Interior point algorithms for

network flow problems*

Mauricio G.C. Resende’ Panos M. Pardalos*

Abstract

Computational algorithms for the solution of network flow problems are of great practical significance. In the last
decade, a new class of computationally efficient algorithms, based on the interior point method, has been proposed
and applied to solve large scale network flow problems. In this chapter, we review interior point approaches for

network flows, with emphasis on computational issues.

Key Words: Network flow problems, interior point methods, computational testing, computer implementation.

1 Introduction

A large number of problems in transportation, communications, and manufacturing can be modeled as net-
work flow problems. In these problems one seeks to find the most efficient, or optimal, way to move flow
(e.g. materials, information, buses, electrical currents) on a network (e.g. postal network, computer network,
transportation grid, power grid). Among these optimization problems, many are special classes of linear pro-
gramming problems, with combinatorial properties that enable development of efficient solution techniques.
In this chapter, we limit our discussion to these linear network flow problems. For a treatment of classes of
nonlinear network flow problems, the reader is referred to [17, 28, 29, 48] and references therein.

Given a directed graph G = (A, 4), where A is a set of m nodes and 4 a set of n arcs, let (i, j) denote
a directed arc from node i to node j. Every node is classified in one of the following three categories.
Source nodes produce more flow than they consume. Sink nodes consume more flow than they produce.
Transshipment nodes produce as much flow as they consume. Without loss of generality, one can assume
that the total flow produced in the network equals the total flow consumed. Each arc has associated with it an
origination node and a destination node, implying a direction for flow to follow. Arcs have limitations (often
called capacities or bounds) on how much flow can move through them. The flow on arc (i, j) must be no less
than /;; and can be no greater than u;;. To setup the problem in the framework of an optimization problem,
a unit flow cost ¢;;, incurred by each unit of flow moving through arc (7, j), must be defined. Besides being

restricted by lower and upper bounds at each arc, flows must satisfy another important condition, known

*Last revision: January 30, 2003
fAT&T Bell Laboratories, Murray Hill, NJ 07974-2070 USA
The University of Florida, Gainesville, FL 32611-6595 USA

as Kirchhoff’s Law (conservation of flow), which states that for every node in the network, the sum of all
incoming flow together with the flow produced at the node must equal the sum of all outgoing flow and the
flow consumed at the node. The objective of the minimum cost network flow problem is to determine the flow
on each arc of the network, such that all of the flow produced in the network is moved from the source nodes
to the sink nodes in the most cost-effective way, while not violating Kirchhoff’s Law and flow limitations on

the arcs. The minimum cost network flow problem can be formulated as the following linear program:

min Y cijxij (1)
(ij)ea
subject to:
Y oxp— Y wi=bj, JeEN 2)
(j:kea (k.j)ea
lij < xij <wj, (i,)) € A. 3)

In this formulation, x;; denotes the flow on arc (i, j) and ¢;; is the cost of transporting one unit of flow on arc
(i,j). For each node j € A, let b; denote a quantity associated with node j that indicates how much flow
is produced or consumed at the node. If b; > 0, node j is a source. If b; < 0, node j is a sink. Otherwise
(bj =0), node j is a transshipment node. For each arc (i, j) € 4, as before, let /;; and u;; denote, respectively,
the lower and upper bounds on flow on arc (i, j). The case where u;; = oo, for all (i, j) € A4, gives rise to
the uncapacitated network flow problem. Without loss of generality, /;; can be set to zero. Most often, the
problem data (i.e. c;j,u;j,l;j, for (i,j) € 4 and bj, for j € N) are assumed to be integer, and many codes
adopt this assumption. However, there can exist applications where the data are real numbers, and algorithms
should be capable of handling problems with real data.

