to obtain a packing of the rectangles

Use a novel procedure to compute
Modified Total Value

Decoding of Vector
of Placement Procedures (VPP)

Figure 1: Architecture of the new approach.

1. Decoding of the rectangle packing sequence. The �rst phase is responsible for trans-
forming part of the chromosome supplied by the genetic algorithm into the sequence
in which the rectangles are to be packed in the stock rectangle.

2. Decoding of the placement procedure. In the second phase, part of the chromosome
supplied by the genetic algorithm is transformed into a vector that indicates which
placement procedure is to be used to position each rectangle in the stock rectangle.

3. Placement strategy. The third phase makes use of the rectangle packing sequence
de�ned in the �rst phase and the vector of placement procedures de�ned in second
phase and constructs a packing of the rectangles.

4. Fitness evaluation. In the �nal phase, we make use of a novel procedure to compute
a modi�ed total value which is used as a �tness measure (quality measure) to
feedback to the genetic algorithm.

Figure 1 illustrates the sequence of steps applied to each chromosome generated by the
genetic algorithm.
The remainder of this section describes in detail the genetic algorithm, the placement

strategy, and the �tness function.

5

3.2 Genetic algorithm

The following sub sections present the chromosome representation and decoding, the
evolutionary process, the initialization process and the multi-population stategy.

3.2.1 Chromosome representation and decoding

The genetic algorithm described in this paper uses a random-keys alphabet comprised of
random real numbers between 0 and 1. The evolutionary strategy used is similar to the
one proposed by Bean (1994), the main di�erence occurring in the crossover operator.
The important feature of random keys is that all o�spring formed by crossover are feasible
solutions. This is accomplished by moving much of the feasibility issue into the objective
function evaluation. If any random-key vector can be interpreted as a feasible solution,
then any crossover vector is also feasible. Through the dynamics of the genetic algorithm,
the system learns the relationship between random-key vectors and solutions with good
objective function values.
A chromosome represents a solution to the problem and is encoded as a vector of

random keys. In a direct representation, a chromosome represents a solution of the
original problem, and is called genotype, while in an indirect representation it does not,
and special procedures are needed to derive from it a solution called a phenotype. In the
present context, the direct use of cutting patterns as chromosomes is too complicated to
represent and manipulate. In particular, it is di�cult to develop corresponding crossover
and mutation operations. Instead, solutions are represented indirectly by parameters
that are later used by a decoding procedure to obtain a solution. To obtain the solution
(phenotype) we use the placement strategy to be described in Section 3.3.
Recall that there are n rectangle types and that at most Qi rectangles of type i can

be packed into the stock rectangle. In the description of the genetic algorithm, we take
a total of M =

∑n
i=1 Qi rectangles, i.e. Qi rectangles of type i = 1, . . . , n.

Each solution chromosome is made of 2M genes, where M is the number of rectangles
to be packed, i.e.

Chromosome = (gene1, . . . , geneM︸ ︷︷ ︸
Rectangle Type Packing Sequence

, geneM+1, . . . , gene2M︸ ︷︷ ︸
Vector of Placement Procedures

).

The �rst M genes are used to obtain the Rectangle Type Packing Sequence (RTPS) while
the last M genes are used to obtain the Vector of Placement Procedures (VPP).
Both the RTPS and VPP are used by the placement strategy. The decoding (mapping)

of the �rst M genes of each chromosome into an RTPS is accomplished by sorting the
genes and rectangles types in ascending order. Figure 2 presents an example of the
decoding process for the RTPS. In the example the are there four types of rectangles
and the values of Qi are Q1 =2, Q2 =3 , Q3 =1 and Q4 =2. According to the ordering
obtained the rectangles types should be packed in the following order 2, 4, 2, 1, 2, 1, 3,
4.
In the placement strategy we make use of two placement procedures; BL (bottom-left)

and LB (Left-Bottom) (see Section 3.3). The decoding (mapping) of the last M genes

6

11

0.45

11

0.67

22

0.35

22

0.49

22

0.07

33

0.78

44

0.87

44

0.17

11

0.45

11

0.67

22

0.35

22

0.49

22

0.07

33

0.78

44

0.87

44

0.17

Rectangle types

Random keys

Rectangle Type
Packing Sequence (RTPS)

Sorted random keys

11

0.45

11

0.67

22

0.35

22

0.49

22

0.07

33

0.78

44

0.87

44

0.17

11

0.45

11

0.67

22

0.35

22

0.49

22

0.07

33

0.78

44

0.87

44

0.17

11

0.45

11

0.67

22

0.35

22

0.49

22

0.07

33

0.78

44

0.87

44

0.17

11

0.45

11

0.67

22

0.35

22

0.49

22

0.07

33

0.78

44

0.87

44

0.17

11

0.45

11

0.67

22

0.35

22

0.49

22

0.07

33

0.78

44

0.87

44

0.17

11

0.45

11

0.45

11

0.67

11

0.67

22

0.35

22

0.35

22

0.49

22

0.49

22

0.07

22

0.07

33

0.78

33

0.78

44

0.87

44

0.87

44

0.17

44

0.17

Rectangle types

Random keys

Rectangle Type
Packing Sequence (RTPS)

Sorted random keys

Figure 2: Chromosome decoding procedure.

of each chromosome into a VPP is accomplished using, for i = 1, . . . ,M , the following
expression:

VPP(i) =

{
BL if gene(M + i) ≤ 1

2 ,

LB if 1
2 < gene(M + i).

Note that with this representation we are able to handle the upper bounds xi ≤ Qi,
i = 1, . . . , n, implicitly. Later in Section 3.4 we discuss how we deal with the lower bounds
xi ≥ Pi, for one or more i ∈ {1, . . . , n}, in the case of doubly constrained problems.

