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Abstract. The set multicovering or set k-covering problem is an extension of
the classical set covering problem, in which each object is required to be covered
at least k times. The problem finds applications in the design of communica-
tion networks and in computational biology. We describe a GRASP with path-
relinking heuristic for the set k-covering problem, as well as the template of a
family of Lagrangean heuristics. The hybrid GRASP Lagrangean heuristic em-
ploys the GRASP with path-relinking heuristic using modified costs to obtain
approximate solutions for the original problem. Computational experiments
carried out on 135 test instances show experimentally that the Lagrangean
heuristics performed consistently better than GRASP. By properly tuning the
parameters of the GRASP Lagrangean heuristic, it is possible to obtain a
good trade-off between solution quality and running times. Furthermore, the
GRASP Lagrangean heuristic makes better use of the dual information pro-
vided by subgradient optimization and is able to discover better solutions and
to escape from locally optimal solutions even after the stabilization of the lower
bounds, when other strategies fail to find new improving solutions.

1. Introduction

Given a set I = {1, . . . , m} of objects, let {P1, . . . , Pn} be a collection of subsets
of I, with a non-negative cost cj associated with each subset Pj , for j = 1, . . . , n.

A subset Ĵ ⊆ J = {1, . . . , n} is a cover of I if ∪
j∈Ĵ

Pj = I. The cost of a cover Ĵ

is
∑

j∈Ĵ cj . The set covering problem consists of finding a minimum cost cover J∗.
The set multi-covering problem is a generalization of the set covering problem,

in which each object i ∈ I must be covered by at least ℓi ∈ Z+ elements of
{P1, . . . , Pn}. A special case of the set multi-covering problem arises when ℓi = k,
for all i ∈ I. Following Vazirani (2004), we refer to this problem as the set k-
covering problem (SCkP).

Let the m × n binary matrix A = [aij ] be such that for all i ∈ I and j ∈ J ,

aij = 1 if and only if i ∈ Pj ; aij = 0, otherwise. Let a solution Ĵ of SCkP be

represented by a binary n-vector x, where xj = 1 if and only if j ∈ Ĵ . An integer
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programming formulation for the set k-covering problem is

z(x) =min

n
∑

j=1

cjxj(1)

s.t.
n

∑

j=1

aijxj ≥ k, i = 1, . . . , m,(2)

xj ∈ {0, 1}, j = 1, . . . , n.(3)

Lucena (2009) noticed that few branch-and-cut algorithms exist for set covering
problems and its variants, because the separation problem associated with some
families of strong inequalities (Avella et al. (2009); Balas and Ng (1989a;b)) are
very hard to be solved even for heuristics. Therefore, the use of heuristics for large
problems with large duality gaps is a need.

In this paper, we propose a template of Lagrangean heuristics for the set k-
covering problem, based on the hybridization of subgradient algorithms to solve its
Lagrangean relaxation with greedy and GRASP heuristics. Applications of the set
k-covering problem and related work are reviewed in the next section. A GRASP
with path-relinking heuristic for the set k-covering problem is customized in Sec-
tion 3. A template for Lagrangean heuristics for SCkP based on basic constructive
heuristics and subgradient optimization is proposed in Section 4. Different imple-
mentation strategies for the basic constructive heuristics and a hybridization of
GRASP with a Lagrangean heuristic are discussed in Section 5. Computational
results are reported in Section 6. Concluding remarks are made in Section 7.

2. Applications and related work

Applications of the set multicovering problem arise in a variety of fields, such
as marketing, logistics, security, telecommunications, and computational biology.
Though some of these applications can be modeled as set covering problems, for
reliability purposes they are treated as multicovering problems. Some applications
are described in Hall and Hochbaum (1992). We describe here two applications
that served as motivations for this paper.

In the context of computational biology, k-covers have an important application
in the minimum robust tagging SNP problem (Bafna et al., 2003). Single nucleotide
polymorphisms (SNPs) are the most abundant form of genetic variation in the
human genome. According to Brookes (1999), SNPs are single base pair positions
in DNA at which different sequence alternatives (alleles) exist in the individuals of
a population. SNPs can be bi-, tri-, or tetra-allelic, assuming one of two, three, or
four variants among {A,C,T,G}. Tri-allelic and tetra-allelic SNPs are very rare in
humans. Figure 1 (a) shows five SNP sites in four chromosomes. The first SNP
takes the allele C for chromosomes 1, 2, and 4, and the allele A for chromosome 3.

The specific set of alleles at nearby SNPs on a single chromosome is called a
haplotype (Brown, 2002; The International HapMap Consortium, 2003). Figure 1
(b) shows the haplotypes relative to the chromosomes in Figure 1 (a). Due to
the proximity of the SNPs in a haplotype, they are inherited together through the
generations and this causes a strong association among them. In this way, a small
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subset of these SNPs, called tag SNPs, can provide sufficient information about the
remaining SNPs (The International HapMap Consortium, 2003).
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Figure 1. SNPs and haplotypes.

Given a group of p haplotypes with n SNPs each, the minimum tagging SNP
problem (MTS) consists in finding the smallest subset of SNPs capable of distin-
guishing each haplotype from the others. However, it may be the case that some
tag SNPs are missing in one or more haplotypes. In this situation, there exists a
subgroup of SNPs, called robust tag SNPs, which is able to distinguish each pair of
haplotypes unambiguously when at most a given number of SNPs is missing. This
problem was formulated by Huang et al. (2005) as a set k-covering problem and
was shown to be NP-hard. To find robust tag SNPs, they proposed two greedy
algorithms, an exhaustive enumeration algorithm, and a linear programming relax-
ation. Later, Chang et al. (2006) developed a hybrid method that combines the
ideas of a branch-and-bound method and one of the greedy algorithms of Huang
et al. (2005). Pessoa and Ribeiro (2007) proposed a GRASP heuristic and reported
results on simulated and biological datasets.

Another application of the set multicovering problem arises in telecommunica-
tions (Resende, 2007). Suppose customers are serviced by equipment placed in
points-of-presence (PoPs). For example, a PoP could host a modem pool to which
a customer dials up for Internet access, or it could host an antenna which connects
the customer to the network. In the PoP placement problem, we are given a set of
customers, a set of potential PoP locations, and the set of PoPs that can provide
service to each customer. We wish to determine in which PoPs to place the equip-
ment such that each customer can be serviced by at least one PoP. Since PoPs may
have different costs associated with them, we wish to select the least-cost set of
PoPs. Clearly, if a customer is covered by exactly one PoP and that PoP fails, the
customer will lose service. To improve the reliability of the service, we may want
to require that each customer be covered by at least k PoPs. This problem is also
known as the redundant PoP placement problem.

