IDENTIFYING THE OPTIMAL FACE OF A NETWORK LINEAR PROGRAM
WITH A GLOBALLY CONVERGENT INTERIOR POINT METHOD*

MAURICIO G.C. RESENDE!, TAKASHI TSUCHIYA*, AND GERALDO VEIGAS$

Abstract. Based on recent convergence results for the affine scaling algorithm for linear programming, we
investigate strategies to identify the optimal face of a minimum cost network flow problem. In the computational
experiments described, one of the proposed optimality indicators is used to implement an early stopping criterion
in DLNET, an implementation of the dual affine scaling algorithm for solving minimum cost network flow problems.
We conclude from the experiments that the new indicator is far more robust than the one used in earlier versions of
DLNET.

Key words. Linear programming, minimum cost network flow, indicator, affine scaling algorithm, computer
implementation.

AMS(MOS) subject classifications. 65-05, 65F10, 65K05, 65Y05, 90C05, 90C06, 90C35

1. Introduction. The dual affine scaling (Das) algorithm [3] has been shown to perform well
in practice on linear programming problems [1, 2, 7, 8], large-scale network flow problems [13], and
large-scale assignment problems [11, 12]. In spite of its practical success, no polynomial time proof
has been given for the primal or dual variants of the algorithm. The exception is the primal-dual
affine scaling algorithm, for which a polynomial time proof exists [9], but that uses very short steps,
rendering it impractical.

Recently, several authors (e.g. Dikin [4], Tsuchiya [16, 17], Tsuchiya & Muramatsu [19], Mon-
teiro, Tsuchiya & Wang [10], Tsuchiya & Monteiro [18], Saigal [14] and Hall & Vanderbei [6]) have
presented exciting convergence results for the affine scaling algorithm. In this paper, we use some
results in [4, 10, 19] to derive indicators that identify the optimal primal and dual faces for a linear
program, and present an approach for using one such indicator in the context of minimum cost
network flow problems solved via the dual affine scaling algorithm. At the same time, we study
some practical considerations of implementing the Dikin-Tsuchiya-Muramatsu step size strategy.

In Section 2 we state the dual affine scaling algorithm and the new convergence results. In
Section 3 we briefly describe DLNET, the implementation of the dual affine scaling algorithm used in
the computational study. A stopping strategy based on the solution of a maximum flow problem is
outlined in Section 4. In Section 5, we discuss two indicators implemented in DLNET. Computational
results are described in Section 6 and concluding remarks are made in Section 7.

The following notation 1s used throughout our paper. We denote the vector of all ones by e. Its
dimension is always clear from the context. R", R} and R}, denote the n-dimensional Euclidean
space, the nonnegative orthant of R"™ and the positive orthant of R™, respectively. The set of all
m x n matrices with real entries is denoted by R™*". Given an index set J C {1,...,n} and a vector
w € R*, we denote by wy the subvector of w corresponding to J. Similarly, if F is an m x n matrix
then Fj denotes the m x |J| submatrix of £ corresponding to J. The Euclidean norm, the 1-norm
and the oo-norm are denoted by || ||, || -||1 and || - ||co, respectively. If J is a finite index set then |.J|
denotes its cardinality, that is the number of elements of J. The superscript T denotes transpose.

* April 1993 (Revised August 1993). To appear in Large Scale Optimization: State of the Art, W.W. Hager, D.W.
Hearn, and P.M. Pardalos, eds., Kluwer Academic Publishers B.V. (1993)

t AT&T Bell Laboratories, Murray Hill, NJ 07974 USA

{ The Institute of Statistical Mathematics, Tokyo, 106, Japan

§ Department of IEOR, University of California, Berkeley,CA 94720 USA

1

2 MAURICIO G.C. RESENDE, TAKASHI TSUCHIYA AND GERALDO VEIGA

2. Convergence results and new indicators. Let A € R™*", ¢, z,5s € R® and b,y € R™.
The dual affine scaling algorithm solves the linear programming problem

minimize ¢z

(2.1)
subject to Az =0, >0
indirectly by solving its dual

maximize by
(2.2)
subject to ATy+s=c¢, s>0.

The algorithm starts with an initial solution

(2.3) v elyls=c—ATy >0}
and obtains iterate y*+! from y* according to

(24) P =y 4kl

where the search direction d, is

(2.5) dy = (AS;AT) ™"
and
(2.6) Sy = diag(st, ..., s").

We take a step moving a fraction v (0 < v < 1) of the way to the boundary of the feasible region at
each iteration, namely,

(2.7) af =~ x min{—sF/(d*); | (d¥); <0, i=1,...,n},

where d* = —ATd* is a unit displacement vector in the space of slack variables. At each iteration,
a tentative primal solution is computed by

(2.8) wh = STPAT(AS;2AT) ™ b,

It is easy to check Az* = b, but ¥ may not necessarily be positive. The set of optimal solutions
is referred to as the optimal face. We use the index set N, for the always-active index set on the
optimal face of the primal, and B, for its complement. It is well-known that B, is the always-active
index set on the optimal face of the dual, and N, is its complement. An indicator is a quantity
to detect whether an index belongs to N, or B,. In the remaining part of this section we propose
several indicators developed from the convergence theory of the affine scaling algorithm [4, 10, 19].

We start with the following basic result, which states, under a very weak condition, that the
iterative sequence of the algorithm converges to a relative interior point of a face on which the
objective function is constant.