3.2.2 Evolutionary process

To breed good solutions, the random-key vector population is operated upon by a ge-
netic algorithm. There are many variations of genetic algorithms obtained by altering the
reproduction, crossover, and mutation operators. The reproduction and crossover opera-
tors determine which parents will have o�spring, and how genetic material is exchanged
between the parents to create those o�spring. Mutation allows for random alteration
of genetic material. Reproduction and crossover operators tend to increase the quality
of the populations and force convergence. Mutation opposes convergence and replaces
genetic material lost during reproduction and crossover.
The population is initialized with random-key vectors whose components are random

real numbers uniformly sampled from the interval [0, 1]. Reproduction is accomplished
by �rst copying some of the best individuals from one generation to the next, in what
is called an elitist strategy (Goldberg, 1989). The advantage of an elitist strategy over
traditional probabilistic reproduction is that the best solution is monotonically improving
from one generation to the next. The potential downside is population convergence to a
local minimum. This can, however, be overcome by an appropriate amount of mutation
as described below.
Parameterized uniform crossovers (Spears and Dejong, 1991) are employed in place

of the traditional one-point or two-point crossover. After two parents are chosen, one
chosen randomly from the best (unlike Bean (1994) we always choose one parent from the

7

One Chromosome
from TOP

Current Generation Next Generation

Best

Worst

TOP

One Chromosome
from entire population

Elitist SelectionElitist SelectionElitist SelectionElitist SelectionElitist SelectionElitist SelectionElitist SelectionElitist Selection

Mutation Mutation Mutation Mutation
(Immigration)(Immigration)(Immigration)(Immigration)
Mutation Mutation Mutation Mutation

(Immigration)(Immigration)(Immigration)(Immigration)

BOTBOT

CrossoverCrossoverCrossoverCrossoverCrossoverCrossoverCrossoverCrossover

One Chromosome
from TOP

Current Generation Next Generation

Best

Worst

TOP

One Chromosome
from entire population

Elitist SelectionElitist SelectionElitist SelectionElitist SelectionElitist SelectionElitist SelectionElitist SelectionElitist Selection

Mutation Mutation Mutation Mutation
(Immigration)(Immigration)(Immigration)(Immigration)
Mutation Mutation Mutation Mutation

(Immigration)(Immigration)(Immigration)(Immigration)

BOTBOT

CrossoverCrossoverCrossoverCrossoverCrossoverCrossoverCrossoverCrossover

Figure 3: Transitional process between consecutive generations.

best, Gonçalves and Resende (2009)show that this change produces resutls with better
quality and faster) and the other chosen randomly from the full old population (including
chromosomes copied to the next generation in the elitist selection), at each gene we toss
a biased coin to select which parent will contribute the allele, see TOP in Figure 3.
Figure 4 presents an example of the crossover operator. It assumes that a coin toss of
heads selects the gene from the �rst parent, a tails chooses the gene from the second
parent, and that the probability of tossing a heads, crossover probability CProb = 0.7.
In Section 4 we describe how we determine this value empirically.
Rather than using the traditional gene-by-gene mutation with very small probability

at each generation, some new members of the population are randomly generated from
the same distribution as the initial population (see BOT in Figure 3). The purpose of
this process is to prevent premature convergence of the population, like in a mutation
operator, and leads to a simple statement of convergence. Figure 3 depicts the transitional
process between two consecutive generations.

3.2.3 Population Initialization

In our approach the initial population is not fully ramdomly generated. We introduce in
the initial poplulation four non-random chromosomes. These non-random chromosomes
are created so that their corresponding RTPSs are equivalent to packing the rectangles
in descending order of their value, i.e., rectangles with higher value appear �rst in the
packing sequence. The four chromosomes result from considering four variations for
the placement procedures: random, all BL, all LB and alternatively BL and LB. As

8

0.32 0.77 0.53 0.85Chromosome 1 (from TOP)

0.26 0.15 0.91 0.44Chromosome 2

0.58 0.89 0.68 0.25Random number

< > < <
Relation to crossover

probability of 0.7

0.32 0.15 0.53 0.85Offspring Chromosome

Crossover

Figure 4: Example of parameterized uniform crossover with crossover probability equal
to 0.7.

will be shown in the numerical experiments the introduction of the four non-random
chromosomes improves signi�cantly the quality of the solutions obtained.

3.2.4 Multi-population strategy

In our multi-population strategy several populations are evolved independently. After
a pre-determined number of generations all the populations exchange information. The
information exchanged is the chromosomes of good quality. When evaluating possible
interchange strategies we noticed that exchanging too much information (exchanging
too many chromosomes) leads to the disruption of the evolutionary process. Also, if
the populations exchange information with a high frequency they do not have enough
time to produce good results because their evolutionary process is disrupted before good
solutions can be achieved. Having this information in mind we chose a multi-population
strategy that after a pre-determined number of generations (this will be determined
empirically in Section 4) selects the two best chromosomes from all current chromosomes
and then copies them to the populations where they don't currently exist and removes
the corresponding number of the worst chromosomes.

3.3 Placement strategy

Rectangles types are placed in the stock rectangle, one at a time, in the order de�ned by
the RTPS supplied by the genetic algorithm (see Section 3.2.2). While trying to place a
rectangle type in the stock rectangle we consider only maximal empty rectangular spaces
(ERSs), i.e. ERSs that are not contained in any other ERS. A rectangle type is placed in
an ERS where it �ts and according to the placement procedure de�ned for its placement
by the genetic algorithm.
Initially we considered only a Bottom-Left (BL) placement procedure which �rst orders

the ERSs in such way that ERSi < ERSj if yi < yj or yi = yj , xi < xj and then
chooses the �rst ERS in which the rectangle type to be packed �ts (note that xi/yi is
the coordinate x/y of the bottom left corner of the ERS), see pseudo-code in Figure 5.

