AN OPTIMIZER IN THE TELECOMMUNICATIONS INDUSTRY

MAURICIO G. C. RESENDE

ABSTRACT. This article relates some combinatorial optimization problems en-
countered by an optimizer in an industrial research laboratory at AT&T, a
large telecommunications company. The article will appear in the Fall 2007
issue of STAM SIAG/Optimization Views-and-News which will try to cover
some aspects of the industrial applications of optimization and of the life of
optimizers at AT&T, IBM, and Exxon.

1. INTRODUCTION

The impact of telecommunications in modern life in the last 100 years is remark-
able. Telecommunications has evolved from telegraphy to landline local telephony,
to long distance telephony, to mobile telephony, and to the Internet, which now
carries voice, video, television, instant messaging, and makes electronic commerce
possible. Optimization problems are abundant in the telecommunications indus-
try and the successful solution of these problems has played an important role in
telecommunications and its widespread use. Optimization arises in problems as var-
ied as planning and design of optical and wireless networks, routing, restoration,
network survivability, e-commerce, and search engine design [30].

In this article, I relate some of the optimization problems I have run into while
a Member of Technical Staff at AT&T Bell Labs and AT&T Labs. I have worked
in the Algorithms and Optimization Research Department, headed by David S.
Johnson, since graduating with a Ph.D. in operations research from the IEOR De-
partment at UC Berkeley. Members of the Algorithms and Optimization Research
Department do research on theoretical and experimental algorithmics with a focus
on optimization. The department’s research spans topics such as computational
complexity, approximation algorithms, linear and integer programming, network
programming, network design, routing, location, data structures, algorithm engi-
neering, and metaheuristics.

Optimization problems reach us in many ways. Some problems are brought to
us by researchers in other fields who often have optimization problems they need to
solve. Other problems arise from business-related projects. Sometimes it may be
that we have previously done work related to that problem or on a related problem
and our tools (solution methods or software) can be directly applied to the problem.
In other circumstances, new tools may need to be developed.

The reader will observe that most of the examples described in this article in-
volve the use of metaheuristics [19] to find cost-effective solutions to combinatorial
optimization problems. Metaheuristics are high-level procedures that coordinate

Date: June 13, 2007. Revised October 22, 2007.
Key words and phrases. Telecommunications, optimization, metaheuristics.
AT&T Labs Research Technical Report TD-745RJS.

1



2 MAURICIO G. C. RESENDE

simple heuristics, such as local search, to find solutions that are of better quality
than those found by the simple heuristics alone. The metaheuristic most used in
this article is GRASP, or greedy randomized adaptive search procedures [15], and
hybridizations of GRASP with other metaheuristics. Other metaheuristics used are
path-relinking [18], genetic [27] and memetic [26] algorithms, variable neighborhood
search [21], and evolutionary path-relinking [33].

The article is organized as follows. In Section 2 we examine two problems that
arise in the management of points of presence of an Internet service provider. This
is followed in Section 3 with routing problems, in Section 4 with network design
problems, in Section 5 with network migration problems, and in Section 6 with a
data mining application. Concluding remarks are made in Section 7.

2. LOCATION PROBLEMS

An Internet Service Provider (ISP) offering dialup access needs to determine
where its modems will be located. Such a location is called a point of presence, or
simply a PoP. We describe two problems. In the first, PoP locations need to be
determined, while in the second, redundant PoPs need to be identified and shut
down.

2.1. PoP placement. In the mid-1990s, when AT&T planned the U.S. rollout of
its ISP (AT&T Worldnet), it was faced with the problem of where to locate the
PoPs. Given a fixed number of modem pools that could be deployed, a set of about
50,000 potential PoP locations, and the location of each AT&T customer, the task
was to determine the location of each modem pool such that the largest number of
customers would be able to place a “free” local call to at least one modem. Free
local calls in the U.S. are those made to numbers at most about 15 miles (24 km)
away.

For this maximum customer coverage problem we designed an LP-based tool to
compute an upper bound on the number of customers that could be covered and
a tool [29] that used the metaheuristic GRASP to compute a placement within
1% of the optimum. Besides being very happy with the near-optimum placements
produced by the tool, the planners also found the upper bound computation very
useful since it enabled them to estimate the minimum number of modem pools
needed to achieve a certain level of coverage.

