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1 Introduction

Search techniques are fundamental problem-solving methods in computer science and
operations research. Search algorithms have been used to solve many classes of prob-
lems, including path-finding problems, two-player games and constraint satisfaction
problems. Classical examples of path-finding problems include many combinatorial op-
timization problems (e.g. integer programming) and puzzles (e.g. Rubic’s cube, Eight
Puzzle). Chess, backgammon, and othello belong to the class of two player games,
while a classic example of a constraint satisfaction problem is the eight-queens prob-
lem.

For N P -hard combinatorial optimization problems, exact search algorithms, such
as branch and bound, may degenerate to complete enumeration. For that reason, exact
approaches limits us to solve only moderately sized problem instances, due to the ex-
ponential increase in CPU time when problem size increases. Therefore, in practice,
heuristic 3 search algorithms are necessary to find sub-optimal solutions to these prob-
lems. For large-scale problems, one of the main limitations of heuristic search is its
computational complexity. Efficient parallel implementation of search algorithms can
significantly increase the size of the problems that can be solved. While there is a large
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3 Etymologically the word heuristic comes from the Greek word heuriskein to discover; the
Greek mathematician and inventor Archimedes (287–212 B.C.) is known for the famous
Heureka! when he discovered a method to verify the purity of gold.



body of work on search algorithms, work on parallel search algorithms is relatively
sparse.

In this paper, we explore different approaches of parallel heuristic search for solving
combinatorial optimization problems. We focus on issues of parallelizing genetic algo-
rithms, simulated annealing, tabu (or taboo) search, and GRASP (Greedy randomized
adaptive search procedures). These heuristic methods have been used to approximately
solve a wide spectrum of combinatorial optimization problems.

2 Parallel Genetic Algorithms

In the 1960’s, biologists began to use digital computers to perform simulations of ge-
netic systems. Although these studies were aimed at understanding natural phenomena,
some were not too distant from the modern notion of a genetic algorithm (GA). Ge-
netic algorithms, as they are used today, were first introduced by John Holland [23].
Genetic algorithms try to imitate the development of new and better populations among
different species during evolution, just as their early biological predecessors. Unlike
most standard heuristic algorithms, GAs use information of a population of individuals
(solutions) when they conduct their search for better solutions and not only information
from a single individual. GAs have been applied to a number of problems in combina-
torial optimization. In particular, the development of parallel computers has made this
an interesting approach.

A GA aims at computing sub-optimal solutions by letting a set of random solu-
tions undergo a sequence of unary and binary transformations governed by a selection
scheme biased towards high-quality solutions. Solutions to optimization problems can
often be coded to strings of finite length. The GAs work on these strings [23]. The en-
coding is done through the structure named chromosomes, where each chromosome is
made up of units called genes. The values of each gene are binary, and are sometimes
called alleles. The problem is encoded by representing all its variables in binary form
and placing them together in a single chromosome. A fitness function evaluates the
quality of a solution represented by a chromosome.

There are several critical parts which strongly affect the success of genetic algo-
rithms:

– Representation of the solutions.
– Generation of the initial population.
– Selection of which individuals in an old population that will be allowed to affect the

individuals of a new population. In terms of evolution, this relates to the selection
of suitable parents in the new population.

– Genetic operators, such as crossover and mutation. That is, how to recombine the
genetic heritage from the parents in the previous generation.

If P(t) denotes the population at time t, the GA can be described as in Figure (1).
P(0) is usually generated at random. The evaluation of a population P(t) involves

computing the fitness of the individuals and checking if the current population satisfies
certain termination conditions. Types of termination rules include:



Layout of Genetic Algorithm

Input: A problem instance

Output: A (sub-optimal) solution

1. t = 0, initialize P(t), and evaluate the fitness of the individuals in P(t)

2. while (termination condition is not satisfied) do
(a) t = t + 1
(b) Select P(t), recombine P(t) and evaluate P(t)

3. Output the best solution among all the population as
the (sub-optimal) solution.

Fig. 1. Layout of Genetic Algorithm

– A given time limit which is exceeded.
– The population is dominated by a few individuals.
– The best objective function value of the populations is constant over a given number

of generations.

Due to their inherent parallel properties, GAs have been successfully implemented
on parallel computers, introducing this way a new group of GAs, Parallel Genetic Al-
gorithms (PGAs). In a PGA the population is divided into subpopulations and an in-
dependent GA is performed on each of these subpopulations. Furthermore, the best
individuals of a local population are transferred to the other subpopulations. Communi-
cation among the subpopulations is established to facilitate the operations of selection
and recombination. There are two types of communication [34]: (1) among all nodes
where the best string in each subpopulation is broadcasted to all the other subpopula-
tions, and (2) among the neighboring nodes, i.e. only the neighboring subpopulations
receive the best strings.