9

procedure BL(ri)
1 Let ri be a rectangle of type i to be packed in the stock rectangle;
2 Let NERS be the number of available ERSs;
3 Initialize L←W ; B ← H;
5 for k = 1, . . . , NERS do
6 Let x(ERSk) be the x coordinate of the the bottom left corner of ERSk;
7 Let y(ERSk) be the y coordinate of the the bottom left corner of ERSk;
8 if ri �ts in ERSk then
9 if x(ERSk) ≤ L or (x(ERSk) = L and y(ERSk) ≤ B) then
· L← x(ERSk); B ← y(ERSk) ;
· ERS ∗i = ERSk

10 end if
11 end if
12 end for
13 Return ERS ∗i ;
end BL;

Figure 5: Pseudo-code of the Bottom-Left (BL) placement procedure.

However, as observed by Liu and Teng (1999), we noticed that some optimal solutions
could not be constructed by the BL placement procedure. In other words, given an
optimal solution to a problem, it is possible that no RTPS exists that, combined with
the BL placement procedure, produces the given optimal solution. Figure 6 shows an
optimal solution for one problem where the BL placement procedure cannot �nd the
optimal solution.
In Figure 7, we present, for the problem in Figure 6, all the solutions obtained by the

BL placement procedure for all the possible RTPSs starting with rectangle 2 (Similar
sub-optimal solutions are produced when rectangles 1, 3, and 4 are �xed in the �rst
position). As can be observed, none of those RTPSs, when combined with BL placement
procedure, produces the optimal solution in Figure 6.
To overcome this weakness, we combine the BL placement procedure with a Left-

Bottom (LB) placement procedure which �rst orders the ERSs in such way that ERSi <
ERSj if xi < xj or xi = xj , yi < yj and then chooses the �rst ERS in which the
rectangle type to be packed �ts (note that xi/yi is the coordinate x/y of the bottom left
corner of the ERS). In summary, our placement strategy uses two placement procedures,
the Bottom-Left and the Left-Bottom, to construct a packing of the rectangle types.
The vector of placement procedures (VPP), supplied by the genetic algorithm, indicates,
for each rectangle type to be packed, whether it should be placed using the BL or LB
procedure. In Figure 6 we present the optimal solution found using RTPS = (2, 1, 4, 3)
and VPP = (BL, BL, LB , BL).
When placing a rectangle type in a ERS we try to build a layer containing several

rectangles of that rectangle type. We use two types of layers: horizontal and vertical.
When we use the BL placement procedure we try to create a horizontal layer and when

10

2 2 2 2 ---- 2x42x42x42x4
1 1 1 1 ---- 4x34x34x34x3

3 3 3 3 ---- 2x32x32x32x3
4 4 4 4 ---- 4x24x24x24x2

1 1 1 1 ---- 4x34x34x34x3

RTPS = 2 - 1 - 4 - 3
VPP = BL - BL - LB - BL

2 2 2 2 ---- 2x42x42x42x4
1 1 1 1 ---- 4x34x34x34x3

3 3 3 3 ---- 2x32x32x32x3
4 4 4 4 ---- 4x24x24x24x2

1 1 1 1 ---- 4x34x34x34x3

RTPS = 2 - 1 - 4 - 3
VPP = BL - BL - LB - BL

Figure 6: Optimal solution found by combining the Bottom-Left (BL) and the Left-
Bottom (LB) placement procedures.

we use the LB placement procedure we try to create a vertical layer (see Figure 8).
Let i be the type of mth, m = 1, ..., M , rectangle to be placed as de�ned by the RTPS.

Furthermore, let VPPm be the placement procedure that the genetic algorithm assigned
for the placement of mth rectangle type. The pseudo-code of the placement procedure
is presented in Figure 9. To generate and keep track of the ERSs, we make use of the
Di�erence Process (DP), developed by Lai and Chan (1997b).

3.4 Modi�ed total value �tness function

A natural �tness function (measure of quality) for this type of problem is the total value
given by:

Total value =
n∑

i=1

vixi,

where xi is the number of rectangular pieces of type i to be cut in a solution and vi is the
value of each rectangular piece of type i. This measure, however, is not ideal because it
does not capture well the potential for improvement of a solution. To be able to capture
the improvement potential of di�erent packings which have the same total value, we use
a �tness measure that we call modi�ed total value which is an adaptation of the �tness
measure proposed by Gonçalves (2007) and is given by the following expression:

Modi�ed Total Value = Total Value +

0.03× Minimum Value Rectangle × Area of Largest ERS

Area of Stock Rectangle
.

In the form presented above, our algorithm does not handle doubly constrained prob-
lems since lower bounds are not enforced. To enable the algorithm to handle these
problems, we made one further modi�cation to the �tness function. The lower bounds

11

������������ ������������

������������ ������������

������������ ������������

������������ ������������

������������ ������������
������������ ������������

������������ ������������

������������ ������������
������������ ������������

������������ ������������
������������ ������������

������������ ������������

������������ ������������

������������ ������������

������������ ������������

������������ ������������

������������ ������������
������������ ������������

������������ ������������
������������ ������������

������������ ������������
������������ ������������

������������ ������������
������������ ������������

RTPS 2-1-3-4 RTPS 2-1-4-3

RTPS 2-3-1-4 RTPS 2-3-4-1

RTPS 2-4-1-3 RTPS 2-4-3-1

Figure 7: Solutions found by the Bottom-Left (BL) placement procedure for the problem
in Figure 6 for all Rectangle Packing Sequences with rectangle 2 in the �rst
position.

Pi for each rectangle of type i are treated indirectly through the use of a penalty term in
the �tness function. If any lower bound Pi is not satis�ed in a solution, then a penalty
parameter PF is subtracted from the modi�ed total value. All the computational tests
were performed using PF = 1010.

