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Abstract

We present a new implementation of a widely used swap-based local search
procedure for the p-median problem, proposed in 1968 by Teitz and Bart. Our
method produces the same output as the best alternatives described in the literature
and, even though its worst-case complexity is similar, it can be significantly faster
in practice: speedups of up to three orders of magnitude were observed. We also
show that our method can be easily adapted to handle the facility location problem
and to implement related procedures, such as path-relinking and tabu search.

1 Introduction
The p-median problem is defined as follows. Given a set F of m facilities, a set U
of n users (or customers), a distance function d : U ×F → R+, and an integer p ≤ m,
determine which p facilities to open so as to minimize the sum of the distances from
each user to the closest open facility. In other words, given p, we want to minimize the
cost of serving all customers.

Since this problem is NP-hard [17], a polynomial-time algorithm to solve it ex-
actly is unlikely to exist. The most effective algorithms proposed in the literature [2,
4, 5, 7, 9, 29, 32] use branch-and-bound, with lower bounds obtained from some linear
programming relaxation of the problem. In the worst case, all these methods are expo-
nential, but they can be quite fast in practice (the recent algorithm by Avella et al. [2]
is particularly effective). Also, similar techniques can be made to work as heuristics
only, producing close-to-optimal solutions in reasonable time [3, 8, 30, 31].

There are also simpler heuristics that use no duality (linear programming) infor-
mation at all. The most natural options are constructive heuristics, methods that build
solutions from scratch, usually in a greedy fashion [7, 18, 37]. A step further is to use
a local search procedure, which takes an existing solution as input and tries to improve
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it [13, 16, 20, 27, 33, 34]. It does so in an iterative fashion, examining neighboring
solutions, those that differ from the original one by a small (problem- and algorithm-
specific) modification. Finally, there are metaheuristics, procedures that aim at ex-
ploring a large portion of the search space in an organized fashion to obtain close-to-
optimal solutions (possibly using constructive algorithms and local search as subrou-
tines). Recent examples in the literature include variable neighborhood search [14],
variable neighborhood decomposition search [15], tabu search [26, 36], heuristic con-
centration [28], scatter search [10], and a GRASP-based hybrid algorithm [25].

This study concerns the local search proposed by Teitz and Bart [34], based on
swapping facilities. In each iteration, the algorithm looks for a pair of facilities (one
to be inserted into the current solution, another to be removed) that would lead to an
improved solution if swapped. If such a pair exists, the swap is made and the procedure
is repeated.

Arya et al. have shown [1] that, in a metric setting, this algorithm always finds
solutions that are within a factor of at most 5 from the optimum. However, for practi-
cal, non-pathological instances the gap is usually much smaller, just a few percentage
points [27, 37]. This has made the algorithm very popular among practioners, often
appearing as a key subroutine of more elaborate metaheuristics [10, 14, 25, 26, 28, 36].

Our concern in this paper is not solution quality—the reader is referred to [27, 37]
for insights on that matter. Our goal is to obtain the same solutions Teitz and Bart
would, only in less time. We present an implementation that is significantly (often
asymptotically) faster in practice than previously known alternatives.

The paper is organized as follows. In Section 2, we give a precise description of
the local search procedure and a trivial implementation. In Section 3, we describe the
best alternative implementation described in the literature, proposed by Whitaker [37].
Our own implementation is described in Section 4. We show how it can be adapted
to handle the facility location problem and to handle related operations (such as path-
relinking and tabu search) in Section 5. Experimental evidence to the efficiency of our
method is presented in Section 6. Final remarks are made in Section 7.

Notation and assumptions. Before proceeding to the study of the algorithms them-
selves, let us establish some notation. As already mentioned, F is the set of potential
facilities and U the set of users that must be served. The basic parameters of the prob-
lem are n = |U |, m = |F|, and p, the number of facilities to open. Although 1≤ p≤ m
by definition, we will ignore trivial cases and assume that 1< p<m and that p< n (if
p≥ n, we just open the facility that is closest to each user). We assume nothing about
the relationship between n and m.

We use u to denote a generic user, and f a generic facility. The cost of serving u
with f is d(u, f ), the distance between them, which is always nonnegative. (We do not
make any other assumption about the distance function; in particular, we do not assume
that the triangle inequality is valid.) A solution S is any subset of F with p elements,
and represents the set of open facilities. Every user u is assigned to the closest facility
f ∈ S (the one that minimizes d(u, f )). This facility will be denoted by φ1(u). Our
algorithm often needs to access the second closest facility to u in S as well; it will be
denoted by φ2(u). To simplify notation, we will abbreviate d(u,φ1(u)) as d1(u), and
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d(u,φ2(u)) as d2(u).1 We often deal specifically with a facility that is a candidate for
insertion; it will be referred to as fi (by definition fi 6∈ S); similarly, a candidate for
removal will be denoted by fr ( fr ∈ S, also by definition).

Throughout this paper, we assume the distance oracle model, in which the distance
between any customer and any facility can be determined in O(1) time. In this model,
all values of φ1 and φ2 for a given solution S can be straighforwardly computed in
O(pn) total time: for each of the n customers, we explicitly find the distances to the p
open facilities and pick the smallest. Problems defined by a distance matrix clearly fall
into the distance oracle model, but an explicit matrix is not always necessary. If users
and facilities are points on the plane, for example, distances can also be computed in
constant time. There are cases, however, in which that does not happen, such as when
the input is given as a sparse graph, with distances determined by shortest paths. In
such situations, one must precompute the corresponding distance matrix in order to
apply our method with the same worst-case running time.

2 The Swap-based Local Search
Introduced by Teitz and Bart in [34], the standard local search procedure for the p-
median problem is based on swapping facilities. For each facility f i 6∈ S (the current
solution), the procedure determines which facility fr ∈ S (if any) would improve the
solution the most if fi and fr were interchanged (i.e., if fi were inserted and fr removed
from the solution). If any such “improving” swap exists, the best one is performed, and
the procedure is repeated from the new solution. Otherwise we stop, having reached a
local minimum (or local optimum). Arya et al. have recently proven [1] that this pro-
cedure is guaranteed to produce a solution whose value is at most 5 times the optimum
in the metric setting (i.e., when the triangle inequality holds). On non-pathological
instances (those more likely to appear in practice), empirical evidence shows that the
algorithm is often within a few percentage points of optimality (and often does find the
optimal solution), being especially successful when both p and n are small [27].

Our main concern is not solution quality, but the time it takes to run each iteration
of the algorithm. Given a solution S, we want to find an improving neighbor S ′ (if it
exists) as fast as possible.

A straighforward implementation takes O(pmn) time per iteration. Start by deter-
mining the closest and second closest open facilities for each user; this takes O(pn)
time. Then, for each candidate pair ( fi, fr), compute the profit that would result from
replacing fr with fi. To do that, one can reason about each user u independently. If
the facility that currently serves u is not fr (the facility to be removed), the user will
switch to fi only if this facility is closer, otherwise it will remain where it is. If u is
currently assigned to fr, the user will have to be reassigned, either to φ2(u) (the second
closest facility) or to fi (the facility to be inserted), whichever is closest. The net effect

1More accurate representations of φ1(u), φ2(u), d1(u), and d2(u) would be φS
1(u), φS

2(u), dS
1 (u), and

dS
2 (u), respectively, since each value is a function of S as well. Since the solution will be clear from context,

we prefer the simpler representation in the interest of readability.
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is summarized by following expression:

profit( fi, fr) =∑
u:φ1(u)6= fr

max{0, [d1(u)−d(u, fi)]}−∑
u:φ1(u)= fr

[min{d2(u),d(u, fi)}−d1(u)].