Constraints of type (2) are referred to as the flow conservation equations, while constraints of type (3) are
called the flow capacity constraints. In matrix notation, the above network flow problem can be formulated

as a linear program of the special form
min {c¢ x| Ax=b, | <x <u},

where A is the m X n node-arc incidence matrix of the graph G = (A, 4), i.e. for each arc (i, j) in 4 there is
an associated column in matrix A with exactly two nonzero entries: an entry 1 in row i and an entry —1 in row
Jj. Note that from the mn entries of A, only 2n are nonzero and because of this, the node-arc incidence matrix
is not a space-efficient representation of the network. There are many other ways to represent a network.
A popular representation is the node-node adjacency matrix B. This is an m X m matrix with an entry 1 in
position (i, j) if arc (i, j) € 4 and 0 otherwise. Such a representation is efficient for dense networks, but is
inefficient for sparse networks. A more efficient representation of sparse networks is the adjacency list, where
for each node i € A there exists a list of arcs emanating from node i, i.e. a list of nodes j such that (i, j) € 4.
The forward star representation is a multi-array implementation of the adjacency list data structure. The
adjacency list enables easy access to the arcs emanating from a given node, but not the incoming arcs. The
reverse star representation enables easy access to the list of arcs incoming into i. Another representation
that is much used in interior point network flow implementations is a simple arc list, where the arcs are
stored in a linear array. The complexity of an algorithm for solving network flow problems depends greatly
on the network representation and the data structures used for maintaining and updating the intermediate

computations.

We denote the i-th column of A by A;, the i-th row of A by A ; and a submatrix of A formed by columns
with indices in set § by Ag. If graph G is disconnected and has p connected components, there are exactly p
redundant flow conservation constraints, which are sometimes removed from the problem formulation. We

rule out a trivially infeasible problem by assuming

Y bj=0,k=1,...,p, 4)
JeNF
where A(¥ is the set of nodes for the k-th component of G.

Often it is further required that the flow x;; be integer, i.e. we replace (3) with
lij < Xij < Uij, Xij integer, (i,j) €. 5)

Since the node-arc incidence matrix A is totally unimodular, when the data is integer all vertex solutions
of the linear program are integer. An algorithm that finds a vertex solution, such as the simplex method,
will necessarily produce an integer optimal flow. In certain types of network flow problems, such as the
assignment problem, one may be only interested in solutions having integer flows, since fractional flows do
not have a logical interpretation.

In the remainder of this chapter we assume, without loss of generality, that /;; = 0 for all (i, j) € 4 and
that ¢ # 0. A simple change of variables can transform the original problem into an equivalent one with
lij=0forall (i, j) € A. The case where ¢ = 0 is a simple feasibility problem, and can be handled by solving
a maximum flow problem [3].

Many important combinatorial optimization problems are special cases of the minimum cost network
flow problem. Such problems include the linear assignment and transportation problems, and the maximum
flow and shortest path problems. In the transportation problem, the underlying graph is bipartite, i.e. there
exist two sets § and 7 such that S U7 = A and SN‘T = 0 and arcs occur only from nodes of .S to nodes of
T. Set S is usually called the set of source nodes and set 7 is the set of sink nodes. For the transportation

problem, the right hand side vector in (2) is given by
Sj ifjes
bj= e
—tj ifjeT,

where s is the supply at node j € S and ¢; is the demand at node j € 7. The assignment problem is a special
case of the transportation problem, in which s; =1 forall j € Sand¢; =1 forall j € 7.

The computation of the maximum flow from node s to node 7 in G = (A, 1) can be done by computing
a minimum cost flow in G’ = (A, 4"), where N\ = A and 4’ = 42U (t,s), where

0 if(i,j)eAa
Cii =
T -1 i) = (1),
and

oo if (ivj) = (tvs)7

where cap(i, j) is the capacity of arc (7, j) in the maximum flow problem.

{ cap(i,j) if (i,j) € A
Ujj =

The shortest paths from node s to all nodes in A\ {s} can be computed by solving an uncapacitated

minimum cost network flow problem in which ¢;; is the length of arc (i, j) and the right hand side vector in

(2) is given by

—1 ifje N\ {s}

Although all of the above combinatorial optimization problems are formulated as minimum cost network

b,-:{ m—1 ifj=s

flow problems, several specialized algorithms have been devised for solving them efficiently.