3.5 Parallel implementation

In our parallel implementation we parallelized only the task that performs the evaluation
of the chromosomes �tness since it is the most time consuming. The tasks related with
the GA logic were not parallelized since they consume very little time. This type of
parallelization is easy to implement and in multi-core CPUs allows for a large reduction
in computational times (almost a linear speed-up with the number of cores). The par-
allel version of our approach was implemented using the OpenMP Application Program
Interface (API) which supports multi-platform shared-memory parallel programming in
C/C++.

12

1 2

3
4

1
1

1 1

1

2

3
4

1
1

1

1
1
1
1

Available
Rectangles of
Type 1

Available
Rectangles of
Type 1

a) Packing a horizontal layer of type 1 rectangles using the Bottom-Left procedure

b) Packing a vertical layer of type 1 rectangles using the Left-Bottom procedure

Figure 8: Packing of a layer using a) the Bottom-Left procedure and b) the Left-Bottom
procedure.

4 Numerical experiments

In this section we report the results obtained on a set of experiments conducted to
evaluate the performance of the Multi-Population Genetic Algorithm (MPGA) proposed
in this paper.

4.1 Benchmark algorithms

We compare the MPGA with the following four recently proposed heuristics, which
present the best computational results to date:

� PH � A population heuristic, proposed by Beasley (2004), where a population of
solutions to the problem is progressively evolved.

13

Table 1: Range of Parameters in past implementations.

Parameter Interval

TOP 0.10 - 0.25

BOT 0.15 - 030

Crossover Probability (CProb) 0.70 - 0.80

� GA � Proposed by Hadjiconstantinou and Iori (2007), this genetic algorithm uses
an elitist theory, immigration, online heuristics, and tailored crossover operators.

� GRASP � A greedy randomized adaptive search procedure proposed by Alvarez-
Valdes et al. (2005).

� TABU � A tabu search approach proposed by Alvarez-Valdes et al. (2007).

4.2 Test problem instances

The e�ectiveness of MPGA is evaluated by solving the same four sets of test problem
instances used by Alvarez-Valdes et al. (2007). These problem instances sets are:

1. A set of 21 problem instances taken from the literature: 15 from Beasley (1985),
two from Hadjiconstantinou and Christo�des (1995), one from Wang (1983), one
from Christo�des and Whitlock (1977), and �ve from Fekete and Schepers (2004c).
All these problem instances have know optimal solutions.

2. A set of 630 large random problems generated by Beasley (2004), following Fekete
and Schepers (2004c).

3. A set of 31 zero-waste problem instances used by Leung et al. (2003). I

4. A set of 21 doubly constrained problems. These problem instances are the result of
transformation of the �rst set by Beasley (2004) into doubly constrained problems
by de�ning, for some types of rectangles, non-zero lower bounds.

4.3 GA con�guration

Con�guring genetic algorithms is oftentimes more an art form than a science. In our
past experience with genetic algorithms based on the same evolutionary strategy (see
Gonçalves and Almeida (2002), Ericsson et al. (2002), Gonçalves and Resende (2004),
Gonçalves et al. (2005), Buriol et al. (2005), Buriol et al. (2007), and Gonçalves (2007)),
we obtained good results with values of TOP, BOT, and Crossover Probability (CProb)
in the intervals shown in Table 1.
For the population size, we have obtained good results by indexing it to the size of

the problem, i.e. use small size populations for small problems and larger populations
for larger problems. With this in mind and to to obtain a reasonable con�guration we
conducted a small pilot study including 21×3 instances from the set with large random

14

Table 2: Con�guration used on all runs in computational experiments.

Population size min {15 × number of input rectangles , 2000}
Crossover probability 0.7

TOP The 25 % most �t chromosomes from the previous
generation are copied to the next generation

BOT The 15 % least �t chromosomes from the previous
generation are replaced with randomly generated
chromosomes

Number of populations 3

Exchange of information
between populations

Every 15 generations

Fitness Maximize modi�ed total value using k=0.03

Stopping Criterion Stop after 1000 generations

problems and 4 instances from the set with zero-waste problems. We tested all the
combinations of the following values:

� TOP ∈ {0.10, 0.15, 0.20, 0.25};

� BOT ∈ {0.15, 0.20, 0.25, 0.30};

� CProb ∈ {0.70, 0.75, 0.80};

� Population size with 2, 5, 10 and 15 times the number of rectangles in the problem
instance.

For each of the 192 possible con�gurations, we made three independent runs of the al-
gorithm (with three distinct random number generator seeds) and computed the av-
erage total value. The con�guration that minimized the sum, over the pilot prob-
lem instances, was TOP = 25%, BOT = 15%, CProb = 0.7, and Population size =
15× the number of rectangles in the problem instance.
To determine the appropriate value of K for the modi�ed total value, we tested the

algorithm using values of K between 0.01 and 0.10, in steps of 0.01, on the instances of
the pilot problem instances. We made three independent runs of the algorithm, using
the best con�guration determined previously, and computed the average modi�ed total
value. The value of K that maximized the sum, over all the pilot problem instances, of
the average modi�ed total packing value was chosen, i.e. K = 0.03.
After some experimentation with the problem instances in a pilot study we come to

the conclusion that using 3 parallel populations and exchanging information every 15
generations was the best con�guration for this type of problem.
The con�guration presented in Table 2 was held constant for all experiments and all

problems instances.
The computational results presented in the next section demonstrate that this con�g-

uration not only provides excellent results in terms of solution quality but also is very
robust.

15

Table 3: Versions of the approach.

Version Description

BL using only the Bottom Left procedure

BL-L using only the Bottom Left procedure with Layers

BL-LB-L
using only the Bottom Left and Left Bottom procedures

with Layers

BL-LB-L-4NR

using the Bottom Left and Left Bottom procedures with

Layers and with the introduction of four non-random

chromosomes in the �rst population

Table 4: Overall average percentage deviation from optimum / lower bound per version.