The most important aspects of PGAs, which result in a considerable speedup relative
to sequential GAs, are the following [25]:

– Local selection, i.e. a selection of an individual in a neighborhood is introduced, in
contrast with the selection in original GAs which is performed by considering the
whole population.

– Asynchronous behavior which allows the evolution of different population struc-
tures at different speeds, possibly resulting in an overall improvement of the algo-
rithm in terms of CPU time.

– Reliability in computation performance, i.e. the performance of one processor does
not affect the performance of the other processors.



Jog et al. [25] consider two basic categories of parallel genetic algorithms:

1. The coarse-grained PGAs, where subpopulations are allocated to each processor of
the parallel machine. The selection and recombination steps are performed within
a subpopulation.

2. The fine-grained PGAs, where a single individual or a small number of individuals
are allocated to each processor.

In the same reference a review of parallel genetic algorithms applied to the traveling
salesman problem (TSP) is presented. A PGA developed by Suh and Gucht [51], has
been applied to TSPs of growing size (100-1000 cities) problems. PGAs without selec-
tion and crossover, so called independent strategies were used. These algorithms consist
of runing an “unlimited” number of independent sequential local searches in parallel.
PGAs with low amount of local improvement were used and performed better in terms
of quality solution than the independent strategies. In terms of computational time, the
PGA showed nearly a linear-speedup for various TSPs, using up to 90 processors. The
algorithms were run on a BBN Butterfly.

Another implementation of a PGA applied to the TSP can be found in [21], where
an asynchronous PGA, called ASPARAGOS, has is presented in detail. An application
of ASPARAGOS was also presented by Muhlenbein [33] for the quadratic assignment
problem (QAP) using a polysexual voting recombination operator. The PGA was imple-
mented on QAPs of size 30 and 36 and for TSPs of size 40 and 50 with known solutions.
The algorithm found a new optimum for the Steinberg’s problem (QAP of size 36). The
numbers of processors used to run this problem were 16, 32, and 64. The 64 processor
implementation (on a system with distributed memory) gave by far the best results in
terms of computational time.

Furthermore, Battiti and Tecchiolli [5] presented parallelization schemes of genetic
algorithms and tabu search for combinatorial optimization problems and in particular
for quadratic assignment and N-k problems giving indicative experimental results.

Tanese [53] presents a parallel genetic algorithm implemented on a 64-processor
NCUBE/six hypercube. Each processor runs the algorithm on each own subpopulation
(coarse-grained PGA), and sends in an adjustable frequency a portion of good individ-
uals to one of its neighboring processors. Each exchange takes place along a different
dimension of the hypercube. The PGA is applied to a function optimization problem and
its performance is compared with the corresponding GA, which is found to be similar.
In addition, the PGA achieves comparable results with near linear-speedup.

Pettey et al. [43] proposed an “island model” that restricts the communication among
the subpopulations to some adjacent interconnected subpopulations [30]. The PGA was
tested on four of DeJong’s testbed of functions [14]. Population sizes of 50 to 800
were used, with the best answer in terms of quality solution, corresponding to size
50, which is approximately the theoretical optimal population size. The algorithm was
implemented on an Intel iPSC, a message-based multiprocessor system with a binary
n-cube interconnection network.

More recently, Lee and Kim [30] developed PGAs, based on the island model, for
solving job scheduling problems with generally weighted earliness and tardiness penal-
ties (GWET), satisfying specific properties, such as the V-shaped schedule around the



due date. A binary representation scheme is used to code the job schedules into chro-
mosomes. A GA is developed by parallelizing the population into subgroups, each of
which keeps its distinct feasible schedules. The initial population is constructed so that
the resulting genotype sequence satisfies the V-shaped schedule. Two different repro-
duction methods are employed, the roulette wheel selection and the N-best selection
method. Also, the crossover and mutation operators are implemented in parallel. Sev-
eral instances of problems with subpopulations of 30 chromosomes (jobs) and total
population size of 100 to 200 where used to evaluate the efficiency of the PGA. The au-
thors report that the roulette wheel selection scheme performs far better than the N-best
selection in terms of quality solution, though the N-best selection gives good results in
terms of CPU time. The mutation operator seems to improve the performance of the
PGA. The paper concludes, showing the superior performance of the parallel algorithm
when compared to the sequential GA. In terms of CPU time, the parallelization of the
population into several groups speeds up the convergence of the GAs as the size of the
problem increases.