In many practical applications, flows in networks with more than one commodity need to be optimized.
In the multicommodity network flow problem, k¥ commodities are to be moved in the network. The set of
commodities is denoted by XK. Let x{.‘j denote the flow of commodity & in arc (i, j). The multicommodity

network flow problem can be formulated as the following linear program:

min Z Z cffjxfj (6)

keX (i,j)eAa
subject to:
Y o= ¥ Ai=bh jen kex)
(j,hea (Lpea
focjgulja (17])€/q7 (8)
ke X

The minimum cost network flow problem is a special case of the multicommodity network flow problem, in
which there is only one commodity.

In the 1940s, Hitchcock [30] proposed an algorithm for solving the transportation problem and later
Dantzig [14] developed the Simplex Method for linear programming problems. In the 1950s, Kruskal [41]
developed a minimum spanning tree algorithm and Prim [51] devised an algorithm for the shortest path
problem. During that decade, commercial digital computers were introduced widely. The first book on
network flows was published by Ford and Fulkerson [19] in 1962. Since then, active research produced a
variety of algorithms, data structures, and software for solving network flow problems. For an introduction
to network flow problems and applications, see the books [3, 7, 17, 19, 39, 42, 58, 62].

The focus of this chapter is on recent computational approaches, based on interior point methods, for
solving large scale network flow problems. In the last two decades, many other approaches have been de-
veloped. A history of computational approaches up to 1977 is summarized in [11]. In addition, several
computational studies established the fact that specialized network simplex algorithms are orders of magni-
tude faster than the best linear programming codes of that time. (See, e.g. the studies in [23, 27, 39, 43]). A
collection of FORTRAN codes of efficient algorithms of that period can be found in [59]. Another important
class of network optimization algorithms and codes are the relaxation methods described in [8]. More recent
computational research is included in [31] and [25].

In 1984 N. Karmarkar introduced a new polynomial time algorithm for solving linear programming prob-
lems [37]. This algorithm and many of its variants, known as interior point methods, have been used to
efficiently solve network flow problems. This is the main topic of the remainder of this chapter.

The chapter is organized as follows. In Section 2 we provide a brief survey of the literature of the field
of interior point network flow methods. A discussion of complexity issues is made. In Section 3 we focus
on several important components of interior point network flow implementations, including a discussion on

iterative methods for solving the large linear systems that occur in interior point methods, preconditioners,

identification of the optimal partition, and recovery of the optimal flow. These points are illustrated on a par-
ticular interior point method, the dual affine scaling algorithm. In Section 4 we present some computational
results, comparing an interior point network flow method with an efficient, commercially available, network

simplex code. Concluding remarks are made in Section 5.

2 Implementation of interior point network flow methods

In this section, we present issues related to efficient implementation of interior point methods for solving
network flow problems. We present a brief review of research literature of interior point network flow methods

and discuss the computational complexity of interior point network flow methods.

2.1 Literature review

After the introduction of Karmarkar’s algorithm in 1984, many groups of researchers hurried to implement
the method. One of the first implementations is described in Adler et al. [1, 2]. They implemented what
is now known as the dual affine scaling algorithm using direct factorization for solving, at each iteration, a
direction-finding system of linear equations, of the form

ADA u=1, (10)

where A is an m X n constraint matrix, D is a diagonal n X n scaling matrix, and u and ¢ are m-vectors. Though
that implementation was shown to compare favorably with an efficient implementation of the simplex method
[44] on general linear programming problems from the test problem set NETLIB [20], the code was orders of
magnitude slower than the network simplex implementation NETFLO [39] on small assignment problems.

