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Abstract� Based on recent convergence results for the a�ne scaling algorithm for linear programming� we
investigate strategies to identify the optimal face of a minimum cost network �ow problem
 In the computational
experiments described� one of the proposed optimality indicators is used to implement an early stopping criterion
in dlnet� an implementation of the dual a�ne scaling algorithm for solving minimum cost network �ow problems

We conclude from the experiments that the new indicator is far more robust than the one used in earlier versions of
dlnet
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�� Introduction� The dual a�ne scaling �das� algorithm ��� has been shown to perform well
in practice on linear programming problems ��� 	� �� ��� large�scale network �ow problems ����� and
large�scale assignment problems ���� �	�� In spite of its practical success� no polynomial time proof
has been given for the primal or dual variants of the algorithm� The exception is the primal�dual
a�ne scaling algorithm� for which a polynomial time proof exists ���� but that uses very short steps�
rendering it impractical�

Recently� several authors �e�g� Dikin �
�� Tsuchiya ��� ���� Tsuchiya � Muramatsu ����� Mon�
teiro� Tsuchiya � Wang ����� Tsuchiya � Monteiro ����� Saigal ��
� and Hall � Vanderbei ��� have
presented exciting convergence results for the a�ne scaling algorithm� In this paper� we use some
results in �
� ��� ��� to derive indicators that identify the optimal primal and dual faces for a linear
program� and present an approach for using one such indicator in the context of minimum cost
network �ow problems solved via the dual a�ne scaling algorithm� At the same time� we study
some practical considerations of implementing the Dikin�Tsuchiya�Muramatsu step size strategy�

In Section 	 we state the dual a�ne scaling algorithm and the new convergence results� In
Section � we brie�y describe dlnet� the implementation of the dual a�ne scaling algorithm used in
the computational study� A stopping strategy based on the solution of a maximum �ow problem is
outlined in Section 
� In Section �� we discuss two indicators implemented in dlnet� Computational
results are described in Section  and concluding remarks are made in Section ��

The following notation is used throughout our paper� We denote the vector of all ones by e� Its
dimension is always clear from the context� IRn� IRn� and IRn�� denote the n�dimensional Euclidean
space� the nonnegative orthant of IRn and the positive orthant of IRn� respectively� The set of all
m�n matrices with real entries is denoted by IRm	n� Given an index set J � f�� � � � � ng and a vector
w � IRn� we denote by wJ the subvector of w corresponding to J � Similarly� if E is an m� n matrix
then EJ denotes the m � jJ j submatrix of E corresponding to J � The Euclidean norm� the ��norm
and the �norm are denoted by k � k� k � k� and k � k�� respectively� If J is a �nite index set then jJ j
denotes its cardinality� that is the number of elements of J � The superscript � denotes transpose�
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�� Convergence results and new indicators� Let A � IR
m	n� c� x� s � IR

n and b� y � IR
m�

The dual a�ne scaling algorithm solves the linear programming problem

minimize c�x

subject to Ax � b� x � �
�	���

indirectly by solving its dual

maximize b�y

subject to A�y " s � c� s � ��
�	�	�

The algorithm starts with an initial solution

y� � fy j s � c �A�y � �g�	���

and obtains iterate yk�� from yk according to

yk�� � yk " �kdky��	�
�

where the search direction dy is

dky � �AS
��
k A����b�	���

and

Sk � diag�s
k
� � ���� s

k
n���	��

We take a step moving a fraction � �� � � � �� of the way to the boundary of the feasible region at
each iteration� namely�

�k � � �minf�ski ��d
k
s�i j �d

k
s�i � �� i � �� ���� ng��	���

where dks � �A�dky is a unit displacement vector in the space of slack variables� At each iteration�
a tentative primal solution is computed by

xk � S��k A��AS��k A����b��	���

It is easy to check Axk � b� but xk may not necessarily be positive� The set of optimal solutions
is referred to as the optimal face� We use the index set N� for the always�active index set on the
optimal face of the primal� and B� for its complement� It is well�known that B� is the always�active
index set on the optimal face of the dual� and N� is its complement� An indicator is a quantity
to detect whether an index belongs to N� or B�� In the remaining part of this section we propose
several indicators developed from the convergence theory of the a�ne scaling algorithm �
� ��� ����

We start with the following basic result� which states� under a very weak condition� that the
iterative sequence of the algorithm converges to a relative interior point of a face on which the
objective function is constant�

Theorem ���� �Lemma ��� of 	���� Theorem ��� of 	�
�� The sequence fykg converges to an
interior point of a face on which the objective function is constant� Let B be the always�active index
set on the face and N be its complement� and let b� be the limiting objective function value� Then
we have a constant C� � � such that

lim sup
k��

ski
b� � b�yk

� C��	���
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for all i � B� while

ski
b� � b�yk

�	����

diverges to innity for all i � N �
We denote by s� the limiting slack vector� We have s�N � � and s�B � �� First we consider

indicators to detect N and B� The following vector plays an important role�

uk �
�Sk���dks
b� � b�yk

�
Skxk

b� � b�yk
��	����

Lemma ���� We have

lim
k��

�uk��e � lim
k��

�sk��xk

b� � b�yk
� ���	��	�

The lemma is obtained as a direct consequence of Lemma ��� of ����� The use of this lemma is
that we can estimate b� � b�yk by �sk��xk asymptotically� Consequently� �	��� can be stated as

lim
k��

sup
ski

�sk��xk
� C��

Then� if i � B� for any � such that � � � � �� we have that

lim
k��

sup
ski

��sk��xk��

 ��

since ��sk��xk�� converges to zero at a slower rate than ��sk��xk� for any � such that � � � � ��
Therefore� if we chose � � ��	� we have following indicator�

Indicator �
 Let C� � � be any constant� and de�ne index set Nk as the index set consisting of
the indices i for which

ski � C�

q
�sk��xk��	����

Then Nk � N� holds asymptotically�

This indicator is available under the weak assumptions of Theorem 	��� so that it can be used to
detect B� and N� without any substantial restriction on step�size� On the other hand� it gives the
correct partition only if the limit point y� happens to be a relative interior point of the optimal face
of the dual �since Theorem 	�� does not guarantee global convergence� and thus lacks a theoretical
justi�cation� However� since we know by experience that y� usually lies in the relative interior of
the optimal face� we may expect that it should work well in practice� Another potential problem
with this indicator is that it is not scaling invariant� so that it will behave di�erently if the scaling
of the problem is changed�

Now we assume that the step�size is asymptotically less than or equal to 	��� Then the limiting
point exists in the interior of the optimal face and b� is the optimal value� Speci�cally� we have the
following theorem�

Theorem ���� �Theorem ���� of 	��� �see also Theorem ���� Theorem ��� and Theorem ��� of
	�
���� If � � 	�� throughout the iterations� then
� fykg converges to an interior point of the optimal face of the dual problem�
� fxkg converges to the analytic center of the optimal face of the primal problem�
� fb�ykg converges linearly to the optimal value b� asymptotically� where the �asymptotic� reduction

rate is exactly �� ��
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The following theorem can be used to de�ne indicators�
Theorem ���� �Lemma ��� of 	�
��

lim
k��

uki 
 ��jB�j for i � B��	��
�

lim
k��

uki 
 � otherwise��	����

The vector uk is not available because we do not have the exact optimal value� but we can
estimate b� � b�yk by �sk��xk to obtain

lim
k��

ski x
k
i

�sk��xk

 ��jB�j for i � B��	���

lim
k��

ski x
k
i

�sk��xk

 � otherwise��	����

On the basis of this fact� we propose the following procedure to construct Nk which asymptotically
coincides with B��

Indicator �
 Let � be a constant between � and �� We obtain Nk according to the following
procedure�

� Step �� Sort hki � ski x
k
i ��s

k��xk according to its order of magnitude� Here we denote il the index
for the l�th largest component�

� Step 	� For p �� �� 	� ��� compare hip and ��p� and let p
� be the �rst number such that hi�p � ��p��

Then set

Nk � fi�� i�� ���� ip���g��	����

Now� we turn our attention to asymptotic behavior of sk��i �ski � If i � N�� then ski converges to
a positive value� and hence

lim
k��

sk��i

ski
� ���	����

If i � B�� ski converges to zero� Recall Theorem 	�
 which states

lim
k��

ski x
k
i

b� � b�yk
�

�

jB�j
��	�	��

Since xki converges to a positive number �Theorem 	���ii�� and the objective function reduces with
a rate of �� � �Theorem 	���iii��� then

lim
k��

sk��i

ski
� �� ��	�	��

holds� Thus we are naturally lead to the following indicator�

Indicator �
 Take a constant  such that �� � �  � �� Then let

Nk � fi j
sk��i

ski
� g�	�		�
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be de�ned as the index set� Then Nk � N� holds asymptotically�

Of the three indicators described here� Indicators 	 and � stand on the �rmest theoretical
basis� Furthermore� unlike Indicator �� both are scaling invariant� Indicator � seems to be easier
to implement� In the following sections we discuss the implementation and testing of Indicator � to
identify the optimal primal�dual structure of minimum cost network �ow problems solved via the
dual a�ne scaling algorithm�

�� The implementation� In this section� we review dlnet� the implementation of the das
algorithm for minimum cost network �ow problems used in this study� For a detailed description
of dlnet� we refer the reader to ����� We begin by stating the minimum cost network �ow �mcnf�
problem which dlnet is designed to solve�

Consider a network with an underlying directed graph G � �V�E�� where V is a set of m vertices
and E a set of n edges� Let �i� j� denote a directed edge from vertex i to vertex j� For each vertex
i � V � let bi denote the net �ow out of vertex i� If bi � � vertex i is a source� if bi � � vertex i is a
sink and� otherwise� vertex i is a transshipment vertex� For each edge �i� j� � E� let cij� lij and uij
denote� respectively� the unit �ow cost� lower bound and upper bound on �ow in edge �i� j�� All data
are assumed to be integer� A feasible solution of a network �ow problem �often referred to as �ow�
is given by the n�dimensional vector x� where component xij is the �ow in edge �i� j�� satisfying �ow
conservation constraints for all vertices and �ow lower bound and capacity constraints on all edges�

The minimum cost network �ow �mcnf� problem consists of �nding a �ow of minimum cost� as
expressed in the following classical linear programming formulation�

min
X
ij�E

cijxij�����

subject to�

X
jk�E

xjk �
X
kj�E

xkj � bj� j � V���	�

lij � xij � uij� �i� j� � E������

More compactly� the linear program in ��������� can be expressed as

min fc�x j Ax � b� l � x � ug�

where A is the incidence matrix of G� We denote the i�th column of A by Ai� the i�th row of
A by A�i and a submatrix of A formed by columns with indices in set S by AS � If graph G has
p connected components� there are exactly p redundant �ow conservation constraints� which are
sometimes removed from the problem formulation� We rule out a trivially infeasible problem by
assuming

X
j�V k

bj � �� k � �� � � � � p����
�

where V k is the set of vertices for the k�th component of G�
Often� it is further required that xij be integer� i�e� we replace ����� with

lij � xij � uij� xij integer� �i� j� � E������

In the remainder of this paper we assume� without loss of generality� that lij � � for all �i� j� � E
and that c 	� ��
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The variant of the das algorithm� implemented in dlnet� solves the mcnf linear program

min fc�x j Ax � b� � � x � ug�

dlnet does so indirectly by solving the dual program

max fb�y � u�z j A�y � z " s � c� z � �� s � �g����

where z and s are an n�dimensional vectors and y is an m�dimensional vector�
The steps of the algorithm are as follows�

� Step �� Set k � � and let the initial interior point solution be given by�

yki � �� i � �� � � � � n

ski � ci " 	kck� i � �� � � � � n

zki � 	kck� i � �� � � � � n�

� Step �� Let k � k " �� and solve

A�Z�k " S�k�
��A�#y � b� AZ�k�Z

�
k " S�k�

��u�

#z � Z�k�Z
�
k " S�k�

���A�#y � S�ku��

#s � #z � A�#y�

for the ascent direction f#y�#z�#sg where

Zk � diag�zk� � � � � � z
k
n� and Sk � diag�s

k
� � � � � � s

k
n��

� Step 	� Compute the step size � � � �minf�z� �sg� where � � � � � and

�z � minf�z
k
i ��#z�i j �#z�i � �� i � �� � � � � ng

�s � minf�s
k
i ��#s�i j �#s�i � �� i � �� � � � � ng�

� Step �� Move to the new iterate�

fyk��� zk��� sk��g � fyk� zk� skg" � f#y�#z�#sg�

� Step 
� Check optimality� If optimal primal�dual solution is found� then stop� else go to Step ��
The bulk of the work in the das algorithm is related to building and updating the matrix