Parallel genetic algorithms have been applied to the graph partition problem [29],
scheduling problems [11], and global optimization problems [49].

3 Parallel Simulated Annealing

Since the simulated annealing method (SA) was proposed several years ago by Kir-
patrick et al. [27], based on the pioneering work of Metropolis et al. [32], much research
has been accomplished regarding its implementation (sequential and parallel) to solve a
variety of difficult combinatorial optimization problems. Simulated annealing is based
on the analogy between statistical mechanics and combinatorial optimization. The term
annealing refers to the process of a thermal system by first melting at high tempera-
tures and then lowering the temperature slowly based on an annealing schedule, until
the vicinity of the solidification temperature is reached, where the system is allowed
to reach the ground state (the lowest energy state of the system). Simulated annealing
is a simple Monte Carlo approach to simulate the behavior of this system to achieve
thermal equilibrium at a given temperature in a given annealing schedule. This analogy
has been applied in solving combinatorial optimization problems. Given an objective
function f (x) over a feasible domain D, a generic simulated annealing algorithm for
finding the global minimum of f (x) is given in Figure 2.

An introduction to general concepts of parallel simulated annealing techniques can
be found in Aarts and Korst [1]. Several parallel algorithms based on SA have been
implemented for a variety of combinatorial optimization problems. In the context of
annealing, a parallel implementation can be presented in two forms [47]: (1) functional
parallelism, which uses multiple processors to evaluate different phases of a single
move, (2) data parallelism, which uses different processors or group of processors
to propose and evaluate moves independently. The second form has the advantage of
“easily scaling the algorithm to large ensembles of processors.”

The standard-cell approach is a semi-custom designing method in which functional
building blocks called cells are used to construct a part of, or an entire, VLSI chip [47].
Two basic approaches have been applied to the placement problem [47] – constructive



Layout of Simulated Annealing

Input: A problem instance

Output: A (sub-optimal) solution

1. Generate an initial solution at random and initialize the temperature T .

2. while (T > 0) do
(a) while (thermal equilibium not reached) do

(i) Generate a neighbor state at random and evaluate the change in
energy level ∆E.

(ii) If ∆E < 0 update current state with new state.

(iii) If ∆E ≥ 0 update current state with new state

with probability e
−∆E
KB T .

(b) Decrease temperature T according to annealing schedule.

3. Output the solution having the lowest energy.

Fig. 2. Layout of Simulated Annealing

methods and iterative methods. The SA technique belongs to the second group, as an
approach that uses probabilistic hill climbing to avoid local minima. The TimberWolf
program has been proposed as a version of SA implemented for the cell placement prob-
lem. It has been shown to provide enormous chip area savings compared to the already
existed standard methods of cell layout. Jones and Banerjec [26] developed a parallel
algorithm based on TimberWolf, where multiple cell moves are proposed and evaluated
by using pairs of processors. The algorithm was implemented on a iPSC/1 Hypercube.
Rose et al. [45] presented two parallel algorithms for the same problem. The Heuristic
Spanning approach replaces the high temperature portion of simulated annealing, as-
signing cells to fixed sub-areas of the chip. The Section Annealing approach is used to
speed-up the low temperature portion of simulated annealing. The placement here is ge-
ographically divided and the pieces are assigned to separate processors. Other parallel
algorithms based on SA and implemented for the cell placement problem can be found
in [8, 47, 55].

Greening [22] examines the asynchronous parallel SA algorithm in relation with
the effects of calculation errors resulting from the parallel implementation or an ap-
proximate cost function. More analytically, the relative work analyzes the effects of
instantaneous and accumulated errors. The first category contains the errors which re-



sult as the difference between the true and inaccurate costs computed at a given time. An
accumulated error is the sum of a stream of instantaneous errors. The author proves a
direct connection between the accumulated errors measured in previous research work,
and annealing properties.

Most recently, Boissin and Lutton [6] proposed a new SA algorithm that can be effi-
ciently implemented on a massively parallel computer. A comparison to the sequential
algorithm has been presented by testing both algorithms on two classical combinatorial
optimization problems: (1) the quadratic sum assignment problem and (2) the mini-
mization of an unconstrained 0− 1 quadratic function. The numerical results showed
that the parallel algorithm converges to high-quality suboptimal solutions. For the prob-
lem of minimization of quadratic functions with 1000 variables, the parallel implemen-
tation on a 16K Connection Machine was 3.3 times faster than the sequential algorithm
implemented on a SPARC 2 workstation, for the same quality of solution.