2.2. PoP elimination. Over time, the GRASP-based tool was used to increase
the number of PoPs deployed and consequently the coverage. Though a call to a
PoP is free to the customer, it is not free to the ISP. Each PoP has an associated
network cost, which is the hourly rate paid by the ISP to the network company
transporting the access traffic. This hourly rate can vary greatly from PoP to PoP.

Since network costs and coverages of PoPs differ, an opportunity to eliminate
PoPs could arise as long as coverage remained unchanged and the cost did not
increase. In 2003, we conducted a study to determine if there were any PoPs that
could be eliminated. We formulated this as a p-median problem which we solved
with a tool based on a GRASP with evolutionary path-relinking [33].

Currently covered customers were grouped into about 70,000 exchanges. Each
exchange was a p-median user and each of 1035 PoPs was a p-median facility. The
distance, or cost, between a user and a facility was defined to be the network cost,
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FIiGURE 1. Two PoP placement solution are compared. The se-
lected PoPs are shown in black, the covered areas are grey, and
the uncovered areas are white. The area of coverage is indicated
by the dashed circle around the PoP. The bottom solution ({¢,d})
covers all of the areas while the solution on top ({b, c}) leaves two
areas (e and g) uncovered.

i.e. the product of the PoP rate and the number of hours used by the exchange.
Solving the p-median with p = 1035 resulted in the network cost with no PoP
eliminated. We wanted the smallest value of p that preserved this cost. By solving
a series of p-median problems with decreasing values of p, we determined that over
30% of the PoPs could be eliminated while maintaining the same coverage and not
increasing the network cost.

3. TRAFFIC ROUTING

Routing of traffic is perhaps the most critical operational problem in telecommu-
nication networks. We consider here two routing problems, the routing of virtual
private circuits and Internet traffic routing.
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3.1. Routing of private virtual circuits. Telecommunication service providers
offer virtual private networks to customers by provisioning a set of permanent
(long-term) private virtual circuits (PVCs) between endpoints on a large backbone
network. During the provisioning of a PVC, routing decisions are made either
automatically by the switch (or router) or by the network designer, through the
use of preferred routing assignments and without any knowledge of future requests.
Over time, these decisions usually cause inefficiencies in the network and occasional
rerouting of the PVCs is needed. The new routing scheme is then implemented
on the network through preferred routing assignments. Given a preferred routing
assignment, the network will move the PVC from its current route to the new
preferred route as soon as this move becomes feasible.

One possible way to create the preferred routing assignments is to appropriately
order the set of PVCs currently in the network and apply an algorithm that mimics
the routing algorithm used by the switch (or router) to each PVC in that order.
However, more elaborate routing algorithms, that take into account factors not
considered by the switch, could further improve the efficiency of network resource
utilization.

Typically, the routing scheme used to automatically provision PVCs is also used
to reroute them in case of network failures, such as trunks (that transport traffic
between routers) or cards (located on routers). Therefore, this routing algorithm
should be efficient in terms of running time, a requirement that can be traded off for
improved network resource utilization when building preferred routing assignments
offline.

We solved this problem with variants of a GRASP with path-relinking algorithm
for the problem of routing offline a set of PVC demands over a backbone network,
such that a combination of the delays due to propagation and congestion was min-
imized [28, 31]. This problem and its variants are also known in the literature as
bandwidth packing problems. The set of PVCs to be routed can include all or a
subset of the PVCs currently in the network, and/or a set of forecast PVCs. The
explicit handling of propagation delays, as opposed to just handling the number
of hops (as in the routing algorithm implemented in some switches) is particularly
important in international networks, where distances between backbone nodes vary
considerably. The minimization of network congestion is important for providing
the maximum flexibility to handle the following situations:

e overbooking, which is typically used by network designers to account for
non-coincidence of traffic;

e PVC rerouting, due to link or card failures; and

e bursting above the committed rate, which is not only allowed but sold to
customers as one of the attractive features of some services.