Set nº Description BL BL-L BL-LB-L BL-LB-L-4NR

1 Problems from literature 0 0 0 0

2 Large random problems 1.04 1.00 0.87 0.83

3 Zero-waste problems 0.48 0.48 0.24 0.17

4 Doubly constrained problems 6.36 6.36 6.36 6.36

4.4 Computational results

Our algorithm (MPGA) was implemented in C++ and the computational experiments
were carried out on a computer with a Intel 2.66GHz Xeon Quadcore CPU with the
Linux CentOS 5 operating system.
Before presenting the �nal and detailed computational results we will present a sum-

mary of the the impact of each of the di�erent changes that we introduced in our ap-
proach. We compare the impact of each change using the four versions presented in table
3.
Table 4 presents for each version the overall average percentage deviation from opti-

mum / lower bound. Test set nº 1 and nº 4 consist of very samll instances and so even
the most basic version BL is able to obtain the best values. The impact of using layers is
positive and can only be seen for test set nº 3 because it is the only set having more than
one rectangle per type. Finally, the results for test sets nº 2 and nº 3 show clearly that
the combination of BL with LB and the introduction of four non-random chromosomes
in the initial population provide a very positive impact on the overall average percentage
deviation from optimum / lower bound.
The complete computational results for version BL-LB-L-4NR appear in Tables 5-8.

All tests where performed using the con�guration summarized in Table 2. In terms of
computational times we cannot make any fair and meaningful comments since all the
other approaches were implemented with di�erent programming languages and tested on
computers with di�erent computing power. Instead, we limit ourselves to reporting the
average running times for MPGA.
Table 5 includes a direct comparison with the results for PH (Beasley, 2004), GA

16

(Hadjiconstantinou and Iori, 2007), GRASP(Alvarez-Valdes et al., 2005), and TABU -
Alvarez-Valdes et al. (2007)in terms of solution quality. The results show that the MPGA
algorithm, �nds the optimal solutions for all the problem instances and is, therefore, as
good as algorithms GA and TABU.
The results for the large random problems are presented in Table 6. This table displays

aggregate results, showing that MPGA produces overall average deviations from the
upper bound for all problem types (Type I, Type II, and Type III) that are always lower
than those produced by all the other heuristics (see bottom of table 6). A close look
at the results shows that MPGA outperforms heuristics PH and GA for all problem
types and sizes. From the table it is also clear that MPGA outperforms the GRASP
and TABU heuristics not only because it obtained better average deviations from the
upper bound than both (GRASP=1.07%, TABU=0.98% and MPGA=0.83%) but also
because it obtained better number of best results for the 21 combinations of sizes and
types (GRASP=5/21, TABU=8/21 and MPGA=20/21).
Table 7 presents a direct comparison between MPGA and the GRASP of Alvarez-

Valdes et al. (2005) and the TABU of Alvarez-Valdes et al. (2007) on the set of zero-
waste problem instances (the other benchmark heuristics have not run these instances).
MPGA produces overall average deviations from the optimal values that are lower than
those produced by the GRASP and TABU heuristics (GRASP=1.68%, TABU=0.42%
and MPGA=0.17%). In terms of the number of best results over all the instance
in this set MPGA clearly outperforms the other two (GRASP=5/31, TABU=17/31,
MPGA=30/31).
Finally, Tables 8 show the results for the doubly-constrained test problem instance of

the fourth set, where the heuristics PH (Beasley, 2004), GRASP (Alvarez-Valdes et al.,
2005), TABU Alvarez-Valdes et al. (2007)and MPGA are contrasted. The upper bound
(UB) corresponds to the solution of the constrained problem using the knapsack problem
formulation of Section 2. The problems for which the algorithms do not �nd solutions are
not feasible, but are maintained in the set of test problems and therefore are included
in the table. For these problem instances, MPGA clearly outperforms the other two
both in terms of average deviation from the lower bound (PH=8.11%, GRASP=7.36%,
TABU=6.62%, MPGA=6.36%) as well as in terms of the number of best solutions
obtained out of the 21 problems (11/21, 12/21, 17/21, 19/21).

17

procedure PLACEMENT

1 Let Ri be the remaining quantity of unpacked rectangles of type i ;
2 Initialize Ri ← Qi i = 1, . . . , n;
3 for m = 1, . . . ,M do
4 Let i = RTPS (m) , be the type of mth rectangle to be packed
· according to the RTPS;
5 if Ri > 0 then // check if there any rectangles of type i remaining to pack;
6 ERS ∗i ← ∅
7 nL← ∅
8 if VPPm = BL then
9 Let ERS ∗i be the ERS, in the list of available ERSs,
· in which a rectangle of type i is placed when the Bottom-Left
· placement heuristic is applied;
10 else if VPPm = LB then
11 Let ERS ∗i be the ERS, in the list of available ERSs,
· in which a rectangle of type i is placed when the Left-Bottom
· placement heuristic is applied;
12 end if
13 if ERS ∗i > ∅ then // an ERS was found ;
14 if VPPm = BL then
15 Let nL = number of rectangles of type i
· that can be placed in a horizontal layer in ERS ∗i
· (see Figure 8a);
16 Place a horizontal layer with nL rectangles of type i
· at the bottom left corner of ERS ∗i ;
17 else if VPPm = LB then
18 Let nL = number of rectangles of type i
· that can be placed in a vertical layer in ERS ∗i
· (see Figure 8b);
19 Place a vertical layer with nL rectangles of type i
· at the bottom left corner of ERS ∗i ;
20 end if
21 Update the list of available ERSs using the DP process
· of Lai and Chan (1997b);
22 end if
23 Ri ← Ri − nL
24 end if
25 end for
end PLACEMENT;

Figure 9: Pseudo-code of the placement procedure of the hybrid heuristic.

