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Abstract. Motivated by a real-world vehicle routing application, we consider
the maximum-weight independent set problem: Given a node-weighted graph,

find a set of independent (mutually nonadjacent) nodes whose node-weight

sum is maximum. Some of the graphs airsing in this application are large,
having hundreds of thousands of nodes and hundreds of millions of edges.

To solve instances of this size, we develop a new local search algorithm,

which is a metaheuristic in the greedy randomized adaptive search (GRASP)
framework. This algorithm, which we call METAMIS, uses a wider range of

simple local search operations than previously described in the literature. We

introduce data structures that make these operations efficient. A new variant of
path-relinking is introduced to escape local optima and so is a new alternating

augmenting-path local search move that improves algorithm performance.
We compare an implementation of our algorithm with a state-of-the-art

openly available code on public benchmark sets, including some large instances

with hundreds of millions of vertices. Our algorithm is, in general, competitive
and outperforms this openly available code on large vehicle routing instances.

We hope that our results will lead to even better MWIS algorithms.

1. Introduction

Given an undirected graph G = (V,E), where V is the set of nodes and E the set
of edges, an independent set S ⊆ V is a set of mutually non-adjacent nodes of graph
G. If each node v ∈ V is assigned a weight wv, a maximum-weight independent set
(MWIS) of nodes S∗ ⊆ V is an independent set whose sum of weights,

W (S∗) =
∑
v∈S∗

wv

is maximum. We denote n = |V | and m = |E|.
MWIS is a classical optimization problem that has been extensively studied and

has many applications (Butenko, 2003). It is one of Karp’s original NP-complete
problems (Garey and Johnson, 1979; Karp, 1972). The problem is also hard to
approximate (H̊astad, 1999).

One can state MWIS as an Integer Linear Program – ILP (see Section 1.1). We
can solve small MWIS problems exactly using IP solvers, e.g., CPLEX, GUROBI,
or XPRESS, or a partial enumeration algorithm, such as the one proposed by Car-
raghan and Pardalos (1990). However, these methods do not scale to large graphs.
Over the years, heuristics have been the workhorse for solving large instances of the
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maximum independent set problem approximately (Pelillo, 2009). In particular, the
most successful heuristics have been the ones based on metaheuristic algorithms,
such as GRASP (Feo et al., 1994), tabu search (Friden et al., 1989), and iterated
local search (Andrade et al., 2012; Nogueira et al., 2018).

In this paper we introduce METAMIS, a new metaheuristic algorithm for the
MWIS problem. METAMIS is based on the greedy randomized adaptive search
procedure – GRASP (Resende and Ribeiro, 2016), with truncated path-relinking.
Our motivation is a long-haul vehicle routing (VR) application that yields large
MWIS problems, some with close to 900 thousand nodes. Compared to benchmark
instances used in previously published work, the VR-MWIS instances are often
larger and have a very different structure. We conduct experiments with METAMIS
on MWIS instances arising in different applications, including on our VR-MWIS
instances and on other publicly available ones.

The paper is organized as follows. In Section 2 we give a high-level descrip-
tion of the algorithm. Section 3 introduces the data structure and gives low-level
implementation details. We present experimental results in Section 4 and make
concluding remarks in Section 5.

1.1. ILP Formulation. Next we discuss several ILP formulations of MWIS. Let
xv be a binary decision variable such that xv = 1 if node v ∈ S ⊆ V and xv = 0
otherwise, where S is an independent set of nodes. A simple integer programming
(IP) formulation for selecting a maximum-weight independent set of nodes is

max
∑
v∈V

wvxv

subject to

xu + xv ≤ 1,∀ (u, v) ∈ E
xv ∈ {0, 1},∀ v ∈ V.

The objective is to maximize the sum of the weights of the nodes selected to be
in the independent set S. The constraints guarantee that all selected nodes are
mutually non-adjacent, i.e. for all edges in the graph, at most one node can be in
the independent set. Stronger formulations add clique inequalities (Padberg, 1973)
to the above formulation. For a 2-clique, or clique of size 2, denoted by C2 we have
xu + xv ≤ 1, for all (u, v) ∈ E. A 3-clique (C3) inequality is xu + xv + xt ≤ 1, for
all triangles, i.e. u, v, t ∈ V , such that (u, v) ∈ E, (u, t) ∈ E, and (v, t) ∈ E. In
general, for any clique Q, we have a constraint∑

v∈Q
xv ≤ 1.

Let C2, C3, . . . , Ck be, respectively, the sets of 2-clique, 3-clique, . . ., and k-clique
inequalities. The clique IP formulation for maximum weight independent set is:

max
∑
v∈V

wvxv

subject to

C2, C3, . . . , Ck,(1)

xv ∈ {0, 1},∀ v ∈ V.
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Other tight formulations for independent set can be found in Buchanan and Butenko
(2014).

In the linear programming (LP) relaxation of the problem, we allow fractional
solutions: xv ∈ [0, 1]. The relaxed problem is much simpler and can be solved by
an LP solver in reasonable time. We use an optimal solution to the LP relaxation
to improve the performance of our local search algorithm.

The fact that for some problems an LP relaxation can help to find a good fea-
sible solution is well-known. For example, for a class of IP problems, randomized
rounding of the optimal relaxed solution yields a solution with a provably good ap-
proximation ratio (Raghavan and Tompson, 1987). However, for MWIS, a rounded
solution may not be feasible. Our use of the relaxed solutions can be viewed as an-
other way of extracting information about good integral solutions from the relaxed
solution.

Note that as long as all 2-clique inequalities are present, for any set of additional
clique inequalities, the set of feasible integer solutions to the corresponding IP is the
same as for the simple formulation. Additional clique constraints make the linear
programming (LP) relaxation stronger.

Although our algorithm is a general-purpose heuristic, our motivation comes
from vehicle routing (VR) (Dong et al., 2021a;b). A variant of our algorithm takes
advantage of the application-specific structure for performance and solution quality.
In this application, we have a good initial solution. One can use this solution to
warm-start our MWIS algorithm. Our experiments show how much the warm-start
improves solution quality.

2. High Level Description

The MWIS algorithm is an iterative local search algorithm based on the Greedy
Randomized Adaptive Search Procedure (GRASP) metaheuristic, which is a gen-
eral metaheuristic for combinatorial optimization (Feo and Resende, 1989; 1995;
Resende and Ribeiro, 2016). The algorithm also uses path relinking to escape local
optima (Laguna and Mart́ı, 1999; Resende and Ribeiro, 2016).

Figure 1 gives a high-level view of the algorithm. In addition to the graph,
the input to the algorithm includes a stopping criterion, e.g., a time limit, and
an initial solution. In our application we have a good initial solution. When no
such solution is available, one can find a solution using the randomized greedy
algorithm described later in this section. The algorithm applies local search to
improve the initial solution and enters the main loop. At termination of the local
search procedure, we are at a local optimum.

The algorithm maintains a set of elite solutions ES, which are the best solutions
we have seen so far. We add a solution to ES immediately after a local search,
so the elite solutions are always locally optimal. At each iteration of the loop, we
first attempt to escape the local optimum corresponding to the elite solution. In
the process, we can decrease the objective function. To escape a local optimum,
we first find a randomized greedy solution SG. Optionally, we apply local search
to improve SG. Then we apply path relinking to SG and a random elite solution
from ES to find a new solution S′. Then we apply local search to improve S′, and
update S∗ if we find a better solution.

In our experiments, we omit the optional call to local search immediately after
path relinking because this variant of the algorithm seems to work better for the
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Algorithm 1 Algorithm Overview

1: procedure MWIS(G = (V,E,w), maxTime, S0)
2: S ← localSearch(G,S0)
3: ES ← {} . Empty set of elite solutions
4: ES.add(S)
5: while t ≤ maxTime do
6: SG ← findRandomizedGreedySolution(G)
7: if LsBeforeRelinking then . Optional local search
8: SG ← localSearch(G,SG)
9: end if

10: Se ← ES.randomEliteSolution()
11: S′ ← pathRelinking(G,SG, Se)
12: S′ ← localSearch(G,S′)
13: ES.tryToAddAndEvict(S′) . Add solution to elite set, if full evict

similar solution of lesser value (or don’t insert if no worse elite solution exists)
14: end while
15: return ES.bestSolution()
16: end procedure

VR-MWIS instances. We also set the size of the elite set ES to 1, so we only retain
the best solution. This setting works best for the VR-MWIS instances. For other
problem families, different parameter choices were found to work better (Kummer,
2020; Kummer et al., 2020).

