
EXPERIMENTS WITH LAGRASP HEURISTIC

FOR SET K -COVERING

LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

Abstract. The set k-covering problem is a variant of the classical set covering
problem, in which each object is required to be covered at least k times. We
describe a hybrid Lagrangean heuristic, named LAGRASP, which combines
subgradient optimization and GRASP with path-relinking to solve the set k-
covering problem. Computational experiments carried out on 135 test instan-
ces show experimentally that by properly tuning the parameters of LAGRASP,
it is possible to obtain a good trade-off between solution quality and running
times. Furthermore, LAGRASP makes better use of the dual information pro-
vided by subgradient optimization and is able to discover better solutions and
to escape from locally optimal solutions even after the stabilization of the lower
bounds, whereas other strategies fail to find new improving solutions.

1. Introduction

The set k-covering problem (SCkP) is a generalization of the set covering pro-
blem, in which each element should be covered, at least, k times [1]. Let A =

{aij}
j=1,...,n
i=1,...,m be a binary matrix and cj > 0 the cost of column j = 1, . . . , n. A

column j covers a row i if aij = 1. The solution of problem SCkP consists in finding
a minimum-cost subset S of columns of matrix A, such that each row of the latter
is covered by at least k columns in S.

An integer programming formulation for the set k-covering problem is

z(x) =min

n
∑

j=1

cjxj(1)

s.t.
n
∑

j=1

aijxj ≥ k, i = 1, . . . ,m,(2)

xj ∈ {0, 1}, j = 1, . . . , n.(3)

where xj = 1 if column j belongs to the minimum-cost subset S, xj = 0 other-
wise.

Applications of set multicovering arise in a variety of fields, such as marketing,
logistics, security, telecommunications, and computational biology [2, 3, 4]. Though
many of these applications can be modeled as set covering problems, for reliability

Date: March 1, 2011.
Key words and phrases. GRASP, hybrid heuristics, metaheuristics, path-relinking, La-

grangean relaxation, Lagrangean heuristics, local search, set covering, set multicovering, set k-
covering.

AT&T Labs Research Technical Report.

1

2 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

purposes they are treated as multicovering. Other variants of the set covering
problem and related applications can also be found in [5, 6, 7].

Lucena [8] noticed that few branch-and-cut algorithms exist for set covering
problems and its variants, because the separation problem associated with some
families of strong inequalities ([9, 10, 11]) are very hard to be solved even for
heuristics. Therefore, the use of heuristics for large problems with large duality
gaps is a need.

Pessoa and Ribeiro [12] proposed a GRASP heuristic for SCkP in the compu-
tational biology context. In this paper we present extensive computational exper-
iments with variants of a LAGRASP for set k-covering. LAGRASP [13] is a La-
grangean heuristics, based on the hybridization of subgradient algorithms to solve
its Lagrangean relaxation with greedy and GRASP heuristics.

This paper is organized as follows. In Section 2 we briefly describe a GRASP
with path-relinking heuristic, as well a Lagrangean heuristic for the set k-covering
problem. Futhermore, we give a description of how both are combined to find
approximate solutions to the SCkP. Experimental results are presented in Section
3. Finally, in Section 4 we draw some concluding remarks.

2. Computational Methods

2.1. GRASP with Path-Relinking. GRASP is a multi-start metaheuristic, in
which each iteration consists of two phases: construction and local search [14].

During the first phase solutions are constructed by a randomized greedy algo-
rithm. A greedy algorithm builds a solution, adding one column at a time to a
partial solution, until all rows are k-covered, i.e. are covered by at least k columns.
Initially, the partial solution does not contain any column, so all rows are uncov-
ered. Let the cardinality of a column be the number of rows that are not k-covered
and that can be covered by the column. At each step of the construction, a partial
solution is on hand. If a column is not in the partial solution, it is a candidate
to be added to the partial solution if its cardinality is positive. Columns which
attend these criteria compose a candidate list L. Each column j ∈ L is evaluated
according to a greedy function defined to be the ratio ρj of the cost of the col-
umn to its cardinality. The greedy algorithm adds to the partial solution a column
with minimum greedy function value. A randomized version of the above greedy
algorithm defines a restricted candidate list (RCL) made up of candidate elements
with a greedy function value below a specified cut-off value. A standard cut-off is
defined to be ρ−+α(ρ+−ρ−), where ρ− = min{ρj | j ∈ L}, ρ+ = max{ρj | j ∈ L},
and α ∈ ℜ is such that 0 ≤ α ≤ 1. The column to be added to the partial solution
is selected at random from the RCL.