THEOREM 2.1. (Lemma 1.2 of [19], Theorem 2.6 of [10]) The sequence {y*} converges to an
winterior point of a face on which the objective function is constant. Let B be the always-active index
set on the face and N be its complement, and let b*° be the limiting objective function value. Then
we have a constant Cy > 0 such that

k

st
2. li ——— <
(2.9) im sup 77w < Co

NETWORK INTERIOR POINT INDICATORS 3

for all i € B, while

sk

(2.10) [
diverges to infinity for alli € N. B

We denote by s the limiting slack vector. We have s§ > 0 and s% = 0. First we consider
indicators to detect N and B. The following vector plays an important role:

(Sk)_ld]; Skl‘k

2.11 k = .
() u boo — bTyk hoo — bTyk

LEMMA 2.2. We have

E\T .k
(2.12) lim (u*)Te = lim (s7) @ =1 n

k—00 k—oo b — bTyk

The lemma is obtained as a direct consequence of Lemma 3.8 of [10]. The use of this lemma is
that we can estimate 6> — b y* by (s*)T2* asymptotically. Consequently, (2.9) can be stated as
| o
kli»IEO SHPW < Cy.
Then, if ¢ € B, for any 8 such that 0 < 8 < 1, we have that

k
]

((s%)Tak)?

klim sup — 0,
since ((s*)Tz*)? converges to zero at a slower rate than ((s*)T2*) for any 38 such that 0 < 8 < 1.
Therefore, if we chose 3 = 1/2, we have following indicator:

Indicator 1: Let C; > 0 be any constant, and define index set N* as the index set consisting of
the indices ¢ for which

(2.13) 5P < Oy /(sF)Tak.

Then N* = N, holds asymptotically. m

This indicator is available under the weak assumptions of Theorem 2.1, so that it can be used to
detect B, and N, without any substantial restriction on step-size. On the other hand, it gives the
correct partition only if the limit point y* happens to be a relative interior point of the optimal face
of the dual (since Theorem 2.1 does not guarantee global convergence) and thus lacks a theoretical
justification. However, since we know by experience that y* usually lies in the relative interior of
the optimal face, we may expect that it should work well in practice. Another potential problem
with this indicator is that it is not scaling invariant, so that it will behave differently if the scaling
of the problem is changed.

Now we assume that the step-size is asymptotically less than or equal to 2/3. Then the limiting
point exists in the interior of the optimal face and 5 is the optimal value. Specifically, we have the
following theorem.

THEOREM 2.3. (Theorem 1.1. of [19] (see also Theorem 3.1, Theorem 4.2 and Theorem 4.3 of
[10]).) If v < 2/3 throughout the iterations, then
o {y*} converges to an interior point of the optimal face of the dual problem.

o {x*} converges to the analytic center of the optimal face of the primal problem.
o {bTy*} converges linearly to the optimal value b> asymptotically, where the (asymptotic) reduction
rate is exactly 1 — ~.

4 MAURICIO G.C. RESENDE, TAKASHI TSUCHIYA AND GERALDO VEIGA

The following theorem can be used to define indicators.

THEOREM 2.4. (Lemma 4.1 of [10])

(2.14) Jim uf — 1/|B.| for i€ B.
(2.15) klim uf — 0 otherwise. B

The vector u* is not available because we do not have the exact optimal value, but we can

estimate 6% — b7 y* by (s*)Tz* to obtain

Bk

(2.16) khﬁn;o(;;)%ﬁqu for i€ B,
Bk

(2.17) lim il % — 0 otherwise. B

On the basis of this fact, we propose the following procedure to construct N* which asymptotically
coincides with B,:

Indicator 2: Let 6 be a constant between 0 and 1. We obtain N* according to the following
procedure:

e Step 1: Sort k¥ = skzk/(s*)T2* according to its order of magnitude. Here we denote 7; the index
for the [-th largest component.

e Step 2: For p:=1,2,... compare h;, and §/p, and let p* be the first number such that hi; < é/p*.
Then set

(2.18) NF =iy 09, ipe_1}. W

Now, we turn our attention to asymptotic behavior of 5?"’1/55. If i € N., then s* converges to
a positive value, and hence

k+1
(2.19) lim 2 =1,

k—oco 5?

If i € By, sf converges to zero. Recall Theorem 2.4 which states

shah 1

2.2 lim —t5 o
(2.20) bt b0 — bTyF | By

Since z¥ converges to a positive number (Theorem 2.3(ii)) and the objective function reduces with

a rate of 1 — v (Theorem 2.3(iii)), then

E+1
(2.21) lim 2 =1+

k—oco 5?

holds. Thus we are naturally lead to the following indicator:
Indicator 3: Take a constant 1 such that 1 —+ < n < 1. Then let

5k+1

(2.22) N = (i 2 >)

NETWORK INTERIOR POINT INDICATORS 5

be defined as the index set. Then N* = N. holds asymptotically. m

Of the three indicators described here, Indicators 2 and 3 stand on the firmest theoretical
basis. Furthermore, unlike Indicator 1, both are scaling invariant. Indicator 3 seems to be easier
to implement. In the following sections we discuss the implementation and testing of Indicator 3 to
identify the optimal primal-dual structure of minimum cost network flow problems solved via the
dual affine scaling algorithm.

3. The implementation. In this section, we review DLNET, the implementation of the DAS
algorithm for minimum cost network flow problems used in this study. For a detailed description
of DLNET, we refer the reader to [13]. We begin by stating the minimum cost network flow (MONF)
problem which DLNET is designed to solve.