18

Table 5: Computational results - problems from literature.

Source of problem Inst. Dim.

(L×W)

m M Opt. PH GA GRASP TABU MPGA CPU

Time (s)

Beasley (1985) 1 10x10 5 10 164 164 164 164 164 164 0.00

2 10x10 7 17 230 230 230 230 230 230 0.00

3 10x10 10 21 247 247 247 247 247 247 0.00

4 15x10 5 7 268 268 268 268 268 268 0.00

5 15x10 7 14 358 358 358 358 358 358 0.01

6 15x10 10 15 289 289 289 289 289 289 0.03

7 20x20 5 8 430 430 430 430 430 430 0.01

8 20x20 7 13 834 834 834 834 834 834 0.01

9 20x20 10 18 924 924 924 924 924 924 0.01

10 30x30 5 13 1452 1452 1452 1452 1452 1452 0.01

11 30x30 7 15 1688 1688 1688 1688 1688 1688 0.01

12 30x30 1 22 1865 1801 1865 1865 1865 1865 0.04

Hadjiconstantinou

and Christo�des

(1995)

3 30x30 7 7 1178 1178 1178 1178 1178 1178 0.01

11 30x30 15 15 1270 1270 1270 1270 1270 1270 0.01

Wang (1983) 70x40 19 42 2726 2721 2726 2726 2726 2726 0.02

Christo�des and

Whitlock (1977)

3 40x70 20 62 1860 1720 1860 1860 1860 1860 0.05

Fekete and

Schepers (1997a)

1 100x100 15 50 27718 27486 27718 27589 27718 27718 0.05

2 100x100 30 30 22502 21976 22502 21976 22502 22502 0.14

3 100x100 30 30 24019 2343 24019 23743 24019 24019 0.55

4 100x100 33 61 32893 31269 32893 32893 32893 32893 0.06

5 100x100 29 97 27923 26332 27923 27923 27923 27923 0.02

Mean Percentage deviation from upper bound 5.49 0 0.19 0 0

19

Table 6: Computational results - Large random problems.

m Qt per

type

M PH GA GRASP TABU MPGA CPU Time

(s)

40 1 40 7.77 6.12 6.97 6.55 5.96 1.78

3 120 3.54 2.82 2.22 1.95 1.60 6.39

4 160 3.24 2.40 1.81 1.65 1.40 12.94

50 1 50 5.48 4.56 4.80 4.85 4.25 2.69

3 150 2.35 1.89 1.50 1.27 1.03 10.90

4 200 2.63 1.86 1.18 0.96 0.71 22.90

100 1 100 2.26 1.69 1.51 1.50 1.17 11.81

3 300 1.27 0.99 0.47 0.31 0.21 40.72

4 400 1.06 0.85 0.26 0.18 0.11 22.70

150 1 150 1.31 1.06 0.89 0.84 0.55 23.44

3 450 0.60 0.32 0.14 0.07 0.05 37.56

4 600 0.92 0.60 0.11 0.05 0.03 47.07

250 1 250 0.88 0.75 0.51 0.45 0.25 39.11

3 750 0.57 0.51 0.04 0.01 0.01 72.70

4 1000 0.39 0.28 0.03 0.00 0.00 20.40

500 1 500 0.26 0.21 0.07 0.00 0.03 54.81

3 1500 0.18 0.19 0.00 0.00 0.00 6.07

4 2000 0.18 0.19 0.00 0.00 0.00 4.71

1000 1 1000 0.09 0.15 0.00 0.00 0.00 47.24

3 3000 0.07 0.12 0.00 0.00 0.00 8.26

4 4000 0.07 0.17 0.00 0.00 0.00 6.75

Type I 1.64 1.24 1.04 0.95 0.86 21.27

Type II 1.70 1.37 1.14 1.06 0.88 23.50

Type III 1.66 1.35 1.03 0.94 0.74 26.80

All 1.67 1.32 1.07 0.98 0.83 23.86

Mean percentage deviations from knapsack upper bound.

20

Table 7: Computational results - zero-waste problems.

Source of problem Inst. Dim.

(L x W)

m M Opt. GRASP TABU MPGA CPU

Time (s)

Lai and Chan (1997b) 1 400x200 9 10 80000 80000 80000 80000 0.67

2 400x200 7 15 79000 79000 79000 79000 0.01

3 400x200 5 20 160000 154600 160000 160000 3.10

Jakobs (1996) 1 70x80 14 20 5600 5447 5600 5600 0.58

2 70x80 16 25 5600 5455 5540 5540 0.70

3 120x45 22 25 5400 5328 5400 5400 11.52

4 90x45 16 30 4050 3978 4050 4050 3.47

5 65x45 18 30 2925 2871 2925 2925 5.19

Leung et al. (2003) 1 150x110 40 40 16500 15856 16280 16340 23.71

2 160x120 50 50 19200 18628 19044 19116 15.18

Hopper and Turton (2001) 1-1 20x20 16 16 400 400 400 400 0.29

1-2 20x20 17 17 400 386 400 400 0.82

1-3 20x20 16 16 400 400 400 400 1.41

2-1 40x15 25 25 600 590 600 600 5.02

2-2 40x15 25 25 600 597 600 600 8.83

2-3 40x15 25 25 600 600 600 600 5.96

3-1 60x30 28 28 1800 1765 1800 1800 9.22

3-2 60x30 29 29 1800 1755 1800 1796 6.16

3-3 60x30 28 28 1800 1774 1800 1800 7.16

4-1 60x60 49 49 3600 3528 3580 3591 16.36

4-2 60x60 49 49 3600 3524 3564 3588 6.96

4-3 60x60 49 49 3600 3544 3580 3594 15.98

5-1 60x90 73 73 5400 5308 5342 5396 62.57

5-2 60x90 73 73 5400 5313 5361 5400 69.53

5-3 60x90 73 73 5400 5312 5375 5392 80.83

6-1 80x120 97 97 9600 9470 9548 9582 150.05

6-2 80x120 97 97 9600 9453 9448 9595 92.27

6-3 80x120 97 97 9600 9450 9565 9582 129.01

7-1 160x240 196 196 38400 37661 38026 38146 808.03

7-2 160x240 197 197 38400 37939 38145 38374 357.85

7-3 160x240 196 196 38400 37745 37867 38254 650.02

Mean Percentage deviation from optimum 1.68 % 0.42 % 0.17 %

21

Table 8: Computational results - doubly constrained problems.