The first summation accounts for users that are not currently assigned to fr (these
can only gain from the swap), and the second for users that are (they can gain or lose
something with the swap). In the distance oracle model, the entire expression can be
computed in O(n) time for each candidate pair of facilites. There are p candidates for
removal and m− p for insertion, so the total number of moves to consider is p(m− p) =
O(pm). Each iteration therefore takes O(pmn) time.

Several papers in the literature use this basic implementation, and others avoid us-
ing the swap-based local search altogether mentioning its intolerable running time [26,
28, 36]. These methods would greatly benefit from asymptotically faster implementa-
tions, such as Whitaker’s or ours.

3 Whitaker’s Implementation
In [37], Whitaker describes the so-called fast interchange heuristic, an efficient imple-
mentation of the local search procedure defined above. Even though it was published
in 1983, Whitaker’s implementation was not widely used until 1997, when Hansen and
Mladenović [14] applied it as a subroutine of a Variable Neighborhood Search (VNS)
procedure. A minor difference between the implementations is that Whitaker prefers a
first improvement strategy (a swap is made as soon as a profitable one is found), while
Hansen and Mladenović prefer best improvement (all swaps are evaluated and the most
profitable executed). In our analysis, we assume best improvement is used, even in
references to “Whitaker’s algorithm.”

The key aspect of this implementation is its ability to find in Θ(n) time the best
possible candidate for removal, given a certain candidate for insertion. The pseudocode
for the function that does that, adapted from [14], is presented in Figure 1.2 Function
findOut takes as input a candidate for insertion ( fi) and returns fr, the most profitable
facility to be swapped out, as well as the profit itself (profit).

Given a certain candidate for insertion fi, the function implicitly computes profit( fi, fr)
for all possible candidates fr. What makes this procedure fast is the observation (due
to Whitaker) that the profit can be decomposed into two components, which we call
gain and netloss.

Component gain accounts for all users who would benefit from the insertion of
fi into the solution. Each is closer to fi than to the facility it is currently assigned
to. The difference between the distances is the amount by which the cost of serving
that particular user will be reduced if fi is inserted. Lines 4 and 5 of the pseudocode
compute gain.

The second component, netloss, accounts for all other customers, those that would
not benefit from the insertion of fi into the solution. If the facility that is closest to u
is removed, u would have to be reassigned either to φ2(u) (its current second closest

2In the code, an expression of the form a +← b means that the value of a is incremented by b units.
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function findOut (S, fi,φ1,φ2)
1 gain← 0; /* gain resulting from the addition of fi */
2 forall ( f ∈ S) do netloss( f )← 0; /* loss resulting from removal of f */
3 forall (u ∈U) do
4 if (d(u, fi)≤ d1(u)) then /* gain if fi is close enough to u */
5 gain +← [d1(u)−d(u, fi)];
6 else /* loss if facility that is closest to u is removed */
7 netloss(φ1(u))

+←min{d(u, fi),d2(u)}−d1(u);
8 endif
9 endforall
10 fr← argmin f∈S{netloss( f )};
11 profit← gain−netloss( fr);
12 return ( fr,profit);
end findOut

Figure 1: Function to determine, given a candidate for insertion ( f i), the best candidate
for removal ( fr). Adapted from [14].

facility) or to fi (the new facility), whichever is closest. In both cases, the cost of
serving u will either increase or remain constant. Of course, this reassignment will
only be necessary if φ1(u) is the facility removed to make room for fi. This explains
why netloss is an array, not a scalar value: there is one value associated with each
candidate for removal. All values are initially set to zero in line 2; line 7 adds the
contributions of the relevant users.

Given this O(n)-time function, it is trivial to implement the swap-based local search
procedure in O(mn) time per iteration: simply call findOut once for each of the m− p
candidates for insertion and pick the most profitable one. If the best profit is positive,
perform the swap, update the values of φ1 and φ2, and proceed to the next iteration.
Updating φ1 and φ2 requires O(pn) time in the worst case, but the procedure can be
made faster in practice, as mentioned in [37]. Since our implementation uses the same
technique, its description is deferred to the next section (Subsection 4.3.1).

4 An Alternative Implementation
Our implementation has some similarity with Whitaker’s, in the sense that both meth-
ods perform the same basic operations. However, the order in which they are performed
is different, and in our case partial results are stored in auxiliary data structures. As we
will see, with this approach we can use values computed in early iterations of the local
search procedure to speed up later ones.

4.1 Additional Structures
Before we present our algorithm, let us analyze Whitaker’s algorithm from a broader
perspective. Its ultimate goal is to determine the pair ( fi, fr) of facilities that maximizes
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profit( fi, fr). To do so, it computes gain( fi) for every candidate for insertion, and
netloss( fi, fr) for every pair of candidates. (In the description in Section 3, gain is a
scalar and netloss takes as input only the facility to be removed; however, both are
computed inside a function that is called for each fi, which accounts for the additional
dimension.) Implicitly, what the algorithm does is to compute profits as

profit( fi, fr) = gain( fi)−netloss( fi, fr).

Our algorithm defines gain( fi) precisely as in Whitaker’s algorithm: it represents
the total amount gained if fi is added to S, regardless of which facility is removed:

gain( fi) = ∑
u∈U

max{0,d1(u)−d(u, fi)}.(1)

Our method differs from Whitaker’s in the computation of netloss. While Whitaker’s
algorithm computes it explicitly, we do it in an indirect fashion. For every facility fr
in the solution, we define loss( fr) as the increase in solution value that results from the
removal of fr from the solution (assuming that no facility is inserted). This is the cost
of transferring every customer assigned to fr to its second closest facility:

loss( fr) = ∑
u:φ1(u)= fr

[d2(u)−d1(u)].(2)

As defined, gain and loss are capable of determining the net effect of a single
insertion or a single deletion, but not of a swap, which is nothing but an insertion and
a deletion that occur simultaneously. Whitaker’s algorithm can handle swaps because
it computes netloss instead of loss. To compute netloss from loss, we use yet another
function, extra( fi, fr), defined so that the following is true for all pairs ( f i, fr):

netloss( fi, fr) = loss( fr)− extra( fi, fr).(3)

From the pseudocode in Figure 1, it is clear that netloss( f i, fr) is actually defined
as

netloss( fi, fr) = ∑
u:[φ1(u)= fr]∧
[d(u, fi)>d1(u)]

[min{d(u, fi),d2(u)}−d1(u)].(4)

Substituting the values in Equations 2 and 4 into Equation 3, we obtain an expres-
sion for extra:

extra( fi, fr) = ∑
u:φ1(u)= fr

[d2(u)−d1(u)]− ∑
u:[φ1(u)= fr]∧
[d(u, fi)>d1(u)]

[min{d(u, fi),d2(u)}−d1(u)].