Solutions built with the randomized greedy algorithm are not guaranteed to be
locally optimal, even with respect to simple neighborhood structures. Therefore,
the application of local search to such a solution usually results in an improved
locally optimal solution. Feo and Resende [14] proposed a local search algorithm
based on q, p-exchanges. Every q columns in the current solution S are considered
to be exchange by every possible set of p columns not in S so as the cost function
value is decreased. The local search proposed in this paper makes use of a (1, 0)-
exchange algorithm, in which we attempt to remove superfluous columns from the
multicover, and a (1, 1)-exchange algorithm, in which we attempt to replace a more
expensive column in the multicover by a less expensive unused one.

EXPERIMENTS WITH LAGRASP 3

The basic implementation of GRASP is memoryless, since any iteration does
not make use of information collected in previous iterations. Path-relinking is
an intensification strategy that can be applied to introduce memory structures in
GRASP [15]. It explores paths in the solution space connecting good-quality so-
lutions, one of them being an initial solution xs and the other a target solution
xt. The procedure maintains a pool P of diverse elite solutions during the search.
Path-relinking is carried out after local search, between the local minimum x and a
randomly selected pool solution xp. The attribution of x and xp to the initial solu-
tion xs or to the target solution xt depends on the path-relinking strategy. Different
approaches have been considered in the implementation of this procedure [15]. We
used the backward strategy, in which the initial solution is the best between x and
xp.

2.2. Lagrangean Heuristics. In the following, we base our description on [13].
Lagrangean relaxation [16, 17] is a mathematical programming technique that can
be used to provide lower bounds for combinatorial optimization problems. However,
the primal solutions produced by the algorithms used to solve the Lagrangean dual
problem are not necessarily feasible. Held and Karp [18, 19] were among the first to
explore the use of the dual multipliers produced by Lagrangean relaxation to derive
lower bounds, applying this idea in the context of the traveling salesman problem.

Lagrangean heuristics exploit the dual multipliers to generate primal feasible
solutions. Beasley [20, 21] described a Lagrangean heuristic for set covering which
can be extended to the set k-covering problem.

A Lagrangean relaxation of the set k-covering problem can be defined by associ-
ating dual multipliers λi ∈ R+, for i = 1, . . . ,m, to each inequality (2). This results
in the following Lagrangean relaxation problem LRP(λ):

min

n
∑

j=1

cjxj +

m
∑

i=1

λi(k −

n
∑

j=1

aijxj)

s.t.

xj ∈ {0, 1} , j = 1, . . . , n.

By letting c′j = cj −
∑m

i=1 λiaij , formulation LRP(λ) simplifies to

z′(λ) = min

n
∑

j=1

c′jxj +

m
∑

i=1

λik

s.t.

xj ∈ {0, 1} , j = 1, . . . , n,

whose optimal solution x′(λ) is given by

(4) x′
j(λ) =

{

1, if c′j ≤ 0

0, otherwise,

for j = 1, . . . , n, where the objective function value given by

z′(λ) =

n
∑

j=1

c′jx
′
j(λ) + k

m
∑

i=1

λi

4 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

is a lower bound to the optimal value of the original problem (1)–(3). The best
lower bound z′(λ∗) is the solution of the Lagrangean dual problem LDP:

(5) zD = max
λ∈R

m

+

z′(λ).

Subgradient optimization may be used to solve (5). Subgradient algorithms may
start from any feasible set of dual multipliers, such as λi = 0, for i = 1, . . . ,m,
and iteratively generate further multipliers. We use the same strategy described in
Held et al. [22] for updating the dual multipliers from one iteration to the next.

At any iteration q, let λq be the current vector of multipliers and let x′(λq) be an
optimal solution to problem LRP(λq), whose optimal value is z′(λq). Furthermore,
let z̄ be a known upper bound to the optimal value of problem (1)–(3). Additionally,
let gq ∈ R

m be a subgradient of z′(λ) for λ = λq , with

(6) gqi = k −
n
∑

j=1

aijx
′
j(λ

q), i = 1, 2, . . . ,m.