3.2. Routing of Internet traffic.

3.2.1. Intradomain routing. The Internet is divided into many routing domains,
called autonomous systems (ASes). ASes are networks that consist of routers and
links connecting the routers. When customer and peer routers are considered, these
ASes can have thousands of routers and links. ASes interact to control and deliver
Internet Protocol (IP) traffic. They typically fall under the administration of a sin-
gle institution, such as a company, a university, or a service provider. Neighboring
ASes use the Border Gateway Protocol (BGP) to route traffic.
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FIGURE 2. Example of OSPF weight setting. The demands shown
next to the network on top of the figure must be routed. All
links have capacity 35. Two solutions are shown on the bottom of
the figure. w(u,v) is the OSPF weight of link (u,v), the f(z,y)
indicated on each link is the amount of traffic originated at router
x and going to router y that passes through the link, and F' is the
total traffic on the link. The solution on the left is better than the
one on the right. It has a maximum utilization of 86% (link (b, d)),
while the other has a maximum utilization of 98% (link (b, ¢)).

The goal of intradomain traffic engineering consists in improving user perfor-
mance and making more efficient use of network resources within an AS. Interior
Gateway Protocols (IGPs) such as OSPF (Open Shortest Path First) and IS-IS
(Intermediate System-Intermediate System) are commonly used to select the paths
along which traffic is routed within an AS. These routing protocols direct traf-
fic based on link weights assigned by the network operator. Each router in the
AS computes shortest paths and creates destination tables used to direct each TP
packet to the next router on the path to its final destination. OSPF calculates
routes as follows. Each link is assigned an integer weight ranging from 1 to 65535.
The weight of a path is the sum of the link weights on the path. OSPF mandates
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FIGURE 3. Congestion cost comparison of genetic (GA) and hybrid
genetic (HGA), or memetic, algorithms on a 1-hour run on an IP
network with 90 routers and 274 links. HGA converges faster to a
better solution than the pure GA. LP lower bound is obtained by
solving a multi-commodity flow problem where traffic is allowed to
take any route.

that each router compute a graph of shortest paths with itself as the root. This
graph gives the least weight routes (including multiple routes in case of ties) to
all destinations in the AS. In the case of multiple shortest paths originating at a
router, OSPF is usually implemented so that it will accomplish load balancing by
splitting the traffic flow over all shortest paths leaving from each router. OSPF
requires routers to exchange routing information with all the other routers in the
AS. Complete network topology knowledge is required for the computation of the
shortest paths.

Given a set of traffic demands between origin-destination pairs, the OSPF weight
setting problem consists in determining weights to be assigned to the links so as to
optimize a cost function, typically associated with a network congestion measure.

We proposed two solution methods for this problem: a genetic algorithm [14]
and a hybrid genetic, or memetic, algorithm [8] incorporating a local improvement
procedure to the crossover operator of the genetic algorithm proposed in [14]. The
local improvement procedure makes use of an efficient dynamic shortest path algo-
rithm [9] to recompute shortest paths after the modification of link weights. The
memetic algorithm improved upon the pure genetic algorithm, producing better-
quality solutions in less time as can be seen in Figure 3. The memetic algorithm
was also shown to be more robust than the local search based approach of [16, 17].
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3.2.2. Interdomain routing. The Internet’s two-tiered routing architecture was de-
signed to have a clean separation between the intradomain and interdomain routing
protocols. For example, the interdomain routing protocol allows routers at the bor-
der of the AS to learn how to reach external destinations, whereas the intradomain
protocol determines how to direct traffic from one router in the AS to another.
However, the appropriate roles of the two protocols becomes unclear when the AS
learns routes to a destination at multiple border routers — a common situation to-
day. Since service providers peer at multiple locations, essentially all of the traffic
from customers to the rest of the Internet has multiple egress routers (routers in
which traffic leaves the AS). In addition, many customers connect to their provider
in multiple locations for fault tolerance and more flexible load balancing, resulting
in multiple egress routers for these destinations as well. Selecting among multi-
ple egress points is now a fundamental part of the Internet routing architecture,
independent of the current set of routing protocols.

In the Internet today, border routers learn routes to destination prefixes via BGP.
When multiple border routers have routes that are “equally good” in the BGP sense
(e.g., local preference, AS path length, etc.), each router in the AS directs traffic
to its closest border router, in terms of the IGP distances. This policy of early-exit
or hot-potato routing is hard-coded in the BGP decision process implemented on
each router, offering consistent forwarding of packets.