4 Parallel Tabu Search

Tabu search (TS), first introduced by Glover [18, 19], is a heuristic procedure to find
good solutions to combinatorial optimization problems. A tabu list is a set of solutions
determined by historical information from the last t iterations of the algorithm, where t
is fixed or is a variable that depends on the state of the search, or a particular problem.
At each iteration, given the current solution x and its corresponding neighborhood N(x),
the procedure moves to the solution in the neighborhood N(x) that most improves the
objective function. However, moves that lead to solutions on the tabu list are forbidden,
or are tabu. If there are no improving moves, TS chooses the move which least changes
the objective function value. The tabu list avoids returning to the local optimum from
which the procedure has recently escaped. A basic element of tabu search is the aspi-
ration criterion, which determines when a move is admissible despite being on the tabu
list. One termination criterion for the tabu procedure is a limit in the number of con-
secutive moves for which no improvement occurs. A more detailed description of the
main features, aspects, applications and extensions of tabu search, can be found in [20].
Several implementations of parallel algorithms based on TS have been developed for
classical optimization problems, such as TSP and QAP, which will be discussed below.
Given an objective function f (x) over a feasible domain D, a generic tabu search for
finding an approximation of the global minimum of f (x) is given in Figure 3.

Taillard [52] presents two implementations of parallel TS for the quadratic assign-
ment problem. Computational results on instances of size up to 64 are reported. The
form of TS considered is claimed to be more robust than earlier implementations, since
it requires less computational effort and uses only the basic elements of TS (moves
to neighboring solutions, tabu list, aspiration function). The neighborhood used is a 2-
exchange neigborhood. The tabu list is made up of pairs (i, j) of interchanged units both
of which are placed at locations they had occupied within the last s iterations, where s
is the size of tabu list. The size s changes its value randomly in an interval during the
search. The aspiration criterion is introduced to allow the tabu moves to be chosen, if
both interchanged units are assigned to locations they have not occupied within the t
most recent iterations. In the first method, the neighborhood is divided into p parts of



Layout of Tabu Search

Input: A problem instance

Output: A (sub-optimal) solution

1. Initialization:
(a) Generate an initial solution x and set x∗ = x;
(b) Initialize the tabu list T = /0;
(c) Set iteration counters k = 0 and l = 0;

2. while (N(x)\T 6= /0) do
(a) k = k + 1; l = l + 1;
(b) Select x as the best solution from set N(x)\T ;
(c) If f (x)< f (x∗) then update x∗ = x and set l = 0;
(d) If k = k or if l = l go to step 3;

3. Output the best solution found x∗;

Fig. 3. Layout of Tabu Search

approximately the same size. Each part is distributed for evaluation to one of p differ-
ent processors. Using a number of processors proportional to the size of the problem
(precisely p = n/10), the complexity is reduced by a factor of n, where n is the size of
the problem. Moreover, the computational results showed improvement to the quality
of solution for many large problems and the best published solutions of other problems
have been found. The second method performs independent searches, each of which
starts with a different initial solution. The parallel algorithm was implemented on a ring
of 10 transputers (T800C-G20S). The computational complexity of this algorithm is
less than that of earlier TS implementations for QAP by a factor n.

Another parallel tabu search algorithm for solving the quadratic assignment prob-
lem has been developed by Chakrapani and Skorin-Kapov [9]. The algorithm includes
elements of TS, such as aspiration criterion, dynamically changing tabu list sizes and
long-term memory [18]. A new intensification strategy is proposed, based on the inter-
mediate term memory, restricting the searches in a neighborhood. This results in less
amount of computational effort during one iteration since the procedure does not ex-
amine the entire neighborhood. A massively parallel implementation was tested on the
Connection Machine CM-2 for large QAPs of size ranging from n = 42 to 100, using
n2 processors. The new tabu strategy gave good results in terms of quality of solutions.
For problems up to size 90, it obtained the best known solutions or close to those. For
size n = 100, every previously best solution found, was improved upon.

Battiti and Tecchiolli [5] describe a parallelization scheme for tabu search called



reactive tabu scheme, and apply it to the quadratic assignment problem and the N-
k problem with the objective of achieving a speedup in the order of the number of
processors. In the reactive tabu search, each processor executes and independent search.
Furthermore, the same problems are solved by a parallel genetic algorithm in which the
interaction between different search processes is strong because the generation of new
candidate points depends on the consideration of many members of the population.