To update the Lagrangean multipliers, the algorithm makes use of a step size

(7) dq =
η (z̄ − z′(λq))
∑m

i=1(g
q
i)

2
,

where η ∈ (0, 2]. Multipliers are then updated according to

(8) λq+1
i = max{0;λq

i + dqgqi }, i = 1, . . . ,m,

and the subgradient algorithm proceeds to iteration q + 1.
Beasley [21] reports as computationally useful to adjust the components of the

subgradients to zero whenever they do not effectively contribute to the update of the
multipliers, i.e. arbitrarily set gqi = 0 whenever gqi > 0 and λq

i = 0, for i = 1, . . . ,m.
The Lagrangean heuristic proposed in this section makes use of the dual mul-

tipliers λq and of the optimal solution x′(λq) to each problem LRP(λq) to build
feasible solutions to the original problem (1)–(3). To do this, let H be a heuristic
that builds a feasible solution x from an initial solution x0.

Following Beasley [21], we set x0 = x(λq), i.e, H repairs the initial solution x(λq)
to make it feasible.

Heuristic H is initially applied from scratch using the original cost vector c.
In any subsequent iteration q of the subgradient algorithm, H uses Lagrangean
reduced costs c′j = cj−

∑m

i=1 λ
q
i aij Let xH,γ be the solution obtained by H, using a

generic cost vector γ corresponding to the reduced cost or the original cost vector.

Its cost is given by
∑n

j=1 cjx
H,γ
j and may be used to update the upper bound z̄

to the optimal value of the original problem (1)–(3). This upper bound may be
further improved by local search and is used to adjust the step size in (7).

Algorithm 1 describes the pseudo-code of the Lagrangean heuristic. Lines 2
to 4 initialize the upper and lower bounds, the iteration counter, and the dual
multipliers. The iterations of the subgradient algorithm are performed along the
loop in lines 5 to 20. The reduced costs are computed in line 6 and the Lagrangean
relaxation problem is solved by inspection in line 7. In the first iteration of the
Lagrangean heuristic, the original cost vector is assigned to γ in line 8, while in
subsequent iterations the reduced cost vector is assigned in line 9. Lines 10 to 14
determine that a basic heuristic is used to produce a primal feasible solution to

EXPERIMENTS WITH LAGRASP 5

LagrangeanHeuristic1

Initialize bounds: z̄ ←
∑n

j=1 cj and zD ← 0;2

Initialize iteration counter: q ← 0;3

Initialize dual multipliers: λq
i ← 0, i = 1, . . . ,m;4

repeat5

Compute reduced costs c′j ← cj −
∑m

i=1 λ
q
i aij , j = 1, . . . , n;6

Solve LRP(λq) by inspection to obtain x′(λq);7

if q = 0 then set γ ← c;8

else set γ ← c′j ;9

if q is a multiple of H then10

Apply a basic heuristic H with cost vector γ to obtain xH,γ ;11

if
∑n

j=1 cjx
H,γ
j < z̄ then12

x∗ ← xH,γ ;13

z̄ ←
∑n

j=1 cjx
H,γ
j ;14

if z′(λq) > zD then zD ← z′(λq);15

Compute subgradient: gqi = k −
∑n

j=1 aijx
′
j(λ

q), i = 1, 2, . . . ,m;16

Compute step size: dq ← η (z̄ − z′(λq))/
∑m

i=1(g
q
i)

2;17

Update dual multipliers: λq+1
i ← max{0, λq

i − dqgqi }, i = 1, . . . ,m;18

Increment iteration counters: q ← q + 1;19

until stopping criterion satisfied ;20

Algorithm 1: Pseudo-code of the template for a Lagrangean heuristic.

problem (1)–(3) whenever the iteration counter q is a multiple of an input parameter
H . A heuristic H is applied in line 11 to produce the feasible solution xH,γ . If the
cost of this solution is lower than the current upper bound, the best solution so far
and its cost are updated in lines 13 and 14, respectively. If the lower bound z′(λq)
computed in iteration q is greater than the best lower bound zD, then in line 15 the
lower bound zD is updated. Line 16 computes the subgradient and line 17 computes
the step size. The dual multipliers are updated in line 18 and the iteration counter
is incremented in line 19.