At the same time, Aronson et al. [5] implemented PTANET, a variant of Karmarkar’s projective transfor-
mation algorithm, for solving network flow problems. The code, an implementation of a primal projective
algorithm, used the LSQR subroutine of Paige and Saunders [46] to solve (10). Their implementation took
advantage of the network structure to build the Q-factor in the LSQR method. No preconditioners were used,
possibly explaining the large number of LSQR iterations taken. For example, a 20 x 20 linear assignment
problem took 6931 LSQR iterations in 7 interior point iterations before stalling at 93% of the optimum. They
limited their computational testing on small dense assignment problems of size up to 80 x 80. PTANET was
compared with NETFLO and IBM MPSX/370 and was found to be hundreds of times slower than NETFLO and
tens of times slower than IBM MPSX/370.

An implementation of the dual affine scaling method with centering, called the approximate dual pro-
jective algorithm (ADP) was described in 1988 at the Tokyo Symposium of the Mathematical Programming
Society by Karmarkar and Ramakrishnan [38]. Their code had a key ingredient for solving network flow
problems. They introduced a preconditioned conjugate gradient algorithm for solving (10). ADP obtained
a feasible dual solution in an initial phase, an €-optimal dual solution in a second phase, terminating in a
third phase, with an €-optimal primal-dual solution. They reported computational results on maximum flow,
minimum cost network flow problems on grid graphs and compared their results only with the general linear
programming code MINOS [44]. On a 100 x 100 grid graph, ADP was 123 times faster than MINOS and on a
200 x 200 graph, ADP was 252 times faster.

At the same time, a computational study [52] comparing the dual affine scaling implementation in AT&T’s
KORBX mathematical programming system [12] with the implementation of Bertsekas’ relaxation algorithm,
RELAXT-3 [10], on a set of problems generated with NETGEN [40]. RELAXT-3 was up to two orders of mag-
nitude faster than KORBX. The KORBX implementation solved the system in (10) using direct factorization
and takes no advantage of the structure of the network.

Armacost and Mehrotra [4] report a comparison of their implementations of a network simplex method
and the DAS algorithm using direct factorization for solving (10). Their DAS implementation produces an
approximate dual optimal solution y*, stopping when b (y**! —y*) /max(1,[bTy*|) < 1075. They generate
assignment, transportation, and minimum cost network flow problems using NETGEN. On problems having
100 to 400 nodes and 150 to 1600 arcs, the network simplex code was 2 to 20 times faster than the interior
point code. On dense 1000-node problems, the simplex code was up to 80 times faster, while on 1000-node
sparse problems, it was at most 3 times faster. They conclude that the results by Karmarkar and Ramakrishnan
on grid graphs suggest that the preconditioned conjugate gradient approach for solving (10) may be the most
promising way to proceed.

Yeh [66] proposed and implemented the reduced dual affine scaling (RDAS) interior point algorithm for
solving assignment and transportation problems. This method uses a reduced working sub-matrix of the
constraint matrix to compute the direction. System (10) is solved via a preconditioned conjugate gradient
method with a diagonal preconditioner M of the form M = diag(AGA "). The method switches to a network
simplex algorithm after a feasible primal basis is identified. In a comparative study with Yeh’s network
simplex implementation on assignment problems of dimension n = 200,300,500, and 2500, the simplex-to-
RDAS CPU time ratios were, respectively, .53,1.01,1.39, and 3.57, indicating a relative improvement of the
interior point method with the dimension of the problem.

Resende and Veiga [55] report computational results on a modification of the implementation of the dual
affine scaling algorithm described in [1, 2] where the optimal primal basic solution ¥ is obtained by solving
the linear system ApsTX = b, where Ayvst is the sub-matrix of A corresponding to the edges of a maximum
weighted spanning tree of G, with appropriately defined arc weights. The algorithm stops when

cTi#—b"yF<landx>0,

where y* is the dual iterate at step k. They compare two codes that differ only by how (10) is solved: one
by direct factorization and the other by a conjugate gradient method using diagonal and maximum weighted
spanning tree preconditioners. On a 3000 x 22000 assignment problem, they show a 116 speedup factor of
the iterative solver with respect to the solver using the direct method. This study further indicated that direct
methods may not be appropriate for solving systems of type (10) that occur in network flow problems.