Source of problem Inst. Dim.

(L x W)

m M UB PH GRASP TABU MPGA CPU

time

(s)

Beasley (1985) 1 10x10 5 10 164 164 164 164 164 0.00

2 10x10 7 17 230 225 225 225 225 0.00

3 10x10 10 21 247 220 220 220 220 0.00

4 15x10 5 7 268 268 268 268 268 0.01

5 15x10 7 14 358 301 301 301 301 0.01

6 15x10 10 15 289 265 252 265 265 0.08

7 20x20 5 8 430 430 430 430 430 0.01

8 20x20 7 13 834 819 819 819 819 0.01

9 20x20 10 18 924 924 924 924 924 0.01

10 30x30 5 13 n/f n/f n/f n/f n/f 0.02

11 30x30 7 15 1688 1505 1518 1518 1518 0.47

12 30x30 10 22 1865 1666 1648 1672 1672 0.05

Hadjiconstantinou and

Christo�des (1995)

3 30x30 7 7 1178 1178 1178 1178 1178 0.01

11 30x30 15 15 1270 1216 1216 1216 1216 0.02

Wang (1983) 70x40 19 42 2726 2499 2700 2716 2716 0.03

Christo�des and Whitlock

(1977)

3 40x70 20 62 1860 1600 1720 1720 1720 0.03

Fekete and Schepers

(1997a)

1 100x100 15 50 27718 25373 24869 25384 25384 16.87

2 100x100 30 30 22502 17789 19083 19657 20678 1.22

3 100x100 30 30 n/f n/f n/f n/f n/f 0.58

4 100x100 33 61 32893 27556 27898 28974 28974 0.42

5 100x100 29 97 27923 21997 22011 22011 22140 4.53

Mean Percentage deviation from upper bound 8.11 7.36 6.62 6.36

22

5 Concluding remarks

In this paper we addressed a constrained two-dimensional (2D) packing problem, where a
�xed set of small rectangles has to be cut from a larger stock rectangle so as to maximize
the value of the rectangles packed. An algorithm which hybridizes a placement strategy
with a multi-population genetic algorithm based on random keys was proposed. The
approach was tested on four sets of instances taken from the literature and compared
with other four approaches. The experimental results demonstrate the e�ectiveness and
robustness of the proposed heuristic when compared with other approaches.

Acknowledgments

This work has been supported by funds granted by Fundação para a Ciência e Tecnologia
(FCT) project PTDC/GES/72244/2006.

References

Alvarez-Valdes, R., F. Parreño, and J. Tamarit: 2005, `A GRASP algorithm for con-
strained two-dimensional non-guillotine cutting problems'. Journal of Operational Re-
search Society 56, 414�425.

Alvarez-Valdes, R., F. Parreño, and J. Tamarit: 2007, `A tabu search algorithm for
a two-dimensional non-guillotine cutting problem'. European Journal of Operational

Research 183, 1167�1182.

Amaral, A. and A. N. Letchford: 2001, `An improved upper bound for the two-
dimensional non-guillotine cutting problem'. Technical report, Lancaster University,
UK. Available online at http://www.lancs.ac.uk/staff/letchfoa/ngc.doc.

Arenales, M. and R. Morabito: 1995, `An and/or-graph approach to the solution of two
dimensional guillotine cutting problems'. European Journal of Operational Research

84, 599�617.

Bean, J. C.: 1994, `Genetics and random keys for sequencing and optimization'. ORSA
Journal on Computing 6, 154�160.

Beasley, J. E.: 1985, `An exact two-dimensional non-guillotine cutting tree search proce-
dure'. Operations Research 33, 49�64.

Beasley, J. E.: 2004, `A population heuristic for constrained two-dimensional non-
guillotine cutting'. European Journal of Operational Research 156, 601�627.

Boschetti, M. A., E. Hadjiconstantinou, and A. Mingozzi: 2002, `New upper bounds for
the two-dimensional orthogonal non-guillotine cutting stock problem'. IMA Journal

of Management Mathematics 13, 95�119.

23

Buriol, L. S., M. G. C. Resende, C. C. Ribeiro, and M. Thorup: 2005, `A hybrid genetic
algorithm for the weight setting problem in OSPF/IS-IS routing'. Networks 46, 36�56.

Buriol, L. S., M. G. C. Resende, and M. Thorup: 2007, `Survivable IP network design
with OSPF routing'. Networks 49, 51�64.

Caprara, A. and M. Monaci: 2004, `On the 2-dimensional knapsack problem'. Operations
Research Letters 32, 5�14.

Christo�des, N. and C. Whitlock: 1977, `An algorithm for two dimensional cutting prob-
lems'. Operations Research 25, 31�44.

Dowsland, K. A. and W. B. Dowsland: 1992, `Packing problems'. European Journal of

Operational Research 56, 2�14.

Dyckho�, H.: 1990, `A typology of cutting and packing problems'. European Journal of

Operational Research 44, 145�159.

Ericsson, M., M. G. C. Resende, and P. M. Pardalos: 2002, `A genetic algorithm for
the weight setting problem in OSPF routing'. J. of Combinatorial Optimization 6,
299�333.