Consider a network with an underlying directed graph G = (V, E), where V is a set of m vertices
and E a set of n edges. Let (4, j) denote a directed edge from vertex ¢ to vertex j. For each vertex
1 €V, let b; denote the net flow out of vertex ¢. If b; > 0 vertex ¢ is a source, if b; < 0 vertex 7 is a
sink and, otherwise, vertex ¢ is a transshipment vertex. For each edge (4, j) € E, let ¢;;, {;; and wu;;
denote, respectively, the unit flow cost, lower bound and upper bound on flow in edge (7, j). All data
are assumed to be integer. A feasible solution of a network flow problem (often referred to as flow)
is given by the n-dimensional vector &, where component ;; is the flow in edge (4, j), satisfying flow
conservation constraints for all vertices and flow lower bound and capacity constraints on all edges.

The minimum cost network flow (MCNF) problem consists of finding a flow of minimum cost, as
expressed in the following classical linear programming formulation:

(31) min Z Cij iy

ijER
subject to:
(3.2) Zl‘jk— Zl‘kj:bj, JeV
jkeE kjeE
(3.3) li; <ay <wyy, (4,§) €E.

More compactly, the linear program in (3.1-3.3) can be expressed as
min {¢'x | Az =b, | <z < u},

where A 1s the incidence matrix of . We denote the i-th column of A by A;, the i-th row of
A by A; and a submatrix of A formed by columns with indices in set S by Ag. If graph G has
p connected components, there are exactly p redundant flow conservation constraints, which are
sometimes removed from the problem formulation. We rule out a trivially infeasible problem by
assuming

(3.4) d bi=0, k=1,...,p,

JEVE

where V* is the set of vertices for the k-th component of G.
Often, it is further required that z;; be integer, i.e. we replace (3.3) with

(3.5) lij < @iy < wij, xij integer, (4,7) € E.

In the remainder of this paper we assume, without loss of generality, that [;; = 0 for all (¢,j) € E

and that ¢ # 0.

6 MAURICIO G.C. RESENDE, TAKASHI TSUCHIYA AND GERALDO VEIGA

The variant of the DAs algorithm, implemented in DLNET, solves the MCNF linear program
min {c¢'z | Az = b, 0 <z < u}.
DLNET does so indirectly by solving the dual program
(3.6) max{b'y—u'z|ATy—z+s=c, z>0,5>0}

where z and s are an n-dimensional vectors and y 1s an m-dimensional vector.
The steps of the algorithm are as follows:
e Step 0: Set £ = 0 and let the initial interior point solution be given by:

vt o= 0,i=1,...,n
5? = ¢ +2le,i=1,...,n
2 = 2lell, i=1,...,n.

e Step 1: Let £k =k + 1, and solve

AZE+SHTYATAy = b— AZZ(ZE + SP) " ,
Az = Z{(Z; + S;)THAT Ay — Stu),
As = Az— AT Ay,

for the ascent direction {Ay, Az, As} where

Zp = diag(z¥, ..., 2%) and S), = diag(sf, ..., sF).

’ n

e Step 2: Compute the step size & = v x min{a,, a5}, where 0 < v < 1 and

a, = min{—zF J(A2); | (A2); <0,i=1,...,n}

oy = min{—sf /(As); | (As); <0, i=1,...,n}.
e Step 3: Move to the new iterate:

e Step 4: Check optimality. If optimal primal-dual solution is found, then stop, else go to Step 1.
The bulk of the work in the DAS algorithm is related to building and updating the matrix
ADy AT and solving the system of linear equations

(3.7) ADRATAy =b— AZ.Dyu,

where Dy, = (Z2 4 S2)~!. DLNET relies heavily on a preconditioned conjugate gradient algorithm to
solve the direction finding system at each iteration. The code uses two preconditioners: the standard
diagonal preconditioner and a maximum weighted spanning tree preconditioner.

In the next section we describe in more detail how optimality checking has been implemented
1n DLNET.

4. Stopping with a boundary solution. The DAs algorithm generates a sequence of dual
interior solutions, with a corresponding sequence of tentative primal solutions [15]. Under very mild
conditions, these sequences converge, respectively, to the relative interiors of the primal and dual
optimal faces [4, 19]. DLNET requires a stopping strategy that guarantees termination with a primal
integer solution and uses MCNF-specific properties to stop the algorithm earlier than its theoretical
convergence.

NETWORK INTERIOR POINT INDICATORS 7

This study concentrates on a stopping strategy based on the solution of a maximum flow problem.
As described in [13], at each iteration of the DAs algorithm, DLNET tries to identify a set of active
edges defining the supporting affine space of the optimal dual face. According to an indicator
function, the algorithm selects a tentative set of active edges F.

Unless the Das algorithm is close to convergence, there is no guarantee that F actually defines
a dual face, as the set {y € &™ | A;—-y = ¢z} can be empty. Instead, the supporting affine space is
defined by a maximal forest 7 of graph Gz = (V, F). We select this maximal forest by computing
maximum weighted spanning trees for each component of G £, using as weights the diagonal elements
of the current scaling matrix. Whenever F defines a dual face, edges in F\7 correspond to redundant
hyperplanes, and the dual face is unique. A tentative dual optimal solution is computed by projecting
the current dual interior vector y* onto the supporting affine space of the dual face defined by 7,

. * k T *
— | ATy" = 7).
i Ally" =yl [A7y = er}

The dual slacks for the tentative dual optimal solution are computed as

«] =8 ifé <0 » 0 ifé <0
7000 otherwise 6; otherwise,

where 6; = ¢; — ATy" .
Based on the projected dual solution y*, we select a refined tentative optimal face by redefining
the set of active edges as

F={icE||e;— ALy <e}.

