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Abstract. This paper presents a new approach to solve the NP-complete
minimum branch vertices problem (MBV) introduced by Gargano et.
al[1]. In spite of being a recently proposed problem in the network op-
timization literature, there are some heuristics to solve it [3]. The main
contribution of this paper consists in a new heuristic based on the iter-
ative refinement approach proposed by Deo and Kumar [2]. The experi-
mental results suggest that this approach is capable of finding solutions
that are better than the best known in the literature. In this work, for
instance, the proposed heuristic found better solutions for 78% of the
instances tested. The heuristic looks very promising for the solution of
problems related with constrained spanning trees.

Keywords: Constrained spanning trees, Branch vertices, Iterative re-
finement.

1 Introduction

Given a undirected unweighted graph G = (V,E) the minimum branch vertices

problem (MBV) consists in finding the spanning tree of G which has the mini-
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mum number of branch vertices [1]. A vertex v of G is said to be a branch vertex
if its degree δ is greater than 2, i.e., δ(v) > 2.

This problem Has been recently proposed in the optimization literature. The
main contributions were made by Cerulli et al. [3], who developed a mixed in-
teger linear formulation which is able to find the optimal solution. However, for
a reasonable computational running time, the model can only solve small in-
stances. For large instances the authors proposed 3 heuristic methods capable
of finding suboptimal solutions for the MBV: Edge Weighting Strategy (EWS),
Node Coloring Heuristic (NCH), and a combined strategy (CS) between EWS
and NCH. Details about these methods as well as their pseudo-codes can be
found in [3].

The paper is organized as follows. In Section 2, we describe the iterative re-
finement algorithms introduced by Deo and Kumar [2]. In Section 3, we describe
our iterative refinement algorithm for minimum branch vertices problem. Com-
putational results are described in Section 4, and concluding remarks are made
in Section 5.

2 Iterative refinement and constrained spanning trees

Among the approaches used in the literature to solve NP-complete constrained
spanning tree problems there are the iterative refinement algorithms (IR) [2].
Consider the problem of constrained spanning tree defined by a weighted graph
G and two constraints, C1 and C2, where C1 consists typically in the minimization
of the sum of the weights in the spanning tree. The algorithm IR starts from a
spanning tree partially constrained (which satisfies only C1) and moves at each
iteration in the direction of a fully constrained tree (which satisfies C2), but
sacrificing the optimality in relation to C1.

The general idea of the method is shown in the pseudo-code 1, extracted from
[2]. First, a spanning tree T which satisfies only constraint C1 is constructed.
Next, the edges which do not satisfy constraint C2 in T are identified and their
weights in G are modified, originating G′. This is done in such a way that the
new spanning tree constructed from G′ violates less the constraint C2, in a step
called blacklisting, whose aim is to discourage certain edges from reappearing
in the next spanning trees. Usually the trick used in the blacklisting consists in
increasing the weight of the edge associated with a violation of C2 in T . After
each blacklisting step, a new spanning tree is constructed which satisfies only
C1. This steps are repeated until a tree that satisfies C2 is found. Note that, the
final spanning tree will satisfy C2, but will be sub-optimal in relation to C1.

The iterative refinement method is simple and easy to apply. The core of
method consists in the design of a penalty function, or blacklisting, specific for
the problem being studied. To be effective many important decisions must be
taken regarding the number of edges to be penalized, what edges to penalize,
and the value of the penalty for each edge to be penalized.

In their paper, Deo and Kumar [2] applied the IR method for the Degree

Constrained Minimum Spanning Tree problem. The implemented algorithm al-
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Algorithm 1 Iterative-Refinement-Algorithm(G, C1, C2)

1: In graph G find a spanning tree that satisfies C1
2: while spanning tree violates C2 do

3: Using C2 alter weight of edges in G to obtain G′ with new weights
4: In graph G′ find a spanning tree that satisfies C1
5: Set G ← G′

6: end while

ternates the computation of the Minimum Spanning Tree (MST) with the in-
crease of the weights on the edges whose degree exceeds a predetermined limit
d.

In the blacklisting, the edges are penalized by a quantity proportional to:

(i) the number f [e] of degree-violating vertices where the edge e is incident;
(ii) a constant k defined by the user;
(iii) the weight w[e] and the range of weights in current spanning tree, given by

wmin ≤ w[e] ≤ wmax.