2.1. Greedy Algorithm. We construct a greedy solution S as follows. To initialize
S, we add to it all zero-degree nodes and delete these nodes from the graph. Next,
we define η(v) = w(v)/degree(v) and create a list of the nodes sorted by η(v).
Initially the list contains all nodes. At every step, we remove node v with the
largest η(v) from the list, add v to S, and remove neighbors of v from the list. We
terminate when the list is empty.

To better explore the solution space, we need diverse solutions, so we randomize
greedy algorithm as follows. Instead of removing the node with the largest η(v)
value, we remove a random node from the set of k nodes with the largest values.
We set k to be a fraction of n, e.g., 10%.

The intuition behind the greedy algorithm is that a node with a large η(v) value
is more likely to be in an independent set of high weight. However, as we add
nodes to S and delete these nodes and their neighbors from the graph, residual
node degrees change. This motivates the adaptive greedy algorithm.

The adaptive algorithm maintains node degrees in the graph with nodes in S and
their neighbors deleted. We maintain a priority queue of nodes in the graph. If we
delete one or more neighbor of a node v, do the following. If degree of v becomes
zero, we add v to S and delete it from the graph. Otherwise, η(v) increases,
and we use increase-key operation to update the priority queue. Assuming that
the increase-key operation takes constant time and other priority queue operations
take logarithmic time (e.g., we use Fibonacci heaps (Fredman and Tarjan, 1986)),
the complexity of the greedy algorithm is O(m+ n log n).

In practice, for large graphs the adaptive algorithm is expensive. To mitigate
the problem, we use it in the first local search (line 2 of Algorithm 1), which results
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in a substantial improvement over using the deterministic algorithm. However we
use the latter algorithm in the main loop and rely on path relinking to improve
solution quality. We do not randomize the adaptive greedy algorithm as we only
use it once, in the first local search.

Algorithm 2 Local Search Procedure

1: procedure LocalSearch(G = (V,E,w), S,numIterations)
2: i← 1
3: S∗ ← S
4: while i ≤ numIterations do
5: Si ← {} . Empty solution
6: while w(Si) < w(S) do . Repeat until no improvement is found
7: Si ← S
8: S ← starOneMoves(G,S)
9: S ← AAPMoves(G,S)

10: S ← oneStarMoves(G,S)
11: if w(Si) < w(S) then return . Solution improved
12: end if
13: S ← twoStarMoves(G,S)
14: end while
15: if w(S) > w(S∗) then
16: S∗ ← S
17: i← 1
18: else
19: S ← perturb(S)
20: end if
21: end while
22: end procedure

2.2. Local Search. The local search procedure, outlined in Figure 2, repeatedly
performs local moves with positive gain. We aim to find positive gain (improving)
moves until we reach a local optimum, and then we perform a random perturbation
of the solution. If we find an improving move, we apply it immediately. We use a
subset of (x, y) moves and alternating augmenting path moves (AAP-moves). While
the (x, y) moves have been studied previously, the AAP moves are new. We describe
the moves at a high level in this section, and give a detailed description in Section 3.

An (x, y) move removes x nodes from the solution and adds y nodes to it while
maintaining solution independence. We use ∗ instead of x or y to denote an arbi-
trary positive integer. Note that the number of applicable moves increases signifi-
cantly as x and y increase. Previous algorithms used (x, y) moves for small values
of x and y. In particular, the algorithm of Nogueira et al. (2018) uses (∗, 1) and
(1, ∗) moves. Our algorithm uses (∗, 1), (1, ∗), and (2, ∗) moves. The number of
(2, ∗) moves is large. We use data structures and operation ordering that make
improving moves more likely, which makes our algorithm more efficient.

If an (x, y) move renders S non-maximal, we add nodes without a neighbor in
S to the independent set in random order until S becomes maximal. Note that
through this update sequence, S remains an independent set.
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A (∗, 1) move is the simplest. It inserts a single node u into the current solution
S and removes its neighbors from S. Procedure starOneMoves(G,S) applies the
(∗, 1) moves while no such improving move.

A (1, ∗) move removes a node v from S and adds to S an independent subset
I of the nodes whose only neighbor in S before the removal is v. Usually one
has multiple choices of independent sets to add. A good heuristic is to add a
maximum weight set of the neighbors that maintains independence. This is done
when the number of neighbors is small (at most seven in our experiments). We
use a naive recursive algorithm: Pick a node u in the neighborhood and recursively
solve two subproblems. The first subproblem results by adding u to S and deleting
its neighbors from the graph. We get the second subproblem by deleting u without
adding it to S. The better of the two corresponding solutions is returned. When
the neighborhood is big, a variant of the greedy algorithm of Section 2.1 is used. In
this case, however, we found that it is better to process nodes in descending order of
their weight w(v) and not of η(v) = w(v)/degree(v). Procedure oneStarMoves(G,S)
applies the (1, ∗) moves while no such improving move.

A (2, ∗) move removes two nodes, u and v, from S and adds to S an independent
subset I of the nodes whose only neighbors in S before the removal is u, or v,
or both u and v. Generally, this set is significantly larger than the corresponding
set for the (1, ∗) moves, and the recursive operation used for the (1, ∗) moves is
too expensive. One could use greedy addition, but in our experiments a random
addition, that adds to S a random node from I that has no neighbors in S, was
better. We also tried biased random addition that picks a node with probability
proportional to its weight, but uniformly random selection was better. Procedure
twoStarMoves(G,S) applies the (2, ∗) moves until it finds an improving move or
there is no improving (2, ∗) move. Note that unlike the corresponding procedures
for other moves, twoStarMoves exits as soon as it finds an improving move.

Our idea for AAP moves comes from matching algorithms (Edmonds, 1965),
although we use a somewhat different definition. Given an independent set S, we
define an AAP P as follows. Let I = S ∩P and O = P − S be nodes of P that are
in and out of S, respectively.

(1) if v ∈ I, then the neighbors of v on P are in O,
(2) if v ∈ O, then the neighbors of v on P are in I,
(3) if we flip the path, i.e., set S = S − I +O, S remains an independent set.

An AAP move finds an alternating augmenting path, flips it, and looks at the change
in w(S). If the change is positive, we accept the AAP move; otherwise we reject
the move. For efficiency, we apply a limited number of AAP moves. We postpone
the details of finding the AAP moves until Section 3. Procedure AAPMoves(G,S)
applies the AAP moves while no such improving move.

During an execution of the algorithm, most local search moves do not improve
solution quality and thus do not change the solution. Note that complexity of eval-
uating (2, ∗) moves is significantly higher than those for the other moves. Our local
search repeatedly applies starOneMoves, AAPMoves, and oneStarMoves procedures
while these procedures find improving moves. If we find an improving move, an im-
mediate application of these procedures may find additional improvements due to
neighborhood changes, so we iterate. Only when these procedures fail to find im-
proving moves we call twoStarMoves. If twoStarMoves fails to improve the solution,
we perform a random perturbation.
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The perturbation adds a small set of random nodes to S and removes their
neighbors. After perturbing, we resume local search. The local search algorithm
terminates if there has been no improvement to the best solution after a predefined
number of iterations.

2.3. Using the Relaxed LP Solution. In our VR application, we use clique
information and get a relaxed LP solution to the relaxed problem (1). The solution
assigns a value xv ∈ [0, 1] to each node v. We use these values to bias random node
selection in the perturbation step of the local search. When performing a random
perturbation in Algorithm 2, we add a node v to the solution with probability
proportional to xv + ε. Here ε is a positive value (set to ε = 0.005) that ensures
that each node can be picked, even if xv = 0. This guides the local search by biasing
route selection toward nodes with higher fractional relaxed solution value. The idea
is that a node with a high value in the relaxed solution is more likely to be part
of a good solution for the MWIS. Using prefix sums we can pick a random node in
time O(log |V |): We draw a random floating-point number z ∈ [0,

∑
v∈V xv) and

use binary search on the prefix sum array to pick a node such that the sum up to
but excluding the node is less than z, and the sum up to and including the node is
greater or equal to z.

2.4. Adaptive Path Relinking. Path relinking is a technique for escaping local
optima. We discuss this technique in the context of MWIS, assuming that the local
search moves are symmetric: the reverse of a move is a valid move. Define an undi-
rected graph associated with the search space MWIS, where the nodes correspond
to feasible solutions and the edges correspond to local search moves that transform
the solution corresponding to the tail of the edge to the solution corresponding
to the head. A path in this graph corresponds to a sequence of the moves that
transform the solution at one end of the path into a solution at the other end. Note
that the moves need not improve the objective function value. The underlying as-
sumption of path relinking is that if the end-points of a path correspond to high
quality solutions, then the path will contain previously undiscovered high-quality
solutions.