Prior to the paper by Resende and Veiga [57], most studies that compared interior point methods with
network simplex methods used their own implementations of the simplex method. In [57] an implementation
of the DAS algorithm for bipartite uncapacitated networks was compared with NETFLO and RELAX on large
assignment problems. The interior point code used was the one based on preconditioned conjugate gradient
in [55]. The matrix-vector multiplication of the conjugate gradient method was implemented in parallel on an
Alliant FX/80 computer. On a 500 x 500 assignment problem, the CPU time observed with eight processors
was 6.5 times faster than on a single processor for the conjugate gradient and 5.5 times faster for the overall
DAS algorithm. The parallel interior point code was compared with NETFLO and RELAX, both running on

a single processor on the same machine. The relative performance of the DAS code with respect to the

other codes improved with the size of the network problem solved. The break even points were 20000-node
networks for NETFLO and 50000-node networks for RELAX.

Kaliski and Ye [33] implemented a build-up variant of the dual potential reduction algorithm for solv-
ing transportation problems with n > m. Their implementation used the preconditioned conjugate gradient
with the maximum weighted spanning tree preconditioner to solve (10). They differ from previous imple-
mentations in the way they compute the spanning tree, using a hybrid QuickSort procedure. To speed up
the convergence of the duality gap, they use an indicator function to guess a dual face, and project the dual
interior solution on the face and test optimality. On small problems, with 50 to 2000 nodes and arcs, they
report that NETFLO was 2 to 10 times faster than their code.

In 1991, the first year-long DIMACS algorithm implementation challenge [31] was initiated. This chal-
lenge focussed on network flow and matching algorithms. A large set of network flow test problems was
proposed and collected for the challenge. All codes solved a subset of those instances. Three entries in the
network flow challenge involved interior point approaches.

The first approach, by Joshi, Goldstein, and Vaidya [32] described the implementation and testing of a
primal path following interior point algorithm using a preconditioned conjugate gradient with the maximum
weighted spanning tree preconditioner to solve (10). Their code was compared with NETFLO and RELAXT-
3. Though the performance of this code, relative to NETLFO and RELAXT-3, was not competitive on most
instances, it was shown to improve with problem size. The largest speedups with respect to NETFLO and
RELAXT-3 were 2.4 and 25, respectively.

The second approach, by Ramakrishnan, Karmarkar, and Kamath [53], extended the ADP code by adding
an initial solution module and a stopping heuristic module for handling assignment problems. The code,
called ADP/A, was used to solve assignment problems having up to 32,768 nodes and was compared with the
code AUCTION of Bertsekas and Castafion [9]. Ramakrishnan, Karmarkar, and Kamath report that, unlike
AUCTION, their code has little CPU-time sensitivity to problem instances. Because of its high CPU-time
sensitivity, AUCTION is much faster than ADP/A on some problem classes, while being much slower on
others. That code was also used to solve large dense assignment problems to verify conjectures on the value
of the optimal assignments of randomly distributed cost data [47]. Computational results on dense assignment
problems with up to 20,000 nodes are reported.

The third approach, by Resende and Veiga [56], describes DLNET, an implementation of a dual affine
scaling algorithm using diagonal and maximum weighted spanning tree preconditioned conjugate gradient
algorithm to solve (10). That code was compared with NETFLO, RELAXT-3, CPLEX, and CPLEX NETOPT
on 250 instances in 13 problem classes, having from 256 to 262,144 nodes. Compared to RELAXT-3 and
NETFLO, DLNET had the slowest CPU-time growth rates in 11 of the 13 classes. It was up to 152 times faster
than RELAXT-3 and 18 times faster than NETFLO. The study also pointed out that the variance in the CPU
times for fixed size problems was smallest for the interior point code. The study also compared CPLEX and
CPLEX NETOPT with NETFLO and showed that overall NETOPT was twice as fast as NETFLO, but was slower
in 4 of the 13 problem classes. NETOPT was up to 180 times faster that CPLEX primal simplex algorithm.