All the edges e incident to a degree violating vertex, except for the edge with
smallest weight amongst them, are penalized as follows:

w′[e] = w[e] + kf [e]

(

w[e]− wmin

wmax − wmin

)

wmax. (1)

In another paper, Boldon et. al [4] applied the dual-simplex approach to
the Degree Constrained Minimum Spanning Tree Problem involving iterations
in two stages until the convergence criteria are reached. The first stage consists
in computing a MST using Prim’s algorithm, which in the first iterations will
violate the degree constraints of several vertices. The second stage consists in
adjusting the weights of the violating edges using a blacklisting function which
will increase the weight of an edge e as follows:

w′[e] = w[e] + fault× wmax ×

(

w[e]− wmin

wmax − wmin

)

. (2)

In this function, fault is a variable which takes the values 0, 1 or 2 depending
on the number of vertices incident to the edge which is currently violating the
degree constraint. Note that, this approach is very similar to the one used by
Deo and Kumar [2]. The refinement idea is also referred in [5].

Other authors have applied the iterative refinement approach for other tree
problems, such as Diameter-Constrained Minimum Spanning Tree [6]. In that
paper, the authors presented two algorithms using the iterative refinement, IR1
and IR2. IR1 consists in iteratively computing a MST as solution to the tree
diameter problem, and applying penalties to a subset of edges of the graph, such
that they will be discouraged from appearing in the next iteration. The selection
of the edges to modify is associated with presence of these edges or not in long
paths of the tree, since its elimination aims at reducing the diameter of the tree.
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Let l be a set of edges to be penalized; w(l) the current weight of l; wmax and
wmin the smallest and largest weight in the current spanning tree, respectively;
distc(l) the distance of the edge l to the central vertex of the path, increased by
1 unit. When the center is the edge lc, we have distc(lc) = 1, and as well there
the only edge l incident to one of the extremes of the central edge lc will have
distc(l) = 2. The penalty imposed to each edge l in the current spanning tree
will be:

max
{

(

w(l)− wmin

distc(l)(wmax − wmin)

)

wmax, ǫ
}

, (3)

where ǫ > 0 is the minimum penalty which guarantees that the iterative re-
finement will not stay in the same spanning tree when the sum of the edges has
penalty zero. The penalty decreases as the edges penalized are more distant from
the center of current spanning tree, in such way that a path is broken in two
sub-paths significantly shorter instead of a short sub-path and a long sub-path.
The algorithm IR2 works almost same way as IR1, except for the fact that it
does not recompute a new spanning tree at each iteration. A new spanning tree
is created by modifying the current spanning tree, by removing one edge at a
time.

3 An iterative refinement algorithm for the MBV

problem

Section 2 presented several cases where the iterative refinement approach has
been used to solve constrained spanning tree problems. Although these cases
deal with weighted graphs, we propose an adaptation of the IR approach to
solve the Minimum Branch Vertices Problem.

Let G = (V,E) be a unweighted undirected graph representing a network in
which we would like to find a spanning with the minimum number of vertices
branch. By assigning random weights in the interval [0, . . . , 1] to each edge e ∈ E,
the graph G becomes a new weighted graph G′ = (V,E). A minimum spanning
tree T constructed on G′ using the Kruskal’s algorithm would be the starting
solution for the iterative refinement algorithm. However, this initial solution may
not satisfy the constraint δ(v) ≤ 2, ∀ v ∈ V . Therefore, the topology of the initial
solution will depend only on the weight that were assigned to the edges of G′.

Usually, the method starts with an initial solution with many vertices branch.
The spanning tree T will then be modified iteratively, being recreated by changes
to the topology of the previous spanning tree, and moves towards better solu-
tions, i.e., with fewer vertices branch.

The difference between the iterative process proposed in this paper for the
minimum branch vertices problem and the other iterative processes published
by [2], [5], and [6] is the way the penalties are applied to the violating incident
edges. In previous works the idea has been to penalize edges by increasing their
weights to discourage them from reappearing in the trees in the next iterations.
In this paper, we choose to penalize each violating edge by removing it explicitly
from the tree and replacing it with an edge with less violations. A violating
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edge of T (denoted by ‘cutting edge’) is selected for removal and is replaced by
another edge of G′ which is not yet in T (denoted by ‘replacement edge’). Such
replacement is defined by the exchange of the weights of the cutting edge and
the replacement edge in G′. This replacement of edges continues until there are
no replacement can reduce the number of vertices branch in the current tree
T . The pseudo-code 2 describes the steps of the algorithm, and will be detailed
next.