Although consistent forwarding is clearly an important property for any routing
system, we [34] believe that hot-potato routing is disruptive and convoluted. Small
changes in IGP distances can sometimes lead to large shifts in traffic, long conver-
gence delays, and BGP updates to neighboring domains. Network administrators
are forced to evaluate the impact of changes in the IGP metrics on BGP routing
decisions, rather than viewing the two parts of the routing system separately.

Selecting the egress point and computing the forwarding path to the egress point
are two very distinct functions, and we believe that they should be decoupled.
Paths inside the network should be selected based on some meaningful performance
objective, whereas egress selection should be flexible to support a broader set of
traffic-engineering goals. These objectives vary by network and destination prefix;
therefore a mechanism that imposes a single egress selection policy cannot satisfy
this diverse set of requirements.

In [34], we propose a new mechanism for each router to select an egress point for
a destination, by comparing the candidate egress points based on a weighted sum of
the IGP distance and a constant term. The configurable weights provide flexibility
in deciding whether (and how much) to base BGP decisions on the IGP metrics.
Network-management systems apply linear and integer programming techniques to
automatically set these weights to satisfy network-level objectives, such as balanc-
ing load and minimizing propagation delays. Our new mechanism is called TIE
(Tunable Interdomain Egress) because it controls how routers break ties between
multiple equally-good BGP routes. Our solution does not introduce any new pro-
tocols or any changes to today’s routing protocols, making it possible to deploy our
ideas at one AS at a time and with only minimal changes to the BGP decision logic
on IP routers.
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FIGURE 4. Two fiber networks are compared. Backbone node is
shown in black, potential revenue generating premises are shown
in grey, street corners and zero revenue producing premises are
shown in white. Deployed fiber is shown in bold. The top network
provides service to all potential revenue generating premises while
bottom network provides service only to profitable premises.

4. DESIGN PROBLEMS

Network design problems are among the most important applications of opti-
mization in telecommunications. We describe two instances of design problems
that we have worked on. In the first, we address the optimization of the tradeoff
between revenue generation by a network and the cost of building the network. In
the second, we consider survivable IP network design.

4.1. To lay or not to lay fiber. Telecommunication service providers often must
decide whether an investment to lay optical fiber cable to provide broadband service
to customers is worthwhile. There is a cost associated with laying fiber which
depends not only on the total length of the fiber but also on where and how the fiber
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is laid. For example, underground fiber could be more expensive than overground
fiber.

Given a geographic area made up of customer premises and street segments
connecting these premises, an estimate of the present value of potential revenue
that could be earned from each customer premise, and the present value of the cost
of laying fiber in each street segment, a service provider would like to maximize the
difference between the revenue earned from customers reached by the fiber and the
total cost of the fiber. An objective function value above some specified threshold
would indicate the feasibility of the investment.

This type of problem, called the prize-collecting Steiner tree problem, can be
used to order the attractiveness of different markets when rolling out services such
as broadband Internet access, IPTV, and voice over IP. In fact, our motivation
for studying this problem was the Telecommunications Act of 1996 which opened
up the telecommunications markets in the U.S. and allowed AT&T to compete in
local markets. With so many markets to choose to compete in, it was important to
determine which were the most attractive.

Work on implementing the approximation algorithm of Goemans and Williamson
[20] was done by Johnson et al. [24] and we were interested in accessing the quality
of the solutions found with the approximation algorithm. In [25], we proposed a
cutting planes algorithm to produce strong bounds for the prize collecting Steiner
tree problem and showed that most solutions found by the approximation algorithm
had a gap with respect to the bounds. In [11], we introduced a new type of GRASP,
where randomized construction is done by perturbing the data and applying an
approximation algorithm (in this case, the Goemans and Williamson algorithm) on
the perturbed problem. In addition to the construction, our heuristic consisted of
local search, path-relinking, and a variable neighborhood search post-optimization
phase. The GRASP heuristic applies the approximation algorithm at least one
time using the original data. Consequently, solutions that it produces are always
at least as good as those found by the approximation algorithm. On 84.2% of
114 benchmark test problems, solutions produced by the GRASP heuristic were
better than those produced by the approximation algorithm alone. On 91.2% of
the instances the solutions found by the GRASP heuristic were provably optimal.