For our local search, given two solutions S and T , we can transform S into T as
follows. Initialize S′ = S. At every step, we do either a (∗, 1) move or a (1, ∗) move.
In the former case, pick a node v ∈ T − S′, add v to S′, and remove neighbors of v
from S′. In the latter case, pick a node v ∈ S′, v 6∈ T and remove v from S′. Let
N(v) denote the set of neighbors of v. Then we iterate over nodes u in N(v) ∩ T .
If N(u) ∩ S′ = ∅, we add u to S′.

For large graphs, finding good solutions is expensive. Instead of combining two
good solutions, we apply path relinking to combine the randomized greedy solution
SG with the current best solution S∗, which is locally optimal. While S∗ is a good
solution, SG may not be good, and the solutions on the path far from S∗ are usually
not good either. We modify path relinking so that it examines only a prefix of the
path close to S∗. The prefix is small enough so that the solution quality remains
good, yet big enough so that the subsequent local search will not end up with a
locally optimal solution equivalent to S∗. This an adaptive variant of the truncated
greedy path relinking described in Resende et al. (2010).

The first modification is to choose the node x to add to S or to remove from S
greedily. We pick a node that maximizes the weight of the solution we get after
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the move. A second modification is to do a truncated path relinking: we stop the
process after a certain number of steps, which we adjust adaptively. We start with
a small limit on the number of steps and increase the limit if the algorithm gets
stuck in a local optimum of weight w(S∗).

More precisely, we stop if the weight factor f = w(S)/w(S∗) is smaller than a pre-
defined limit, or we performed more than cn negative gain changes, or made more
than cp < cn positive gain moves. Positive gain moves help us escape local optima,
as they will not be undone by the (1, ∗) moves of the subsequent local search. We
set the initial parameter values as follows: f = f0 = 0.9998, cn = cn0 = 1.0 and
cp = cp0 = 0.1. If w(S) = w(S∗) after local search on S, we multiply f ′ = f ·0.9998,
c′n = cn · 1.5 and cp = cp · 1.5. If w(S) 6= w(S∗), we reset the limits to their initial
values. If the local search algorithm finds a solution S with w(S) = w(S∗), we
check whether the solutions are equivalent and terminate local search if they are.
Two solutions are equivalent if they are the same or if we can transform one into
another by zero-gain (1, ∗) and (∗, 1).

3. Data Structures and Optimizations

As we are interested in solving problems on graphs with hundreds of millions of
edges, the choice of data structures is important for the efficiency of the algorithm.
When making trade-offs between performance on sparse and dense graphs we favor
the former because our motivating application yields relatively sparse graphs.

Several of our data structures use sets of objects. We use a representation of
sets based on hashing. This representation allows constant time addition, deletion,
and membership query, and linear time iteration over all set elements. We also
assume that if we add an element to the set that already contains the element, the
set does not change. Similarly, if we delete an element not in the set, the set does
not change.

3.1. Input Graph. The input graph is static: it does not change throughout the
execution. We assign to the nodes of the graph integer IDs from [0, . . . , n − 1]
and place them in an array, with node i in position i. Each node has an array of
edges incident to it. This places the edges incident to a node in contiguous memory
locations, assuring that a common operation of scanning an edge list has a good
memory locality. We sort edges by IDs of the head node. This allows us to do
neighborhood queries (e.g., “Is v in N(u)?”) in time logarithmic in the degree of u
using binary search.

Note that using sets to represent neighborhoods would give constant neighbor-
hood queries and linear time edge list scan. However, the constant factors, both
in terms of running time and memory consumption, associated with hashing are
large. In addition, we lose the locality in edge list scans. For graphs arising from
our motivating application, the array-based implementation is significantly faster
than the one based on sets.

3.2. Interstate Graph. The interstate graph makes the local search operations
more efficient. To describe this graph, we need a few definitions.

For a node u ∈ S, (u, v) ∈ E, we say that v is a 1-tight neighbor of u if N(v)∩S =
{u} (Andrade et al., 2012). Note that if we remove u from S, we can add to S any
1-tight neighbor of u.
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Two nodes u, v ∈ S are mates if for at least one node w 6∈ S, w has exactly two
neighbors in S: N(w) ∩ S = {u, v}. We call the node w a 2-tight neighbor of u
and v. We say that w is a 2-tight neighbor of u if u has a mate v such that w is a
2-tight neighbor of u and v. If we delete u and v from S, we can replace them by
an independent set of the union of three sets: the set of the 1-tight neighbors of u,
the set of 1-tight neighbors of v, and the set of the shared 2-tight neighbors of u
and v.

Our main data structure is the interstate graph GIS = (V,EIS , w). For GIS , the
nodes and node weights are the same as in the input graph G. The edge set EIS

is changed dynamically depending on the nodes in the current independent set S.
EIS has three types of edges:

(1) e = (u, v) ∈ E, where u ∈ S and v is a 1-tight neighbor of u;
(2) e = (u,w) ∈ E, where u ∈ S and w is a 2-tight neighbor of u;
(3) e = (u, v), where u, v ∈ S are mates.

We represent the three edge types separately.

(1) For every u ∈ S, we represent its 1-tight neighbors as sets. For v 6∈ S that
is a 1-tight neighbor of u we add the 1-tight edge (v, u).

(2) For every pair of mates u and v, we maintain a set of 2-tight neighbors of u
and v. For every 2-tight neighbor w 6∈ S, we add the pair of 2-tight edges
(w, u) and (w, v).

(3) For every node v in S, we maintain a set Mv of its mates. Every mate
w ∈Mv corresponds to a mate edge (v, w).

3.3. Efficient Implementation of (x, y) Moves. In this section we show how
to efficiently implement (x, y) moves using the interstate graph and two additional
optimizations, one for the (1, ∗) moves and another for (∗, y) moves. We discuss
maintenance of the interstate graph in Section 3.2.

To implement (∗, 1) operations efficiently, we use an idea from Nogueira et al.
(2018). For every u 6∈ S, we maintain a value

∆(u) = w(u)−
∑

v∈S∩N(u)

w(v)

to speed up the (∗, 1) moves. Such a move is an improving move when ∆(u) >
0. We keep a set S+ of the nodes u with ∆(u) > 0. Note that for an efficient
implementation of (∗, 1) moves, we need to update the vector ∆(·) and the set S+.
We do this as follows. Every time we add a node u to S, we remove u from S+.
Then for each v ∈ N(u), v 6∈ S, we set ∆(v) = ∆(v) − w(u). Every time we
remove u from S, we scan the edge list of u and compute ∆(u). If ∆(u) > 0, we
add u to S+. Also during the scan, for every neighbor v of u such that v 6∈ S, we
increase ∆(v) by w(u), and if ∆(v) becomes positive, we add v to S+. We have an
improving (∗, 1) move if and only if S+ is non-empty. In this case, we can pick a
node u from S+ and apply the (∗, 1) move to it.

Since for every u ∈ S we maintain a set of its 1-tight neighbors as a hash set, we
can efficiently run the recursive or the greedy algorithm described in Section 2 on
this set. Similarly, since for every u ∈ S we maintain the set of its mates, we can
iterate over all mates of u. Furthermore, for a pair of mates u and v, we have the
set of the common 2-tight neighbors, and we can apply the randomized algorithm
to this set.
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Next we describe an optimization that prunes (1, ∗) and (2, ∗) moves that are
unlikely to improve the solution. For the (1, ∗) move that removes u, we evaluate
the move only if the 1-tight neighborhood of u changed since the last time we eval-
uated the move but failed to improve the solution. We say that the neighborhood
changed if we add u to S and u has a non-trivial 1-tight neighborhood. Since our
implementation of the (1, ∗) move is deterministic and depends only on the 1-tight
neighborhood, we know that the move will fail. We maintain the set S1 of nodes
u ∈ S whose 1-tight neighborhood changed but is not empty. We pick nodes for
(1, ∗) moves from S1. While initializing GIN , we initialize S1 to include all nodes
with non-trivial 1-tight neighborhoods. When we update GIN , we also update S1

(see Section 3.5).
For the (2, ∗) move, we maintain a set S2 of mate pairs {u, v} which are eligible

for the move. We delete a pair from S2 and evaluate the move that removes this pair
from S. We add a pair {u, v} to S2 when they become 2-tight mates, or when {u, v}
are 2-tight mates and their 2-tight neighborhood changes, or when they are 2-tight
mates and the 1-tight neighborhood of either u or v changes. Our implementation
of the (2, ∗) move depends only on the 2-tight neighborhood of the mates. However,
the implementation is randomized. Although it is possible that one evaluation of
the move succeeds and another fails when the 2-tight neighborhood stays the same,
we assume this is unlikely and prune the move. We maintain the set S2 of mates
whose 2-tight neighborhood changed. We pick mates for (2, ∗) moves from S2.
While initializing GIN , we initialize S2 to all pairs of mates. When we update GIN ,
we update S2 as well.