The strategy used to replace the edges is based on two measures of the
violation of the edges, expresses as 1) the number of actual extreme vertices
violating the edge (α); and 2) the sum of the degree of the extreme edges of the
edge minus 2 (σ), which tells the sum of the degree of extremes of edge if we
removed it from the tree. Good cutting edges are those edges that have many
violating extreme vertices (i. e., with high values of α, followed by high values
of σ). In a similar way, a good replacement edge is an edge that contributes the
most to the reduction of the number of vertices branch in T (i.e., with low values
of α, followed by low values of σ).

At each iteration of the refinement, one identifies a cutting edge to be removed
from the tree T . Any edge incident to a vertex branch can be chosen as a cutting
edge; edges of this type are used to construct a list of candidates Lcut. Next, we
select one of the edges in the candidate list and remove it from Lcut and from T .
The choice of the cutting edges at each iteration takes into account the degree
of violation of the edge in T , quantified by the values α and σ. The edge selected
will be the edge that has the largest α followed by the largest σ.

The removal of the cutting edge will divide the tree T into two connected
components, and the set V of vertices of T into two sub-sets, S and S′. To avoid
cycles, each edge removed from T is inserted into a special set, denoted by Blist,
which indicates that the edges is tagged and cannot be reinserted in T .

To reconnect the two connected components we need to find an advantageous
replacement edge capable of connecting both components without creating cy-
cles. The candidate list Lrep includes all the edges in G which are not in T and
that are capable of connecting both components and are not in Blist. A good
replacement edge is an edge that does create violations when it is inserted in T ,
i.e., an edge that has lower values of α, followed by lower values of σ. Once the
replacement edge selected is inserted in T , the current iteration of the algorithm
ends.

If there is no advantageous replacement edges, then the replacement does
not occur. The cutting edge returns to T . A new cutting edge is selected from
Lcut and a new list Lrep is created to select the replacement edge. The algorithm
continues until no more cutting edges can be replaced in T , i.e., Lcut = ∅.

We will illustrate the method using a simple instance of the problem MBV.
The steps are shown in Figure 1. In (a) we have an initial spanning tree T ,
created by applying Kruskal’s algorithm on graph G′. The tree shown in (a) is
the result of assigning weights to the edges of G′, which initial topology indicates
the occurrence of two vertices branch: vertices 5 and 8.



6 An I.R. Algorithm for the Minimum Branch Vertices Problem

Algorithm 2 Mbv-Iterative-Refinement-Algorithm(G = (V,E))

1: G′ ← AssignRandomWeights(G)
2: T ← CalculateMinimumSpanningTree(G′)
3: Blist ← ∅
4: repeat

5: ThereWasExchange ← false

6: Lcut ← CreateCutList(T,Blist)

7: while ((ThereWasExchange 6= true) ∧ (|Lcut| 6= 0)) do
8: (u∗, v∗) ← SelectArcFromCutList(Lcut)

9: Lcut ← Lcut \ { (u
∗, v∗) }

10: Lrep ← CreateReplacementListToCutArc(T,G′, (u∗, v∗))
11: (u, v) ← SelectArcFromReplacementList(Lrep)

12: if (∃ (u, v)) then
13: Blist ← Blist

⋃
{(u, v)}

14: SwapWeightsIntoGraph((u∗, v∗), (u, v))
15: T ← T \ {(u∗, v∗)}
16: T ← T

⋃
{(u, v)}

17: ThereWasExchange ← true

18: end if

19: end while

20: until (ThereWasExchange 6= false)
21: return T

Fig. 1. An example of the iterative refinement algorithm solving an instance of MBV.

In the sequence, the algorithm determines a cutting edge and a replacement
edge and tries to transform T into a tree with less violations. Lcut is constructed
with the incident edges to vertices branch, i.e.: Lcut = {(5, 3), (5, 4), (5, 6), (8, 1), (8, 6), (8, 7)}.
The edges (5, 3), (5, 6), (8, 1) and (8, 6) have the highest values of α, followed by
σ. We select edge (5, 3), which is removed from T and from Lcut and creates a
cut in T which separates V in S = {2, 3} e S′ = {0, 1, 4, 5, 6, 7, 8}.