It is possible to simplify this expression. First, consider a user u for which min{d(u, f i),d2(u)}=
d2(u). It has no net contribution to extra: whatever is added in the first summation is
subtracted in the second. Therefore, we can write

extra( fi, fr) = ∑
u:[φ1(u)= fr]∧
[d(u, fi)<d2(u)]

[d2(u)−d1(u)]− ∑
u:[φ1(u)= fr]∧

[d1(u)<d(u, fi)<d2(u)]

[d(u, fi)−d1(u)].
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Note that the range of the first summation contains that of the second. We can join both
into a single summation,

extra( fi, fr) = ∑
u:[φ1(u)= fr]∧
[d(u, fi)<d2(u)]

[d2(u)−d1(u)−max{0,d(u, fi)−d1(u)}],

which can be further simplified to

extra( fi, fr) = ∑
u:[φ1(u)= fr]∧
[d(u, fi)<d2(u)]

[d2(u)−max{d(u, fi),d1(u)}].(5)

This is our final expression for extra. We derived it algebraically from simpler expres-
sions, but it is possible to get it directly with a bit of case analysis. This alternative
approach was used in an earlier version of our paper [24].

Given the expressions of gain, loss, and extra (Equations 1, 2, and 5), we can find
the profit associated with each move in a very simple manner:

profit( fi, fr) = gain( fi)− loss( fr) + extra( fi, fr).(6)

The interesting aspect of this decomposition of profit is that the only term that de-
pends on both the facility to be inserted and the one to be removed is extra. Moreover,
this term is always nonnegative (see Equation 5). This will be relevant in the imple-
mentation of the local search itself, as the next section will make clear.

4.2 Local Search
Our implementation of the local search procedure assumes that all necessary values
(loss, gain, and extra) are stored in appropriate data structures: one-dimensional vec-
tors for loss and gain, and a two-dimensional matrix for extra.3 Once these structures
are computed, one can easily find the best swap in O(pm) time: just use Equation 6 to
determine the profit for each candidate pair of facilities and pick the minimum.

To compute gain, loss, and extra, we note that every entry in these structures is a
summation over some subset of users (see Equations 1, 2, and 5). The contribution
of each user can therefore be computed independently. Function updateStructures,
shown in Figure 2, does exactly that. Given a user u and its two closest facilities
in solution S (given by φ1 and φ2), it adds u’s contribution to loss, gain, and extra.
The total running time of the procedure is O(m− p) = O(m), since it is essentially a
loop through all the facilities that do not belong to the solution. Given this function,
computing gain, loss, and extra from scratch is straightforward: first reset all entries
in these structures, then call updateStructures once for each user. Together, these n
calls perform precisely the summations defined in Equations 1, 2, and 5.

We now have all the elements necessary to build the local search procedure with
O(mn) operations. In O(pn) time, compute φ1(·) and φ2(·) for all users. In O(pm)

3Note that gain and loss could actually share the same m-sized vector, since they are defined for disjoint
sets of facilities.
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function updateStructures (S,u, loss,gain,extra,φ1,φ2)
1 fr← φ1(u);
2 loss( fr)

+← [d2(u)−d1(u)];
3 forall ( fi 6∈ S) do
4 if (d(u, fi)< d2(u)) then
5 gain( fi)

+←max{0,d1(u)−d(u, fi)};
6 extra( fi, fr)

+← [d2(u)−max{d(u, fi),d1(u)}];
7 endif
8 endfor
end updateStructures

Figure 2: Pseudocode for updating arrays in the local search procedure

time, reset loss, gain, and extra. With n calls to updateStructures, each taking in
O(m) time, determine their actual values. Finally, in O(pm) time, find the best swap
using Equation 6.

4.3 Acceleration
At first, our implementation seems to be merely a complicated alternative to Whitaker’s;
after all, both have the same worst-case complexity. Furthermore, our implementa-
tion has the clear disadvantage of requiring an O(pm)-sized matrix, whereas Θ(n + m)
memory positions are enough for Whitaker’s. The additional memory, however, allows
for significant accelerations, as this section will show.

When a facility fr is replaced by a new facility fi, certain entries in gain, loss,
extra, φ1, and φ2 become inaccurate. The straighforward way to update them for the
next local search iteration is to recompute φ1 and φ2, reset the other arrays, and then
call updateStructures again for all users.

A downside of this approach is that no information gathered in one iteration is
used in subsequent ones. As a result, unnecessary, repeated computations are bound to
occur. In fact, the actions performed by updateStructures depend only on u, φ1(u),
and φ2(u); no value is read from other structures. If φ1(u) and φ2(u) do not change
from one iteration to another, u’s contribution to gain, loss, and extra will not change
either. This means there is no need to call updateStructures again for u.

To deal with such cases, we keep track of affected users. A user u is affected if
there is a change in either φ1(u) or φ2(u) (or both) after a swap is made. Sufficient
conditions for u to be affected after a swap between fi and fr are:

1. either φ1(u) or φ2(u) is fr, the facility removed; or

2. fi (the facility inserted) is closer to u than the original φ2(u) is.

Contributions to loss, gain, and extra need only be updated for affected users. If there
happens to be few of them (which is often the case, as Section 6.2.1 shows) significant
gains can be obtained.
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procedure localSearch (S,φ1,φ2)
1 A←U ; /* A is the set of affected users */
2 resetStructures (gain, loss, extra);
3 while (TRUE) do
4 forall (u ∈ A) do updateStructures (S, u, gain, loss, extra, φ1, φ2);
5 ( fr, fi,profit)← findBestNeighbor (gain, loss, extra);
6 if (profit ≤ 0) then break; /* no improvement, we are done */
7 A← /0;
8 forall (u ∈U) do /* find out which users will be affected */
9 if ((φ1(u) = fr) or (φ2(u) = fr) or (d(u, fi)< d(u,φ2(u)))) then
10 A← A∪{u}
11 endif
12 endforall;
13 forall (u ∈ A) do undoUpdateStructures (S, u, gain, loss, extra, φ1, φ2);
14 insert(S, fi);
15 remove(S, fr);
16 updateClosest(S, fi, fr,φ1,φ2);
17 endwhile
end localSearch

Figure 3: Pseudocode for the local search procedure

Note, however, that updating the contributions of an affected user u requires more
than a call to updateStructures. This function simply adds new contributions, so
we must first subtract the old contributions made by u. To acomplish this, we use a
function similar to updateStructures, with subtractions instead of additions.4 This
function (undoUpdateStructures) must be called for all affected users before φ1 and
φ2 are recomputed.

Figure 3 contains the pseudocode for the entire local search procedure, already
taking into account the observations just made. Apart from the functions already dis-
cussed, three other nontrivial ones appear in the code. Function resetStructures,
sets all entries in gain, loss, and extra to zero. Function findBestNeighbor runs
through these structures and finds the most profitable swap using Equation 6. It returns
which facility to remove ( fr), the one to replace it ( fi), and the profit itself (profit).
Finally, updateClosest updates φ1 and φ2, possibly using the fact that the facility
recently opened was fi and the one closed was fr (Section 4.3.1 explains how this is
done).

Restricting updates to affected users can result in significant speedups in the algo-
rithm, as Section 6.2.1 shows. There are, however, other accelerations to exploit. The
pseudocode reveals that all operations in the main loop run in linear time, with three
exceptions:

• updating closeness information (calls to updateClosest);

4This function is identical to the one shown in Figure 2, with all occurrences of +← replaced with –←:
instead of incrementing values, we decrement them.
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• finding the best swap to be made (calls to findBestNeighbor);

• updating the auxiliary data structures (calls to updateStructures and undoUpdateStructures).

These are the potential bottlenecks of the algorithm, since they all run in quadratic time
in the worst case. The next three subsections analyze how each of them can be dealt
with.