4.2. Survivable IP network design. With the pervasiveness of IP networks in
telecommunications, an important question faced by network operators is how to
design robust cost-efficient networks on which traffic will be routed with OSPF.
Given a network topology (i.e., a set of nodes and a set of arcs where links can
be installed), predicted traffic demands, a set of link types to be deployed, each
having a different capacity and installation cost per mile, the survivable IP network
design problem consists in finding a set of OSPF arc weights and the number of
each link type deployed on each arc such that network cost is minimized. We
further require that in a no-failure or any node/arc failure situation there is enough
installed capacity to move all of the predicted traffic.

In [10], we proposed a genetic algorithm to find cost-efficient solutions for this
problem for the case in which there is a single link type and number of copies of
the link as well the link OSPF weights have to be determined. Since real networks
can be built using many different link types (e.g., OC3, OC12, OC48, OC196)
having different capacities as well as costs, in [4], we extended the design algorithm
described in [10] to handle different link types.
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5. NETWORK MIGRATION

Network migration arises when traffic is moved from an outdated network to a
new network. We consider in this section two applications of network migration:
migration of phone traffic from a 4ESS switch based network to a router based IP
network and telephone migration from an old PBX switch to a new PBX switch.

5.1. Voice traffic migration. Consider the problem where inter-nodal traffic from
an outdated telecommunications network is to be migrated to a new network. Nodes
are migrated, one at each time period, from the old to the new network. All traffic
originating or terminating at a given node in the old network is moved to a specific
node in the new network. Routing is predetermined on both networks and therefore
arc capacities are known. Traffic between nodes in the same network is routed in
that network.

Nodes are migrated, one at a time, in some predetermined order. When a node
is migrated, one or more temporary arcs may need to be set up since the node in
the new network to which the traffic is migrated may be adjacent to one or more
still active nodes in the old network. A temporary arc remains active until both
nodes connected by the arc are migrated to the new network.

In one version of the network migration scheduling problem, one seeks an ordering
of the migration of the nodes that minimizes the maximum sum of capacities of
the temporary arcs. In another version, the objective is to minimize the sum of the
total capacities of the temporary arcs over each period in the planning horizon.

We were motivated to look at this problem when AT&T began planning the
migration of its switch-based telephone traffic to a new router-based IP network.
In [6], we present a GRASP with evolutionary path-relinking for these two variants
of the migration problem.

5.2. PBX telephone migration. A PBX, or private branch exchange, is a private
telephone network such as call forwarding, call recording, call transfer, and voice
messaging.

Some PBX features require groups of phone numbers to be defined. These in-
clude, for example, multi-line hunt (MLH), call pickup (CPU), intercom (ICOM),
series completion (SC), and shared telephone number (STN) groups. An MLH
group consists of a cycle of phone numbers. When a call is made to a phone in the
cycle and the call is not answered, it is transfered to the next phone in the cycle.
This is repeated until someone picks up. A CPU group is a set of phone numbers
where any phone in the group can pickup a call made to any other phone in group.
Any phone in an ICOM group can speed dial to any other group member. A SC
group is an ordered list of phone numbers. If a call made to the first phone is not
answered, it is transfered to the next. This is repeated until someone picks up. If
the last phone in the list does not pick up, voice mail answers the call. An STN
group is a set of phone numbers for which calls made to them are answered by a
single phone (e.g. an assistant). In an enterprise there may exist several MLH,
CPU, ICOM, SC, and STN groups and a single phone number may be a member
of more than one group.