Next, we attempt to build a primal feasible solution, z*, complementary to the tentative dual optimal
solution by setting the inactive edges to lower or upper bounds, i.e., for i € E'\ F,

. 0 ifieQt={ieE\F|c— ALy >0}

u, fi€Q ={ic E\F|e— ALy <0}
By considering only the active edges, we build a restricted network, represented by the constraint
set

(4.1) Agrr=b=1b—= " wA,
1EQ~
(4.2) 0<wz <wu, i€F.

Clearly, from the flow balance constraints (4.1), if a feasible flow z% for the restricted network
exists, it defines, along with zf,; and z{_, a primal feasible solution complementary to y*. A
feasible flow for the restricted network can be determined by solving a maximum flow problem on
the augmented network defined by underlying graph G= (f/, E), where

V={cju{fuv
and
E=XUOUF.

In addition, for each edge (7,j) € F there is an associated capacity u;;. The additional edges are
such that

Y= {(o,i)]|i€VT}

8 MAURICIO G.C. RESENDE, TAKASHI TSUCHIYA AND GERALDO VEIGA

with associated capacity b; for each edge (o,%), and
0={(6)|ieV},

with associated capacity —b; for each edge (i,6), where V* = {i € V | b; > 0} and V™~ = {i €
1% | b; < 0}.

From the proposition below, proved in [13], we conclude that finding a feasible flow for the
restricted network involves the solution of a maximum flow problem. Furthermore, this feasible flow
is integer, as we can select a maximum flow algorithm that provides an integer solution.

PROPOSITION 1. Let M, g be the mazimum flow value from o to 0, and & a mazimal flow on the
augmented network. Then, My g =3 4 b; iff Z7 1s a feasible flow for the restricted network.

5. Indicators used in DLNET. In the most recent version of DLNET, users can choose be-
tween two indicator functions used by the program to identify an optimal face. In addition to the
Dual Slack indicator used in the experiments described in [13]), Indicator 3, presented in Section 2,
is also available. In this section, we compare these indicators illustrating some of their properties
with test runs performed on a a small MCNF problem with 256 vertices and 2048 edges.

5.1. Dual Slack Indicator. When using the dual slack indicator, a tentative dual optimal
face is built by marking edge ¢ as active if the corresponding dual slack variables z; and s; are either
both very small or of the same order of magnitude, i.e.,

F={cE||sF—z2F|<eore <sF/aF<1/e},

where ¢ > 0 and 1 > €; > 0 are small tolerances. The remaining edges are assigned to either to
lower or upper bound as describe in Section 4.

Figures 5.1-5.3 display, for DLNET running with different step factors, the behavior of the dual
slack indicator performed at each iteration of the algorithm. The different step factors are considered
for the purposes of comparing with Indicator 3, whose theoretical properties depend on the step size
factor. From these plots, one can observe the effect of step size on the convergence of the indicator.
For step factor v = .50, the indicator correctly identifies the optimal face at iteration 43, for step
factor v = .66 at iteration 32, and for step factor v = .90 at iteration 23. This is the expected
behavior accountable to the faster progress at each iteration when longer steps are taken.

5.2. Indicator 3. With Indicator 3, DLNET attempts to identify the set of active edges defining
the optimal face by examining the ratio between subsequent iterates of each dual slack. Let v be
the step size factor. From the convergence results presented in Section 2, for each edge i € E, we
have:

e Edge ¢ is set at its upper bound if:

lim sf/sf~' =1—~ and lim zf/zF"'=1.
k—o0 k—co
e Edge ¢ is set at its lower bound if:

lim s¥/s871 =1 and klim FpFt =14
— 00

k—o0

e Edge i is left active if:

kli»IEO sF/st='=1—~ and kli»IEO)t =1
For a DLNET run using a fixed step factor v = .66, Figures 5.5-5.6 display the typical behavior of
the ratio between subsequent iterates for the slack variables when, at optimality, the corresponding
edge is active, at the upper bound or at the lower bound.
Scale invariance is the most interesting feature of this indicator. An implementable version can
be created by selecting constants which depend only on the step size factor . In DLNET, we take
kp = .7 and k1 = .9, and, at each iteration of the algorithm, classify edges in the following manner:

NETWORK INTERIOR POINT INDICATORS

1800 | |
1600 F o00000” =
1400
1200 ° .

o
%0600

©0000060660600000000000000000

1000 g

Edges at capacity
800 .

600 n

400 . Active edges
200_.._1
[e]

0 ! ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50

Tteration

Fi1G. 5.1. Dual Slack Indicator (Step factor v = .50)

1800 :
1600 |- o6 _oo -
1400 |- o -
1200 |- o -

SR I
1000 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Edges at capacity
800 .

600 .

400 . Active edges

200 —
o

0 ! ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50

Tteration

Fi1G. 5.2. Dual Slack Indicator (Step factor v = .66)

e Edge ¢ is set to upper bound if:

sP/si™t < ko and 2f /2871 > Ky
e Edge ¢ is set to lower bound if:

sE/sE=h > g and 2F /207 < k.

e Otherwise, the edge i are left active, defining the tentative optimal face.