Hall and Hochbaum (1983; 1992) developed and tested ten primal heuristics for
the set multicovering problem. They used these heuristics as well as Lagrangean
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relaxation in a branch-and-bound algorithm. Computational experiments on ins-
tances with up to 200 variables show that solutions within 0.5% of the optimal value
were found. Gonsalvez et al. (1987) examined these and other primal heuristics to
construct confidence intervals for the unknown optimal values.

3. GRASP with path-relinking

GRASP is short for greedy randomized adaptive search procedures. It was intro-
duced by Feo and Resende (1989) for solving a set covering problem with unit costs.
GRASP is a multi-start metaheuristic which consists of applying local search to fea-
sible starting solutions generated with a greedy randomized construction heuristic.
Tutorials on GRASP can be found, for example, in Feo and Resende (1995), Resende
and Ribeiro (2003), Resende (2008), and Resende and Ribeiro (2010). Annotated
bibliographies of GRASP are presented by Festa and Resende (2002; 2009a;b).

Path-relinking (Glover, 1996) is an intensification scheme that explores paths in
the solution space connecting good-quality solutions. Memory structures may be
introduced in GRASP through its hybridization with path-relinking (Laguna and
Mart́ı, 1999; Resende and Ribeiro, 2005; 2010; Resende et al., 2010).

In this section, we specialize GRASP and path-relinking into a heuristic for the
set k-covering problem.

3.1. Construction phase. A greedy algorithm for set k-covering builds a solution
from scratch, adding one of the sets P1, . . . , Pn at a time to a partial solution, until
all objects are k-covered, i.e. each object is covered by at least k sets. Given a
partial solution, at each step of the construction, let the covering cardinality τj be
the number of objects not yet k-covered by the partial solution that become covered
if Pj is introduced in partial solution. A candidate list L is formed by the indices of
all sets Pj not in the partial solution for which τj > 0. Each set Pj , with j ∈ L, is
evaluated according to a greedy function defined as the ratio ρj = cj/τj between its
cost and its covering cardinality. The greedy algorithm adds to the partial solution
a minimum ratio candidate set.

Algorithm 1 shows the pseudo-code of the randomized variant of the above greedy
algorithm, which is used to construct the initial solutions for the GRASP heuristic.
The solution x and the candidate list L are initialized in lines 2 and 3, respectively.
The covering cardinality and the greedy function value are computed in line 4
for all candidate elements. The loop in lines 5 to 14 adds one set at a time to
the cover, until all objects are k-covered. The minimum (ρ−) and maximum (ρ+)
greedy function values of the candidate elements are computed in lines 6 and 7,
respectively. The restricted candidate list (RCL), formed by all candidate elements
whose greedy function value is less than or equal to ρ− + α(ρ+ − ρ−), is built in
line 8, where α is a real-valued parameter in the interval [0, 1]. An element e is
chosen at random from the RCL in line 9 and the set Pe is added to the solution
in line 10. The covering cardinalities are recomputed in line 11 to account for
the inclusion of set e in the solution. The candidate list is updated in line 12 by
removing set Pe and all those sets having null covering cardinalities. Finally, in
line 13, the greedy function value is updated for all candidate sets.
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GreedyRandomizedConstruction1

xj ← 0, for j = 1, . . . , n;2

L← {1, . . . , n};3

Compute τj and ρj , for j = 1, . . . , n;4

while there exists some object that is not k-covered do5

ρ− ← min{ρj : j ∈ L};6

ρ+ ← max{ρj : j ∈ L};7

RCL← {j ∈ L : ρj ≤ ρ− + α(ρ+ − ρ−) };8

Select, at random, an element e from the RCL;9

xe ← 1;10

Recompute τj , ∀j ∈ L : j 6= e;11

L← L \ ({e} ∪ {j ∈ L : τj = 0});12

Recompute ρj , ∀j ∈ L13

end14

Algorithm 1: Greedy randomized construction procedure.

3.2. Local search. Solutions built with the randomized greedy algorithm are not
guaranteed to be locally optimal, even with respect to simple neighborhood struc-
tures. Therefore, the application of local search to such a solution usually results
in an improved locally optimal solution. We next describe a local search procedure
for the set k-covering problem.

Starting from an initial solution, local search explores its neighborhood for a cost-
improving solution. If none is found, then the search returns the initial solution as
a local minimum. Otherwise, if an improving solution is found, it is made the new
initial solution, and the procedure repeats itself.

The local search proposed in this paper makes use of two simple neighborhoods.
The first neighborhood is a (1, 0)-exchange in which we attempt to remove su-
perfluous sets from the multicover. The second neighborhood is a (1, 1)-exchange
in which we attempt to replace a more expensive set in the multicover by a less
expensive unused one.

The local search procedure is illustrated by the pseudo-code in Algorithm 2. In
the following we refer to sets in the multicover by their indices in the original set J .
The loop in lines 2 to 23 is repeated while a locally optimal solution is not found.
In line 3, all sets in the multicover are made candidates to leave the solution and
their indices are placed in S. The loop in lines 4 to 22 attempts to remove each set
in S, examining them in decreasing order of their costs. The next candidate j+ for
removal is determined in line 5 and the corresponding variable xj+ is tentatively
set to 0 in line 6. If the new solution obtained is feasible, then j+ is removed from
S in line 21 and a new set will be tested for removal from the cover. Otherwise,
if the test in line 7 determines that the new solution is infeasible, then we build
in line 8 a set S̄ of candidates to replace j+ in the cover. In line 9, we select the
least-cost candidate j− from S̄. The loop in lines 10 to 17 examines all profitable
elements in S̄ in an attempt to make a feasible cost-improving exchange. In line 11,
we tentatively insert the set j− into the solution and test in line 12 if the resulting
solution is feasible. If this is not the case, we undo the tentative insertion in line 13
and remove set j− from S̄ in line 14. If there are still candidates available for
insertion in set S̄, then in line 16, we determine the least-cost candidate as the
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next one to be examined for insertion. After there are no more cost-improving
candidates in S̄, we test in line 18 if a feasible solution was obtained. If this is true,
then j− is inserted in S; otherwise, we undo the assignment made in line 6.

LocalSearch1

while x is not locally optimal do2

Initialize the solution index set:3

S ← {j = 1, . . . , n : xj = 1};
while S 6= ∅ do4

j+ ← argmax{cj : j ∈ S};5

xj+ ← 0;6

if x is not feasible then7

S̄ ← {j = 1, . . . , n : xj = 0 and j 6= j+};8

j− ← argmin{cj : j ∈ S̄};9

while S̄ 6= ∅ and x is not feasible and cj− < cj+ do10

xj− ← 1;11

if x is not feasible then12

xj− ← 0;13

S̄ ← S̄ \ {j−};14

end15

if S̄ 6= ∅ then j− ← argmin{cj : j ∈ S̄};16

end17

if x is feasible then S ← S ∪ {j−} else18

xj+ ← 1;19

end20

S ← S \ {j+};21

end22

end23

Algorithm 2: Local search procedure.