The Lagrangean heuristic proposed in this work makes use of two variants of H.
The Greedy Basic Heuristic is composed by a non-randomized version of the

GRASP construction procedure, described in Section 2.1. This heuristic builds a
feasible solution to the original problem by repairing the solution of the Lagrangean
Dual Problem(LDP). In this phase, Lagrangean reduced costs are applied. Next,
the local search described in Section 2.1 is applied to the resulting solution, using
the original costs. We shall refer to the Lagrangean heuristic that uses the greedy
heuristic as the greedy Lagrangean heuristic or simply GLH.

The GRASP Basic Heuristic is a slightly modified version of the GRASP with
path-relinking. In the greedy randomized construction phase, instead of building
a solution from scratch, the construction procedure starts with the solution of the
Lagrangean relaxed problem. In the construction phase, Lagrangean reduced costs
are used, while original costs are used in the local search and path-relinking phases.

Although the GRASP heuristic produces better solutions than the greedy heuris-
tic, the latter is much faster. To appropriately address this trade-off, we choose to

6 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

use the GRASP heuristic with probability β and the greedy heuristic with prob-
ability 1 − β, where β is a parameter of the algorithm. We shall refer to the
Lagrangean heuristic that uses the greedy and GRASP heuristic as the GRASP
Lagrangean heuristic or simply LAGRASP.

We note that this strategy involves three main parameters: the number H of
iterations after which the basic heuristic is always applied, the number Q of ite-
rations performed by the GRASP with path-relinking heuristic when it is chosen
as the basic heuristic, and the probability β of choosing the GRASP heuristic as
H. We shall refer to the Lagrangean heuristic that uses this hybrid strategy as
LAGRASP(β,H,Q).

To implement path-relinking in the GRASP basic heuristic, LAGRASP main-
tains a global pool P which is empty at the start of the subgradient method. Each
solution obtained in the GRASP local search phase is a candidate to be inserted in
the elite set.

3. Computational Results

To carry out the experiments, 135 test problems were derived from the test
instances classes 4, 5, 6, A, B, C e D from the OR-Library [23] by defining three
different coverage factors k for each original instance.

• kmin: k = 2;

• kmax: k = min
i=1,...,m

n
∑

j=1

aij ;

• kmed: k = ⌈(kmin + kmax)/2⌉

The computational experiments were performed on a 2.33 GHz Intel Xeon E5410
Quadcore computer running Linux Ubuntu 8.04. Each run was limited to a single
processor. All codes were implemented in C and compiled with gcc 4.1.2.

Some metrics were applied to compare the methods. For each instance, Best-
Value is the overall best solution value obtained by all executions of the methods
considered. Then, for each run of a method, Dev is the relative deviation in percent-
age between BestValue and the solution value obtained in that run. The average
value of Dev over all instances and runs of a method in a particular experiment is
reported as AvgDev. The metric #Best, for each method, is the number of runs
whose solution value matched BestValue. For each method and instance, NScore
gives the number of methods that found better solutions than this specific method
for this instance. In case of ties, all methods receive the same score, equal to the
number of methods strictly better than all of them. From NScore we derive, for
each method, the metric Score as the sum of the NScore values across all the instan-
ces. Thus, lower values of Score correspond to better methods. We finally report,
for each instance i, t̄i is the average time across all runs in a particular experiment
and TTime is the sum of t̄i for all instances.

In this section, we report the computational experiments involving the hybridiza-
tion of Lagrangean heuristic and GRASP with path-relinking. Computational re-
sults of these greedy Lagrangean heuristics and GRASP with path-relinking for
SCkP are described in detail in [13]. We now extend those experiments. Based
on those experiments, the GRASP basic heuristic receives the solution x0 provided
by the Lagrangean relaxation. Lagrangean reduced costs are used to evaluate the
candidate elements. Parameter α used in the GRASP construction phase was set

EXPERIMENTS WITH LAGRASP 7

 100

 1000

 10000

 100000

 1e+06

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

T
im

e
(s

)

AvgDev (%)

(0,1,-)

(0,50,-)

(0.25,5,1)

(0.25,5,5)

(0.25,5,10)

(0.25,50,5)

(0.50,1,1)

(1,1,50)

Figure 1. Average deviation from the best value and total run-
ning time for 68 different variants of LAGRASP: each point repre-
sents a unique combination of parameters β, H , and Q.

to 0.3. Following Beasley [21], LAGRASP stops whenever the lower bound matches
the upper bound, or the step size parameter of the subgradient method becomes
too small.