The edges capable of connecting S and S′ are Lrep = {(1, 2), (2, 5), (2, 7), (3, 4)}.
Amongst these, the edges (2, 7) and (3, 4) are the only ones that can replace
(5, 3) without causing any violations in the tree. We choose to replace (5, 3) by
(2, 7), inserting (2, 7) in T to obtain (b). This concludes the first iteration of the
algorithm.

The next iteration continues from the tree T showed in (b). Lcut = {(8, 1), (8, 6), (8, 7)},
where (8, 1) is the most interesting edge to cut since it has the highest values
of α and σ. We remove (8, 1) from T and Lcut, creating the cut S = {0, 1}
and S′ = {2, 3, 4, 5, 6, 7, 8}. The edges capable of connecting S and S′ are
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Lrep = {(0, 8), (1, 2)}, which have the same value of α and σ. Edge (0, 8) is
selected to replace (8, 1) in T .

Replacing edge (8, 1) by (0, 8) does not bring any advantages in T since it does
not reduce the number of vertices branch in the tree, which will continue having
1 vertex branch. The replacement is canceled, edge (8, 1) returns to the tree T ,
and we select a new cutting edge from Lcut = {(8, 6), (8, 7)}. The edge selected
is (8, 6), given the value of α and σ. Removing (8, 6) from the tree will divide
V into S = {0, 1, 8, 7, 2, 3} and S′ = {6, 5, 4}, with Lrep = {(2, 5), (3, 4), (6, 7)}.
The edge (3, 4) is the best replacement for edge (8, 6), and is inserted into T .
The replacement ends the second iteration of the algorithm, resulting in tree (c).

The third iteration begins with Lcut = ∅. There are no more vertices branch
in the tree and therefore there is no cutting edge available. The tree T presented
in (c) is then a solution to be returned by the algorithm.

4 Experimental results

In this section, we present results on computational experiments with the iter-
ative refinement method applied to a set of instances with the purpose of com-
paring the quality of the results obtained by our IR algorithm with the results
obtained by the heuristics EWS and NCH proposed by [3]. All the algorithms
cited were implemented in ANSI C++, compiled with gcc version 4.3.2, us-
ing the libraries STL and run in the operating system Ubuntu 4.3.2-1. The
algorithm used to find an initial solution was the Kruskal’s algorithm, using effi-
cient data structures to represent the disjoint sets (union-find structures). This
data structures where used by all methods to determine if two vertices were in
different connected components of a graph, as well as to determine the replace-
ment edges candidates capable of connecting S e S′. Details about the efficient
implementation of the data structures union-find can be found in [7] and [8].

The instances were created by the network flow problem generator NetGen
[9], available in public ftp from DIMACS 1. The instances were divided into
different classes, each containing different number of vertices and edges. Net-
Gen constructs network flow problems using as input a file that specifies the
input parameters. Since the minimim branch vertices problem consists of an
unweighted and uncapacitated graph, we used only the topology of the graphs
input. Repeated edges were ignored.

The input files used by NetGen to generate the instances follow the format
given in Table 1. According to the table, the only parameters that can vary are
the seed for the random number generator and the number of vertices and edges
of the output graph. In table 2 the values presented for each instance in columns
d, n and s, correspond to the number of edges, number of vertices, and seed for
each instance, respectively. The column m represents the ‘real’ number of edges
of the graph, removing the repeated edges.

1 ftp://dimacs.rutgers.edu/pub/netflow/
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Table 1. NetGen parameters for input files.

# Parameters Input Parameter Description

1 SEED Variable Random numbers seed

2 PROBLEM 1 Problem number

3 NODES Variable Number of nodes

4 SOURCES 1 Number of sources (including transshipment)

5 SINKS 1 Number of sinks (including transshipment)

6 DENSITY Variable Number of (requested) edges

7 MINCOST 0 Minimum cost of edges

8 MAXCOST 1000 Maximum cost of edges

9 SUPPLY 1 Total supply

10 TSOURCES 0 Transshipment sources

11 TSINKS 0 Transshipment sinks

12 HICOST 1 Percent of skeleton edges given maximum cost

13 CAPACITED 1 Percent of edges to be capacitated

14 MINCAP 0 Minimum capacity for capacitated edges

15 MAXCAP 3 Maximum capacity for capacitated edges

We have generated instances with 30, 50, 100, 150, 300, and 500 vertices,
with edges densities of 15% and 30% in 5 graphs capable of representing each of
these classes.