10 MAURICIO G.C. RESENDE, TAKASHI TSUCHIYA AND GERALDO VEIGA

1800 I

1600 | oo N
1400 - - ° |
1200 + : _
1000 | oO.O'GO'O-OOO'O'OOO'O'OOO'O'OOO'O'OOO'O'OOO'O‘OOO'O‘_

: Edges at capacity

800 |- .
600 | : |

400 _. Active edges
200 _:'.'.'...'.‘...-.-..-.-.‘..'.'.'..'.'...'.'...'.'...'.'...'.'...'.'. ._l
]

0 ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45

Tteration

F1G. 5.3. Dual Slack Indicator (Step factor v = .90)

0.85 C |
0.8
0.75
0.7 F . .
0.65 - L% . 4
0.6 o8 "o ¢
0.55 - .0 | i
0.5 o i
045 oe, ° a
0.4 [240, . i
0.35

0.3 ! ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50

Tteration

I I
@ N
w o
[T
o o
=~ =
e o
[

o
o
[Ie]
oe

Fi1G. 5.4. Dual Slack Ratio (Edge left active)

Indicator 3 displays a behavior analogous to the dual slack indicator, as evidenced in Figures 5.7-
5.9. For step factor v = .50, the indicator correctly identifies the optimal face at iteration 45, for
step factor v = .66 at iteration 34, and for step factor v = .90 at iteration 24. This last result is
somewhat unexpected, as the convergence results do not hold for step factor v > % However, as the
computational experiments reported in Section 6 show, if used as part of an early stopping strategy
like the one implemented in DLNET, this indicator can be successfully used with large step factors.

6. Experimental results. In this section, we describe the results of a computational experi-
ment with two indicators and two affine scaling step size rules. Our objective is to determine if the

NETWORK INTERIOR POINT INDICATORS 11

1.1 I I I I I I I

1 _800 00000000000009P0O0000000000000000CY
[o

0.9 3 ° -

0.7 - o . 4 —
0.6 - o s Tt *

0.5 ‘.

0.4 z-slack © .

0.3 | | | | | | I. ...I.....I
0 5 10 15 20 25 30 35 40 45 50

Tteration

Fi1G. 5.5. Dual Slack Ratio (Edge set to upper bound)

11 ¢ z-slack ©

s-slack
1 — PO 00000000 OOOOSS NS

0.9 |
0.8 . |
0.7 o o °

I
o

T
o
|

I
o
o

0.5 o o

04 %8 o °° °° s

09600006000°°
03 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

Tteration

Fi1c. 5.6. Dual Slack Ratio (Edge set to lower bound)

new indicator is effective and the practical effect of a smaller step size in the affine scaling algorithm.

The indicators selected for this experiment are the dual slack indicator [13] and Indicator 3,
described in Sections 2 and 4.

The first step size rule used was the “fixed step size,” used in previous implementations of the
DAS algorithm [2, 12, 13]. That rule dictates that the first 10 DAs iterations use a fixed step size
parameter v = 0.99 and thereafter 0.95. The second rule satisfies the requirements of the globally
convergent DAS algorithm. The algorithm begins using a step size parameter v = 0.99. When the

12 MAURICIO G.C. RESENDE, TAKASHI TSUCHIYA AND GERALDO VEIGA

1800 ! !
1600 F 000, 000 -
1400 |- o -
1200 |- ° .

o o
Co000° OOoooOOOooooooooooooooooooooo

1000 - . L

Edges at capacity

800 - -

600 n

400 = Active edges

200 -

o

0 ! ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50

Tteration

Fi1G. 5.7. Indicator 3 (Step factor v = .50)

1800 !
1600 1 g6 400 2
1400 - . -
1200 |- o :

o
o
1000 ©0%o ©0 5066000, 000000000000000000000000

Edges at capgcity
800 .

600 .

400 - Active edges

200 —

o

0 ! ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50

Tteration

Fi1G. 5.8. Indicator 3 (Step factor v = .66)

relative dual objective function improvement

BTyb —uT o) — (BTyf=t — T 21
[bTyF — uT 2F|

s

falls below 0.1, the code begins using a parameter value v = 0.95. When Z% < 0.01, the code uses
v = 0.5 from then on.

To compare the four step/indicator combinations, DLNET was run with the maximum flow
primal-dual optimality test. The primal-dual optimal solution is tested every five DAS iterations

NETWORK INTERIOR POINT INDICATORS 13

1800 !

1600 [oo -
1400 |- o -
1200 |- o .

Op
00%0o0o
o Q00000000000
1000 OO:OO 0000000000000 00

Edges at capacity
800 .

600 n

400 = Active edges

200 7

o

0 ! ! ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50

Tteration

Fi1G. 5.9. Indicator 3 (Step factor v = .90)

TABLE 6.1
Grid-Density-16 problem family — iterations

Dual Slacks Indicator 3

Vertices | Edges | Dynamic Fixed | Dynamic Fixed
1024 | 16384 60 44 60 44
2048 | 32768 67 51 67 50
4096 | 65536 67 52 67 54
8192 | 131072 93 68 93 68
16384 | 262144 90 64 89 63
32768 | 524288 90 65 90 64

until Z% < 0.001, when from that point on, testing is done every DAS iteration. This testing
frequency 1is clearly not appropriate in practice, since a maximum flow problem eventually must
be solved at every iteration of the interior point algorithm. Later in this section, we report for
comparison, iterations and running times of DLNET using default parameter settings.