The aim of the first experiment is to evaluate the relationship between running
times and solution quality for different parameter settings. Parameter H , the num-
ber of iterations between successive calls to the heuristic H, was set to 1, 5, 10,
and 50. Parameter β, the probability of GRASP being applied as the heuristic
H, was set to 0, 0.25, 0.50, 0.75, and 1. Parameter Q, the number of iterations
carried out by the GRASP heuristic was set to 1, 5, 10, and 50. By combining
these parameter values, 68 variants of LAGRASP were created. Each variant was
applied eight times to each instance, with different initial seeds given to the random
number generator. A subset of 21 instances was considered in this experiment.

The plot in Figure 1 summarizes the results for all evaluated variants, displaying
points whose coordinates are the values of the AvgDev and TTime metrics for each
combination of parameter values. Eight variants of special interest are identified
and labeled with the corresponding parameters β, H , and Q, in this order. These
variants correspond to some selected Pareto points in the plot in Figure 1, i.e,
for a given AvgDev value there is no other variant which reaches the same value
in less CPU time. Additionally, for a given CPU time, there is no other variant
which shows a better result for the AvgDev metric in at most this CPU time.
Setting β = 0 and H = 1 corresponds to the greedy Lagrangean heuristic (GLH)
or, equivalently, to LAGRASP(0,1,-), whose average deviation from the best value
amounted to 0.12% in 4,859.16 seconds of total running time. Table 1 shows the
values of AvgDev and TTime for each selected variant.

8 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

Table 1. Summary of the numerical results obtained with the
selected variants of the GRASP Lagrangean heuristic for 21 ins-
tances. Total time (TTime) is given in seconds.

Heuristic AvgDev TTime

LAGRASP(1,1,50) 0.09 % 399,101.14
LAGRASP(0.50,1,1) 0.11 % 6,198.46
LAGRASP(0,1,-) 0.12 % 4,859.16
LAGRASP(0.25,5,10) 0.24 % 4,373.56
LAGRASP(0.25,5,5) 0.25 % 2,589.79
LAGRASP(0.25,5,1) 0.26 % 1,101.64
LAGRASP(0.25,50,5) 0.47 % 292.95
LAGRASP(0,50,-) 0.51 % 124.26

Table 2. Summary of the numerical results obtained with the
best variants of the GRASP Lagrangean heuristic for 135 instances.
Total time (TTime) is given in seconds.

Heuristic AvgDev #Best Score TTime

LAGRASP(1,1,50) 0.079 % 365 74 1,803,283.64
LAGRASP(0.50,1,1) 0.134 % 242 168 30,489.17
LAGRASP(0,1,-) 0.135 % 238 169 24,274.72
LAGRASP(0.25,5,10) 0.235 % 168 320 22,475.54
LAGRASP(0.25,5,5) 0.247 % 163 350 11,263.80
LAGRASP(0.25,5,1) 0.249 % 164 405 5,347.78
LAGRASP(0.25,50,5) 0.442 % 100 625 1,553.35
LAGRASP(0,50,-) 0.439 % 97 666 569.30

In the following experiment, all the 135 test instances were considered in the
comparison of the eight variants of LAGRASP selected above. Table 2 summarizes
the results obtained by the eight variants. It shows that LAGRASP(1,1,50) found
the best solutions, with their average deviation from the best values being as small
as 0.079%. It also found the best known solutions in 365 executions, again with
the best performance when the eight variants are evaluated side by side, although
at the cost of the longest running times. On the other hand, the smallest running
times were observed for LAGRASP(0,50,-), which was over 3000 times faster than
LAGRASP(1,1,50) but found the worst-quality solutions.

In another experiment, we illustrate the merit of the proposed approach, showing
how Lagrangean heuristic take advantage of the randomization aspect of its basic
heuristic. We compare the eight selected versions of LAGRASP using graphics that
show the evolution of lower and upper bounds over the SO iterations. We considered
135 instances for SCkP. Since it is impractical to fit 135 plots in this paper, we show
the entire collection of plots in http://www.research.att.com/~mgcr/exp/sckp.
In this paper, we show only a representative set of plots.