A tabu search for the traveling salesman problem has been proposed by Fiechter
[17], and was tested on instances having 500 to 10000 vertices. A new estimation of the
asymptotic normalized length of the shortest tour through points uniformly distributed
in the unit square is given. Numerical results and speedups obtained by the implemen-
tation of the algorithm on a network of transputers show the efficiency of the parallel
algorithm.

5 Parallel GRASP

A GRASP [16] is an iterative process for finding approximate solutions to combina-
torial optimization. Let, as before, f (x) denote the objective function to be minimized
over a feasible domain D. A generic layout of GRASP is given in Figure 4. The GRASP

Layout of GRASP

Input: A problem instance

Output: A (sub-optimal) solution

1. Initialization: set x∗ = ∞;
2. while (stopping criterion not satisfied) do

(a) Construct a greedy randomized solution x;
(b) Find local minimum x̃ in neighborhood N(x) of x;
(c) If f (x̃)< f (x∗) then update x∗ = x̃;

3. Output the best solution found x∗;

Fig. 4. Layout of GRASP

iterations terminate when some stopping criterion, such as maximum number of itera-
tions, is satisfied. Each iteration consists of a construction phase, and a local search
phase. If an improved solution is found, then the incumbent is updated. A high-level
description of these two phases is given next.

In the construction phase, a feasible solution is built up, one element at a time. The
choice of the next element to be added is determined by ordering all elements in a



candidate list with respect to a greedy function. An element from the candidate list is
randomly chosen from among the best candidates in the list, but is not necessarily the
top candidate. Figure 5 displays a generic layout for the construction phase of a GRASP.
The solution set S is initialized empty, and the construction iterations are repeated until

Layout of GRASP Construction Phase

Input: A problem instance and pseudo random number stream

Output: A (sub-optimal) solution

1. Initialization: set solution S = /0;
2. while (solution construction not done) do

(a) Using greedy function, make restricted candidate list (RCL);
(b) At random, select element s from RCL;
(c) Place s in solution, i.e. S = S∪{s};
(d) Change greedy function to take into account updated S;

3. Output the solution x corresponding to set S;

Fig. 5. Layout of GRASP Construction Phase

the solution is built. To do this, the restricted candidate list is setup. This candidate
list contains a subset of candidates that are well ordered with respect to the greedy
function. A candidate selected from the list at random is added to the solution. The
greedy function is adapted to take into account the selected element.

The solutions generated in the construction are not guaranteed to be locally optimal
and therefore local search is applied to produce a locally optimal solution. Figure 6
illustrates a generic local search procedure.

GRASP can be easily implemented on an MIMD multi-processor environment.
Each processor can be initialized with its own copy of the procedure, the problem data,
and independent pseudo-random number sequences. The GRASP iterations are then
independently executed in parallel and the best solution found over all processors is
the GRASP solution. This approach was implemented by Pardalos, Pitsoulis, and Re-
sende [39] to approximately solve instances of the QAP of dimension up to n = 128.
On a Kendall Square KRS-1 parallel computer with 128 processors (of which only 64
were utilized), the authors were able to achieve on average a speedup factor of 62 and
speedup factors of 130 and 221 on single instances of dimensions n = 30 and n = 22,
respectively.

Another approach to implement GRASP parallel was proposed by Feo, Resende,
and Smith [15], where the problem being optimized is decomposed into many smaller
problems, and each processor is given a set of small problems, that are solved with



Layout of GRASP Local Search Phase

Input: A problem instance, solution x, neighborhood N(x)

Output: A locally-optimal solution x̃

1. while (x not locally optimal) do
(a) Find x̃ ∈ N(x) with f (x̃)< f (x);
(b) Update x = x̃;

3. Output the locally optimal solution x̃;

Fig. 6. Layout of GRASP Local Search Phase

GRASP one after the other. Using this approach to approximately solve large instances
of the maximum independent set problem, the authors were able to achieve almost linear
speedup on an eight processor Alliant FX/80 MIMD computer.

6 Concluding Remarks

In the last ten years, we have witnessed an explosion and availability of parallel, mul-
tiprocessing computers. Since most of the interesting combinatorial optimization prob-
lems are N P -hard, it is quite natural to consider implementing algorithms on such
environments. In this brief survey, we summarized recent developments in parallel im-
plementations of several classes of new heuristics for combinatorial optimization.
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