We consider a problem that arises when an enterprise acquires a new PBX to
replace an existing one. Phone numbers need to migrate from the old system to
the new system over a given time horizon. Each group has a penalty associated
with it. If two phones in a given group migrate in different time periods, then a
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Arc weight is sum of per-period
penalties associated with groups
both phones belong to.

total migration cost = 2 w(a,e) + w(a,c) + w(b.c) + w(c,d)

period 1 period 2 period 3

v v

FiGUurE 5. Example of PBX telephone migration. Five telephones
are to migrate over a three period horizon. In each period at most
two telephones can migrate. In the migration schedule shown, tele-
phones a and b are migrated in period 1, telephone c¢ is migrated in
period 2, and telephones d and e are migrated in period 3. Penal-
ties w(a,b) and w(d,e) do not contribute to the cost since both
a and b migrate in period 1 and d and e both migrate in period
3. Since a-c¢, b-c¢, and d-e migrate in consecutive periods, their
penalties are contributed once to the total cost. Since a and e are
scheduled two periods apart, their penalty contributes twice to the
total cost.

penalty is incurred. This penalty depends on the set of groups that these phones
both belong to as well as the amount of time between the migrations of each phone.
We further require that during each time period a specified maximum number of
phones are allowed to migrate and assume that there are sufficient periods in the
planning horizon to allow for a feasible schedule.

The objective is to schedule the migration plan so that the total migration
penalty is minimized. This involves assigning phone numbers to time periods such
that no more than the maximum number of phones are assigned to a single period.
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FIGURE 6. Macro structure of call detail graph. Graph is very
sparse with spread-out clusters of very dense sub-graphs. These
dense clusters can be interpreted as communities of interest.

We learned of this problem when we were contacted by people implementing
such a move for a large investment bank that acquired a new PBX from AT&T.
This problem involved migrating over 2500 phones belong to one or more of about
400 groups. Since there was a limit of 375 phones that could be moved per period,
the move could not be done in less than eight periods. Since moving phones sharing
one or more groups in different time periods could cause a business disruption, we
wanted to minimize any possible disruption caused by the migration. To do this we
assigned different penalties to phone pairs sharing different groups. Those groups
whose disruption would be the most critical had the largest penalties. In [5], we
present a GRASP with three local neighborhood structures for this problem.

6. DATA MINING

The proliferation of massive data sets [2] brings with it a series of special compu-
tational challenges to the optimization community. This data avalanche arises in a
wide range of scientific and commercial applications. With advances in computer
and information technologies, many of these challenges are being addressed by di-
verse inter-disciplinary groups, that include computer scientists, mathematicians,
statisticians and engineers, working in close cooperation with application domain
experts.

In 1997, we began exploring the massive graphs associated with telephone calls.
When we set out to study these graphs, we had no particular application in mind.
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We were simply interested in investigating the structure of these graphs. At that
time, each call made on the AT&T network generated a record of about 200 bytes
with information that included the pair of phone numbers involved in the phone call.
The set of all these records is the call detail database. About 250 million records
were generated on an average day in 1997 with around 320 million on a busy day,
corresponding to about 18 terabytes of data per year. Given a time window, a
call detail graph can be extracted from the database. In this directed graph, each
phone number is a node and for each call placed during the time window an edge
exists from the calling number to the called number. Because of privacy concerns,
the script that extracted the graph from the database mapped the phone numbers
to integers from 1 to n, where n is the number of phones involved in calls.

We describe an experiment involving 12 hours of calls in 1997 [1]. The cor-
responding graph had 53,767,087 vertices and over 170 million edges. We found
3,667,448 connected components out of which only 302,468 were components of
size greater than 3 (there were 255 self-loops, 2,766,206 pairs and 598,519 triplets).

A giant component with 44,989,297 vertices was detected. It is interesting to
observe that this is similar to what is predicted by random graph theory even though
the call graphs are certainly not random. The giant component has 13,799,430
directed depth first search trees (DFSTs) and one of them is a giant DFST (it has
10,355,749 vertices and 19,072,448 edges). Most of the DFSTs have no more than
5 vertices. The interesting trees have sizes between 5 and 100. Their corresponding
induced subgraphs are most of the time very sparse, except for some occasional
dense subgraphs with 11 to 32 vertices.

We argued that the largest clique in this component has size not greater than
32. Cliques are either within a subgraph induced by the vertices of a DFST, or
distributed among the different DFSTs. We expected the former to occur. There
are several large DFSTs, the largest having about 19 million edges. By counting
the edges in the trees, one observes that there remain very few edges to go between
trees and consequently it is more likely that cliques are within the graphs induced
by the nodes of a tree. Since the largest dense subgraph induced by the vertices of
a tree had 32 vertices, we did not expect many cliques larger that 32 to be found.