The computational experiments were conducted using DLNET version 2.2a (9 Dec 92) on a Silicon
Graphics RIS computer, model 4D/240, with four 25 MHz IP7 processors, a Mips R2010A/R3010
FPU, a MIPS R2000A /R3000 cpu, 64 Kbytes instruction cache, 64 Kbytes data cache, 256 Kbytes of
secondary data cache, and 256 Mbytes of main memory. The operating system is IRIX System V
Release 4.0.5. Each run of the code was done on a single processor.

The test problems used in the computational experiment were taken from the suite of test
problems composed for the The First DIMACS International Algorithm Implementation Challenge
[5]. All problem instances are generated with problem generators distributed for the challenge.
The problem classes used are Grid-Density-16, Grid-Wide, Grid-Long, Mesh-1 and Netgen-Lo. All
problem generators can be obtained via anonymous ftp from dimacs.rutgers.edu. Instances
having approximately 1024, 2048, 4096, 8192, 16384 and 32768 vertices were generated for each
problem class, except Mesh-1, for which instances having 256, 1024, 4096, 16384 and 65536 were
generated. A single instance of each size was generated always using random number generator seed

14 MAURICIO G.C. RESENDE, TAKASHI TSUCHIYA AND GERALDO VEIGA

TABLE 6.2
Grid-Density-16 problem family — CPU seconds

Dual Slacks Indicator 3
Vertices | Edges | Dynamic Fixed | Dynamic Fixed
1024 | 16384 153.2 109.3 146.2 103.3
2048 | 32768 432.9 299.5 399.1 290.2

4096 | 65536 1004.6 758.1 1054.8 841.4
8192 | 131072 3764.2 2606.2 3600.3 2739.1
16384 | 262144 10069.9 6827.1 9454.3 6492.0
32768 | 524288 22034.0 15408.0 22537.7 14829.9

TABLE 6.3
Grid-Long problem family — iterations

Dual Slacks Indicator 3

Vertices | Edges | Dynamic Fixed | Dynamic Fixed
1026 2000 Failed Failed 31 29
2050 3984 Failed Failed 45 37
4098 7952 Failed Failed 60 50
8194 | 15888 Failed Failed 84 61
16386 | 31760 Failed Failed 91 81
32770 | 63504 Failed Failed 124 101

270001. A description of the instances is given in [13].

The results are summarized in two tables for each problem family. The first table summarizes
number of iterations for each indicator/step size rule pair while the second table summarizes cpPU
times, in seconds. An entry “Failed” indicates that the code failed to solve the problem, i.e. it
failed to identify a primal-dual optimal integer solution in 200 DAS iterations. Tables 6.1 and 6.2
summarize the runs for problem family Grid-Density-16. Tables 6.3 and 6.4 summarize the runs for
problem family Grid-Long. Tables 6.5 and 6.6 summarize the runs for problem family Grid-Wide.
Tables 6.7 and 6.8 summarize the runs for problem family Mesh-1. Tables 6.9 and 6.10 summarize
the runs for problem family Netgen-Lo.

We make the following remarks about the computational experiment:

e To be considered successful, the runs in this experiment required that integer primal-dual optimal
solutions be produced. This differs from the experiments described in [13], where only integer
primal optimal solutions were required.

e The new indicator was clearly better than the dual slack indicator used in earlier versions of
DLNET. In all problem classes, except Grid-Density-16, the dual slack indicator failed in at least
half of the instances. In two classes it failed for all instances. The new indicator did not fail a
single time.

o In the single class (Grid-Density-16) in which the dual slack indicator was successful in identifying
the primal-dual optimal solution, the number of iterations required by DLNET differed by at most
1, for a given step size rule. Running times were in favor of the variant with the new indicator in
8 of the 12 runs.

e The following observations are for runs using the new indicator. The number of iterations required
by the dynamic step size approach increased with respect to the number of iterations required
by the fixed step size approach from a low of 0% to a high of 46%. The average increases in
number of iterations for classes Grid-Density-16, Grid-Long, Grid-Wide, Mesh-1 and Netgen-Lo,
were respectively, 36%, 20%, 13%, 17% and 31%. Running times increased from a low of 5% to
a high of 60%. The average increases in running time for classes Grid-Density-16, Grid-Long,

NETWORK INTERIOR POINT INDICATORS 15

TABLE 6.4
Grid-Long problem family — CPU seconds

Dual Slacks Indicator 3

Vertices | Edges | Dynamic Fixed | Dynamic Fixed
1026 2000 Failed Failed 12.2 11.1
2050 3984 Failed Failed 46.6 384
4098 7952 Failed Failed 195.0 157.8
8194 | 15888 Failed Failed 745.6 518.1
16386 | 31760 Failed Failed 2222.2 19554
32770 | 63504 Failed Failed 6508.5 5597.3

TABLE 6.5
Grid-Wide problem family — iterations

Dual Slacks Indicator 3

Vertices | Edges | Dynamic Fixed | Dynamic Fixed
1026 2096 26 25 25 24
2050 4208 74 Failed 36 31
4098 8432 Failed Failed 40 35
8194 | 16880 Failed 97 46 39
16386 | 33776 Failed Failed 53 47
32770 | 67568 Failed Failed 60 54

Grid-Wide, Mesh-1 and Netgen-Lo, were respectively, 39%, 22%, 18%, 29% and 38%. Time per
iteration increased in all but three instances. The average increases in time per iteration for classes
Grid-Density-16, Grid-Long, Grid-Wide, Mesh-1 and Netgen-Lo, were respectively, 3%, -3%, 5%,
10.6% and 4.7%.

e Though the fixed step size approach used in this study does not guarantee global convergence, it
did, for these instances, work well. This can perhaps be explained by the fact that the iterates
in these experiments were always “well centered.” Tsuchiya & Monteiro [18] have shown that if
the iterates remain in some sense well centered, then a step size asymptotically approaching 1 will
produce a superlinear globally convergent affine scaling algorithm.