A new indicator to identify the optimal face of network linear programs was introduced in [54] and
incorporated in DLNET. Using the new indicator DLNET was able to find complementary primal-dual integer
optimal solutions for all of the DIMACS instances. The DLNET version used in [56] found primal-optimal
only solutions in 4% of the instances.

Using a new preconditioner (incomplete QR decomposition), Portugal et al. [49] implemented a pre-

conditioned conjugate gradient based DAS, primal dual, and predictor corrector interior point algorithms for
solving linear transportation problems. On this class of problems, the new preconditioner outperforms both
the diagonal and maximum weighted spanning tree preconditioners. They limit their computational experi-
ments to instances with up to 2000 nodes, and conclude that the primal dual and predictor corrector algorithms
are more appropriate for well-scaled transportation problems, while DAS is more appropriate for well-scaled
assignment problems.

In [50], the infeasible-primal feasible-dual interior point algorithm for linear programming was presented
and its implementation to solve network flow problems described. Using a standard primal-dual indicator
function [21, 18], along with the stopping criterion, based on solving a maximum flow problem, the code
PDNET, was shown to outperform DLNET, CPLEX NETOPT (ver. 3.0) [13], and CS (ver. 1.2) [25] on most
classes of problems tested.

2.2 Complexity issues

Long before the discovery of polynomial-time algorithms for linear programming, strongly polynomial algo-
rithms for many network flow problems were known [3]. The best known result for minimum cost network
flow, due to Orlin [45], is O(n?logm + mn(logm)?), where, as before, m and n denote the number of nodes
and arcs, respectively.

Recently, Vavasis and Ye [65] proposed a strongly polynomial interior point algorithm for minimum cost
network flow problems having complexity O(n®>logn). Contrasted with the result of Tardos [61], which
requires that all data be integer, the new algorithm generalizes to real-number data.

Prior to the result of Vavasis and Ye, the best known complexity result for minimum cost network interior
point methods, due to Vaidya [63], was O(m?\/nlog(mI’)), where it is assumed that all costs and upper and
lower bounds are integers whose magnitudes are bounded above by I'.

Regarding complexity of multicommodity flow problems, the best known algorithm is the interior point
method analyzed by Kamath and Palmon [34]. One variant of this interior point algorithm finds an exact
solution in O(k*>n'->mLlog(nDU)), where L = km+n, D is the largest demand, U is the largest capacity, and
k is the number of commodities. This variant uses the conjugate gradient method. The second variant, which
has complexity bound of O((k%°n? + km'->n'3)Llog(mDU)), can be improved to O((k*>n?7 4 km'?n' 4
kn*?)Llog(mDU)), using fast matrix multiplication. This variant uses matrix inversion and rank one updates.

Previously, the fastest known algorithm for multicommodity flow was also an interior point algorithm,
due to Kapoor and Vaidya [36, 63]. This algorithm achieves a complexity bound of O(k*n%3m?Llog(mDU))
and reduces to O(k>n%>m?Llog(mDU)) using fast matrix multiplication. It should be noted, however, that

algorithms using fast matrix multiplication are not of practical interest, unless the dimensions are very large.

3 Components of interior point network flow methods

As seen in the literature review, since Karmarkar’s breakthrough in 1984, many variants of his algorithm,
including the dual affine scaling, with and without centering, reduced dual affine scaling, primal path fol-
lowing (method of centers), primal-dual path following, predictor-corrector primal-dual path following, and

the infeasible primal-dual path following, have been used to solve network flow problems. Though these

algorithms are, in some sense, different, they share many of the same computational requirements. The key

ingredients for efficient implementation of these algorithms are:

1. The solution of the linear system ADA "u = t, where D is a diagonal n x n scaling matrix, and u and ¢
are m-vectors. This requires an iterative algorithm for computing approximate directions, preconditioners,

stopping criteria for the iterative algorithm, etc.