The methods EWS and NCH were run only once, since the runs result in the
same deterministic values. The iterative refinement method has been statistically
evaluated, since it depends on the weights of the graph G′ assigned randomly
at the beginning of the algorithm. The methodology used consisted in 100 runs
for each instance, each one with a different seed. Table 2 presents the minimum,
maximum, average, median, standard deviation, and variance found for the ex-
ecution time, and the solution value of each instance, respectively in columns
‘Min’, ‘Max’, ‘Mean’, ‘Med’, ‘Dev’ and ‘Var’ of the column ‘Value’ corresponding
to the results of algorithm IR.

The rows of column ‘C’ are tagged with the character ‘y’ when the IR methods
found solutions with an average number of vertices branch (column ‘Mean’) lower
than the values found by the algorithms EWS and NCH. This condition occurred
happens in 43 out 55 instances (78% of the instances).

The median values suggests that the IR method performed very well for these
instances. For the 55 instances tested, the IR method obtained median values
better than the ones obtained by EWS and NCH in 37 instances, and equal
values in 15 instances.

Even when the IR method did not obtain the best values, we can see that it
obtains value very close to the ones obtained by EWS and NCH.

The histograms 2, 3, 4, 5, 6, and 7 report frequencies computed for the 100
runs of some of the instances in which IR did not obtain better values than
EWS and NCH. Note that, the most frequent strip corresponds to values close
or equal to the EWS and NCH heuristics.
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The reported running times are in seconds. The running times of the EWS
and NCH heuristics correspond to only one run. The running time for the IR
algorithm varies since the computational effort to find a solution depends on the
number of branch vertices existing in the initial solution, and therefore should
be analyzed statistically by the measures ’Min’, ‘Max’, ‘Mean’, ‘Dev’ and ‘Var’
of the block ‘Time’. These measure correspond to the minimum, the maximum,
the average, the median, the standard deviation, and variance of the 100 runs
of the IR algorithm, respectively.

It is worth mentioning that for each instance from benchmark evaluated, there
was at least one run of the 100 runs were the IR method obtained a solution with
zero vertices branch. Figures 8, 9, 10, and 11 depict the difference in topology of
some of the best solutions found by IR and the one found by NCH. The vertices
highlighted correspond to vertices branch, i.e., δ(v) > 2.

5 Concluding remarks

According to the results presented in Section 4, for the benchmark used in the
paper, the iterative method presented has better performance than the methods
proposed by [3]: edge weighting and node coloring strategies. In 78% of the
instances the IR algorithm obtained average results better than the ones found
by the methods EWS and NCH. The small standard deviation as well as the
better median values in 37 of the 55 instances classes further support quality of
the IR algorithm compared to EWS and NCH.

The experimental results show that the iterative refined method is an effective
approach to solve the MBV directly or as a sub-problem of large problems.
Since the test benchmark is made of artificial instances generated by NetGen,
further research should be conducted using real instances. Comparisons with
exact methods such as the algorithms proposed in [3] should also be carried in
future experiments.
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Table 2. Comparison results of ‘value’ and ‘running time’ for EWS, NCH and IR

Instances Cerulli et al Iterative Refinement Approach

EWS NCH Value Time

d n m s Val Time Val Time Min Mean Med Max Dev Var C. Min Mean Max Dev Var

68 30 67 1596 2 0,004 2 0,004 0 0,85 1 3 0,7 0,49 y 0,000 0,002 0,012 0,003 0,000

68 30 67 2429 2 0,008 2 0,008 0 0,68 1 3 0,71 0,5 y 0,000 0,002 0,008 0,002 0,000

68 30 66 7081 2 0,008 2 0,004 0 1,11 1 3 0,9 0,81 y 0,000 0,003 0,008 0,003 0,000

68 30 66 7236 1 0,012 1 0,008 0 1,37 1 3 0,82 0,68 n 0,000 0,003 0,008 0,003 0,000

68 30 66 7880 1 0,012 1 0,012 0 1,37 1 3 0,77 0,6 n 0,000 0,002 0,008 0,002 0,000

135 30 124 1172 1 0,020 1 0,012 0 0,84 1 2 0,65 0,42 y 0,000 0,004 0,016 0,003 0,000

135 30 122 2488 0 0,028 0 0,004 0 0,4 0 2 0,55 0,3 n 0,000 0,004 0,012 0,003 0,000

135 30 122 4970 1 0,016 1 0,020 0 0,45 0 2 0,54 0,29 y 0,000 0,004 0,012 0,003 0,000