Figures 2 to 4 display the typical behavior of LAGRASP for instances scpc4-
kmin, scpd4-kmed, and scp43-kmax, respectively. We first observe that all variants

EXPERIMENTS WITH LAGRASP 9

 440

 450

 460

 470

 480

 490

 500

 510

 520

 0 500 1000 1500 2000 2500 3000 3500

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
s

Iterations

LAGRASP(1,1,50) UB
LAGRASP(0.50,1,1) UB

LAGRASP(0,1,-) UB
LAGRASP(0.25,5,10) UB
LAGRASP(0.25,5,5) UB
LAGRASP(0.25,5,1) UB

LAGRASP(0.25,50,5) UB
LAGRASP(0,50,-) UB

Lower Bound

Figure 2. Evolution of lower and upper bounds over iterations
for different variants of LAGRASP (scpc4-kmin instance).

reach the same lower bounds, which is expected since they depend exclusively on
the common subgradient algorithm. However, as the dual information (i.e., the
lower bound) seems to stabilize, the upper bound obtained by LAGRASP(0,1,-)
(or GLH) also seems to freeze. On the other hand, the Lagrangean heuristics based
on GRASP continue to make improvements in discovering better upper bounds,
since the randomized GRASP construction makes it possible to escape from locally
optimal solutions and to find new, improved upper bounds. Only 19 out of 135
instances did not present the same behavior. In these cases, as shown in Figure
5 for instance scpa2-kmax, LAGRASP(0,1,-) (or GLH) overcame the results of the
other versions of LAGRASP. These results, however, are in Table 1 and 2 and can
be explained by the stochastic nature of LAGRASP.

4. Concluding Remarks

In this paper, we describe a hybrid Langrangean heuristic with GRASP and
path-relinking, and extend the results presented in [13] for set k-covering. The
comparison of different variants of LAGRASP showed that, by properly tuning its
parameters, it is possible to obtain a good trade-off between solution quality and
running time. Extensive experiments on 135 instances showed, graphically, that
LAGRASP can take advantage of randomization aspect to make better use of dual
information provided by subgradient optimization. As a consequence, LAGRASP
is able to discover better solutions and to escape from locally optimal solutions after
the stabilization of the lower bounds, whereas the greedy Lagrangean heuristic fails
to find new improving solutions. The plots for the extended experiment, can be
downloaded from http://www.research.att.com/~mgcr/exp/sckp.

10 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

 37500

 38000

 38500

 39000

 39500

 40000

 40500

 0 500 1000 1500 2000 2500

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
s

Iterations

LAGRASP(1,1,50) UB
LAGRASP(0.50,1,1) UB

LAGRASP(0,1,-) UB
LAGRASP(0.25,5,10) UB
LAGRASP(0.25,5,5) UB
LAGRASP(0.25,5,1) UB

LAGRASP(0.25,50,5) UB
LAGRASP(0,50,-) UB

Lower Bound

Figure 3. Evolution of lower and upper bounds over iterations
for different variants of LAGRASP (scpd4-kmed instance).

 10200

 10300

 10400

 10500

 10600

 10700

 10800

 10900

 0 500 1000 1500 2000 2500

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
s

Iterations

LAGRASP(1,1,50) UB
LAGRASP(0.50,1,1) UB

LAGRASP(0,1,-) UB
LAGRASP(0.25,5,10) UB
LAGRASP(0.25,5,5) UB
LAGRASP(0.25,5,1) UB

LAGRASP(0.25,50,5) UB
LAGRASP(0,50,-) UB

Lower Bound

Figure 4. Evolution of lower and upper bounds over iterations
for different variants of LAGRASP (scp43-kmax instance).

EXPERIMENTS WITH LAGRASP 11

 65000

 65500

 66000

 66500

 67000

 67500

 68000

 68500

 69000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
s

Iterations

LAGRASP(1,1,50) UB
LAGRASP(0.50,1,1) UB

LAGRASP(0,1,-) UB
LAGRASP(0.25,5,10) UB
LAGRASP(0.25,5,5) UB
LAGRASP(0.25,5,1) UB

LAGRASP(0.25,50,5) UB
LAGRASP(0,50,-) UB

Lower Bound

Figure 5. Evolution of lower and upper bounds over iterations
for different variants of LAGRASP (scpa2-kmax instance).