2. The recovery of the desired optimal solution. This may depend on how the problem is presented (integer
data or real data), and what type of solution is required (fractional or integer solution, €-optimal or exact

solution, primal optimal or primal-dual optimal solution, etc.).

In this section, we present in detail these components, illustrating their implementation in the dual affine
scaling network flow algorithm DLNET of Resende and Veiga [56]. To illustrate the use of some of the
techniques described we present plots of several quantities obtained by running DLNET on a 16384-node,

131072-arc minimum cost network flow problem. We follow closely the presentations in [56, 49, 54].

3.1 The dual affine scaling algorithm

The dual affine scaling (DAS) algorithm [6, 15, 60, 64] was one of the first interior point methods to be shown
to be compete computationally with the simplex method [1, 2]. As before, let A be an m X n matrix, ¢, u, and

x be n-dimensional vectors and b an m-dimensional vector. The DAS algorithm solves the linear program
min {c¢'x |Ax=b, 0 <x < u}
indirectly, by solving its dual
max {b'y—u'z|A'y—z+s=c, z>0,5>0}, (11)

where z and s are an n-dimensional vectors and y is an m-dimensional vector. The algorithm starts with an

initial interior solution {y°,z°,s°} such that
ATV 240 =¢ >0, >0,

and iterates according to
{yk+1’zk+1’sk+1} _ {yk,Zk,Sk} +o {Ay,Az,As},
where the search directions Ay, Az, and As satisfy
AZE+SHTIATAY = b—AZHZE+ 5P u,
Az = ZUZ+SP) (AT AY - Sju),
As = Az—ATAy,

where
7 = diag(zX,...,2%) and Sy = diag(sk, ..., sk)

and o is such that Z¥*! > 0 and s*! > 0,i.e. & =y x min{o;, 0}, where 0 < y < 1 and

o, = min{—2¥/(A2); | (A2); < 0, i=1,....n}

116+10 T T T T T

le+10 -
9e+09 |- . n
8e+09 - o .
Te+09 |- n
6e+09 |- o .

5e+09 .

4e+09 Le | | | | | | | | |
20 25 30 35 40 45 50 55 60 65 70
Iteration

Figure 1: Interior point dual objective function (positive values)

o, = min{—s¥/(As); | (As); <0,i=1,...,n}.

The dual problem (11) has a readily available initial interior point solution:

W o= 0,i=1,....n
s,Q = ¢+Mi=1,....n
d o= Ni=1,...n,
where A is a scalar such that A >0and A > —c;, i = 1,...,n. The algorithm described above has two important

parameters, Y and A. For example, in DLNET, Y = 0.95 and A = 2 ||c||». Figure 1 shows the progress of the
interior point dual objective function solving the 16384-node, 131072-arc example. The optimal objective
function value is 10,631,080,962 and was found at iteration 69. The objective function values prior to iteration

21 are all negative and are not plotted.

3.2 Computing the direction

The computational efficiency of interior point network flow methods relies heavily on a preconditioned conju-
gate gradient algorithm to solve the direction finding system at each iteration. The preconditioned conjugate
gradient algorithm is used to solve

MY ADAT)Ay=M"'h (12)

where M is a positive definite matrix and, in the case of the DAS algorithm, b=b —AZ,%D“, and Dy =

(Z,% + S,%)’1 is a diagonal matrix of positive elements. The objective is to make the preconditioned matrix
MY ADAT) (13)

less ill-conditioned than AD;A T, and improve the convergence of the conjugate gradient algorithm.