135 30 128 5081 0 0,036 0 0,008 0 0,24 0 2 0,47 0,22 n 0,000 0,003 0,012 0,003 0,000

135 30 125 8788 1 0,032 1 0,016 0 0,28 0 1 0,45 0,2 y 0,000 0,004 0,016 0,003 0,000

188 50 182 1054 2 0,064 2 0,028 0 1,55 1 5 1,08 1,16 y 0,000 0,008 0,020 0,004 0,000

188 50 179 3335 2 0,056 2 0,028 0 1,16 1 4 0,73 0,54 y 0,000 0,009 0,024 0,004 0,000

188 50 180 4663 2 0,052 3 0,024 0 1,12 1 4 0,79 0,63 y 0,000 0,008 0,024 0,005 0,000

188 50 182 4985 2 0,060 2 0,024 0 1,5 1 4 0,92 0,84 y 0,000 0,008 0,020 0,004 0,000

188 50 186 7085 4 0,056 4 0,028 0 1,39 1 3 0,84 0,7 y 0,000 0,008 0,016 0,004 0,000

375 50 341 1720 0 0,132 0 0,048 0 0,56 0 2 0,69 0,47 n 0,004 0,012 0,024 0,005 0,000

375 50 345 6752 2 0,164 2 0,048 0 0,36 0 3 0,58 0,33 y 0,004 0,013 0,024 0,005 0,000

375 50 349 7009 2 0,148 2 0,040 0 0,42 0 2 0,59 0,35 y 0,004 0,012 0,020 0,004 0,000

375 50 343 7030 1 0,160 1 0,040 0 0,32 0 2 0,51 0,26 y 0,000 0,012 0,020 0,004 0,000

375 50 344 9979 0 0,144 0 0,056 0 0,4 0 2 0,62 0,38 n 0,004 0,012 0,020 0,004 0,000

750 100 723 2312 3 0,588 3 0,292 0 1,28 1 3 0,94 0,89 y 0,024 0,046 0,080 0,011 0,000

750 100 730 299 3 0,708 3 0,248 0 1,09 1 4 0,95 0,91 y 0,028 0,046 0,072 0,010 0,000

750 100 722 4414 2 0,544 2 0,244 0 1,41 1 4 0,98 0,95 y 0,024 0,044 0,068 0,010 0,000

750 100 724 5885 1 0,640 1 0,184 0 1,5 1 4 0,99 0,98 n 0,024 0,046 0,084 0,010 0,000

750 100 719 6570 3 0,644 3 0,244 0 1,69 2 5 1,12 1,25 y 0,028 0,046 0,084 0,011 0,000

1500 100 1399 5309 1 2,276 1 0,500 0 0,55 0 2 0,66 0,43 y 0,040 0,082 0,128 0,017 0,000

1500 100 1383 6105 1 1,820 1 0,372 0 0,43 0 2 0,59 0,35 y 0,040 0,076 0,128 0,015 0,000

1500 100 1386 6259 1 2,112 1 0,316 0 0,4 0 2 0,57 0,32 y 0,040 0,077 0,112 0,015 0,000

1500 100 1389 7695 1 2,096 1 0,380 0 0,34 0 2 0,54 0,29 y 0,036 0,074 0,112 0,015 0,000

1500 100 1391 9414 0 2,348 0 0,500 0 0,66 1 3 0,71 0,51 n 0,056 0,083 0,132 0,017 0,000

1688 150 1624 199 3 2,684 2 0,620 0 2,06 2 6 1,25 1,55 n 0,092 0,146 0,208 0,024 0,001

1688 150 1619 3738 1 3,060 1 0,872 0 1,69 2 4 1,05 1,1 n 0,096 0,140 0,264 0,024 0,001

1688 150 1624 5011 4 3,696 3 0,932 0 1,52 1,5 4 1,03 1,06 y 0,072 0,135 0,200 0,024 0,001

1688 150 1627 7390 2 2,804 2 0,700 0 1,62 1,5 5 1,1 1,21 y 0,068 0,146 0,244 0,035 0,001

1688 150 1624 878 3 3,288 2 0,884 0 1,82 2 5 1,11 1,24 y 0,076 0,147 0,272 0,040 0,002

3375 150 3120 2051 1 9,405 1 1,572 0 0,46 0 2 0,58 0,33 y 0,200 0,300 0,424 0,062 0,004

3375 150 3120 2833 1 9,189 1 1,288 0 0,5 0 2 0,58 0,33 y 0,204 0,303 0,432 0,062 0,004