4.3.1 Closeness

Updating closeness information, in our experience, has proven to be a relatively cheap
operation. Deciding whether the newly inserted facility f i becomes either the closest or
the second closest facility to each user is trivial and can be done in O(n) total time. A
more costly operation is updating closeness information for customers who had fr (the
facility removed) as either the closest or the second closest element. With a straighfor-
ward implementation, updating each such affected user takes O(p) time. Since there
are usually few of them, the total time spent tends to be a small fraction of the entire
local search procedure.

The whole update procedure could actually be performed in O(n log p) worst-case
time. It suffices to keep, for each user u, the set of open facilities in a heap with
priorities given by their distances to u. Since this solution requires O(np) additional
memory positions and is not significantly faster, we opted for using the straighforward
implementation in our code.

It is also important to mention that finding the set of closest and second closest ele-
ments from scratch is itself a cheap operation in some settings, even in the worst case.
For example, when distances between customers and facilities are given by shortest
paths on an underlying graph, this can be accomplished in Õ(|E|) time [35], where |E|
is the number of edges in the graph.5

In practice, the generic approach above seems to be good enough. Section 6.2.5
shows that there is not much to gain from accelerating this part of the algorithm; to-
gether, other procedures already dominate the running time of the local search. We
therefore do not use specialized routines in this paper; we always assume we are deal-
ing with arbitrary distance matrices.

4.3.2 Best Neighbor

Given a solution, the straighforward way to find the most profitable swap is to compute
profit( fi, fr) (as defined in Equation 6) for all candidate pairs of facilities and pick the
best. Since each profit computation takes constant time and there are p(m− p) potential
swaps, the entire procedure requires Θ(pm) operations. In practice, however, the best
move can be found in less time.

It is convenient to think of extra( fi, fr) as a measure of the interaction between
the neighborhoods of fr and fi. After all, Equation 5 shows that only users that have
fr as their current closest facility and are also close to fi (i.e., have fi closer than the
second closest open facility) contribute to extra( fi, fr). In particular, if there are no

5The Õ(·) notation hides polylogarithmic terms.
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users in this situation, extra( fi, fr) will be zero. Section 6.2.2 shows that this occurs
rather frequently in practice, especially when p is large (and hence the average number
of users assigned to each fr is small).

Therefore, instead of storing extra as a full matrix, one may consider representing
only nonzero elements explicitly: each row becomes a linked list sorted by column
number. A drawback of this sparse representation is the impossibility to make random
accesses in O(1) time. Fortunately, this is not necessary for our purposes. All three
functions that access the matrix (updateStructures, undoUpdateStructures, and
bestNeighbor) can be implemented so as to go through each row sequentially.

In particular, consider the implementation of bestNeighbor. First, it determines
the facility f ∗i that maximizes gain( fi) and the facility f ∗r that minimizes loss( fr). Since
all values in extra are nonnegative, the pair ( f ∗i , f ∗r ) is at least as profitable as any pair
( fi, fr) for which extra( fi, fr) is zero. Then, the procedure computes the exact profits
(given by Equation 6) for all nonzero elements in extra.

The whole procedure takes O(m+λpm) time, where λ is the fraction of pairs whose
extra value is nonzero. As already mentioned, this value tends to be smaller as p
increases, thus making the algorithm not only faster, but also more memory-efficient
(when compared to the “full matrix” representation).

4.3.3 Updates

As we have seen, keeping track of affected users can reduce the number of calls to
updateStructures. We now study how to reduce the time spent in each of these
calls.

Consider the pseudocode in Figure 2. Line 5 represents a loop through all m− p
facilities outside the solution, but line 6 shows that we can actually restrict ourselves to
facilities that are closer to u than φ2(u) is. This is often a small subset of the facilities,
especially when p is large.

This suggests a preprocessing step that builds, for each user u, a list of all facilities
sorted by increasing distance to u. During the local search, whenever we need the set
of facilities whose distance to u is less than d2(u), we just take the appropriate prefix
of the precomputed list, potentially with much fewer than m− p elements.

Building these lists takes O(nm logm) time, but it is done only once, not in every
iteration of the local search procedure. This is true even if local search is applied
several times within a metaheuristic (such as in [14, 24, 28]): a single preprocessing
step is enough.

A more serious drawback of this approach is memory usage. Keeping n lists of size
m in memory requires Θ(mn) space, which may be prohibitive. An alternative is to
keep only relatively small prefixes, not the full list. They would act as a cache: when
d2(u) is small enough, we just take a prefix of the candidate list; when d2(u) is larger
than the largest distance represented, we explicitly look at all possible neighbors (each
in constant time).

In some circumstances, the “cached” version may be faster than the “full” version
of the algorithm, since preprocessing is cheaper. After all, instead of creating sorted
lists of size m, we create smaller ones of size k (for some k < m). Each list can be
created in O(m + k logk) time: first we find the k smallest elements among all m in
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O(m) time [6], then we sort them in O(k logk) time. For small values of k, this is an
asymptotic improvement over the O(m logm) time required (per list) in the “full” case.

4.3.4 The Reordering Problem

There is a slight incompatibility between the accelerations proposed in Sections 4.3.2
and 4.3.3. On the one hand, the sparse matrix data structure proposed in Section 4.3.2
guarantees efficient queries only when each row is accessed sequentially by column
number (facility label). Section 4.3.3, on the other hand, assumes that facilites are ac-
cessed in nondecreasing order of distance from the user. Functions updateStructures
and undoUpdateStructures use both data structures: they take a list of facilities
sorted by distance, but must process them in nondecreasing order of label. We need to
make these two operations compatible.

The simplest solution is to take the list of facilities sorted by distance and sort it
again by label. If the list has size k, this takes O(k logk) time. In the worst case k is
O(m), so this introduces an extra logm factor in the complexity of the algorithm. In
practice, however, k is rather small, and the overhead hardly noticeable. In fact, we
used this approach in a preliminary version of our paper [24].

Even so, one would like to do better. Recall that the original list is actually a prefix
of the list of all facilities (sorted by distance). Even though the prefix varies in size, the
underlying sorted list does not: it is a fixed permutation of facility labels. This means
we need to solve the following generic problem:

Let π be a fixed permutation of the labels {1,2, . . . ,m}, and let πk be the
size-k prefix of π, for 1≤ k ≤ n (πn = π, by definition). Given any k, sort
πk by label in O(k) time. At most O(m) preprocessing time is allowed.

To solve this, we use an algorithm that mimics insertion sort on a list, but takes
advice from an “oracle” built during preprocessing. Assume we need to sort πk, for
some k. One way to do it is to take each element of πk and insert it into a new list,
ordered by label. With standard insertion sort, this would take O(k2) time. However, if
we knew in advance where to insert each element, the procedure would take O(k) time.
The oracle will give us exactly that.

Let π(i) be the i-th element of π. We define pred(i) to be the predecessor of π(i),
the element after which π(i) should be inserted during the algoritm above. The oracle
will give us pred(i) for every i.

The values of pred(i) are set in the preprocessing step. Initially, it creates an aux-
iliary doubly-linked list L containing 0,1,2, . . . ,m, in this order (element 0 will act as
a sentinel). This can be trivially done in O(m) time. Then, it removes elements from
L one by one in reverse order with respect to π. In other words, the first element re-
moved from L is π(m), then π(m−1), and so on, until π(1) is removed; in the end, only
0 (the sentinel) will remain in L. Upon removing element π(i) from L, the algorithm
sets pred(i) to be the predecessor of π(i) (in L itself) at that particular moment. This
procedure takes O(m) time for each of the n lists.