3.4. AAP Moves. For efficiency, we only look for alternating augmenting paths
(AAPs) in the interstate graph. The only edges on any AAP are either edges
from members of S to their 1-tight and 2-tight neighbors (as edges between 2-tight
mates would not yield an alternating path). To limit the number of AAP move
evaluations, we start a search for an AAP from a 1-tight neighbor of v ∈ S1 (S1 was
introduced in Section 3.3). This way we guarantee that the move will not decrease
the cardinality of S, making the move more likely to succeed. The alternating path
initially contains v and its single neighbor u ∈ S. We grow the path as follows. Let
u ∈ S be the last node on the current AAP, and let U be the set of nodes on the
AAP that are in S and Ū be the set of nodes on the AAP that are not in S. We
pick a mate w and a 2-tight neighbor x of u such that

• x is not a neighbor of any node of Ū in the input graph (so that the extended
path will be an AAP),

• neither x nor w are already in AAP,
• the gain of flipping the extended path is maximized.

If we succeed in finding such a {w, x} pair, we add w and x to the path. Then
we redefine u to be x and continue growing the path. To introduce additional
randomness, we increase the gain for every {w, x} pair by a random real number
ε ∈ [−δ, δ] and maximize the perturbed gains. We use δ = 50 in our experiments.
We terminate the search if the length of the path exceeds a threshold or the gain of
flipping the path falls below a (negative) threshold. We then perform the highest
positive gain move that flips a prefix of the final path. If no positive gain move is
encountered, we do nothing (the move fails).
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3.5. Maintaining the Interstate Graph. The vast majority of the local search
moves we evaluate do not improve the solution and GIN does not change. We
need to update the graph only when a move succeeds, which happens rarely. Our
data structures speed up move evaluations and support move pruning. The added
overhead is in data structure initialization and updates. The update complexity is
non-trivial, but for sparse graphs the complexity is much smaller than the time we
save due to the improved move efficiency and pruning.

Let ρ(u) = |N(u) ∩ S| denote the number of the neighbors of u in S. Note that
for nodes u ∈ S, ρ(u) = 0. We maintain ρ(u) for all nodes u ∈ V .

Given an initial solution S, we build GIN , S1, and S2 as follows. We process all
nodes u 6∈ S. For each u, we scan its edge list in G and initialize ρ(u). If ρ(u) = 1,
we let N(u)∩S = {v}, add the 1-tight edge (u, v) to the edge list of u in GIN , and
add u to the set of 1-tight neighbors of v. If ρ(u) = 2, we let N(u) ∩ S = {v, w},
add v to the set of mates of w and add w to the set of mates of v. We also add the
pair of 2-tight edges (u, v) and (u,w) to GIN . Finally, we add u to the set of 2-tight
neighbors of the mates {v, w}. We initialize S1 to the set of all nodes u ∈ S with
non-empty set of 1-tight neighbors. We initialize S2 to the set of all mate pairs
{u, v}. The initialization takes linear time.

Our algorithm updates S by removing a set of nodes S− and adding a set of
nodes S+. We break the update into a sequence of single-node updates: first we
remove nodes of S− one by one, then we add nodes of S+ one by one. We update
GIN after each individual update of S.

After removing a node u from S, we empty its set of 1-tight neighbors and remove
u from S1. For each mate v of u, we set the corresponding set of 2-tight neighbors
to empty and remove u from the set of mates of v. We also remove the pair {u, v}
from S2. Afterwards, we empty the set of mates of u. We then visit its neighbors
v ∈ V \S. For each neighbor v, we decrement ρ(v). We need to update GIN if ρ(v)
becomes zero, one, or two.

Cases for zero and two are simpler. If the value is zero, we set the 1-tight
neighbor of v to null. If the value is two, let N(v) ∩ S = {a, b}. We can find a and
b by scanning the edge list of v in G. We add a to the set of mates of b and vice
versa. We also add v to the set of 2-tight neighbors of {a, b}. Finally, we add the
2-tight pair of edges (v, a) and (v, b) to GIN .

If the value is one, we have to update both the old 2-tight neighborhood and the
new 1-tight neighborhood. For the latter, we set the 1-tight neighbor of v to the
unique neighbor w ∈ S, and add v to the 1-tight neighbor set of v. For the former
update, note that v was a 2-tight neighbor for mates {v, w} for some w ∈ S before
the removal of v. We remove v from the set of 2-tight neighbors of w and delete
the 2-tight edge pair (v, u) and (v, w) from GIN .

Now consider the addition of a node u to S that maintains the independence of
S. We scan the edge list of u and for all neighbors v (guaranteed not to be in S)
and increment ρ(v). We need to update GIN if ρ(v) becomes one, two, or three.

Cases for one and three are simpler. If the value is one, we add the 1-tight edge
(v, u) to GIN , add v to the set of 1-tight neighbors of u, and add u to S1. If the
value is three, v has a pair of 2-tight edges (v, a) and (v, b), where a and b are
mates. We delete (v, a) and (v, b) from GIN . Then we remove v from the set of
2-tight neighbors of a and b. If the set becomes empty, a and b are no longer mates,
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so we remove a from the set of mates of b, remove b from the list of mates of a, and
remove {a, b} from S2.

If the value is two, we have to update both the old 1-tight neighborhood and
the new 2-tight neighborhood. For the former, let (v, w) be the 1-tight edge. We
remove the edge and remove v from the set of 1-tight neighbors of w. If the set
becomes empty, we remove w from S1. In the latter case, N(v) ∩ S = {v, w} for
some w ∈ S. We add u to the set of mates of w and vice versa. We also add v to
the set of 2-tight neighbors of v and w. Finally, we add {a, b} to S2.

Note that since when we add or remove u to or from S, we may need to scan edge
lists of multiple neighbors of u, updating GIN when G is dense may be expensive.

4. Experimental results

4.1. Algorithms and Computational Environment. We implemented our al-
gorithm, which we call METAMIS, in Java because it is used in a production system
at Amazon and Java is a requirement. For the same reason, we use doubles for node
weights. Furthermore, due to licensing restrictions, we use only standard Java li-
braries. We compiled our code using Java 8. Our choice of programming language
probably affected performance. A C++ implementation, for example, is expected
to be faster (Alnaser et al., 2012).

Although one can tune our algorithm for specific problem families, we use fixed
parameter settings in all experiments.

We compare our implementation to the ILSVND algorithm of Nogueira et al.
(2018). The publicly available code of Nogueira et al. (2018) is implemented in C++
and represents weights using integers. We made one modification to ILSVND: added
the ability to warm start from an initial solution. Given a solution in the input,
we initialize the current solution of ILSVND to the input solution. We compiled
ILSVND using full optimization (-O3) on an AWS r3.4xlarge instance (AWS, 2021).

For a given instance, algorithm time-quality plots give a lot of information about
relative performance of the algorithms. For example, one algorithm may dominate
another, or one can converge to a better solution but take longer to converge, etc.
The algorithms we compare are stochastic and algorithm performance depends
on the pseudo-random seed we use. Furthermore, the algorithms we compare do
not know if and when they reach an optimal solution. Usually there is a chance
that a solution may improve. However, the algorithms converge in a sense that it
may reach a point of diminishing returns when a substantial improvement becomes
unlikely. To compare the two algorithms, we put a time limit T on their executions.
For different problem families, the limit may be different. We run each instance with
five different pseudo-random seeds and report the best solution value the algorithm
finds. In many cases the algorithms converge. However, for harder problems this
may take too long, and the algorithms do not converge within the time limit.