3.3. Path-relinking. The basic implementation of GRASP is memoryless, since
computations in a GRASP iteration do not make use of information collected in pre-
vious iterations. Path-relinking is an intensification strategy that can be applied to
introduce memory structures in GRASP (Resende and Ribeiro, 2005; 2010). Path-
relinking explores paths in the solution space connecting good-quality solutions.
The procedure maintains a pool P formed by a limited number of elite solutions
(i.e., a diverse set of good-quality solutions found during the search). Path-relinking
is carried out between each solution x obtained by local search and a local minimum
xp, randomly selected from the pool. Depending on the strategy that will be used
by the path-relinking procedure, one of x or xp will be considered as the initial
solution xs and the other will be the target solution xt.

Algorithm 3 describes the path-relinking procedure for the set k-covering problem,
where xs is the binary vector representing an initial solution obtained after the
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PathRelinking1

∆← {j = 1, . . . , n : xs
j 6= xt

j};2

x∗ ← argmin{z(xs), z(xt)};3

z∗ ← min{z(xs), z(xt)};4

y ← xs;5

while |∆| > 1 do6

ℓ∗ ← argmin{z(y ⊕ ℓ) : ℓ ∈ ∆ and (y ⊕ ℓ) is feasible};7

∆← ∆ \ {ℓ∗};8

yℓ∗ ← 1− yℓ∗ ;9

if z(y) < z∗ then10

x∗ ← y;11

z∗ ← z(y);12

end13

end14

Algorithm 3: Path-relinking procedure.

GRASP+PR1

Initialize elite set P ← ∅;2

Initialize best solution value z∗ ←∞;3

for i = 1, . . . , N do4

x← GreedyRandomizedConstruction();5

x← LocalSearch(x);6

if i = 1 then insert x into the elite set P ;7

else8

Choose, at random, a pool solution xp ∈ P ;9

Determine which solution (between x and xp) is the10

initial solution xs and the target solution xt;
x← PathRelinking(xs, xt);11

x← LocalSearch(x);12

Update the elite set P with x;13

end14

if z(x) < z∗ then15

x∗ ← x;16

z∗ ← z(x);17

end18

end19

Algorithm 4: GRASP with path-relinking procedure.

local search phase and xt is the binary vector representing a target solution. The
set ∆ = {j = 1, . . . , n : xs

j 6= xt
j} of positions in which xs and xt differ is computed

in line 2. The best solution x∗ among xt and xs and its cost z(x∗) are determined
in lines 3 and 4, respectively. The current path-relinking solution y is initialized to
xs is line 5. The loop in lines 6 to 14 progressively determines the next solution in
the path connecting xs and xt until the entire path is traversed. For every position
ℓ ∈ ∆, we define y ⊕ ℓ to be the solution obtained from y by complementing the
current value of yℓ. Line 7 determines the component ℓ∗ of ∆ for which y⊕ℓ results
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in the least-cost feasible solution. This component is removed from ∆ in line 8 and
the current solution is updated in line 9 by complementing the value of its ℓ∗-th
position. If the test in line 10 detects that the new current solution y improves the
best solution x∗ in the path, then the latter and its cost are updated in lines 11
and 12, respectively.

To see that there always exists a path connecting xs and xt, observe that by
first setting to 1 all components of xs that are equal to 0 in xs and to 1 in xt will
result in a series of feasible multicovers leading from xs to some feasible solution y.
Next, by removing each of the superfluous components of y (i.e. setting to 0 the
components equal to 1 in y and to 0 in xt) will result again in a series of feasible
multicovers leading from y to xt.

Algorithm 4 shows the pseudo-code for the complete GRASP with path-relinking
procedure. Lines 2 and 3 initialize the elite set P and the value z∗ of the best known
solution. The loop from line 4 to 19 corresponds to the GRASP with path-relinking
iterations. At each iteration, an initial solution is built by the greedy randomized
procedure in line 5. A locally optimal solution x with respect to (1,0)- and (1,1)-
exchanges is computed by local search in line 6. The elite set P is initialized in line 7
with the local optimum x obtained in the first iteration. For all other iterations,
lines 8 to 14 perform the application of path-relinking and the elite set management.

A pool solution xp is chosen, at random, from the elite set in line 9. To favor
longer paths, xp is chosen with probability proportional to its Hamming distance to
the current solution x, i.e. |{j = 1, . . . , n : xp

j 6= xj}|. We do not consider a pool
solution if its Hamming distance with respect to x is less than four, since any path
between them cannot contain solutions simultaneously better than both of them.
Line 10 determines whether x or xp is the starting solution xs. The other one is
defined as the target solution, xt. Path-relinking is applied to the pair xs and xt of
solutions in line 11 resulting in a solution x, which is reoptimized by local search
in line 12. The elite set P is update in line 13. If the pool is not full and the new
solution is different from all others in the pool, then it is automatically inserted in
the elite set. Otherwise, if the new solution x is better than the worst solution in
the elite set, it replaces the highest cost solution in the pool. If x does not improve
upon the worst solution in the elite set, then it is discarded. The best solution x∗

and its cost z∗ are updated in lines 15 to 18.
The attribution of x and xp to the initial solution xs or to the target solution xt

depends on the path-relinking strategy. Different approaches have been considered
in the implementation of this procedure (Resende and Ribeiro, 2005; 2010; Resende
et al., 2010). In this paper we considered three strategies:

• Forward: when the initial solution is the highest cost solution between xs

and xt.
• Backward: when the initial solution is the lowest cost solution between xs

and xt.
• Mixed: when two paths are simultaneously explored by interchanging the

roles of initial and target solution after each move. In this case, the attri-
bution of either x or xp to xs or to xt is indifferent.
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4. A template for Lagrangean heuristics

Lagrangean relaxation (Beasley, 1993; Fisher, 2004) is a mathematical program-
ming technique that can be used to provide lower bounds for combinatorial op-
timization problems. However, the primal solutions produced by the algorithms
used to solve the Lagrangean dual problem are not necessarily feasible. Held and
Karp (1970; 1971) were among the first to explore the use of the dual multipliers
produced by Lagrangean relaxation to derive lower bounds, applying this idea in
the context of the traveling salesman problem.

Lagrangean heuristics exploit the dual multipliers to generate primal feasible
solutions. Beasley (1987; 1990b) described a Lagrangean heuristic for set covering
which can be extended to the set k-covering problem.

A Lagrangean relaxation of the set k-covering problem can be defined by associ-
ating dual multipliers λi ∈ R+, for i = 1, . . . , m, to each inequality (2). This results
in the following Lagrangean relaxation problem LRP(λ):

min

n
∑

j=1

cjxj +

m
∑

i=1

λi(k −
n

∑

j=1

aijxj)

s.t.

xj ∈ {0, 1} , j = 1, . . . , n.