Note that this procedure is in fact a simulation of insertion sort, but in reverse order.
List L originally has all the elements of πm; after one removal, we are left with πm−1,
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and so on. At all times, L is sorted by label; if it has size k, it represents what the
sequence looks like after the k-th element is inserted during insertion sort.

Given all the pred(·) values, sorting πk is simple. We start with a list L′ containing
only a sentinel (0); it can be singly-linked, with forward pointers only. We then access
the first i elements of π (following π’s own order), inserting each element π(i) into L′

right after pred(i). Eventually, L′ will contain all the elements of π(k) sorted by label,
as desired. The running time is only O(k).

5 Generalization
Section 4 presented our algorithm as a local search procedure for the p-median prob-
lem. In fact, with slight modifications, it can also be applied to the facility location
problem. Moreover, the ideas suggested here are not limited to local search: they can
also be used to accelerate other important routines, such as path-relinking and tabu
search. This section details the adaptations that must be made in each case.

5.1 Facility Location
The input of the facility location problem consists of a set of users U , a set of potential
facilities F, a distance function d : U×F→ R+, and a setup cost function c : F → R+.
The first three parameters are the same as in the p-median problem. The difference is
that here the number of facilities to open is not fixed; there is, instead, a cost associated
with opening each facilty, the setup cost. The more facilities are opened, the greater the
setup cost will be. The objective is to minimize the total cost of serving all customers,
considering the sum of the setup and service cost (distances).

Any valid solution to the p-median problem is a valid solution to the facility loca-
tion problem. To use the local search procedure suggested here for this problem, we
have to adjust the algorithm to compute the cost function correctly. As it is, the algo-
rithm computes the service costs correctly, but assumes that the setup costs are zero.
But including them is trivial: the service cost depends only on whether a facility is
open or not; it does not depend on other facilities. Consider a facility f i that is not in
the solution; when evaluating whether it should be inserted or not, we must account for
the fact that its setup cost will increase the solution value by c( f i). Similarly, simply
closing a facility fr that belongs to the solution saves us c( fr). To take these values into
account, if suffices to initialize gain and loss with the symmetric of the corresponding
setup costs, and not with zero as we do with the p-median problem. In other words, we
initialize gain( fi) with −c( fi), and loss( fr) with −c( fr).

This is enough to implement a swap-based local search for the facility location
problem. Note, however, that there is no reason to limit ourselves to swaps—we could
allow individual insertions and deletions as well. This is not possible with the p-median
problem because the number of facilities is fixed, but there is no such constraint in the
facility location problem.

No major change to the algorithm is necessary to support individual insertions and
deletions. As already mentioned, gain( fi) is exactly the amount that would be saved if
facility fi were inserted into the solution (with no corresponding removal). Similarly,
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loss( fr) represents how much would be lost if the facility were removed (with no cor-
responding insertion). Positive values of gain and negative values of loss indicate that
the corresponding move is worth making. The greater the absolute value, the better,
and we can find the maximum in O(m) time. Furthermore, we can continue to compute
the costs associated with swaps if we wish to. In every iteration of the local search, we
could therefore choose the best move among all swaps, insertions, and deletions. So
we essentially gain the ability to make insertions and deletions with barely any changes
to the algorithm.

We observe that the idea of a swap-based local search for the facility location prob-
lem is, of course, not new; it was first suggested in the literature by Kuehn and Ham-
burger in [18].

5.2 Other Applications
It is possible to adapt the algorithm to perform other routines, not only local search.
(In this discussion, we will always deal with the p-median problem itself, although the
algorithms suggested here also apply to facility location with minor adaptations.)

Consider the path-relinking operation [11, 12, 19, 23]. It takes two solutions as
inputs, S1 and S2, and gradually transforms the first (the starting solution) into the
second (the guiding solution). It does so by swapping out facilities that are in S1 \ S2
and swapping in facilities from S2 \ S1. In each iteration of the algorithm, the best
available swap is made. The goal of this procedure is to discover some promising
solutions on the path from S1 to S2. The precise use of these solutions varies depending
on the metaheuristic using this procedure.

This function is remarkably similar to the swap-based local search procedure. Both
are based on the same kind of move (swaps), and both make the cheapest move on each
round. There are two main differences:

1. Candidate moves: In path-relinking, only a subset of the facilities in the solution
are candidates for removal, and only a subset of those outside the solution are
candidates for insertion—and these subsets change (i.e., get smaller) over time,
as the algorithm advances into the path.

2. Stopping criterion: Whereas the local search procedure stops as soon as a lo-
cal minimum is found, non-improving moves are allowed in path-relinking: it
continues until the guiding solution is reached.

As long as we take these differences into account, the implementation of the local
search procedure can also handle path-relinking. We need to define two functions: one
to return the appropriate set of candidates for insertion and deletion, another to check
if the move chosen by bestNeighbor should be made or not (i.e., to determine if the
stopping criterion was met). In Section 4, these functions were defined implicitly:
the candidates for insertion are all facilities outside the solution, the candidates for
deletion are those in the solution, and the stopping criterion consists of testing whether
the profit associated with a move is positive. Defining them explicitly is trivial for both
local search and path-relinking.
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In fact, by redefining these two functions appropriately, we can implement other
routines, such as a simple version of tabu search. At all times, we could have two lists:
one for elements that are forbidden to be inserted into the solution, another for elements
that cannot be removed. The candidate lists would contain the remaining facilities, and
the stopping criterion could be any one used for tabu search (number of iterations, for
instance).

6 Empirical Analysis
This section has two main goals. One is to present some empirical data to back up some
of the claims we have made to guide our search for a faster algorithm. The other goal
is to demonstrate that the algorithms suggested here are indeed faster than previously
existing implementations of the local search procedure for the p-median problem. To
keep the analysis focused, we will not deal with the extensions proposed in Section 5.

6.1 Instances and Methodology
We tested our algorithm on four classes of problems. Three of them, TSP, ORLIB and
ODM, have been previously studied in the literature for the p-median problem. The
fourth, RW, is introduced here as a set of instances that benefit less from our methods.

Class TSP contains three sets of points on the plane (with cardinality 1400, 3038,
and 5934), originally used in the context of the traveling salesman problem [22]. In
the p-median problem, each point is both a user to be served and a potential facility,
and distances are Euclidean. Following [15], we tested several values of p for each
instance, ranging from 10 to approximately n/3, when comparing our algorithm to
Whitaker’s.

Class ORLIB, originally introduced in [4], contains 40 graphs with 100 to 900
nodes, each with a suggested value of p (ranging from 5 to 200). Each node is both a
user and a potential facility, and distances are given by shortest paths in the graph.

The instances in class ODM, proposed by Briant and Naddef [5], model the optimal
diversity management problem. In this problem, one must assemble a certain prod-
uct that appears in a large number of configurations, each defined by the presence or
absence of a certain number of features. Briant and Naddef give as an example the
electrical wiring in cars. Assuming that setting up an assembly line for every possible
configuration is not economically viable, only p configurations are actually produced.
Requests for other configurations will be fulfilled by the least costly alternative that is
compatible (i.e., contains all the necessary features) among those produced. The goal
is to decide which p configurations to produce, given the demand and the unit cost
for each existing configuration. To model this as a p-median problem, we make each
configuration both a user and a facility. The cost of serving user u with facility f is
the demand of u times the unit cost of f , as long as configuration f is compatible with
configuration u; otherwise, the cost is infinity. We tested our algorithm on the four
instances cited in [5], with 535, 1284, 3773, and 5535 configurations. As in [5], we
tested values of p from 5 to 20 in each case.6

6In [5], the authors do not show results for p greater than 16 in the instance with 3773 nodes. We include
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In class RW, each instance is a square matrix in which entry (u, f ) is an integer
taken uniformly at random from the interval [1,n] and represents the cost of assigning
user u to facility f . Four values of n were tested (100, 250, 500, and 1000), each
with values of p ranging from 10 to n/2, totaling 27 combinations.7 The random
number generator we used when creating these instances (and in the algorithm itself)
was Matsumoto and Nishimura’s Mersenne Twister [21].