For representative instances, we give the time-quality plots, but we have too
many instances to give all the plots. Therefore, we report solution quality at times
T/10 and T/2. In addition, we report the time t∗ defined as follows. For a given
problem instance, consider the set of final solution values over all algorithms and
seed values. Let s be the smallest one of these values. For a given algorithm,
consider the run producing the best final solution value. For this algorithm, we
define t∗ to be the earliest time this run reaches the value of s or higher, Intuitively,
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Table 1. VR instances

Graph |V | |E| Initial Sol. LP bound
MT-D-01 979 3 841 228 874 404 238 166 485
MT-D-200 10 880 547 529 286 750 411 287 228 467
MT-D-FN 10 880 645 026 290 723 959 290 881 566
MT-W-01 1 006 3 140 299 132 358 312 121 568
MT-W-200 12 320 554 288 383 620 215 384 099 118
MT-W-FN 12 320 593 328 390 596 383 390 869 891
MW-D-01 3 988 19 522 465 730 126 477 563 775
MW-D-20 10 790 718 152 522 485 254 531 510 712
MW-D-40 33 563 2 169 909 533 938 531 543 396 252
MW-D-FN 47 504 4 577 834 542 182 073 549 872 520
MW-W-01 3 079 48 386 1 268 370 807 1 270 311 626
MW-W-05 10 790 789 733 1 328 552 109 1 334 413 294
MW-W-10 18 023 2 257 068 1 342 415 152 1 360 791 627
MW-W-FN 22 316 3 495 108 1 350 675 180 1 373 020 454
MR-D-01 14 058 60 738 1 664 446 852 1 695 332 636
MR-D-03 21 499 168 504 1 739 544 141 1 763 685 757
MR-D-05 27 621 295 700 1 775 123 794 1 796 703 313
MR-D-FN 30 467 367 408 1 794 070 793 1 809 854 459
MR-W-FN 15 639 267 908 5 386 472 651 5 386 842 781
CW-T-C-1 266 403 162 263 516 1 298 968 1 353 493
CW-T-C-2 194 413 125 379 039 933 792 957 291
CW-T-D-4 83 091 43 680 759 457 715 463 672
CW-T-D-6 83 758 44 702 150 457 605 463 946
CW-S-L-1 411 950 316 124 758 1 622 723 1 677 563
CW-S-L-2 443 404 350 841 894 1 692 255 1 759 158
CW-S-L-4 430 379 340 297 828 1 709 043 1 778 589
CW-S-L-6 267 698 191 469 063 1 159 946 1 192 899
CW-S-L-7 127 871 89 873 520 589 723 599 271
CR-T-C-1 602 472 216 862 225 4 605 156 4 801 515
CR-T-C-2 652 497 240 045 639 4 844 852 5 032 895
CR-T-D-4 651 861 245 316 530 4 789 561 4 977 981
CR-T-D-6 381 380 128 658 070 2 953 177 3 056 284
CR-T-D-7 163 809 49 945 719 1 451 562 1 469 259
CR-S-L-1 863 368 368 431 905 5 548 904 5 768 579
CR-S-L-2 880 974 380 666 488 5 617 351 5 867 579
CR-S-L-4 881 910 383 405 545 5 629 351 5 869 439
CR-S-L-6 578 244 245 739 404 3 841 538 3 990 563
CR-S-L-7 270 067 108 503 583 1 969 254 2 041 822

we are comparing best runs of the algorithms being evaluated. The choice of s
assures that for each algorithm, t∗ is well-defined.

For graph algorithms, C++ is usually faster than Java by a factor from three to
six. We expect this to hold for our algorithm as well, especially since we make heavy
use of standard Java hash set library, which incurs significant overhead compared
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Table 2. Problem kernels of computer, road, and social (CRS) networks

Graph |V | |E|
web-Google 1 172 3 469
web-Stanford 3 167 8 805
as-Skitter 9 078 45 485
web-NotreDame 25 999 260 681
soc-LiveJournal1 41 917 240 765
web-BerkStan 71 315 162 587
roadNet-PA 264 199 414 923
roadNet-TX 315 459 492 722
roadNet-CA 505 103 787 106
soc-Pokec 906 926 10 188 576

to C++. Although we do not adjust the runtimes we report, one has to keep this
in mind that if re-implemented in C++, our algorithm would be faster.

We run our experiments on an AWS r3.4xlarge instance with 122GiB RAM and
16 virtual CPUs on Intel Xeon Ivy Bridge processors.

4.2. Benchmark Families. We use three problem families as benchmarks. The
first one, VR Instances (Dong et al., 2021a), comes from our vehicle routing appli-
cation. In this application, the MWIS problem comes up in several contexts, and
we have several instances for each of these contexts. Table 1 lists the instances with
their sizes. The number of nodes in these instances ranges from 979 to 883,238; the
number of edges ranges from 3,140 to 389,304,424. The instances are moderately
sparse, but the density tends to grow with the problem size. The average degree is
below 4 on some small instances and over 400 on some large ones.

Table 1 also gives values for the initial solutions we use and upper bounds on
optimal solution values. We obtain the upper bounds by solving the corresponding
LP relaxation problems to optimality. The initial solution are good: their values
are close to the upper bound. Note that an optimal solution may not achieve the
upper bound.

For VR instances, we have additional information: relaxed LP solutions and
initial solutions. We use this information in practice as it yields better results.
In our experiments, we give results both for runs with and runs without initial
solutions. We also run our algorithm with initial solutions but without the relaxed
solutions to see how much a good initial solution matters, and to have an apples to
apples comparison with ILSVND, which does not use this information.

The second problem family contains the CRS Instances. We derive these in-
stances from the computer, social, and road network instances studied by Lamm
et al. (2019). The underlying graphs are natural, but the MWIS instances do not
correspond to any real application. Lamm et al. (2019) describe an exact algorithm
that uses local transformations producing equivalent problems on smaller graphs.
For the Kernel instances, preprocessing based on these local transformations reduces
the graph size significantly. The resulting graphs are the kernel graphs. Although
the study of Lamm et al. (2019) focuses on exact algorithms, the authors men-
tion that one can combine the preprocessing with a heuristic to get a fast heuristic
algorithm. This is what we do. Our instances are kernel graphs for the graphs
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Table 3. Map labeling instance sizes

Name |V | |E| degree
florida AM3 1 069 62 088 62.3
alabama AM3 1 614 117 426 72.8
rhodeisland AM2 1 103 81 688 74.1
dc AM2 6 360 592 457 93.2
virginia AM3 3 867 485 330 125.5
northcarolina AM3 1 178 189 362 160.7
massachusetts AM3 2 008 373 537 186.0
kansas AM3 1 605 408 108 254.3
washington AM3 8 030 2 120 696 264.1
vermont AM3 2 630 811 482 308.5
dc AM3 33 367 17 459 296 523.3
oregon AM3 3 670 1 958 180 533.6
greenland AM3 3 942 2 348 539 595.8
idaho AM3 3 208 2 864 466 892.9
rhodeisland AM3 13 031 11 855 557 909.8
hawaii AM3 24 436 40 724 109 1 666.6
kentucky AM3 16 871 54 160 431 3 210.3

studied in Lamm et al. (2019). We use only the kernels with at least 1000 nodes
and disregard smaller instances. Table 2 lists the CRS kernel graphs we use. The
smallest graph has 1,172 nodes and 3,469 edges, and the largest has 906,926 nodes
and 10,188,576 edges. The graphs are sparse, with the average degree between 3
and 23.

We remark that we tried applying the preprocessing step to VR instances, but
the reduction in problem size was very small, below 2%. Therefore we do not use
the preprocessing for VR instances.

One difference for our CRS instances is the way we assign weights to nodes.
Lamm et al. use unweighted problem instances and assign uniform random weights.
The exact weights they use are not publicly available. This makes it hard to re-
produce the exact instances, especially when one uses a different language platform
with a different built-in random generator. We assign a node the weight equal its
ID modulo a constant (we use 200), which is reproducible.

We treat the kernel graph as an input for the algorithms we compare. When
reporting runtimes, we do not include the time to reduce a graph to the kernel
graph, and report solution values for the kernel graphs.

The third problem family we use is the Map Labeling Instances. These are also
kernel instances, but from a real map matching application, so we treat them as a
separate problem family. We obtained the instances from Sebastian Lamm (Lamm,
2020). The motivating problem is to place a subset of labels (names of cities, points
of interest, etc.) on a map at a given magnification level so that the labels do not
intersect. The assumption is that locations and geometry of the labels are fixed.
In the graph that models the problem, the labels correspond to nodes, and we
connect two nodes if their labels intersect. An independent set of the labels has
no overlaps. Node weights correspond to label importance. See Strijk et al. (2000)
for a discussion of unweighted version of the problem. Higher weight subsets of
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Table 4. Results on VR instances with no additional information.