6.1. Default parameter setting. The performance of DLNET in the examples described ear-
lier in this section does not fully reflect the code’s capability. In the following, we run DLNET using
the version 2.2a default parameter setting. With those settings the code uses the “fixed” step size
rule, checks for optimality using the primal basic optimality checking [13] at every iteration, and
the maximum flow optimality checking, using Indicator 3 with parameters g = 0.55 and x; = 0.95,
beginning at DAS iteration 25 with an initial frequency of 25 iterations. When Z*¥ < 0.001 the
frequency is reduced to 5 iterations and then to every iteration when Z¥ < 0.0000001. We require a
primal-dual optimal integer solution to stop with either optimality test.

Instances identical to those used in the indicator/step-size pair runs were generated for these
runs. For each problem family, a single table summarizes the runs, listing iterations and running
times, and the CPU time ratios between version 1.4b (used in [13]) and version 2.2a of DLNET. Besides
the new indicator, version 2.2a was made more efficient by rewriting several sections of the code.
Table 6.11 summarizes the runs for problem family Grid-Density-16. Table 6.12 summarizes the
runs for problem family Grid-Long. Table 6.13 summarizes the runs for problem family Grid-Wide.
Table 6.14 summarizes the runs for problem family Mesh-1. Table 6.15 summarizes the runs for
problem family Netgen-Lo. We make the following remarks about the computational experiment:
e As we intended to show, the default parameters for DLNET produce improved running times

without compromising robustness.

16 MAURICIO G.C. RESENDE, TAKASHI TSUCHIYA AND GERALDO VEIGA

TABLE 6.6
Grid-Wide problem family — CPU seconds

Dual Slacks Indicator 3

Vertices | Edges | Dynamic Fixed | Dynamic Fixed
1026 2096 9.4 8.6 8.4 8.0
2050 4208 104.5 Failed 31.7 26.2
4098 8432 Failed Failed 93.6 79.1
8194 | 16880 Failed 1566.6 301.6 2374
16386 | 33776 Failed Failed 815.7 709.9
32770 | 67568 Failed Failed 20959 1735.8

TABLE 6.7
Mesh-1 problem family — iterations

Dual Slacks Indicator 3
Vertices | Edges | Dynamic Fixed | Dynamic Fixed
256 512 Failed Failed 16 16
1024 2048 Failed Failed 22 20
4096 8192 Failed Failed 40 31
16384 | 32768 Failed Failed 62 52
65536 | 131072 Failed Failed 60 47

e As compared to version 1.4b of the code, the latest version was faster on all but two instances,
where version 1.4b was faster because it took fewer iterations. For the largest instances in each
class, the decrease in running time went from a low of 8% to a high of 47%.

7. Concluding remarks. In this paper, we proposed three indicators based on new conver-
gence results for the affine scaling algorithm for linear programming. We described the implemen-
tation of one such indicator, used to aid the identification of the optimal primal-dual structure of a
minimum cost network flow problem. These indicators can be adapted to general linear program-
ming. The experimental study suggests that the new indicator is more robust than an indicator
previously used in the network code DLNET. The experiments further show that, for the instances
tested, the effectiveness of the indicator is not as sensitive to step size as suggested by theory.

NETWORK INTERIOR POINT INDICATORS

TABLE 6.8
Mesh-1 problem family — CPU seconds

17

Dual Slacks Indicator 3
Vertices | Edges | Dynamic Fixed | Dynamic Fixed
256 512 Failed Failed 1.1 1.0
1024 2048 Failed Failed 9.1 7.7
4096 8192 Failed Failed 197.6 136.3
16384 32768 Failed Failed 2651.8 2017.1
65536 | 131072 Failed Failed 16332.5 11688.4
TABLE 6.9
Netgen-Lo problem family — iterations
Dual Slacks Indicator 3
Vertices | Edges | Dynamic Fixed | Dynamic Fixed
1024 8214 32 28 33 27
2048 16414 45 34 45 35
4096 32858 Failed Failed 47 36
8192 65734 Failed Failed 55 43
16384 | 131409 64 48 62 47
32768 | 262903 Failed Failed 79 54
TABLE 6.10
Netgen-Lo problem family — CPU seconds
Dual Slacks Indicator 3
Vertices | Edges | Dynamic Fixed | Dynamic Fixed
1024 8214 34.3 30.1 35.0 27.8
2048 16414 118.8 89.5 117.1 86.9
4096 32858 Failed Failed 328.7 248.5
8192 65734 Failed Failed 1104.0 821.6
16384 | 131409 3993.2 28194 4410.9 3202.3
32768 | 262903 Failed Failed 13760.0 8580.8
TABLE 6.11
Grid-Density-16 problem family — default settings
v2.2a cpU | v1.4b / v2.2a
Vertices | Edges | Iterations seconds CPU ratio
1024 16384 48 110.2 1.30
2048 32768 51 304.7 1.43
4096 65536 55 808.1 1.26
8192 | 131072 71 2536.1 1.21
16384 | 262144 65 5847.9 1.17
32768 | 524288 66 14077.2 1.89