Recall that the algorithms tested here use the distance oracle model, which assumes
that retrieving the distance between any user and any facility takes O(1) time. This
can be trivially achieved for intances in RW (with a table look-up) and TSP (from
the Euclidean coordinates). For ORLIB, we compute the all-pairs shortest paths in
advance, as it is usually done in the literature [14, 15]. These computations are not
included in the running times reported in this section, since they are the same for all
methods (including Whitaker’s). For ODM, to compute the distance between a user and
a facility we need to know whether the user is covered by that facility or not. To answer
this question in O(1) time, we precompute an n×m boolean incidence matrix with
this information. The same expected complexity could be achieved with a hash table,
which potentially uses less space but has higher overhead for accessing each element.
The time to build the incidence matrix is also not included in the times reported here.

All tests were performed on an SGI Challenge with 28 196-MHz MIPS R10000
processors (with each execution of the program limited to one processor) and 7.6 GB of
memory. All algorithms were coded in C++ and compiled with the SGI MIPSpro C++
compiler (v. 7.30) with flags -O3 -OPT:Olimit=6586. The source code is available
from the authors upon request, as are the RW instances.

All running times shown in this paper are CPU times, measured with the getrusage
function, whose precision is 1/60 second. In some cases, actual running times were too
small for this precision, so each algorithm was repeatedly run for at least 5 seconds.
Overall times were measured, and averages reported here.

When comparing different local search methods, we applied them to the same ini-
tial solutions. These were obtained by two different algorithms. The first is greedy [37]:
starting from an empty solution, we insert one facility at a time, always picking the one
that reduces the solution cost the most. The second algorithm is random: we just pick
a set of p facilities uniformly at random as the initial solution. All tests with random
solutions were repeated five times for each method, using five different random seeds.

Running times mentioned in this paper refer to the local search only, and they do
not include the cost of building initial solution (which is the same for all methods).

6.2 Results
This section presents an experimental comparison of several variants of our implemen-
tation and Whitaker’s method, fast interchange (we will use FI for short). We imple-
mented FI based on the pseudocode in [14] (obtaining comparable running times); the
most important function was presented here in Figure 1.

results for 17 to 20 as well, for symmetry.
7More precisely: for n = 100, we used p = 10, 20, 30, 40, and 50; for n = 250, p = 10, 25, 50, 75, 100,

and 125; for n = 500, p = 10, 25, 50, 100, 150, 200, and 250; and for n = 1000, p = 10, 25, 50, 75, 100,
200, 300, 400, and 500.
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6.2.1 Basic Algorithm (FM)

We start with the most basic version of our implementation, in which extra is repre-
sented as a full (non-sparse) matrix. This version (called FM, for full matrix) already in-
corporates some acceleration, since calls to updateStructures are limited to affected
users only. However, it does not include the accelerations suggested in Sections 4.3.2
(sparse matrix) and 4.3.3 (preprocessing).

To demonstrate that keeping track of affected users can lead to significant speedups,
we devised the following experiment. We took one instance from each class: odm1284
(class ODM, 1284 nodes), pmed40 (class ORLIB, 900 nodes), fl1400 (class TSP, 1400
nodes), and rw1000 (class RW, 1000 nodes). Note that they all have a similar number
of nodes. Each instance was tested with 99 different values of p, from 1% to 99% of m.
Since for very large values of p the greedy algorithm almost always find local optima
(thus rendering the local search useless), the initial solutions used in this experiment
are random.

For each run, we computed how many calls to updateStructures and to undoUpdateStructures
would have been made if we were not keeping track of affected users, and how many
calls were actually made (in both cases, we did not count calls at the start of the first
iteration, which is just the initialization). The ratio between these values, in percentage
terms, is shown in Figure 4 (each point is the average of five runs).
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Figure 4: Percentage of users affected during a run of the local search as a function of p
(the percentage is taken over the set of all possible users that could have been affected,
considering all iterations). One instance in each class is represented. Vertical axis is in
logarithmic scale.
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It is clear that the average number of affected users is only a fraction of the total
number of users, even for small values of p, and drops significantly as the number of
facilities to open increases. In all four instances, the average number of affected users
eventually drops below 1% of n. By exploiting this fact, our implementation definitely
has the potential to be faster than FI.

To test if this is indeed the case in practice, we ran an experiment with all instances
from the four classes, with the values of p listed in Section 6.1. We used both greedy
and random initial solutions. For each instance, we computed the speedup obtained
by our method when compared to FI, i.e., the ratio between the running times of FI
and FM. Table 1 shows the best, the (geometric) mean, and the worst speedups thus
obtained considering all instances in each class.8 Values greater than 1.0 favor our
method, FM.

Table 1: Speedup obtained by FM (full matrix, no preprocessing) over Whitaker’s FI.

SOLUTION CLASS BEST MEAN WORST

random ODM 41.66 12.67 2.95
ORLIB 21.19 5.76 1.64
RW 20.96 7.62 2.51
TSP 28.92 11.29 1.95

greedy ODM 20.10 4.49 0.89
ORLIB 14.20 3.76 1.07
RW 13.99 5.50 1.47
TSP 31.96 10.72 1.96

The table shows that even the basic acceleration scheme achieves speedups of up to
more than 40. There are cases, however, in which FM is actually slower than Whitaker’s
method. This happens for instances in which the local search procedure performs very
few iterations, insufficent to ammortize the overhead of using a matrix. This is more
common with the greedy constructive heuristic, which is more likely to find solutions
that are close to being local optima, particularly when p is very large or very small
(the worst case among all instances happened with odm535 and p = 6). On average,
however, FM has proven to be from three to more than ten times faster than FI.

6.2.2 Sparse Matrix (SM)

We now analyze a second variant of our method. Instead of using a full matrix to
represent extra, we use a sparse matrix, as described in Section 4.3.2. We call this
variant SM. Recall that our rationale for using a sparse matrix was that the number of
nonzero elements in the extra matrix is small. Figure 5 suggests that this is indeed true.
For each of the four representative instances and each value of p (from 1% to 99% of

8Since we are dealing with ratios, geometric (rather than arithmetic) means seem to be a more sensible
choice; after all, if a method takes twice as much time for 50% of the instances and half as much for the other
50%, it should be considered roughly equivalent to the other method. Geometric means reflect that, whereas
arithmetic means do not.
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m), it shows what fraction of the elements are nonzero (considering all iterations of the
local search). The algorithm was run five times for each value of p, from five random
solutions.
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Figure 5: Percentage of entries in the extra matrix that have nonzero values as a func-
tion of p. One instance of each class is represented. Vertical axis is in logarithmic
scale.

Although the percentage approaches 100% when the number of facilities to open is
small, it drops very fast when p increases, approaching 0.1%. Note that rw1000, which
is random, tends to have significantly more nonzeros for small values of p than other
instances.