METAMIS ILSVND
Name w10% w50% w t∗[s] w10% w50% w t∗[s]
MT-D-01 238 166 485 238 166 485 238 166 485 0.948 238 166 485 238 166 485 238 166 485 1.290
MT-D-200 286 976 422 287 048 909 287 048 909 188.1 286 838 210 286 838 210 286 943 799 2 276
MT-D-FN 290 866 943 290 866 943 290 866 943 104.4 290 393 532 290 666 380 290 666 380 561.6
MT-W-01 312 121 568 312 121 568 312 121 568 0.278 312 121 568 312 121 568 312 121 568 0.080
MT-W-200 383 818 136 383 961 099 383 961 323 1 433 383 865 836 383 896 403 383 896 403 1 036
MT-W-FN 390 688 944 390 830 057 390 854 593 568.1 390 715 890 390 798 842 390 798 842 709.2
MW-D-01 476 099 262 476 164 209 476 334 711 267.9 475 653 439 475 906 790 475 906 790 1 173
MW-D-20 524 255 389 525 036 493 525 124 575 85.40 520 854 115 522 415 092 523 138 978 2 685
MW-D-40 533 934 442 535 707 479 536 520 199 81.36 530 227 261 532 272 896 532 400 878 1 830
MW-D-FN 539 754 400 541 372 345 541 918 916 98.34 532 663 872 537 238 784 537 674 129 2 466
MW-W-01 1 270 305 952 1 270 305 952 1 270 305 952 0.500 1 246 949 460 1 246 949 460 1 246 949 460 23.66
MW-W-05 1 328 958 047 1 328 958 047 1 328 958 047 19.96 1 327 687 399 1 328 707 787 1 328 707 787 984.8
MW-W-10 1 340 878 388 1 342 899 725 1 342 899 725 1 204 1 331 002 512 1 341 482 310 1 342 067 985 1 876
MW-W-FN 1 349 369 736 1 350 818 543 1 350 818 543 527.7 1 334 835 589 1 348 128 240 1 350 159 705 3 584
MR-D-01 1 689 074 331 1 689 520 690 1 689 781 114 15.52 1 683 529 331 1 686 091 786 1 687 842 856 2 906
MR-D-03 1 753 188 475 1 753 968 167 1 754 110 286 20.34 1 743 429 914 1 747 269 072 1 749 972 580 3 257
MR-D-05 1 784 519 403 1 785 664 042 1 786 342 921 19.56 1 770 832 093 1 774 407 092 1 777 876 780 3 595
MR-D-FN 1 795 912 642 1 797 284 091 1 797 573 192 22.65 1 779 897 201 1 785 545 729 1 788 331 878 3 388
MR-W-FN 5 357 026 363 5 358 386 615 5 358 386 615 1 442 5 352 347 338 5 370 471 580 5 371 649 721 461.6
CW-T-C-1 1 310 223 1 315 122 1 317 775 94.52 1 290 974 1 299 279 1 302 478 3 585
CW-T-C-2 924 664 929 626 931 802 189.7 914 736 921 021 922 858 3 599
CW-T-C-4 454 769 456 565 457 185 324.4 452 035 453 741 454 544 2 365
CW-T-D-6 455 823 457 382 457 790 70.48 452 366 454 254 454 254 1 582
CW-S-L-1 1 623 280 1 630 417 1 634 950 261.9 1 603 051 1 615 247 1 620 756 3 597
CW-S-L-2 1 695 131 1 704 424 1 708 820 225.3 1 670 836 1 685 870 1 690 536 3 596
CW-S-L-4 1 712 553 1 722 542 1 725 591 173.7 1 689 318 1 701 309 1 706 264 3 599
CW-S-L-6 1 150 229 1 156 916 1 158 925 138.4 1 136 356 1 142 720 1 145 694 3 086
CW-S-L-7 582 925 585 929 587 288 125.2 577 087 581 583 581 583 1 278
CR-T-C-1 4 617 204 4 644 635 4 654 419 58.16 4 508 901 4 558 780 4 576 695 3 598
CR-T-C-2 4 834 040 4 863 054 4 874 346 62.29 4 715 023 4 772 847 4 789 909 3 600
CR-T-D-4 4 778 868 4 808 490 4 817 281 56.91 4 663 588 4 716 258 4 734 674 3 598
CR-T-D-6 2 945 721 2 964 007 2 970 011 94.09 2 896 260 2 921 540 2 929 671 3 574
CR-T-D-7 1 431 915 1 438 896 1 440 281 148.4 1 411 061 1 423 279 1 426 400 3 581
CR-S-L-1 5 547 038 5 575 602 5 588 489 72.42 5 400 658 5 464 532 5 487 254 3 595
CR-S-L-2 5 652 928 5 680 688 5 691 892 57.91 5 491 814 5 561 766 5 586 973 3 580
CR-S-L-4 5 634 886 5 671 369 5 681 336 65.09 5 477 340 5 550 943 5 572 856 3 573
CR-S-L-6 3 833 391 3 851 432 3 859 513 92.45 3 751 019 3 793 995 3 808 314 3 599
CR-S-L-7 1 977 161 1 986 354 1 989 879 90.90 1 940 573 1 957 872 1 963 579 3 584

the labels convey more useful information. Table 3 lists the map labeling graphs
we use, ordered by their average degrees. The number of nodes in these instances
ranges from 1,068 to 33,367; the number of edges ranges from 62,088 to 40,724,109.
Average node degrees vary from 62 to 3,210.

Note that VR graphs, graphs from the map labeling application have natural
cliques: For a fixed label `, nodes corresponding to ` and the labels intersection `
form a clique. We had access to the map labeling graph instances but not to the
underlying raw data, so we do not use clique information for this problem family.
In addition, we use kernels of the map labeling graphs. It is unclear if the kernel-
forming transformations can be adopted to generate cliques in the kernel graph
from those in the original one.

4.3. Results for VR Family. For VR instances, we run experiments on the stan-
dard version of the problem and on the augmented version, where we have a good
initial solution and clique information, as we do in our application. We set the time
limit T = 3 600 seconds.

Table 4 gives results for the standard version. For each instance in the table,
column w10% shows the best solution value found at time point T/10, column w50%

shows the best solution value found at time point T/2, and column w shows the best
solution value found when the process is finished at time T . METAMIS finds better
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solutions than ILSVND except for three instances. For two instances, MT-D-01 and
MT-W-01, solution quality is the same. On MW-W-01, the ILSVND solution is
better, but only by 0.8%. All three exceptions happen on smaller instances and
both algorithms converge quickly. There is no improvement after time T/10.

An interesting observation is that on MT-D-01, MT-W-01 and MT-W-FN, solu-
tion values match the corresponding upper bounds given in Table 1, so the solutions
are optimal. Since the upper bound need not be tight, it is possible that we solve
other instances to optimality, but do not have a proof.

On larger instances, METAMIS has better final values as well as better values
at times T/10 and T/2. On the problem with the highest number of nodes, CR-S-
L-3, the difference in the final values is 2.1%. Note that on large instances, neither
algorithms converged in time T .

Tables 5, 6, and 7 shows results for the VR instances for METAMIS+LP,
METAMIS, and ILSVND, respectively. On the instances where ILSVND does
not find any improvement, t∗ is undefined. While both algorithms allow a warm
start from a given solution, the METAMIS+LP version of our algorithm uses clique
information to compute the relaxed LP solution, and uses it to guide local search.,
We evaluate both versions of METAMIS to see how much the LP relaxation helps.
As in the case of no initial solution, the algorithms converge on most of the small
instances and do not converge on larger instances.
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Figure 1. Time-quality plot for the standard CR-S-L-4 instance
with 95% confidence intervals, initial solution and LP bound. Note
that the plots for METAMIS+Init and METAMIS+Init+LP are
very close

Recall that with no initial solution, we found optimal solutions for MT-D-01
and MT-W-01. With the initial solution, METAMIS+LP finds an optimal solution
for two more instances, MT-W-FN and MR-W-FN. METAMIS finds an optimal
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Table 5. METAMIS+LP results on VR instances.