By letting c′j = cj −
∑m

i=1 λiaij , formulation LRP(λ) simplifies to

z′(λ) = min
n

∑

j=1

c′jxj +
m

∑

i=1

λik

s.t.

xj ∈ {0, 1} , j = 1, . . . , n,

whose optimal solution x′(λ) is given by

(4) x′
j(λ) =

{

1, if c′j ≤ 0

0, otherwise,

for j = 1, . . . , n, where the objective function value given by

z′(λ) =

n
∑

j=1

c′jx
′
j(λ) + k

m
∑

i=1

λi

is a lower bound to the optimal value of the original problem (1)–(3). The best
lower bound z′(λ∗) is the solution of the Lagrangean dual problem LDP:

(5) zD = max
λ∈R

m

+

z′(λ).

Subgradient optimization may be used to solve (5). Subgradient algorithms may
start from any feasible set of dual multipliers, such as λi = 0, for i = 1, . . . , m, and
iteratively generate further multipliers. We use the same strategy described in Held
et al. (1974) for updating the dual multipliers from one iteration to the next.

At any iteration q, let λq be the current vector of multipliers and let x′(λq) be an
optimal solution to problem LRP(λq), whose optimal value is z′(λq). Furthermore,
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let z̄ be a known upper bound to the optimal value of problem (1)–(3). Additionally,
let gq ∈ R

m be a subgradient of z′(λ) for λ = λq , with

(6) gq
i = k −

n
∑

j=1

aijx
′
j(λ

q), i = 1, 2, . . . , m.

To update the Lagrangean multipliers, the algorithm makes use of a step size

(7) dq =
η (z̄ − z′(λq))

∑m
i=1(g

q
i )

2
,

where η ∈ (0, 2]. Multipliers are then updated according to

(8) λq+1
i = max{0; λq

i + dqgq
i }, i = 1, . . . , m,

and the subgradient algorithm proceeds to iteration q + 1.
Beasley (1990b) reports as computationally useful to adjust the components of

the subgradients to zero whenever they do not effectively contribute to the update
of the multipliers, i.e. arbitrarily set gq

i = 0 whenever gq
i > 0 and λq

i = 0, for
i = 1, . . . , m.

The Lagrangean heuristic proposed in this section makes use of the dual mul-
tipliers λq and of the optimal solution x′(λq) to each problem LRP(λq) to build
feasible solutions to the original problem (1)–(3). To do this, let H be a heuristic
that builds a feasible solution x from an initial solution x0. Two approaches are
considered to define x0: Beasley (1990b) sets x0 = x(λq), while Caprara et al.
(1999) simply initialize x0

j = 0, for j = 1, . . . , n. In other words, the first approach

repairs the initial solution x′(λq) to make it feasible, while the second builds a
feasible solution from scratch.

Heuristic H is initially applied from scratch using the original cost vector c. In
any subsequent iteration q of the subgradient algorithm, H either uses Lagrangean
reduced costs c′j = cj−

∑m
i=1 λq

i aij or complementary costs c̄j = (1−x′
j(λ

q))cj . Let

xH,γ be the solution obtained by H, using a generic cost vector γ corresponding
to either one of the above modified cost schemes or to the original cost vector. Its

cost is given by
∑n

j=1 cjx
H,γ
j and may be used to update the upper bound z̄ to the

optimal value of the original problem (1)–(3). This upper bound may be further
improved by local search and is used to adjust the step size in (7).

Algorithm 5 describes the pseudo-code of the Lagrangean heuristic. Lines 2
to 4 initialize the upper and lower bounds, the iteration counter, and the dual
multipliers. The iterations of the subgradient algorithm are performed along the
loop in lines 5 to 22. The reduced costs are computed in line 6 and the Lagrangean
relaxation problem is solved by inspection in line 7. In the first iteration of the
Lagrangean heuristic, the original cost vector is assigned to γ in line 8, while in
subsequent iterations a modified cost vector is assigned in line 9. Lines 10 to 16
determine that a basic heuristic is used to produce a primal feasible solution to
problem (1)–(3) whenever the iteration counter q is a multiple of an input parameter
H . A heuristic H is applied in line 11 to produce the feasible solution xH,γ . If the
cost of this solution is lower than the current upper bound, the best solution so far
and its cost are updated in lines 13 and 14, respectively. If the lower bound z′(λq)
computed in iteration q is greater than the best lower bound zD, then in line 17 the
lower bound zD is updated. Line 18 computes the subgradient and line 19 computes
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LagrangeanHeuristic1

Initialize bounds: z̄ ←
∑n

j=1 cj and zD ← 0;2

Initialize iteration counter: q ← 0;3

Initialize dual multipliers: λq
i ← 0, i = 1, . . . , m;4

repeat5

Compute reduced costs c′j ← cj −
∑m

i=1 λq
i aij , j = 1, . . . , n;6

Solve LRP(λq) by inspection to obtain x′(λq);7

if q = 0 then set γ ← c;8

else set γ to the modified cost vector;9

if q is a multiple of H then10

Apply a basic heuristic H with cost vector γ to obtain xH,γ ;11

if
∑n

j=1 cjx
H,γ
j < z̄ then12

x∗ ← xH,γ ;13

z̄ ←
∑n

j=1 cjx
H,γ
j ;14

end15

end16

if z′(λq) > zD then zD ← z′(λq);17

Compute subgradient: gq
i = k −

∑n
j=1 aijx

′
j(λ

q), i = 1, 2, . . . , m;18

Compute step size: dq ← η (z̄ − z′(λq))/
∑m

i=1(g
q
i )

2;19

Update dual multipliers: λq+1
i ← max{0, λq

i − dqgq
i }, i = 1, . . . , m;20

Increment iteration counters: q ← q + 1;21

until stopping criterion satisfied ;22

Algorithm 5: Pseudo-code of the template for a Lagrangean heuristic.

the step size. The dual multipliers are updated in line 20 and the iteration counter
is incremented in line 21.

Different choices for the initial solution x0 and for the modified costs γ, as well
as for the heuristic H itself, lead to different Lagrangean heuristics.

5. Basic heuristics and Lagrangean GRASP

Different implementation strategies of the heuristic H in the template of Algo-
rithm 5 lead to distinct Lagrangean heuristics. We considered two variants: the
first makes use of a greedy algorithm (as presented in Section 3.1) with local search
(as presented in Section 3.2), while the second is a GRASP with path-relinking (as
presented in Section 3.3).

5.1. Greedy heuristic. This heuristic either builds a feasible solution x from
scratch, or repairs the solution x′(λq) produced in line 7 of the Lagrangean heuristic
described in Algorithm 5 to make it feasible for problem (1)–(3). It corresponds
to the greedy randomized construction described in Algorithm 1 using parameter
α = 0 and modified costs (c′ or c̃). The local search described in Algorithm 2 is
applied to the resulting solution, using the original cost vector c. We shall refer to
the Lagrangean heuristic that uses the greedy heuristic as the greedy Lagrangean
heuristic or simply GLH.