It is clear that the algorithm has a lot to benefit from representing only the nonzero
elements of extra. However, the sparse matrix representation is much more involved
than the array-based one, so some overhead is to be expected. Does it really reduce the
running time of the algorithm in practice?

Table 2 shows that the answer to this question is “yes” most of the time. It repre-
sents the results obtained from all instances in the four classes, and contains the best,
mean, and worst speedups obtained by SM over FI, for both types of initial solution
(random and greedy).

As expected, SM has proven to be even faster than FM on average and in the best
case (especially for the large instances with large values of p in the RW and TSP
classes). However, some bad cases become slightly worse. This happens mostly for
instances with small values of p: with a relatively large number of nonzero elements in
the matrix, a sparse representation is not the best choice.
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Table 2: Speedup obtained by SM (sparse matrix, no preprocessing) over Whitaker’s
FI.

SOLUTION CLASS BEST MEAN WORST

random ODM 26.41 9.28 2.49
ORLIB 46.88 6.66 1.19
RW 114.36 12.47 1.95
TSP 142.84 26.28 1.80

greedy ODM 21.62 5.21 0.99
ORLIB 24.88 4.36 1.00
RW 49.35 8.36 1.22
TSP 132.06 24.03 1.87

6.2.3 Sparse Matrix with Preprocessing (SMP)

The last acceleration we study is the preprocessing step (Section 4.3.3), in which all po-
tential facilities are sorted according to their distances from each of the users. We call
this variant SMP, for sparse matrix with preprocessing. The goal of the acceleration
is to avoid looping through all m facilities in each call to function updateStructures
(and undoUpdateStructures). We just have to find the appropriate prefix of the or-
dered list.

Figure 6 shows the average size of the prefixes (as a percentage of m) that are
actually checked by the algorithm, as a function of p (which varies from 1% to 99% of
n). Initial solutions are random in this experiment.

As claimed before, the average prefix size is only tiny a fraction of m, for all but
very small values of p. Considering only those prefixes instead of all facilities can
potentially accelerate the local search. Of course, this does not come for free: the cost
of preprocessing must be accounted for.

To determine the overall effect of these two conflicting factors, we tested SMP on
all instances of our set. Table 3 shows the best, mean, and worst speedups obtained with
respect to FI. Columns 3, 4, and 5 consider running times of the local search procedure
only; columns 6, 7, and 8 also include preprocessing times.

The table shows that the entire SMP procedure (including preprocessing) is on av-
erage still much faster than Whitaker’s FI, but often slightly slower than the other vari-
ants studied in this paper (FM and SM). However, as already mentioned, metaheuristics
often need to run the local search procedure several times, starting from different solu-
tions. Since preprocessing is run only once, its cost can be quickly amortized. Columns
3, 4, and 5 of the table show that once this happens, SMP can achieve truly remarkable
speedups with respect not only to FI, but also to other variants studied in this paper. In
the best case (instance rl5934 with p = 800), it is roughly 800 times faster than FI.

To evaluate how fast the amortization is, consider what would happen in a simple
multistart procedure. In each iteration, this algorithm generates a random solution and
applies local search to it; the best solution found over all iterations is picked. We can
predict the behavior of such a method (as far as running times are concerned) from
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Figure 6: Percentage of facilities actually visited when updating structures, for several
values of p. One instance of each class is represented. Vertical axis is in logarithmic
scale.

Table 3: Speedup obtained by SMP (sparse matrix, full preprocessing) over Whitaker’s
FI.

SOLUTION CLASS LOCAL SEARCH ONLY INCLUDING PREPROCESSING

BEST MEAN WORST BEST MEAN WORST

random ODM 46.18 13.77 3.42 8.26 3.00 0.87
ORLIB 77.44 8.75 1.28 22.42 3.40 0.66
RW 169.59 17.51 1.92 48.37 6.26 1.05
TSP 812.80 186.81 4.63 128.03 31.92 1.89

greedy ODM 33.16 7.21 1.33 3.30 0.67 0.15
ORLIB 43.26 6.40 1.37 6.86 1.10 0.21
RW 91.05 12.59 1.34 9.98 2.14 0.20
TSP 695.57 161.86 5.11 71.42 18.92 1.45

the data used to build Table 3. After only one iteration, the mean speedups obtained
when SMP is used instead of FI (Whitaker’s method) will be those shown in the sev-
enth column of the table. As the number of iterations increases, the mean speedups
will gradually converge to the values in the fourth column. Figure 7 shows exactly
what happens as a function of the number of iterations. After only ten iterations, the
speedups are already close to those shown in the fourth column of Table 3: 10.1 for
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Figure 7: Speedup of a multistart procedure implemented with SMP with respect to
those an implementation using Whitaker’s method (FI).

ODM, 7.5 for ORLIB, 14.7 for RW, and 124.0 for TSP.
Apart from the preprocessing time, another important downside of strategy SMP is

memory usage: an array of size m is kept for each of the n customers. As mentioned
in Section 4.3.3, one can use less memory by storing a vector with only a fraction of
the m facilities for each customer. Table 4 shows what happens when we restrict the
number of elements per vector to 5m/p; we call this version of the local search SM5. In
general, SMq is an algorithm that associates a list with qm/p facilities with each user.
We use m/p as a parameter because this correlates well with the number of facilities
each user has to look at to find an open one.

Tables 3 and 4 show that using restricted lists (as opposed to m-sized ones) can
make the algorithm significantly faster when preprocessing times are considered. This
is true especially for large instances. On average, SM5 is roughly twice as fast as
SMP. The gains from a faster preprocessing more than offset the potential extra time
incurred during the actual local search. In fact, the table also shows that the time
spent on the main loop is barely distinguishable from SMP; the partial lists are almost
always enough for the algorithm. Local search within SM5 can actually be slightly
faster than within SMP. The possible cause here are cache effects; since less data is
kept in memory, there is more locality to be exploited by the hardware.
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Table 4: Speedup obtained by SM5 (sparse matrix, with preprocessing, cache size
5p/m) over Whitaker’s FI.

SOLUTION CLASS LOCAL SEARCH ONLY INCLUDING PREPROCESSING

BEST MEAN WORST BEST MEAN WORST

random ODM 46.12 13.68 3.42 14.48 4.04 0.86
ORLIB 77.42 8.81 1.29 40.14 4.52 0.66
RW 166.51 17.44 2.01 93.08 9.57 1.13
TSP 774.96 176.42 4.49 283.71 62.97 2.20

greedy ODM 32.65 7.16 1.30 6.23 0.96 0.14
ORLIB 44.31 6.41 1.33 14.51 1.61 0.20
RW 92.93 12.62 1.34 24.73 3.87 0.22
TSP 747.72 160.93 5.07 177.62 40.65 1.73

6.2.4 Overall Comparison

To get a better understanding of the performance of all variants proposed in this paper,
we study in detail the largest instance in our set (rl5934, with almost 6000 customers
and facilities). Figures 8 and 9 show the running times of several methods (FI, FM,
SM, SM1, SM2, SM3, SM5, and SMP) for different values of p. Times are averages of
five runs from different random solutions (the same set of initial solutions was given
to each method). The first figure considers the local search only, whereas the second
accounts for preprocessing times as well.