ADkA
� and solving the system of linear equations

ADkA
�#y � b� AZ�kDku������

where Dk � �Z�k "S�k�
��� dlnet relies heavily on a preconditioned conjugate gradient algorithm to

solve the direction �nding system at each iteration� The code uses two preconditioners� the standard
diagonal preconditioner and a maximum weighted spanning tree preconditioner�

In the next section we describe in more detail how optimality checking has been implemented
in dlnet�

	� Stopping with a boundary solution� The das algorithm generates a sequence of dual
interior solutions� with a corresponding sequence of tentative primal solutions ����� Under very mild
conditions� these sequences converge� respectively� to the relative interiors of the primal and dual
optimal faces �
� ���� dlnet requires a stopping strategy that guarantees termination with a primal
integer solution and uses mcnf�speci�c properties to stop the algorithm earlier than its theoretical
convergence�
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This study concentrates on a stopping strategy based on the solution of a maximum�ow problem�
As described in ����� at each iteration of the das algorithm� dlnet tries to identify a set of active
edges de�ning the supporting a�ne space of the optimal dual face� According to an indicator
function� the algorithm selects a tentative set of active edges F �

Unless the das algorithm is close to convergence� there is no guarantee that F actually de�nes
a dual face� as the set fy � �m j A�Fy � cFg can be empty� Instead� the supporting a�ne space is
de�ned by a maximal forest T of graph GF � �V�F�� We select this maximal forest by computing
maximumweighted spanning trees for each component of GF � using as weights the diagonal elements
of the current scaling matrix� Whenever F de�nes a dual face� edges inFnT correspond to redundant
hyperplanes� and the dual face is unique� A tentative dual optimal solution is computed by projecting
the current dual interior vector yk onto the supporting a�ne space of the dual face de�ned by T �

min
y���m

fky� � ykk j A�T y
� � cT g�

The dual slacks for the tentative dual optimal solution are computed as

z�i �

�
��i if �i � �
� otherwise

s�i �

�
� if �i � �
�i otherwise�

where �i � ci �A�y� �
Based on the projected dual solution y�� we select a re�ned tentative optimal face by rede�ning

the set of active edges as

�F � fi � E j jci �A��iy
�j � 
g�

Next� we attempt to build a primal feasible solution� x�� complementary to the tentative dual optimal
solution by setting the inactive edges to lower or upper bounds� i�e�� for i � E n �F �

x�i �

�
� if i �  � � fi � E n �F j ci � A��iy

� � �g

ui if i �  � � fi � E n �F j ci �A��iy
� � �g�

By considering only the active edges� we build a restricted network� represented by the constraint
set

A 	Fx 	F �
�b � b�

X
i�
�

uiAi��
���

� � xi � ui� i � �F ��
�	�

Clearly� from the �ow balance constraints �
���� if a feasible �ow x�	F for the restricted network
exists� it de�nes� along with x�


�
and x�


�
� a primal feasible solution complementary to y�� A

feasible �ow for the restricted network can be determined by solving a maximum �ow problem on
the augmented network de�ned by underlying graph �G � ��V � �E�� where

�V � f�g � f	g � V

and

�E � ! �� � �F �

In addition� for each edge �i� j� � �F there is an associated capacity uij� The additional edges are
such that

! � f��� i� j i � V �g�
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with associated capacity �bi for each edge ��� i�� and

� � f�i� 	� j i � V �g�

with associated capacity ��bi for each edge �i� 	�� where V
� � fi � V j �bi � �g and V � � fi �

V j �bi � �g�
From the proposition below� proved in ����� we conclude that �nding a feasible �ow for the

restricted network involves the solution of a maximum�ow problem� Furthermore� this feasible �ow
is integer� as we can select a maximum �ow algorithm that provides an integer solution�

Proposition �� Let M��� be the maximum �ow value from � to 	� and �x a maximal �ow on the

augmented network� Then� M��� �
P

i�V �
�bi i� �x 	F is a feasible �ow for the restricted network�

�� Indicators used in DLNET� In the most recent version of dlnet� users can choose be�
tween two indicator functions used by the program to identify an optimal face� In addition to the
Dual Slack indicator used in the experiments described in ������ Indicator �� presented in Section 	�
is also available� In this section� we compare these indicators illustrating some of their properties
with test runs performed on a a small mcnf problem with 	� vertices and 	�
� edges�

���� Dual Slack Indicator� When using the dual slack indicator� a tentative dual optimal
face is built by marking edge i as active if the corresponding dual slack variables zi and si are either
both very small or of the same order of magnitude� i�e��

F � fi � E j jski � zki j � 
� or 
� � ski �z
k
i � ��
�g�

where 
� � � and � � 
� � � are small tolerances� The remaining edges are assigned to either to
lower or upper bound as describe in Section 
�

Figures ������� display� for dlnet running with di�erent step factors� the behavior of the dual
slack indicator performed at each iteration of the algorithm� The di�erent step factors are considered
for the purposes of comparing with Indicator �� whose theoretical properties depend on the step size
factor� From these plots� one can observe the e�ect of step size on the convergence of the indicator�
For step factor � � ���� the indicator correctly identi�es the optimal face at iteration 
�� for step
factor � � � at iteration �	� and for step factor � � ��� at iteration 	�� This is the expected
behavior accountable to the faster progress at each iteration when longer steps are taken�

���� Indicator �� With Indicator �� dlnet attempts to identify the set of active edges de�ning
the optimal face by examining the ratio between subsequent iterates of each dual slack� Let � be
the step size factor� From the convergence results presented in Section 	� for each edge i � E� we
have�
� Edge i is set at its upper bound if�

lim
k��

ski �s
k��
i � �� � and lim

k��
zki �z

k��
i � ��

� Edge i is set at its lower bound if�

lim
k��

ski �s
k��
i � � and lim

k��
zki �z

k��
i � �� ��

� Edge i is left active if�

lim
k��

ski �s
k��
i � �� � and lim

k��
zki �z

k��
i � �� ��

For a dlnet run using a �xed step factor � � �� Figures ������ display the typical behavior of
the ratio between subsequent iterates for the slack variables when� at optimality� the corresponding
edge is active� at the upper bound or at the lower bound�

Scale invariance is the most interesting feature of this indicator� An implementable version can
be created by selecting constants which depend only on the step size factor �� In dlnet� we take
�� � �� and �� � ��� and� at each iteration of the algorithm� classify edges in the following manner�
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� Edge i is set to upper bound if�

ski �s
k��
i � �� and zki �z

k��
i � ���

� Edge i is set to lower bound if�

ski �s
k��
i � �� and zki �z

k��
i � ���

� Otherwise� the edge i are left active� de�ning the tentative optimal face�
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 Dual Slack Ratio �Edge left active

Indicator � displays a behavior analogous to the dual slack indicator� as evidenced in Figures ����
���� For step factor � � ���� the indicator correctly identi�es the optimal face at iteration 
�� for
step factor � � � at iteration �
� and for step factor � � ��� at iteration 	
� This last result is
somewhat unexpected� as the convergence results do not hold for step factor � � �

�
� However� as the

computational experiments reported in Section  show� if used as part of an early stopping strategy
like the one implemented in dlnet� this indicator can be successfully used with large step factors�

�� Experimental results� In this section� we describe the results of a computational experi�
ment with two indicators and two a�ne scaling step size rules� Our objective is to determine if the
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new indicator is e�ective and the practical e�ect of a smaller step size in the a�ne scaling algorithm�

The indicators selected for this experiment are the dual slack indicator ���� and Indicator ��
described in Sections 	 and 
�

The �rst step size rule used was the ��xed step size�� used in previous implementations of the
das algorithm �	� �	� ���� That rule dictates that the �rst �� das iterations use a �xed step size
parameter � � ���� and thereafter ����� The second rule satis�es the requirements of the globally
convergent das algorithm� The algorithm begins using a step size parameter � � ����� When the
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relative dual objective function improvement

Ik �
�b�yk � u�zk�� �b�yk�� � u�zk���

jb�yk � u�zkj

falls below ���� the code begins using a parameter value � � ����� When Ik � ����� the code uses
� � ��� from then on�

To compare the four step�indicator combinations� dlnet was run with the maximum �ow
primal�dual optimality test� The primal�dual optimal solution is tested every �ve das iterations
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Table ���

Grid�Density�	
 problem family � iterations

Dual Slacks Indicator �
Vertices Edges Dynamic Fixed Dynamic Fixed

��	
 ���
 � 

 � 


	�
� �	�� � �� � ��

�� ��� � �	 � �

���	 �����	 �� � �� �
���
 		�

 �� 
 �� �
�	�� �	
	�� �� � �� 


until Ik � ������ when from that point on� testing is done every das iteration� This testing
frequency is clearly not appropriate in practice� since a maximum �ow problem eventually must
be solved at every iteration of the interior point algorithm� Later in this section� we report for
comparison� iterations and running times of dlnet using default parameter settings�

The computational experiments were conducted using dlnet version 	�	a �� Dec �	� on a Silicon
Graphics iris computer� model 
D�	
�� with four 	� MHz IP� processors� a mips R	���A�R����
fpu� a mips R	���A�R���� cpu� 
 Kbytes instruction cache� 
 Kbytes data cache� 	�Kbytes of
secondary data cache� and 	� Mbytes of main memory� The operating system is irix System V
Release 
����� Each run of the code was done on a single processor�

The test problems used in the computational experiment were taken from the suite of test
problems composed for the The First DIMACS International Algorithm Implementation Challenge
���� All problem instances are generated with problem generators distributed for the challenge�
The problem classes used are Grid�Density��� Grid�Wide� Grid�Long� Mesh�� and Netgen�Lo� All
problem generators can be obtained via anonymous ftp from dimacs�rutgers�edu� Instances
having approximately ��	
� 	�
�� 
��� ���	� ���
 and �	�� vertices were generated for each
problem class� except Mesh��� for which instances having 	�� ��	
� 
��� ���
 and ��� were
generated� A single instance of each size was generated always using random number generator seed
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Table ���

Grid�Density�	
 problem family � CPU seconds

Dual Slacks Indicator �
Vertices Edges Dynamic Fixed Dynamic Fixed

��	
 ���
 ����	 ����� �
�	 �����
	�
� �	�� 
�	�� 	���� ����� 	���	

�� ��� ���
� ����� ���
�� �
��

���	 �����	 ��
�	 	��	 ����� 	�����
���
 		�

 ������ �	��� �
�
�� 
�	��
�	�� �	
	�� 		��
�� ��
���� 		����� �
�	���

Table ���

Grid�Long problem family � iterations

Dual Slacks Indicator �
Vertices Edges Dynamic Fixed Dynamic Fixed

��	 	��� Failed Failed �� 	�
	��� ���
 Failed Failed 
� ��

��� ���	 Failed Failed � ��
���
 ����� Failed Failed �
 �
��� ���� Failed Failed �� ��
�	��� ���
 Failed Failed �	
 ���

	������ A description of the instances is given in �����
The results are summarized in two tables for each problem family� The �rst table summarizes

number of iterations for each indicator�step size rule pair while the second table summarizes cpu
times� in seconds� An entry �Failed� indicates that the code failed to solve the problem� i�e� it
failed to identify a primal�dual optimal integer solution in 	�� das iterations� Tables �� and �	
summarize the runs for problem family Grid�Density��� Tables �� and �
 summarize the runs for
problem family Grid�Long� Tables �� and � summarize the runs for problem family Grid�Wide�
Tables �� and �� summarize the runs for problem family Mesh��� Tables �� and ��� summarize
the runs for problem family Netgen�Lo�

We make the following remarks about the computational experiment�
� To be considered successful� the runs in this experiment required that integer primal�dual optimal
solutions be produced� This di�ers from the experiments described in ����� where only integer
primal optimal solutions were required�

� The new indicator was clearly better than the dual slack indicator used in earlier versions of
dlnet� In all problem classes� except Grid�Density��� the dual slack indicator failed in at least
half of the instances� In two classes it failed for all instances� The new indicator did not fail a
single time�

� In the single class �Grid�Density��� in which the dual slack indicator was successful in identifying
the primal�dual optimal solution� the number of iterations required by dlnet di�ered by at most
�� for a given step size rule� Running times were in favor of the variant with the new indicator in
� of the �	 runs�

� The following observations are for runs using the new indicator� The number of iterations required
by the dynamic step size approach increased with respect to the number of iterations required
by the �xed step size approach from a low of �� to a high of 
�� The average increases in
number of iterations for classes Grid�Density��� Grid�Long� Grid�Wide� Mesh�� and Netgen�Lo�
were respectively� ��� 	��� ���� ��� and ���� Running times increased from a low of �� to
a high of ��� The average increases in running time for classes Grid�Density��� Grid�Long�
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Table ���

Grid�Long problem family � CPU seconds

Dual Slacks Indicator �
Vertices Edges Dynamic Fixed Dynamic Fixed

��	 	��� Failed Failed �	�	 ����
	��� ���
 Failed Failed 
� ���


��� ���	 Failed Failed ����� �����
���
 ����� Failed Failed �
�� �����
��� ���� Failed Failed 				�	 �����

�	��� ���
 Failed Failed ����� ������

Table ��	

Grid�Wide problem family � iterations

Dual Slacks Indicator �
Vertices Edges Dynamic Fixed Dynamic Fixed

��	 	�� 	 	� 	� 	

	��� 
	�� �
 Failed � ��

��� �
�	 Failed Failed 
� ��
���
 ���� Failed �� 
 ��
��� ���� Failed Failed �� 
�
�	��� ��� Failed Failed � �


Grid�Wide� Mesh�� and Netgen�Lo� were respectively� ���� 		�� ���� 	�� and ���� Time per
iteration increased in all but three instances� The average increases in time per iteration for classes
Grid�Density��� Grid�Long� Grid�Wide� Mesh�� and Netgen�Lo� were respectively� ��� ���� ���
���� and 
����

� Though the �xed step size approach used in this study does not guarantee global convergence� it
did� for these instances� work well� This can perhaps be explained by the fact that the iterates
in these experiments were always �well centered�� Tsuchiya � Monteiro ���� have shown that if
the iterates remain in some sense well centered� then a step size asymptotically approaching � will
produce a superlinear globally convergent a�ne scaling algorithm�

���� Default parameter setting� The performance of dlnet in the examples described ear�
lier in this section does not fully re�ect the code�s capability� In the following� we run dlnet using
the version 	�	a default parameter setting� With those settings the code uses the ��xed� step size
rule� checks for optimality using the primal basic optimality checking ���� at every iteration� and
the maximum�ow optimality checking� using Indicator � with parameters �� � ���� and �� � �����
beginning at das iteration 	� with an initial frequency of 	� iterations� When Ik � ����� the
frequency is reduced to � iterations and then to every iteration when Ik � ���������� We require a
primal�dual optimal integer solution to stop with either optimality test�

Instances identical to those used in the indicator�step�size pair runs were generated for these
runs� For each problem family� a single table summarizes the runs� listing iterations and running
times� and the cpu time ratios between version ��
b �used in ����� and version 	�	a of dlnet� Besides
the new indicator� version 	�	a was made more e�cient by rewriting several sections of the code�
Table ��� summarizes the runs for problem family Grid�Density��� Table ��	 summarizes the
runs for problem family Grid�Long� Table ��� summarizes the runs for problem family Grid�Wide�
Table ��
 summarizes the runs for problem family Mesh��� Table ��� summarizes the runs for
problem family Netgen�Lo� We make the following remarks about the computational experiment�
� As we intended to show� the default parameters for dlnet produce improved running times
without compromising robustness�



� MAURICIO G�C� RESENDE� TAKASHI TSUCHIYA AND GERALDO VEIGA

Table ���

Grid�Wide problem family � CPU seconds

Dual Slacks Indicator �
Vertices Edges Dynamic Fixed Dynamic Fixed
��	 	�� ��
 �� ��
 ���
	��� 
	�� ��
�� Failed ���� 	�	

��� �
�	 Failed Failed ��� ����
���
 ���� Failed ��� ���� 	���

��� ���� Failed Failed ����� �����
�	��� ��� Failed Failed 	����� ������

Table ��

Mesh�	 problem family � iterations

Dual Slacks Indicator �
Vertices Edges Dynamic Fixed Dynamic Fixed

	� ��	 Failed Failed � �
��	
 	�
� Failed Failed 		 	�

�� ���	 Failed Failed 
� ��
���
 �	�� Failed Failed 	 �	
��� �����	 Failed Failed � 
�

� As compared to version ��
b of the code� the latest version was faster on all but two instances�
where version ��
b was faster because it took fewer iterations� For the largest instances in each
class� the decrease in running time went from a low of �� to a high of 
���

�� Concluding remarks� In this paper� we proposed three indicators based on new conver�
gence results for the a�ne scaling algorithm for linear programming� We described the implemen�
tation of one such indicator� used to aid the identi�cation of the optimal primal�dual structure of a
minimum cost network �ow problem� These indicators can be adapted to general linear program�
ming� The experimental study suggests that the new indicator is more robust than an indicator
previously used in the network code dlnet� The experiments further show that� for the instances
tested� the e�ectiveness of the indicator is not as sensitive to step size as suggested by theory�
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Table ��


Mesh�	 problem family � CPU seconds

Dual Slacks Indicator �
Vertices Edges Dynamic Fixed Dynamic Fixed

	� ��	 Failed Failed ��� ���
��	
 	�
� Failed Failed ��� ���

�� ���	 Failed Failed ���� ����
���
 �	�� Failed Failed 	���� 	�����
��� �����	 Failed Failed ���	�� �����


Table ���

Netgen�Lo problem family � iterations

Dual Slacks Indicator �
Vertices Edges Dynamic Fixed Dynamic Fixed

��	
 �	�
 �	 	� �� 	�
	�
� �
�
 
� �
 
� ��

�� �	��� Failed Failed 
� �
���	 ���
 Failed Failed �� 
�
���
 ���
�� 
 
� 	 
�
�	�� 		��� Failed Failed �� �


Table ����

Netgen�Lo problem family � CPU seconds

Dual Slacks Indicator �
Vertices Edges Dynamic Fixed Dynamic Fixed

��	
 �	�
 �
�� ���� ���� 	���
	�
� �
�
 ����� ���� ����� ���

�� �	��� Failed Failed �	��� 	
���
���	 ���
 Failed Failed ���
�� �	��
���
 ���
�� �����	 	����
 

���� �	�	��
�	�� 		��� Failed Failed ������ ������

Table ����

Grid�Density�	
 problem family � default settings

v	�	a cpu v��
b � v	�	a
Vertices Edges Iterations seconds cpu ratio
��	
 ���
 
� ����	 ����
	�
� �	�� �� ��
�� ��
�

�� ��� �� ����� ��	
���	 �����	 �� 	���� ��	�
���
 		�

 � ��
��� ����
�	�� �	
	��  �
����	 ����
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Table ����

Grid�Long problem family � default settings

v	�	a cpu v��
b � v	�	a
Vertices Edges Iterations secs� cpu ratio
��	 	��� 	� ��� ����
	��� ���
 �� ���� ��
�

��� ���	 �� ����� ��
�
���
 ����� �� 
���
 ��
�
��� ���� �� ����� ����
�	��� ���
 ��� 
�	��� ��



Table ����

Grid�Wide problem family � default settings

v	�	a cpu v��
b � v	�	a
Vertices Edges Iterations seconds cpu ratio
��	 	�� 	� ��� ����
	��� 
	�� �� 		�� ���	

��� �
�	 �� ��
 ��	�
���
 ���� �� ��	 ��	�
��� ���� 
� �	��� ��
�
�	��� ��� �
 ����� ���

Table ����

Mesh�	 problem family � default settings

v	�	a cpu v��
b � v	�	a
Vertices Edges Iterations seconds cpu ratio

	� ��	 �� ��� ��
�
��	
 	�
� 	� �
 ��	�

�� ���	 �� ����� ����
���
 �	�� �	 ������ ���
��� �����	 
� ���
� ����

Table ���	

Netgen�Lo problem family � default settings

v	�	a cpu v��
b � v	�	a
Vertices Edges Iterations seconds cpu ratio
��	
 �	�
 	� 	��
 ���

	�
� �
�
 �� ���� ��	�

�� �	��� �� 	���� ����
���	 ���
 

 ���� ��	�
���
 ���
�� 
� 		��� ����
�	�� 		��� �� �	
�� ����
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