5.2. GRASP heuristic. Instead of simply performing one construction step fol-
lowed by local search as in the greedy heuristic, this variant applies the GRASP
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Table 1. Characteristics of the test problems: for each class, the
table lists its name, dimension (rows × columns), density, and the
number of instances making up the class.

Number of
Classes Dimension Density instances

scp4 200 × 1000 2% 10
scp5 200 × 2000 2% 10
scp6 200 × 1000 5% 5
scpa 300 × 3000 2% 5
scpb 300 × 3000 5% 5
scpc 400 × 4000 2% 5
scpd 400 × 4000 5% 5

with path-relinking heuristic of Algorithm 4 either to build a feasible solution x
from scratch, or to repair the solution x′(λq) produced in line 7 of the Lagrangean
heuristic described in Algorithm 5 to make it feasible for problem (1)–(3). We shall
refer to the Lagrangean heuristic that uses the GRASP heuristic as the GRASP
Lagrangean heuristic or simply LAGRASP.

Although the GRASP heuristic produces better solutions than the greedy heuris-
tic, the latter is much faster. To appropriately address this trade-off, we choose
in line 11 of Algorithm 5 to use the GRASP heuristic with probability β and the
greedy heuristic with probability 1− β, where β is a parameter of the algorithm.

We note that this strategy involves three main parameters: the number H of
iterations after which the basic heuristic is always applied, the number Q of ite-
rations performed by the GRASP with path-relinking heuristic when it is chosen
as the basic heuristic, and the probability β of choosing the GRASP heuristic as
H. We shall refer to the Lagrangean heuristic that uses this hybrid strategy as
LAGRASP(β, H, Q).

To implement path-relinking in the GRASP basic heuristic, LAGRASP main-
tains a global pool P which is empty at the start of the subgradient method. Each
solution obtained in the GRASP local search phase is a candidate to be inserted in
the elite set, following the pool management policy presented in Section 3.3.

6. Computational experiments

The computational experiments were performed on a 2.33 GHz Intel Xeon E5410
Quadcore computer running Linux Ubuntu 8.04. Each run was limited to a single
processor. All codes were implemented in C and compiled with gcc 4.1.2. We
generated 135 test instances for the set k-covering problem from 45 set covering
instances of the OR-Library (Beasley, 1990a). For each original instance, three
different coverage factors k are considered:

• kmin: k = 2;

• kmax: k = min
i=1,...,m

n
∑

j=1

aij ;

• kmed: k = ⌈(kmin + kmax)/2⌉

The characteristics of the seven classes of test problems are shown in Table 1.
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6.1. Comparative metrics. We used the following metrics to compare the heuris-
tics:

• BestValue: for each instance, BestValue is the best solution value obtained
over all executions of the methods considered.
• Dev : for each run of a method, Dev is the relative deviation in percentage

between BestValue and the solution value obtained in that run.
• AvgDev : average value of Dev over all instances and runs of a method in a

particular experiment.
• #Best : for each method, this metric gives the number of runs whose solu-

tion value matched BestValue.
• NScore: for each method and instance, this metric gives the number of

methods that found better solutions than this specific method for this in-
stance. In case of ties, all methods receive the same score, equal to the
number of methods strictly better than all of them.
• Score: for each method, this metric gives the sum of the NScore values over

all instances in the experiment. Thus, lower values of Score correspond to
better methods.
• TTime: for each method, this metric gives the sum over all instances of

the average time taken by this method over all runs of the same instance.

6.2. GRASP with path-relinking. The experiments reported in this section aim
to evaluate the quality of the solutions returned by different variants of the GRASP
with path-relinking heuristic GRASP+PR.

The RCL parameter α in the construction phase is automatically adjusted ac-
cording to the Reactive GRASP strategy, as suggested by Prais and Ribeiro (2000).
For each value of α in a set of discrete values {α1, α2, . . . , αr}, we associate proba-
bilities pi, i = 1, . . . , r. Before starting the GRASP+PR iterations, we set pi = 1/r,
for i = 1, . . . , r. These probabilities are periodically updated according to

pi = qi/

r
∑

j=1

qj , i = 1, . . . , r,

with

qi =

(

f∗

Mi

)δ

, i = 1, . . . , r,

where f∗ is the value of the best solution found among all previous GRASP+PR
iterations and Mi is the average value of the solutions found using the RCL param-
eter α set to αi. In doing so, values of α leading to better results will have a higher
probability of being selected. The factor δ = 100 is used to attenuate low value
probabilities and to intensify high value probabilities. In this experiment, r is fixed
to 20 and αi = i/20, for i = 1, . . . , r. The probabilities pi are updated every 100
iterations.

Path-relinking was implemented according to the forward, backward, and mixed
strategies. The pool of elite solutions was set to have at most 100 elements.

To evaluate each variant of GRASP+PR, eight runs were carried out for each
instance, varying the initial seed given to the random number generator. The
algorithm stops whenever a maximum time limit is reached. The time limit given
to the instances in each class is approximately that needed by a pure, memoryless
GRASP variant to perform 1000 iterations on the first instance of the class. Table
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Table 2. Time limits (in seconds) given to the instances in each
class and for each coverage factor in the experiments with GRASP
with path-relinking.

Classes kmin kmed kmax

scp4 5 15 27
scp5 10 45 90
scp6 5 20 38
scpa 21 141 265
scpb 17 235 288
scpc 39 329 580
scpd 26 489 544

2 shows, for each coverage factor, the time limits (in seconds) given to the instances
in each class of test problems.

Table 3 shows comparisons over all 135 test instances for a pure GRASP heuristic
(Gpure) and three variants of GRASP with path-relinking: backward (GPRb),
forward (GPRf), and mixed (GPRm). The table shows that all variants with path-
relinking performed similarly and were better than the pure GRASP, since their
average percentage deviations from the best value ranged from 0.87% to 0.94%,
while for pure GRASP this value amounted to 2.52%. Although the pure GRASP
obtained the worst average percentage deviation, it found the best solutions in
a greater number of runs than the variants using path-relinking. Furthermore,
we observed that Gpure obtained the best solutions for 52 instances, while GPRb,
GPRf, and GPRm found the best solutions for 38, 30, and 37 instances, respectively.
These results of Gpure, however, did not lead to the best AvgDev metric value since,
for the most of the instances, the relative deviation from the best value is greater
than those obtained by the other variants of GRASP. Among the variants using
path-relinking, the best results were obtained by the backward strategy, which
presented the best results for the three metrics reported in the table.

Table 3. Summary of the numerical results obtained with four
variants of GRASP.

Gpure GPRb GPRf GPRm

AvgDev 2.52 % 0.87 % 0.89 % 0.94 %
#Best 80 67 50 61
Score 189 169 184 185

6.3. Greedy Lagrangean heuristic. This section reports on the computational
experiments performed to evaluate the efficiency of different variants of the greedy
Lagrangean heuristic.