Fekete, S. and J. Schepers: 1997a, `A new exact algorithm for general orthogonal d-
dimensional knapsack problems'. In: Algorithms - ESA '97, Vol. 1284 of Springer
Lecture Notes in Computer Science. pp. 144�156.

Fekete, S. P. and J. Schepers: 1997b, `On higher-dimensional packing I: Modeling'. Tech-
nical Report ZPR 97-288, Mathematisches Institut, Universitat zu Köln.

Fekete, S. P. and J. Schepers: 1997c, `On higher-dimensional packing II: Bounds'. Tech-
nical Report ZPR97-289, Mathematisches Institut, Universitat zu Köln.

Fekete, S. P. and J. Schepers: 2004a, `A combinatorial characterization of higher-
dimensional orthogonal packing'. Mathematics of Operations Research 29, 353�368.

Fekete, S. P. and J. Schepers: 2004b, `A general framework for bounds for higher-
dimensional orthogonal packing problems'. Mathematical Methods of Operations Re-

search 60, 311�329.

Fekete, S. P. and J. Schepers: 2004c, `An exact algorithm for higher-dimensional orthogo-
nal packing'. Technical report, Mathematisches Institut, Universitat zu Köln. Working
paper. Available online at http://www.math.tu-bs.de/~fekete.

Feo, T. A. and M. G. C. Resende: 1989, `A probabilistic heuristic for a computationally
di�cult set covering problem'. Operations Research Letters 8, 67�71.

Feo, T. A. and M. G. C. Resende: 1995, `Greedy randomized adaptive search procedures'.
Journal of Global Optimization 6, 109�133.

24

Garey, M. and D. Johnson: 1979, Computers and intractability: A guide to the theory of

NP-completeness. New York: W.H. Freeman and Company.

Goldberg, D.: 1989, Genetic algorithms in search optimization and machine learning.
Addison-Wesley.

Gonçalves, J. F.: 2007, `A hybrid genetic algorithm-heuristic for a two-dimensional or-
thogonal packing problem'. European Journal of Operational Research 183, 1212�1229.

Gonçalves, J. F. and J. R. Almeida: 2002, `A hybrid genetic algorithm for assembly line
balancing'. Journal of Heuristics 8, 629�642.

Gonçalves, J. F., J. J. M. Mendes, and M. G. C. Resende: 2005, `A hybrid genetic
algorithm for the job shop scheduling problem'. European Journal of Operational

Research 167, 77�95.

Gonçalves, J. F. and M. G. C. Resende: 2004, `An evolutionary algorithm for manufac-
turing cell formation'. Computers and Industrial Engineering 47, 247�273.

Gonçalves, J. F. and M. G. C. Resende: 2009, `Biased random key genetic algorithms for
combinatorial optimization'. Technical report, AT&T Labs Research Technical Report,
Florham Park, NJ 07733 USA.

Hadjiconstantinou, E. and N. Christo�des: 1995, `An exact algorithm for general, orthog-
onal, two dimensional knapsack problems'. European Journal of Operations Research

83, 39�56.

Hadjiconstantinou, E. and M. Iori: 2007, `A hybrid genetic algorithm for the two-
dimensional knapsack problem'. European Journal of Operational Research 183, 1150�
1166.

Haessler, R. W. and P. E. Sweeney: 1991, `Cutting stock problems and solution proce-
dures'. European Journal of Operational Research 54, 141�150.

Healy, P., M. Creavin, and A. Kuusik: 1999, `An optimal algorithm for rectangle place-
ment'. Operations Research Letters 24, 73�80.

Hopper, E. and B. C. H. Turton: 2001, `An empirical investigation of meta-heuristic
and heuristic algorithms for a 2D packing problem'. European Journal of Operational

Research 128, 34�57.

Jakobs, S.: 1996, `On genetic algorithms for the packing of polygons'. European Journal

of Operational Research 88, 165�181.

Lai, K. K. and J. W. M. Chan: 1997a, `An evolutionary algorithm for the rectangular
cutting stock problem'. International Journal of Industrial Engineering 4, 130�139.

Lai, K. K. and J. W. M. Chan: 1997b, `Developing a simulated annealing algorithm for
the cutting stock problem'. Computers and Industrial Engineering 32, 115�127.

25

Leung, T. W., C. K. Chan, and M. D. Troutt: 2001, `Applications of genetic search
and simulated annealing to the two-dimensional non-guillotine cutting stock problem'.
Computers and Industrial Engineering 40, 201�214.

Leung, T. W., C. K. Chan, and M. D. Troutt: 2003, `Application of a mixed simulated
annealing-genetic algorithm heuristic for the two-dimensional orthogonal packing prob-
lem'. European Journal of Operational Research 141, 241�252.

Liu, D. and H. Teng: 1999, `An improved BL-algorithm for genetic algorithm of the
orthogonal packing of rectangles'. European Journal of Operational Research 112,
413�420.

Scheithauer, G. and J. Terno: 1993, `Modeling of packing problems'. Optimization 28,
63�84.

Spears, W. M. and K. A. Dejong: 1991, `On the virtues of parameterized uniform
crossover'. In: Proceedings of the Fourth International Conference on Genetic Al-

gorithms. pp. 230�236.

Sweeney, P. E. and E. R. Paternoster: 1992, `Cutting and packing problems: A cat-
egorized, application-orientated research bibliography'. Journal of the Operational

Research Society 43, 691�706.

Tsai, R. D., E. M. Malstrom, and H. D. Meeks: 1988, `A two-dimensional palletizing
procedure for warehouse loading operations'. IIE Transactions 20, 418�425.

Wang, P. Y.: 1983, `Two algorithms for constrained two-dimensional cutting stock prob-
lems'. Operations Research 31, 573�586.

Wäscher, G., H. Haussner, and H. Schumann: 2007, `An improved typology of cutting
and packing problems'. European Journal of Operational Research 183, 1109�1130.

26