Name w10% w50% w t∗[s]

MT-D-01 238 166 485 238 166 485 238 166 485 0.109
MT-D-200 287 038 328 287 048 081 287 048 081 69.51
MT-D-FN 290 771 450 290 771 450 290 771 450 −
MT-W-01 312 121 568 312 121 568 312 121 568 0.122
MT-W-200 383 971 124 383 985 408 383 985 408 893.0
MT-W-FN 390 828 160 390 869 891 390 869 891 139.9
MW-D-01 475 886 356 475 987 082 475 987 082 270.2
MW-D-20 525 052 532 525 402 318 525 486 034 8.694
MW-D-40 535 705 687 536 210 247 536 735 155 0.434
MW-D-FN 543 098 071 543 622 238 543 857 187 −
MW-W-01 1 269 314 742 1 269 344 846 1 269 344 846 672.0
MW-W-05 1 328 958 047 1 328 958 047 1 328 958 047 0.431
MW-W-10 1 342 915 691 1 342 915 691 1 342 915 691 0.511
MW-W-FN 1 350 814 699 1 350 814 699 1 350 818 543 −
MR-D-01 1 688 024 106 1 688 777 944 1 689 278 470 7.245
MR-D-03 1 756 186 736 1 756 989 875 1 757 227 519 5.123
MR-D-05 1 787 220 357 1 787 666 207 1 787 849 777 19.91
MR-D-FN 1 798 215 807 1 798 926 794 1 799 452 160 17.40
MR-W-FN 5 386 842 781 5 386 842 781 5 386 842 781 0.503

CW-T-C-1 1 334 884 1 336 953 1 338 064 30.69
CW-T-C-2 944 404 945 748 945 886 25.86
CW-T-D-4 460 643 461 027 461 056 2.000
CW-T-D-6 460 982 461 223 461 312 2.717
CW-S-L-1 1 656 404 1 660 475 1 660 815 46.27
CW-S-L-2 1 731 077 1 735 964 1 738 128 85.11
CW-S-L-4 1 748 029 1 752 354 1 753 803 91.08
CW-S-L-6 1 174 005 1 175 931 1 177 156 27.48
CW-S-L-7 593 045 593 744 593 891 4.825
CR-T-C-1 4 730 533 4 739 684 4 743 040 17.92
CR-T-C-2 4 954 613 4 966 121 4 968 952 25.80
CR-T-D-4 4 898 377 4 908 285 4 911 646 19.69
CR-T-D-6 3 017 902 3 022 448 3 024 523 28.67
CR-T-D-7 1 458 949 1 459 958 1 460 240 16.88
CR-S-L-1 5 672 398 5 686 939 5 692 891 36.79
CR-S-L-2 5 763 866 5 780 859 5 784 034 24.90
CR-S-L-4 5 756 016 5 771 410 5 777 081 24.08
CR-S-L-6 3 926 517 3 933 476 3 936 137 22.24
CR-S-L-7 2 014 584 2 018 371 2 019 428 34.09

solution for the latter instance, but not for the former. ILSVND does not find any
new optimal solutions.

Next we discuss the effect of a good initial solution, comparing results for
METAMIS and ILSVND from Tables 4 and 5-7. Comparing initial solution values
from Table 1 with solutions obtained by solving the problems from scratch, we see
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Table 6. METAMIS results on VR instances.

Name w10% w50% w t∗[s]

MT-D-01 238 166 485 238 166 485 238 166 485 0.373
MT-D-200 287 010 847 287 018 324 287 036 715 122.6
MT-D-FN 290 752 054 290 771 450 290 771 450 −
MT-W-01 312 121 568 312 121 568 312 121 568 0.320
MT-W-200 383 804 298 383 986 483 383 986 483 1 343
MT-W-FN 390 787 880 390 848 998 390 856 179 710.1
MW-D-01 475 549 969 475 814 986 475 955 989 2 278
MW-D-20 524 574 519 525 068 939 525 192 291 7.699
MW-D-40 535 436 892 535 711 417 536 092 070 0.474
MW-D-FN 542 740 347 543 253 226 543 374 394 −
MW-W-01 1 269 344 846 1 269 344 846 1 269 344 846 0.603
MW-W-05 1 328 958 047 1 328 958 047 1 328 958 047 0.447
MW-W-10 1 342 915 691 1 342 915 691 1 342 915 691 1.255
MW-W-FN 1 350 771 010 1 350 818 542 1 350 818 543 −
MR-D-01 1 687 486 503 1 687 807 619 1 688 118 984 16.84
MR-D-03 1 755 768 835 1 756 154 528 1 756 337 669 12.31
MR-D-05 1 786 084 687 1 786 734 327 1 786 755 817 73.22
MR-D-FN 1 798 075 911 1 798 571 155 1 798 661 823 38.60
MR-W-FN 5 386 842 781 5 386 842 781 5 386 842 781 0.855

CW-T-C-1 1 333 129 1 335 297 1 336 563 22.44
CW-T-C-2 943 366 944 785 945 565 27.72
CW-T-D-4 460 554 460 852 461 025 1.828
CW-T-D-6 460 815 461 057 461 174 2.706
CW-S-L-1 1 656 404 1 660 475 1 660 815 90.11
CW-S-L-2 1 730 208 1 734 736 1 736 245 109.3
CW-S-L-4 1 746 941 1 751 474 1 751 988 84.05
CW-S-L-6 1 174 169 1 175 886 1 176 233 33.79
CW-S-L-7 593 077 593 744 593 947 6.622
CR-T-C-1 4 725 855 4 735 644 4 738 289 18.10
CR-T-C-2 4 950 818 4 962 045 4 964 446 19.83
CR-T-D-4 4 896 504 4 906 792 4 909 999 17.86
CR-T-D-6 3 016 890 3 022 046 3 023 349 40.35
CR-T-D-7 1 458 571 1 459 653 1 459 948 8.115
CR-S-L-1 5 668 764 5 685 884 5 690 515 21.79
CR-S-L-2 5 759 512 5 775 002 5 780 449 22.53
CR-S-L-4 5 755 282 5 771 391 5 775 704 24.18
CR-S-L-6 3 923 574 3 932 059 3 935 089 19.00
CR-S-L-7 2 013 466 2 017 034 2 017 836 40.24

that in many cases, the initial solution is better than the solution computed from
scratch. In fact, for ILSVND, most solutions are worse than the corresponding
initial solution. This confirms that our initial solutions are good.
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Table 7. ILSVND results on VR instances.

Name w10% w50% w t∗[s]

MT-D-01 238 166 485 238 166 485 238 166 485 1.473
MT-D-200 286 949 274 286 973 561 286 973 561 363.1
MT-D-FN 290 723 959 290 723 959 290 723 959 −
MT-W-01 312 121 568 312 121 568 312 121 568 0.063
MT-W-200 383 808 376 383 979 962 383 979 962 1 721
MT-W-FN 390 805 960 390 805 960 390 805 960 196.2
MW-D-01 475 523 699 475 732 519 475 825 497 2 134
MW-D-20 523 248 884 523 248 884 523 248 884 26.98
MW-D-40 534 040 009 534 040 009 534 040 009 7.797
MW-D-FN 542 182 073 542 182 073 542 182 073 −
MW-W-01 1 269 344 846 1 269 344 846 1 269 344 846 1.247
MW-W-05 1 328 955 871 1 328 955 871 1 328 955 871 4.266
MW-W-10 1 342 847 887 1 342 847 887 1 342 847 887 19.39
MW-W-FN 1 350 675 180 1 350 675 180 1 350 675 180 −
MR-D-01 1 684 211 854 1 686 046 636 1 686 452 467 2 763
MR-D-03 1 751 006 933 1 752 345 436 1 752 769 459 3 305
MR-D-05 1 782 046 226 1 782 560 957 1 783 836 981 3 525
MR-D-FN 1 794 949 819 1 794 949 819 1 796 037 791 3 564
MR-W-FN 5 386 838 669 5 386 838 669 5 386 838 669 10.01

CW-T-C-1 1 322 410 1 326 551 1 327 556 3 501
CW-T-C-2 939 568 940 356 940 356 701.3
CW-T-D-4 458 360 458 360 458 360 48.65
CW-T-D-6 459 096 459 096 459 096 80.73
CW-S-L-1 1 644 241 1 649 006 1 651 483 3 585
CW-S-L-2 1 714 923 1 722 672 1 724 930 3 452
CW-S-L-4 1 733 007 1 739 992 1 742 459 3 553
CW-S-L-6 1 167 611 1 169 914 1 170 096 1 886
CW-S-L-7 591 398 591 398 591 398 161.2
CR-T-C-1 4 665 849 4 687 422 4 696 568 3 591
CR-T-C-2 4 891 697 4 912 140 4 920 058 3 585
CR-T-D-4 4 836 312 4 859 311 4 867 272 3 597
CR-T-D-6 2 990 174 2 999 852 3 004 067 3 593
CR-T-D-7 1 455 226 1 456 048 1 456 048 752.0
CR-S-L-1 5 590 089 5 617 916 5 630 437 3 596
CR-S-L-2 5 670 522 5 701 371 5 715 430 3 589
CR-S-L-4 5 676 163 5 701 271 5 715 256 3 598
CR-S-L-6 3 883 092 3 898 898 3 905 831 3 597
CR-S-L-7 1 998 320 2 006 129 2 007 794 3 488

With the warm start, both variants of our algorithm, METAMIS and META-
MIS+LP, dominate ILSVND, producing same or (in most cases) better quality
solutions. ILSVND is also slower on all instances except one.