The figures show that for some methods, such as Whitaker’s FI and the full-matrix
variant of our implementation (FM), an increase in p leads to greater running times
(although our method is still 10 times faster for p = 1500). For all other methods, which
use sparse matrices, the time spent per iteration tends to decrease as p increases: the
effect of swaps becomes more local, with fewer users affected and fewer neighboring
facilities visited in each call to updateStructures. This latter effect explains why
keeping even a relatively small list of neighboring facilities for each user seems to be
worthwhile. The curves for variants SMP and SM5 are practically indistinguishable in
Figure 8, and both are much faster than SM (which keeps no list at all).

As a final note, we observe that, because all methods discussed here implement the
same algorithm, the number of iterations does not depend on the method itself. It does,
however, depend on the value of p: in general, these two have a positive correlation
for p≤ m/2, and negative from this point on, as Figure 10 shows. This correlates well
with the total number of solutions: there are

(m
p

)
solutions of size p, and this expression

is maximized for p = m/2.

6.2.5 Profile

The results for SMP show that the modifications proposed in this paper can, together,
result in significant acceleration. How much further can we go? Can additional modi-
fications to the algorithm make it even faster?
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Figure 8: Instance rl5934: dependency of running times on p for different methods.
Times are in logarithmic scale and do not include preprocessing.

Table 5: Execution profile for method SMP: percentage of time spent on each of the
potential bottlenecks (only the largest instance in each class is shown). Preprocessing
times are not considered.

INSTANCE INIT. UPDATE UPDATE BEST OTHER

NAME n, m p CLOSEST STRUCT. NEIGH. OPER.
odm5535 5535 56 17.7 5.9 62.3 7.8 6.2

1384 6.4 19.7 4.5 30.9 38.5
pmed40 900 9 6.7 1.7 89.8 0.6 1.2

225 13.4 29.4 13.5 11.2 32.5
rw1000 1000 10 3.7 1.4 93.7 0.5 0.7

250 12.1 26.7 15.1 14.5 31.6
rl5934 5934 60 12.2 5.7 74.0 5.0 3.1

1484 10.7 41.0 4.6 22.7 21.0

These are open questions. However, we argue that small modifications are un-
likely to lead to major gains, particularly when p is large. To support this claim, we
devised the following experiment. For each class, we took the instance with the great-
est number of users (n) and ran SMP with two values of p (0.01n and 0.25n), from
five random solutions in each case. Table 5 shows the percentage of the total local
search time (excluding preprocessing) spent in each section of the algorithm: initial-
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Figure 9: Instance rl5934: dependency of running times on p for different methods.
Times are in logarithmic scale and include preprocessing where applicable.

ization (which includes allocating the data structures), calls to updateClosest, calls
to updateStructures (and undoUpdateStructures), calls to bestNeighbor, and
other operations (such as determining which users are affected).

Note that calls to updateStructures and undoUpdateStructures dominate the
running time for small values of p. This is to be expected: these functions run in
O(mn) time, while bestNeighbor and updateClosest run in O(pn) and O(pm) op-
erations, respectively. When p increases, the running time for updateStructures and
undoUpdateStructures actually decreases, since a larger fraction of the elements in
the extra matrix will be zero (and therefore will not need to accessed). As a result, no
component took more than 50% of the running time for p = 0.25n. In this case, even
if we could make a component run in virtually no time, the algorithm would be at most
twice as fast. A decent speedup, but not at all comparable to 800, the factor we were
able to achieve in this paper. To obtain better factors, it seems necessary to work on all
bottlenecks at once, or to come up with a different strategy altogether.

7 Concluding Remarks
We have presented a new implementation of the swap-based local search for the p-
median problem introduced by Teitz and Bart. We combine several techniques (using a
matrix to store partial results, a compressed representation for this matrix, and prepro-
cessing) to obtain speedups of up to three orders of magnitude with respect to the best
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Figure 10: Number of iterations of the local search procedure as a function of p, starting
from random solutions. One instance from each class is represented.

previously known implementation, due to Whitaker. Our implementation is especially
well suited to relatively large instances with moderate to large values of p and, due to
the preprocessing step, to situations in which the local search procedure is run several
times for the same instance (such as within a metaheuristic). When the local search has
very few iterations, Whitaker’s method can still be faster if the preprocessing time is
considered.

An important test to the algorithms proposed here would be to apply them within
more sophisticated metaheuristics. We have done that in [25]. That paper describes
a multistart heuristic for the p-median problem that relies heavily on local search and
path-relinking, both implemented according to the guidelines detailed in this paper.
The algorithm has proved to be very effective in practice, obtaining remarkably good
results (in terms of running times and solution quality) when compared to other meth-
ods in the literature.

A possible extension of our work presented would be to apply the methods and
ideas presented here to problems beyond p-median and facility location. Swap-based
local search is a natural procedure to be performed on problems such as maximum set
cover, for example.
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[15] P. Hansen, N. Mladenović, and D. Perez-Brito. Variable neighborhood decompo-
sition search. Journal of Heuristics, 7(3):335–350, 2001.

[16] M. J. Hodgson. Toward more realistic allocation in location-allocation models:
An interaction approach. Environment and Planning A, 10:1273–85, 1978.

[17] O. Kariv and L. Hakimi. An algorithmic approach to nework location problems,
Part II: The p-medians. SIAM Journal of Applied Mathematics, 37(3):539–560,
1979.

[18] A. A. Kuehn and M. J. Hamburger. A heuristic program for locating warehouses.
Management Science, 9(4):643–666, 1963.

[19] M. Laguna and R. Martı́. GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS Journal on Computing, 11:44–52, 1999.

[20] F. E. Maranzana. On the location of supply points to minimize transportation
costs. Operations Research Quarterly, 15(3):261–270, 1964.

[21] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Transactions on
Modeling and Computer Simulation, 8(1):3–30, 1998.

[22] G. Reinelt. TSPLIB: A traveling salesman problem library. ORSA Journal on
Computing, 3:376–384, 1991. http://www.iwr.uni-heidelberg.de/groups/comopt/-
software/TSPLIB95/.

[23] M. G. C. Resende and C. C. Ribeiro. GRASP with path-relinking: Recent ad-
vances and applications. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors,
Metaheuristics: Progress as Real Problem Solvers. Kluwer, 2005. In press.

[24] M. G. C. Resende and R. F. Werneck. On the implementation of a swap-based
local search procedure for the p-median problem. In R. E. Ladner, editor,
Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments
(ALENEX’03), pages 119–127. SIAM, 2003.

[25] M. G. C. Resende and R. F. Werneck. A hybrid heuristic for the p-median prob-
lem. Journal of Heuristics, 10(1):59–88, 2004.

[26] E. Rolland, D. A. Schilling, and J. R. Current. An efficient tabu search procedure
for the p-median problem. European Journal of Operational Research, 96:329–
342, 1996.

[27] K. E. Rosing. An empirical investigation of the effectiveness of a vertex substitu-
tion heuristic. Environment and Planning B, 24:59–67, 1997.

[28] K. E. Rosing and C. S. ReVelle. Heuristic concentration: Two stage solution
construction. European Journal of Operational Research, 97:75–86, 1997.

28



[29] K. E. Rosing, C. S. ReVelle, and H. Rosing-Vogelaar. The p-median and its
linear programming relaxation: An approach to large problems. Journal of the
Operational Research Society, 30(9):815–823, 1979.

[30] E. L. F. Senne and L. A. N. Lorena. Langrangean/surrogate heuristics for p-
median problems. In M. Laguna and J. L. González-Velarde, editors, Computing
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