To begin our experimentation, we considered 10% of the edges in the large com-
ponent from which we recursively removed all vertices of degree one. This resulted
in a graph with 2,438,911 vertices and 5,856,224 edges, which fit in memory. In
this graph we searched for large cliques with a GRASP for maximum clique. Our
first motivation was to identify a lower bound on the size of the maximum clique
so that we could delete higher-degree vertices on larger portions of the graph to
possibly identify larger cliques. The GRASP was repeated 1000 times, with each
iteration producing a locally maximal clique. Though applying local search on ev-
ery constructed solution may not be efficient from a running time point of view,
we applied local search to all constructed solutions to explore its effect in improv-
ing clique sizes. Because of the independent nature of the GRASP iterations and
since our computer was configured with 20 processors, we created 10 threads, each
independently running GRASP starting from a different random number generator
seed.

Table 1 summarizes the first part of the experimental results. It shows, for each
clique size found, the number of GRASP iterations that constructed or improved
such solution, and from sizes 5 to 15, the number of distinct cliques that were
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TABLE 1. Cliques found by construct and local

cliques found by  distinct
size | construct local | cliques
2 63 62
3 473 320
4 95 176
5 73 103 14
6 116 95 11
7 59 38 25
8 54 63 28
9 22 33 14
10 17 10 9
11 15 38 35
12 10 32 22
13 1 26 18
14 0 3 3
15 0 1 1

found by the GRASP iterations. It is interesting to observe that these cliques, even
though distinct, share a large number of vertices. Applying a greedy procedure to
these cliques to identify a disjoint set of cliques produced one clique of size 15, 12,
9, and 7, four cliques of size 6, and five of size 5.

Next, we considered 25% of the edges in the large component from which we
recursively removed all vertices of degree 10 or less. The resulting graph had 291,944
vertices and 2,184,751 edges. 12,188 iterations of GRASP produced cliques of size
26.

Having found cliques of size 26 in a quarter of the graph, we next intensified our
search on the entire huge connected component. In this component, we recursively
removed all vertices of degree 20 or less. The resulting graph had 27,019 vertices
and 757,876 edges.

Over 20,000 GRASP iterations were carried out on the 27,019 vertex — 757,876
edge graph. Cliques of 30 vertices were found. These cliques are very likely to
be optimal because we do not expect cliques larger than 32 vertices to be found.
The local search can be seen to improve the constructed solution not only for large
constructed cliques, but also for small cliques. In fact, in 26 iterations, constructed
cliques of size 3 were improved by the local search to size 30.

Finally to increase our confidence that the cliques of size 30 found were maxi-
mum, we recursively removed all vertices of degree 30 or less, resulting in a graph
with 8724 vertices and about 320 thousand edges. We ran 100,000 GRASP itera-
tions on the graph taking 10 parallel processors about one and a half days to finish.
The largest clique found had 30 vertices. Of the 100,000 cliques generated, 14,141
were distinct, although many of them shared one or more vertices.

Quasi-cliques are dense sub-graphs, i.e. they are cliques with a few missing
edges. To compute quasi-cliques [3] on this test data, we looked for large quasi-
cliques with densities 90%, 80%, 70%, and 50%. Quasi-cliques of sizes 44, 57, 65,
and 98, respectively, were found.
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It was surprising to us that in only 12 hours of phone calls we found groups of
30 phone numbers where each one either called or was called by all 29 others and
groups of 98 where each called or was called by at least half of the other phones.
To date, this is the research that we have been involved with that has received the
most attention from the media [7, 12, 13, 22, 23].

7. CONCLUDING REMARKS

In this article, we show a sample of optimization problems that arise in an op-
timization research department at a telecommunications service provider. Most of
the interesting questions we see are NP-hard combinatorial optimization problems.
Though we make use of linear and integer programming solvers in many instances,
for most cases we use metaheuristics. Metaheuristics, such as GRASP with path-
relinking [32], are widely applicable, produce cost-efficient solutions, are relatively
easy to implement, and therefore can quickly provide good-quality solutions to
problems that arise in practice.
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