To evaluate the benefit of using LP relaxation, we compare METAMIS+LP with
METAMIS. On most instances, METAMIS+LP dominates METAMIS. The latter
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Table 8. CRS family results

METAMIS ILSVND
Name w10% w50% w t∗[s] w10% w50% w t∗[s]
web-Google 50 143 50 143 50 143 0.398 50 143 50 143 50 143 0.105
web-Stanford 140 528 140 528 140 528 1.263 140 524 140 528 140 528 627.5
as-Skitter 403 178 403 220 403 243 1 443 403 100 403 159 403 254 1 254
web-NotreDame 882 498 883 034 883 073 98.10 882 347 882 347 882 347 131.0
soc-LiveJournal1 1 639 058 1 639 150 1 639 150 58.56 1 638 224 1 638 537 1 638 619 1 467
web-BerkStan 3 202 724 3 203 853 3 203 896 50.64 3 192 742 3 196 624 3 196 865 1 478
roadNet-PA 12 327 884 12 381 128 12 386 969 909.7 12 165 765 12 330 319 12 342 736 7 143
roadNet-TX 14 706 445 14 798 448 14 809 215 1 323 14 466 017 14 726 128 14 758 276 7 193
roadNet-CA 23 447 525 23 688 219 23 731 691 1 601 22 837 850 23 400 764 23 576 536 7 200
soc-Pokec 40 093 941 40 154 755 40 167 652 119.5 39 193 450 39 677 478 39 882 658 7 200

never finds a better solution. For about 1/3 of the instances, solution quality is
the same, and for the remaining 2/3, METAMIS+LP performs better. The same
holds for intermediate times T/10 and T/2 except for one instance at T/2 where
METAMIS solution value is slightly better.

Plots help visualize relative algorithm performance. We plot the data for 2-
hour runs of all algorithms on one of the largest instances in Figure 1. Neither
algorithm converges. Both with and without an initial solution, METAMIS domi-
nates ILSVND. With the initial solution, the algorithms converge to a better value
and dominate the corresponding algorithms without an initial solution. Compar-
ing METAMIS+LP with METAMIS, we see that the relaxed solution helps. The
former algorithm dominates the latter.

4.4. Results for CRS Problems. Table 8 gives results for the CRS family. On
this family we set the time limit to 1500 seconds for all problems except for the
four largest ones, as the algorithms did not converge on them in 1500 seconds. For
the four largest problems, we set the limit to 7200 seconds.

On web-Google, both algorithms find solutions with the same value in under
a second and fail to improve it afterwards (the solution may be optimal). On
web-Stanford and as-Skitter, ILSVND performs worse on average and has higher
variance. The best solution of ILSVND is the same for web-Stanford and slightly
better for as-Skitter (see Figure 2). On three other smaller instances, METAMIS
finds a better solution and dominates ILSVND. For example, see the plot for web-
BerkSt in Figure 3.

On the four larger instances METAMIS dominates ILSVND and converges to
better values. See, for example, Figure 4 for a plot of two hour-long runs on
RoadNet-TX.

4.5. Results for Map Labeling Problems. Table 9 gives our results for the
Map Labeling instances. On these instances, we ran the two algorithms for 1, 500
seconds. The quality of the solutions the algorithms find is the same except for
four instances. METAMIS is better on rhodeisland AM3 and hawaii AM3, and
ILSVND – on dc AM3 and kentucky AM3. Although both algorithms converge to
a similar value, ILSVND usually converges faster.

Figure 5 illustrates convergence to an essentially the same value using green-
land AM3 as an example. Figure 6 gives the plot for rhodeisland AM3, where the
picture is similar but METAMIS converges to a slightly better value. Figure 7 gives
the plot for kentucky AM3, where ILSVND converges to a better value.
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Figure 2. Time-quality plot for as-Skitter with 95% confidence intervals
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Figure 3. Time-quality plot for web-BerkSt with 95% confidence intervals

5. Concluding remarks

We developed METAMIS for a real-world VR application for which even a small
improvement in solution quality yields substantial cost reduction. We published
benchmark VR instances in Dong et al. (2021a;b). These instances are structurally
different from other MWIS benchmarks and include large instances. Our study is
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Figure 4. Time-quality plot for roadNet-TX with 95% confidence intervals

Table 9. Map Labeling family results.

METAMIS ILSVND
Name w10% w50% w t∗[s] w10% w50% w t∗[s]
florida AM3 46 132 46 132 46 132 3.080 46 132 46 132 46 132 0.024
alabama AM3 45 449 45 449 45 449 5.412 45 449 45 449 45 449 0.104
rhodeisland AM2 43 722 43 722 43 722 0.269 43 722 43 722 43 722 0.048
dc AM2 100 302 100 302 100 302 58.38 100 302 100 302 100 302 107.3
virginia AM3 97 873 97 873 97 873 9.080 97 873 97 873 97 873 2.750
northcarolina AM3 13 062 13 062 13 062 0.376 13 062 13 062 13 062 0.040
massachusetts AM3 17 224 17 224 17 224 2.223 17 224 17 224 17 224 0.142
kansas AM3 5 694 5 694 5 694 3.383 5 694 5 694 5 694 0.209
washington AM3 118 196 118 196 118 196 62.35 118 196 118 196 118 196 119.8
vermont AM3 28 349 28 349 28 349 9.332 28 349 28 349 28 349 0.297
dc AM3 141 785 142 736 142 910 1 347 142 917 143 014 143 014 111.8
oregon AM3 34 471 34 471 34 471 11.56 34 471 34 471 34 471 49.42
greenland AM3 11 960 11 960 11 960 28.02 11 959 11 960 11 960 178.4
idaho AM3 9 224 9 224 9 224 21.23 9 224 9 224 9 224 127.4
rhodeisland AM3 80 897 81 013 81 013 449.7 80 980 80 980 80 980 101.7
hawaii AM3 58 394 58 808 58 819 1 207 58 779 58 783 58 814 757.0
kentucky AM3 30 736 30 777 30 789 1 387 31 084 31 101 31 103 11.90

the first to include the new benchmark, and we show that METAMIS works well
on the VR instances. METAMIS is also competitive on CRS and Map Matching
instances.

METAMIS uses a more sophisticated set of local search moves and introduces
data structures that facilitate efficient implementation of these moves. We also
introduce a new variation of path relinking tailored to large problems. In addition,
we show how to use a good relaxed solution to guide local search. These techniques
add to the metaheuristic design toolset. We hope that our ideas will lead to even
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Figure 5. Time-quality plot for greenland AM3 with 95% confi-
dence intervals
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Figure 6. Time-quality plot for rhodeisland AM3 with 95% con-
fidence intervals

more efficient MWIS algorithms. The ideas may also prove useful in methaheuristic
algorithms for other problems.

We do not include DIMACS problem instances (Johnson and Trick, 1996) in
our experiments. These instances have a special structure that is an artifact of
how the instances are generated. The instances originate from clique instances,
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Figure 7. Time-quality plot for kentucky AM3 with 95% confi-
dence intervals

both synthetic and real-life. One takes a compliment of a graph to obtain the
corresponding unweighted maximum independent set instances. To get MWIS in-
stances, one adds weights, which are either random or ID modulo a constant. The
original clique graphs are sparse, and the resulting MWIS graphs are very dense.
Even for the clique instances that correspond to real-life applications, the resulting
MWIS instances do not. These problems are relatively small and easy. Many have
been solved exactly (Nogueira et al., 2018).

Preliminary experiments show that our algorithm performs worse than ILSVND
on DIMACS instances. We tuned our code for large VR instances and used the
same parameter values in all experiments. A different choice of parameter values
may improve performance on specific problem families, such as the DIMACS family
(Kummer, 2020; Kummer et al., 2020). Also, for dense graphs, a different (e.g.,
adjacency matrix) representation of the input graph may be more efficient.

For the Map Labeling problem family, the fact that on most instances METAMIS
and ILSVND converge to the same solution value suggests that in many cases the
solutions may be optimal. One way to verify this conjecture is to prove optimality
by using local search solutions to warm start an exact solver. Even if the solver
cannot solve such a problem from scratch, it may be able to prove optimality of a
given solution.
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