By combining the two different approaches to build the initial solution x0 and
the two modified cost schemes used in the heuristic H, four different variants of
greedy Lagrangean heuristics were devised:
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• GLH1 LL: Lagrangean modified costs are used to build a feasible solution
from the one provided by the Lagrangean relaxation.
• GLH2 CL: complementary modified costs are used to build a feasible solu-

tion from the one provided by the Lagrangean relaxation.
• GLH3 LS: Lagrangean modified costs are used to build a feasible solution

from scratch.
• GLH4 CS: complementary modified costs are used to build a feasible solu-

tion from scratch.

For all variants, the step size parameter η is initially set to 2 and halved after
every 50 consecutive iterations of the subgradient algorithm without improvement
in the best lower bound. The greedy heuristic is run at every subgradient iteration.
Following Beasley (1990b), the greedy Lagrangean heuristic stops whenever the
lower bound zD matches the upper bound z̄ or the step size parameter η becomes
too small (η ≤ 10−4 in our implementation).

Table 4 displays a summary of the results obtained over all 135 test instances
with the four variants of the greedy Lagrangean heuristic. The four heuristics were
able to find good solutions of similar quality, as demonstrated by their average
deviations from the best value, which ranged from 0.09 to 0.15%. However, the two
variants based on building feasible solutions from scratch consumed much more
running time (about twice the times observed for the other variants). With respect
to the variants that start from the solutions provided by the Lagrangean relaxation,
the one using Lagrangean modified costs (GLH1 LL) obtained best results for the
three quality metrics, finding 384 best solutions over the eight executions for each
of the 135 instances at the cost of a small additional running time.

Table 4. Summary of the numerical results obtained with four
variants of the greedy Lagrangean heuristic. Total time (TTime)
is given in seconds.

GLH1 LL GLH2 CL GLH3 LS GLH4 CS

AvgDev 0.09 % 0.15 % 0.09 % 0.13 %
#Best 384 231 364 298
Score 83 216 98 153
TTime 24,274.71 22,677.02 37,547.50 41,804.25

6.4. GRASP Lagrangean heuristic. In this section, we report the computa-
tional experiments involving the LAGRASP hybridization of the best variant of
GRASP with path-relinking (as presented in Section 6.2) with the best variant of
the greedy Lagrangean heuristic (as presented in Section 6.3). Instead of building
an initial solution from scratch, the GRASP construction phase receives the solu-
tion x0 provided by the Lagrangean relaxation. Furthermore, instead of the original
costs, Lagrangean reduced costs are used to evaluate the candidate elements. The
RCL parameter α used in the GRASP construction phase was set to 0.3 to reduce
the computational burden with respect to the reactive variant used in the GRASP
implementations.

The aim of the first experiment with the GRASP Lagrangean heuristic is to
evaluate the relationship between running times and solution quality for different
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parameter settings. Parameter H , the number of iterations between successive calls
to the heuristic H, was set to 1, 5, 10, and 50. Parameter β, the probability of
GRASP being applied as the heuristic H, was set to 0, 0.25, 0.50, 0.75, and 1.
Parameter Q, the number of iterations carried out by the GRASP heuristic was set
to 1, 5, 10, and 50. By combining these parameter values, 68 variants of the hybrid
LAGRASP heuristic were created. Each variant was applied eight times to each
instance, with different initial seeds given to the random number generator. The
set of 21 instances considered in this experiment was formed by the first instance
of each class described in Table 1.

The plot in Figure 2 summarizes the results for all evaluated variants, displaying
points whose coordinates are the values of the AvgDev and TTime metrics for each
combination of parameter values.
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Figure 2. Average deviation from the best value and total run-
ning time for 68 different variants of LAGRASP: each point repre-
sents a unique combination of parameters β, H , and Q.

Eight variants of special interest are identified and labeled with the corresponding
parameters β, H , and Q, in this order. These variants correspond to some selected
Pareto points in the plot in Figure 2, i.e, for a given AvgDev value there is no other
variant which reaches the same value in less CPU time. Additionally, for a given
CPU time, there is no other variant which shows a better result for the AvgDev
metric in at most this CPU time. Setting β = 0 and H = 1 corresponds to the
greedy Lagrangean heuristic (GLH) or, equivalently, to LAGRASP(0,1,-), whose
average deviation from the best value amounted to 0.12% in 4,859.16 seconds of
total running time. Table 5 shows the values of AvgDev and TTime for each variant.

In the following experiment, all 135 test instances were considered in the com-
parison of the eight variants of LAGRASP selected above. Table 6 summarizes the
results obtained by the eight variants. It shows that LAGRASP(1,1,50) found the
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Table 5. Summary of the numerical results obtained with the
selected variants of the GRASP Lagrangean heuristic. Total time
(TTime) is given in seconds.

Heuristic AvgDev TTime

LAGRASP(1,1,50) 0.09 % 399,101.14
LAGRASP(0.50,1,1) 0.11 % 6,198.46
LAGRASP(0,1,-) 0.12 % 4,859.16
LAGRASP(0.25,5,10) 0.24 % 4,373.56
LAGRASP(0.25,5,5) 0.25 % 2,589.79
LAGRASP(0.25,5,1) 0.26 % 1,101.64
LAGRASP(0.25,50,5) 0.47 % 292.95
LAGRASP(0,50,-) 0.51 % 124.26

best solutions, with their average deviation from the best values being as small as
0.079%. It also found the best known solutions in 365 executions, again with the
best performance when the eight variants are evaluated side by side, although at
the cost of the longest running times. On the other hand, the smallest running
times were observed for LAGRASP(0,50,-), which was over 3000 times faster than
LAGRASP(1,1,50) but found the worst-quality solutions.

Table 6. Summary of the numerical results obtained with the best
variants of the GRASP Lagrangean heuristic. Total time (TTime)
is given in seconds.

Heuristic AvgDev #Best Score TTime

LAGRASP(1,1,50) 0.079 % 365 74 1,803,283.64
LAGRASP(0.50,1,1) 0.134 % 242 168 30,489.17
LAGRASP(0,1,-) 0.135 % 238 169 24,274.72
LAGRASP(0.25,5,10) 0.235 % 168 320 22,475.54
LAGRASP(0.25,5,5) 0.247 % 163 350 11,263.80
LAGRASP(0.25,5,1) 0.249 % 164 405 5,347.78
LAGRASP(0.25,50,5) 0.442 % 100 625 1,553.35
LAGRASP(0,50,-) 0.439 % 97 666 569.30

Figures 3 and 4 illustrate the merit of the proposed approach for instances scp43-
kmax and scpd3-kmin. We first observe that all variants reach the same lower
bounds, which is expected since they depend exclusively on the common subgradi-
ent algorithm. However, as the dual information (i.e., the lower bound) seems to
stabilize, the upper bound obtained by LAGRASP(0,1,-) (or GLH) also seems to
freeze. On the other hand, the Lagrangean heuristics based on GRASP continue
to make improvements in discovering better upper bounds, since the randomized
GRASP construction makes it possible to escape from locally optimal solutions and
to find new, improved upper bounds.
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Figure 3. Evolution of lower and upper bounds over iterations
for different variants of LAGRASP (scp43-kmax instance).
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Figure 4. Evolution of lower and upper bounds over iterations
for different variants of LAGRASP (scpd3-kmin instance).