3375 150 3141 3064 1 11,089 1 1,620 0 0,58 0 3 0,68 0,47 y 0,208 0,330 0,436 0,062 0,004

3375 150 3116 5357 1 10,025 1 1,688 0 0,29 0 2 0,48 0,23 y 0,192 0,292 0,416 0,054 0,003

3375 150 3117 5687 2 10,933 2 1,588 0 0,34 0 2 0,54 0,29 y 0,164 0,292 0,428 0,058 0,003

6750 300 6502 1545 1 45,391 1 5,720 0 1,62 2 4 1,07 1,15 n 0,724 1,042 1,332 0,116 0,013

6750 300 6471 365 3 43,331 3 6,144 0 1,81 2 5 1,01 1,02 y 0,884 1,054 1,444 0,108 0,012

6750 300 6481 4071 5 45,731 3 5,888 0 1,61 1,5 5 1,13 1,27 y 0,852 1,071 1,432 0,116 0,013

6750 300 6513 4889 1 45,303 1 5,832 0 1,27 1 4 0,86 0,74 n 0,852 1,034 1,324 0,114 0,013

6750 300 6505 681 4 45,239 4 5,696 0 1,88 2 5 0,99 0,98 y 0,868 1,056 1,444 0,116 0,013

13500 300 12539 1358 2 151,349 2 11,273 0 0,54 0 3 0,64 0,41 y 2,232 3,004 3,668 0,349 0,122

13500 300 12508 2067 3 160,454 2 13,337 0 0,34 0 3 0,55 0,31 y 2,460 3,074 3,748 0,263 0,069

13500 300 12447 4372 1 178,551 1 13,541 0 0,4 0 2 0,6 0,36 y 2,464 3,250 3,808 0,304 0,092

13500 300 12480 960 1 179,371 1 13,513 0 0,65 1 3 0,67 0,45 y 2,372 2,996 3,716 0,333 0,111

13500 300 12474 9886 1 181,843 1 13,369 0 0,49 0 3 0,69 0,47 y 1,740 2,939 3,772 0,453 0,206

18750 500 18034 1456 2 290,798 2 24,350 0 1,85 2 4 1,12 1,26 y 4,924 5,665 8,073 0,716 0,513

18750 500 18055 1653 3 279,593 3 23,586 0 1,4 1 4 1,03 1,07 y 4,860 6,188 8,129 0,853 0,727

18750 500 18009 4444 2 299,959 2 29,026 0 1,74 2 5 1,05 1,1 y 4,832 6,678 8,161 0,924 0,853

18750 500 18048 6849 2 313,808 2 29,798 0 1,81 2 5 1,06 1,13 y 4,912 6,833 8,181 0,913 0,833

18750 500 18037 8824 4 320,636 3 29,142 0 1,59 2 4 0,99 0,97 y 4,776 6,596 7,945 0,893 0,797
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Fig. 2. Histogram for the instance n =
30, m = 68, s = 7236: NCHval = 1;
IRmean = 1, 37; freq[0 . . . 1] ∼ 55.
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Fig. 3. Histogram for the instance n =
30, m = 135, s = 5081 : NCHval = 0;
IRmean = 0, 24; freq[0 . . . 1] ∼ 98.
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Fig. 4. Histogram for the instance n =
50, m = 375, s = 1720 : NCHval = 0;
IRmean = 0, 56; freq[0 . . . 1] ∼ 90.
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Fig. 5. Histogram for the instance n =
100, m = 750, s = 5885 : NCHval = 1;
IRmean = 1, 5; freq[0 . . . 1] ∼ 55.
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Fig. 6. Histogram for the instance n =
150, m = 1688, s = 3738 : NCHval =
1; IRmean = 1, 69; freq[0 . . . 1] ∼ 45.
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Fig. 7. Histogram for the instance n =
300, m = 6750, s = 4889 : NCHval =
1; IRmean = 1, 27; freq[0 . . . 1] ∼ 65.
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Fig. 8. IR solution for the inst. n = 50,
m = 186, s = 7085, branch = 0.
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Fig. 9. NCH solution for the inst. n =
50, m = 186, s = 7085, branch = 4.
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Fig. 10. IR solution for the inst. n =
150, m = 1688, s = 5011, branch = 0.
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Fig. 11. NCH solution for the inst. n =
150, m = 1688, s = 5011, branch = 3.