References

[1] Vazirani, V.: Approximation Algorithms. Springer-Verlag, Berlin (2004)
[2] Bafna, V., Halldorsson, B. V., Schwartz, R., Clark, A.G., and Istrail, S.: Haplotypes and in-

formative snp selection algorithms: don’t block out information. In: RECOMB ’03: Proceed-
ings of the seventh annual international conference on Research in Computational Molecular
Biology, pp. 19–27. ACM (2003)

[3] Resende, M.G.C.: An optimizer in the telecommunications industry. SIAM
SIAG/Optimization Views-and-News 18(2), 8–19 (2007)

[4] Hall, N.G., Hochbaum, D.S.: The multicovering problem. European Journal of Operational
Research 62(3), 323–339 (1992)

[5] Resende, M.G.C., Toso, R.T., Gonçalves, J.F., Silva, R.M.A.: A biased random-key
genetic algorithm for the Steiner triple covering problem. Optimization Letters (2011).
doi:10.1007/s11590-011-0285-3

[6] Breslau, L., Diakonikolas, I., Duffield, N., Gu, Y., Taghi, H.M., Johnson, D., Karloff, H.,
Resende, M.G.C., Sen, S.: Disjoint-Path Facility Location: Theory and Practice. In: Pro-
ceedings of the Thirteenth Workshop on Algorithm Engineering and Experiments (ALENEX),
60–74 (2011)

[7] Gonçalves, L., Martins, S.L., Ochi, L., Subramanian, A.: Exact and heuristic approaches for
the set cover with pairs problem. Optimization Letters (2011). doi: 10.1007/s11590-011-0289-
z

[8] Lucena, A. Private communication (2009)
[9] Avella, P., Boccia, M., Vasilyev, I.: Computational experience with general cutting planes

for the Set Covering problem. Operations Research Letters 37, 16–20 (2009)

[10] Balas, E., Ng, S.: On the set covering polytope: I. All the facets with coefficients in 0,1,2.
Mathematical Programming, Series A. 43, 57–69 (1989)

[11] Balas, E., Ng, S.: On the set covering polytope: II. Lifting the facets with coefficients in
0,1,2. Mathematical Programming, Series A. 45, 1–20 (1989)

12 LUCIANA S. PESSOA, MAURICIO G. C. RESENDE, AND CELSO C. RIBEIRO

[12] Pessoa, L.S., Ribeiro, C.C.: A GRASP for the minimum informative subset problem. In: CIR-
RELT (ed.) Proceedings of the Seventh Metaheuristics International Conference (MIC2007),
44–44 (2007)

[13] Pessoa, L.S., Resende, M.G.C., Ribeiro, C.C.: A hybrid Lagrangean heuristic with GRASP
and path-relinking for set k-covering. Technical report, AT&T Labs Research (2010)

[14] Feo, T., Resende, M.G.C.: Greedy randomized adaptative search procedures. Journal of
Global Optimization 6(2), 109–133 (1995)

[15] Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures: Advances
and applications. In: Gendreau, M., Potvin, J. (eds) Handbook of Metaheuristics. 2nd edn,
pp. 293–319. Springer Science+Business Media (2010)

[16] Beasley, J.E.: Lagrangean relaxation. In: Reeves, C.R. (ed.) Modern heuristic techniques for
combinatorial problems. pp. 243–303. Blackwell Scientific Publications (1993)

[17] Fisher, M.: The Lagrangian relaxation method for solving integer programming problems.
Management Science 50, 1861–1871 (2004)

[18] Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper-
ations Research 18, 1138–1162 (1970)

[19] Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: Part
II. Mathematical Programming 1, 6–25 (1971)

[20] Beasley, J.E.: An algorithm for set-covering problem. European Journal of Operational Re-

search 31, 85–93 (1987)
[21] Beasley, J.E.: A Lagrangian heuristic for set-covering problems. Naval Research Logistics 37,

151–164 (1990)
[22] Held, M., Wolfe, P., Crowder, H.: Validation of subgradient optimization. Mathematical

Programming 6, 62–88 (1974)
[23] Beasley, J.E.: OR-Library: Distributing test problems by electronic mail. Journal of the

Operational Research Society 41, 1069–1072 (1990)

(Luciana S. Pessoa) Department of Informatics and Applied Mathematics, Universidade

Federal do Rio Grande do Norte, Campus Universitário - Lagoa Nova, Natal, RN 59072-

970 Brazil.

E-mail address: luciana@dimap.ufrn.br

(Mauricio G. C. Resende) Algorithms and Optimization Research Department, AT&T

Labs Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.

E-mail address: mgcr@research.att.com

(Celso C. Ribeiro)Department of Computer Science, Universidade Federal Fluminense,

Rua Passo da Pátria, 156, Niterói, RJ 24210-240 Brazil.

E-mail address: celso@ic.uff.br