6.5. Comparative results between LAGRASP and GRASP. Finally, we
compare in this section the performances of GRASP and LAGRASP when the same
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time limits are used as the stopping criterion for both heuristics. We consider the
best variant of GRASP presented in Section 6.2, in which GRASP is combined with
backward path-relinking (GPRb). GPRb is compared with the eight variants of
the Lagrangean heuristics selected in Section 6.4. Results of GPRb and LAGRASP
heuristics are also compared with the best solutions found by the commercial integer
programming solver CPLEX 11. The stopping criterion for CPLEX was either the
convergence of lower and upper bounds (proved optimality) or a maximum time
limit set at 86,400 seconds (24 hours).

Tables 7-9 report, for each group of instances, the best solution values obtained.
These solutions may be useful for future benchmarking studies. For each instance,
the tables list the value of the best solution found by CPLEX 11 in at most 24 hours
of CPU time, the number of branch and bound nodes explored by CPLEX, and
the value of the best solution found by LAGRASP. Each LAGRASP solution cor-
responds to the best solution found by the eight LAGRASP Pareto configurations
shown in the plot in Figure 2 and in Table 5. CPLEX solution values displayed in
boldface correspond to those for which CPLEX was able to prove optimality.

The Lagrangean heuristics and GPRb were run on the 135 test instances with
the time limits defined in Table 2. Eight runs were performed for each heuristic and
each instance, using different initial seeds input to the random number generator.
The results in Table 10 show that all variants of LAGRASP outperformed GPRb
and were able to find solutions whose costs are very close to or as good as those
obtained by CPLEX, while GPRb found solutions whose costs are on average 4.05%
larger than the best values obtained by the commercial solver.

Figures 5 and 6 display the typical behavior of the two methods compared in this
section for instances scp43-kmax and scpd3-kmin, respectively. As opposed to the
GRASP with path-relinking heuristic, the Lagrangean heuristics are able to escape
from local optima and keep improving the solutions to obtain the best results.

6.6. Numerical results for the original set covering instances. In this sec-
tion, the GRASP Lagrangean heuristic is applied to the 45 original instances of
the set covering problem described in Table 1, which correspond to set k-covering
instances with k = 1.

Table 11 reports the results obtained by the eight selected variants of LAGRASP,
comparing the best solutions found over eight runs for each instance with the op-
timal values presented in Caprara et al. (1999). This table shows that variant
LAGRASP(1,1,50) obtained the best results over the eight variants, at the cost
of longer running times. The average deviation from the optimal value was only
0.11% and this heuristic found the optimal solutions for the largest number of runs
(305 out of 360 runs). For each algorithm, we compute the number of instances
for which at least one run of the eight attempts found the optimal solution. These
values are shown in the fourth column of Table 11. These results are promising
given that they were obtained without any special tuning of the parameters for this
particular case of k = 1.

7. Concluding remarks

The main goal of this paper was to advance the current state-of-the-art of hybrid
heuristics combining metaheuristics with Lagrangean relaxations. To the best of
our knowledge, the paper reports on the first proposal of hybridization between
GRASP and Lagrangean heuristics based on subgradient optimization.
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Table 7. For each of the 135 test instances, the table lists the
best solution value found by CPLEX in at most 24 hours (bold-
face indicates CPLEX proved optimality), the number of branch
and bound nodes explored by CPLEX, and the best solution value
found by LAGRASP for kmin instances.

Instance Best value B&B Best value
CPLEX Nodes LAGRASP

scp41-kmin 1148 4 1150
scp42-kmin 1205 0 1205
scp43-kmin 1213 0 1214
scp44-kmin 1185 0 1185
scp45-kmin 1266 1 1266
scp46-kmin 1349 1 1349
scp47-kmin 1115 0 1115
scp48-kmin 1225 34 1225
scp49-kmin 1485 0 1485
scp410-kmin 1356 0 1356
scp51-kmin 579 0 579
scp52-kmin 677 69 679
scp53-kmin 574 9 574
scp54-kmin 582 15 587
scp55-kmin 550 0 550
scp56-kmin 560 1 560
scp57-kmin 695 0 695
scp58-kmin 662 0 662
scp59-kmin 687 34 687
scp510-kmin 672 0 672
scp61-kmin 283 27 283
scp62-kmin 302 18 302
scp63-kmin 313 0 313
scp64-kmin 292 31 292
scp65-kmin 353 32 353
scpa1-kmin 562 157 563
scpa2-kmin 560 83 560
scpa3-kmin 524 73 524
scpa4-kmin 527 22 527
scpa5-kmin 557 31 559
scpb1-kmin 149 2076 149
scpb2-kmin 150 184 151
scpb3-kmin 165 216 165
scpb4-kmin 157 853 157
scpb5-kmin 151 135 152
scpc1-kmin 514 445 515
scpc2-kmin 483 286 486
scpc3-kmin 544 6026 544
scpc4-kmin 484 109 485
scpc5-kmin 488 569 490
scpd1-kmin 122 1044 122
scpd2-kmin 127 211 127
scpd3-kmin 138 241 138
scpd4-kmin 122 517 123
scpd5-kmin 130 358 130
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Table 8. For each of the 135 test instances, the table lists the
best solution value found by CPLEX in at most 24 hours (bold-
face indicates CPLEX proved optimality), the number of branch
and bound nodes explored by CPLEX, and the best solution value
found by LAGRASP for kmed instances.