MAURICIO G.C. RESENDE, TAKASHI TSUCHIYA AND GERALDO VEIGA

TABLE 6.12
Grid-Long problem family — default settings

v2.2a cpU | v1.4b / v2.2a
Vertices | Edges | Iterations secs. CPU ratio
1026 2000 29 9.7 1.59
2050 3984 37 33.8 1.49
4098 7952 50 138.9 1.43
8194 | 15888 59 409.4 1.43
16386 | 31760 78 1578.6 1.50
32770 | 63504 101 4525.8 1.44
TABLE 6.13
Grid-Wide problem family — default settings
v2.2a cpU | v1.4b / v2.2a
Vertices | Edges | Iterations seconds CPU ratio
1026 2096 25 7.5 1.37
2050 | 4208 31 22.0 1.52
4098 8432 35 68.4 1.28
8194 | 16880 38 166.2 1.28
16386 | 33776 47 521.0 1.47
32770 | 67568 54 1110.6 1.36
TABLE 6.14
Mesh-1 problem family — default settings
v2.2a cpU | v1.4b / v2.2a
Vertices | Edges | Iterations seconds CPU ratio
256 512 15 1.0 1.49
1024 2048 20 6.4 1.29
4096 8192 30 117.7 0.93
16384 | 32768 52 1757.7 0.68
65536 | 131072 47 8594.6 1.37
TABLE 6.15
Netgen-Lo problem family — default settings
v2.2a cpU | v1.4b / v2.2a
Vertices | Edges | Iterations seconds CPU ratio
1024 8214 27 28.4 1.34
2048 | 16414 35 83.0 1.29
4096 | 32858 37 235.3 1.35
8192 | 65734 44 693.7 1.28
16384 | 131409 49 2260.7 1.31
32768 | 262903 95 6024.9 1.09

NETWORK INTERIOR POINT INDICATORS 19

Acknowledgment. The work of one of the authors (T. Tsuchiya) was based on research sup-
ported by the Overseas Research Scholars of the Ministry of Education, Science and Culture of
Japan.

REFERENCES

[1] I. ADLER, N. KARMARKAR, M. RESENDE, AND G. VEIGA, Data structures and programming techniques for the
implementation of Karmarkar’s algorithm, ORSA Journal on Computing, 1 (1989), pp. 84-106.
, An implementation of Karmarkar’s algorithm for linear programming, Mathematical Programming, 44
(1989), pp. 297-335.
[3] I. DIKIN, Iterative solution of problems of linear and quadratic programming, Soviet Mathematics Doklady, 8
(1967), pp. 674-675.
[4] , Determination of interior point of a system of linear inequalities, tech. report, Siberian Energy Institute,
Irkutsk, USSR, 1991.
[5] DIMACS, The first DIMACS international algorithm implementation challenge: The benchmark ewperiments,
tech. report, DIMACS, New Brunswick, NJ, 1991.
[6] L. HaLL aAND R. VANDERBEIL, Two-thirds is sharp for affine scaling, Tech. Report SOR-92/9, Department of
Civil Engineering and Operations Research, Princeton University, Princeton, NJ 08544 USA, 1992.
[7] N. KARMARKAR AND K. RAMAKRISHNAN, Computational results of an interior point algorithm for large scale
linear programming, Mathematical Programming, 52 (1991), pp. 555-586.
[8] C. MonMa AND A. MoORTON, Computational ezperiments with a dual affine variant of Karmarkar’s method for
linear programming, Operations Research Letters, 6 (1987), pp. 261-267.
[9] R. MoNTEIRO, I. ADLER, AND M. RESENDE, A polynomial-time primal-dual affine scaling algorithm for linear
and convexr quadratic programming and 1ts power series extension, Mathematics of Operations Research,
15 (1990), pp. 191-214.
[10] R. MoNTEIRO, T. TSUCHIYA, AND Y. WANG, A simplified global convergence proof of the affine scaling algorithm,
tech. report, Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ 85721,
1992.
[11] M. RESENDE AND G. VEIGA, Computational study of two implementations of the dual affine scaling algorithm,
tech. report, AT&T Bell Laboratories, Murray Hill, NJ, 1990.

(2]

[12] , An implementation of the dual affine scaling algorithm for minimum cost flow on bipartite uncapaciated
networks, tech. report, AT&T Bell Laboratories, Murray Hill, NJ, 1990. To appear in SIAM Journal on
Optimization.

[13] , An efficient implementation of a network interior point method, tech. report, AT&T Bell Laboratories,

Murray Hill, NJ, 1992. To appear in DIMACS Series in Discrete Mathematics and Theoretical Computer
Science.

[14] R. SAIGAL, A three step quadratically convergent implementation of the primal affine scaling method, tech.
report, Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor,
Michigan 48109-2217 USA, 1993.

[15] M. TopD AND B. BURRELL, An extension to Karmarkar’s algorithm for linear programming using dual variables,
Algorithmica, 1 (1986), pp. 409—424.

[16] T. TsucHiya, Global convergence of the affine scaling methods for degemerate linear programming problems,
Mathematical Programming, 52 (1991), pp. 377-404.

, Global convergence property of the affine scaling methods for primal degenerate linear programming
problems, Mathematics of Operations Research, 17 (1992), pp. 527-557.

[18] T. TsucHiYA AND R. MONTEIRO, Superlinear convergence of the affine scaling algorithm, tech. report, Institute
of Statistical Mathematics, Tokyo, 106 Japan, 1992.

[19] T. TsucHIYaA AND M. MURAMATSU, Global convergence of the long-step affine scaling algorithm for degemerate
linear programming problems, tech. report, The Institute of Statistical Mathematics, Tokyo, January 1992.

(17]