Instance Best value B&B Best value
CPLEX Nodes LAGRASP

scp41-kmed 8350 2640 8366
scp42-kmed 6111 443 6117
scp43-kmed 4676 114 4690
scp44-kmed 4670 162 4679
scp45-kmed 8389 92 8409
scp46-kmed 6416 1473 6432
scp47-kmed 6281 43 6284
scp48-kmed 8421 287 8439
scp49-kmed 7101 827 7121
scp410-kmed 5355 41 5364
scp51-kmed 11205 38720 11239
scp52-kmed 14418 18400 14473
scp53-kmed 11476 15892 11513
scp54-kmed 9944 25618 9965
scp55-kmed 10880 12030 10918
scp56-kmed 10581 54459 10629
scp57-kmed 14919 351673 14984
scp58-kmed 10622 275662 10687
scp59-kmed 11042 22482 11081
scp510-kmed 12436 52775 12475
scp61-kmed 7653 9916749 7692
scp62-kmed 6739 5412524 6773
scp63-kmed 8309 548135 8365
scp64-kmed 8546 7220253 8585
scp65-kmed 9038 1519470 9070
scpa1-kmed 21227 2678041 21324
scpa2-kmed 21739 3183837 21820
scpa3-kmed 20095 3878035 20155
scpa4-kmed 22865 3219403 22985
scpa5-kmed 18643 3346013 18706
scpb1-kmed 29222 1767524 29234
scpb2-kmed 28112 2134303 28187
scpb3-kmed 27872 2301677 27944
scpb4-kmed 25678 2272003 25742
scpb5-kmed 28203 2313903 28297
scpc1-kmed 32659 1285550 32763
scpc2-kmed 32765 1373093 32871
scpc3-kmed 34492 1256093 34610
scpc4-kmed 31366 1354393 31495
scpc5-kmed 30060 1401693 30196
scpd1-kmed 38991 1123793 39132
scpd2-kmed 39030 1167593 39098
scpd3-kmed 39198 1108293 39271
scpd4-kmed 38781 1241341 38879
scpd5-kmed 40321 1158993 40409
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Table 9. For each of the 135 test instances, the table lists the
best solution value found by CPLEX in at most 24 hours (bold-
face indicates CPLEX proved optimality), the number of branch
and bound nodes explored by CPLEX, and the best solution value
found by LAGRASP for kmax instances.

Instance Best value B&B Best value
CPLEX Nodes LAGRASP

scp41-kmax 18265 0 18290
scp42-kmax 12360 2160 12405
scp43-kmax 10396 49 10398
scp44-kmax 10393 5713 10427
scp45-kmax 18856 0 18856
scp46-kmax 15394 1210 15419
scp47-kmax 15233 1241 15280
scp48-kmax 18602 792 18628
scp49-kmax 16558 392 16591
scp410-kmax 11607 58 11618
scp51-kmax 35663 994835 35749
scp52-kmax 45396 4802 45433
scp53-kmax 36329 340559 36388
scp54-kmax 28017 9508 28051
scp55-kmax 32779 57608 32878
scp56-kmax 29608 312752 29653
scp57-kmax 41930 111582 41954
scp58-kmax 32320 32718 32405
scp59-kmax 33584 67633 33655
scp510-kmax 38709 106627 38807
scp61-kmax 23516 10620461 23534
scp62-kmax 19934 6490122 20025
scp63-kmax 27983 106240 28027
scp64-kmax 26442 10067517 26530
scp65-kmax 27069 1678983 27124
scpa1-kmax 68522 2803421 68669
scpa2-kmax 65842 3619480 65922
scpa3-kmax 66829 2609228 67016
scpa4-kmax 72334 3776330 72465
scpa5-kmax 60491 2500372 60625
scpb1-kmax 105506 3076095 105636
scpb2-kmax 102922 2644498 103046
scpb3-kmax 98280 2590497 98445
scpb4-kmax 93777 2582402 93836
scpb5-kmax 102810 2750998 102905
scpc1-kmax 112471 1479684 112667
scpc2-kmax 113916 1688788 114145
scpc3-kmax 117416 1705592 117680
scpc4-kmax 110823 1653941 111091
scpc5-kmax 104439 1596493 104591
scpd1-kmax 144887 1367853 145060
scpd2-kmax 144096 1656196 144218
scpd3-kmax 140474 1326320 140685
scpd4-kmax 143513 1495597 143582
scpd5-kmax 146307 1610496 146452
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Table 10. Comparative results for the best variants of LAGRASP
and GRASP.

Heuristic AvgDev #Best Score

LAGRASP(1,1,50) 3.30 % 0 949
LAGRASP(0.50,1,1) 0.35 % 171 152
LAGRASP(0,1,-) 0.35 % 173 120
LAGRASP(0.25,5,10) 0.45 % 138 229
LAGRASP(0.25,5,5) 0.45 % 143 236
LAGRASP(0.25,5,1) 0.46 % 137 288
LAGRASP(0.25,50,5) 0.65 % 97 491
LAGRASP(0,50,-) 0.65 % 93 534
GPRb 4.05 % 0 1043
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Figure 5. Evolution of solution costs with time for the best vari-
ants of LAGRASP and GRASP+PR (scp43-kmax instance).

The set k-covering problem was used as the test bed for the algorithmic develop-
ments and computational experiments. Few heuristics are available in the literature
for this problem. The need for good approximate algorithms for this problem is
well established, due to the hardness of solving the separation problem associated
with branch-and-cut algorithms for its exact solution. Two applications of the set
k-covering problem were described and 135 test instances were derived from set
covering instances in the OR-Library.
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Table 11. Summary of the numerical results obtained with the
best variants of the GRASP Lagrangean heuristic for the original
set covering instances. Total time (TTime) is given in seconds.

Heuristic AvgDev #Best Optimal Score TTime

LAGRASP(1,1,50) 0.11 % 305 40/45 5 23,285.11
LAGRASP(0.50,1,1) 0.35 % 219 31/45 35 257.54
LAGRASP(0,1,-) 0.40 % 209 27/45 62 210.83
LAGRASP(0.25,5,10) 0.41 % 214 34/45 25 265.07
LAGRASP(0.25,5,5) 0.46 % 202 30/45 42 160.35
LAGRASP(0.25,5,1) 0.47 % 199 28/45 58 80.06
LAGRASP(0.25,50,5) 0.81 % 161 25/45 105 52.80
LAGRASP(0,50,-) 0.90 % 148 20/45 150 43.33

We first described a GRASP with path-relinking heuristic for the set k-covering
problem, followed by the template of a family of Lagrangean heuristics. The greedy
Lagrangean heuristic makes use of a greedy algorithm to obtain solutions for the
Lagrangean relaxation, while the hybrid GRASP Lagrangean heuristic LAGRASP
employs the best variant of GRASP with path-relinking for this purpose.

Extensive computational experiments were carried out on 135 test instances,
comparing running times and different metrics of solution quality for pure GRASP,
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Figure 6. Evolution of solution costs with time for the best vari-
ants of LAGRASP and GRASP+PR (scpd3-kmin instance).
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GRASP with path-relinking, greedy Lagrangean, and GRASP Lagrangean heuris-
tics. The numerical results show that, for the set k-covering problem, the La-
grangean heuristics performed consistently better than GRASP.

The comparison of different variants of LAGRASP showed that, by properly
tuning its parameters, it is possible to obtain a good trade-off between solution
quality and running time. Despite consuming longer running times, LAGRASP
was able to find better solutions than the greedy Lagrangean heuristics for a larger
number of instances.

Furthermore, it is important to observe that LAGRASP makes better use of dual
information provided by subgradient optimization and is able to discover better
solutions and to escape from locally optimal solutions after the stabilization of the
lower bounds, when the greedy Lagrangean heuristic fails to find new improving
solutions.
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