10

procedure pcg(A, Dy, b, €, Ay)

I Ay,:=0;

2 rg := Z),

3 z0:=Mry

4 po:=2z0;

5 i:=0;

6 do stopping criterion not satisfied —
7 qi - =ADAT p;;

8 o =2z ri/p qi;

9 Ay 1 = Ay, +pi;
10 Fiyl = ri — 04ig;

11 Zig1 =M gy
12 Bi =z i1 /7 ris
13 Piv1 i=Zit1 + Bipis
14 i=i+1

15 od;

16 Ay:= Ay,

end pcg;

Figure 2: The preconditioned conjugate gradient algorithm

11

The pseudo-code for the preconditioned conjugate gradient algorithm is presented in Figure 2. The com-
putationally intensive steps in the preconditioned conjugate gradient algorithm are lines 3, 7 and 11 of the
pseudo-code. These lines correspond to a matrix-vector multiplication (7) and solving linear systems of equa-
tions (3 and 11). Line 3 is computed once and lines 7 and 11 are computed once every conjugate gradient
iteration. The matrix-vector multiplications are of the form AD;A T p;, carried out without forming AD;A "
explicitly. One way to compute the above matrix-vector multiplication is to decompose it into three sparse
matrix-vector multiplications. Let

{=A"Tp; and " =D(.

Then
(A (D (AT pi))) =AL".

The complexity of this matrix-vector multiplication is O(n), involving n additions, 2n subtractions and n
floating point multiplications.

The preconditioned residual is computed in lines 3 and 11 when the system of linear equations
Mzit1 =rit1, (14)

is solved, where M is a positive definite matrix. An efficient implementation requires a preconditioner that
can make (14) easy to solve. On the other hand, one needs a preconditioner that makes (13) well conditioned.
In the next subsection, we show several preconditioners that satisfy, to some extent, these two criteria.

To determine when the approximate direction Ay; produced by the conjugate gradient algorithm is satis-
factory, one can compute the angle 0 between (ADkAT)Ayl- and b and stop when |1 —cos8| < €.45, Where €.4s
is some small tolerance. In practice, one can initially use €.,5 = 1073 and tighten the tolerance as the interior

point iterations proceed, as €.s = €.os X 0.95. The exact computation of

|6 (ADAT)Ay,|

cos0 = —
15112 - [[(ADRAT) Ay, |2

has the complexity of one conjugate gradient iteration and is therefore expensive if computed at each conju-
gate gradient iteration. One way to proceed is to compute the cosine every /.,; conjugate gradient iterations.
A more efficient procedure follows from the observation that (AD;A")Ay; is approximately equal to b — r;,
where r; is the estimate of the residual at the i-th conjugate gradient iteration. Using this approximation, the
cosine can be estimated by

6" (b —ri)l
1Bll2- 1l(5 =)l

Since, in practice, the conjugate gradient method finds good directions in few iterations, this estimate has

cos0 =

been shown to be effective and can be computed at each conjugate gradient iteration. Figure 3 shows the
accuracy of the direction computed by the preconditioned conjugate gradient algorithm on the 16384-node,
131072-arc example. The tolerance €.,; was set to 1073 on all interior point iterations, except iteration 13.
On that iteration, the conjugate gradient reached the limit of 256 (= 2 x \/16384) iterations without attaining
the desired precision. Stopping was tested every 5 conjugate gradient iterations, and because of that the
|1 — cos@| value was alway smaller than 1073, The diagonal preconditioner was used from iteration 1 to

iteration 13. From iteration 14 on the spanning tree preconditioner took effect.

12

0.01 ¢ :
0.001 — L aeee .

0.0001 f . . ° A

le-05 * o*
1le-06 * % %

1e-07 |

1e-08 F o

1e-09 i | | | | | |
0 10 20 30 40 50 60
Iteration

-3
(e]

Figure 3: |1 — cos0)| value at termination of conjugate gradient

3.3 Network preconditioners for conjugate gradient method

A useful preconditioner for the conjugate gradient algorithm must be one that allows the efficient solution of
(14), while at the same time causing the number of conjugate gradient iterations to be small. Four precon-
ditioners have been found useful in conjugate gradient based interior point network flow methods: diagonal,
maximum weighted spanning tree, incomplete QR decomposition, and the Karmarkar-Ramakrishnan precon-
ditioner for general linear programming.

A diagonal matrix constitutes the most straightforward preconditioner used in conjunction with the con-
jugate gradient algorithm [26]. They are simple to compute, taking O(n) double precision operations, and
can be effective [55, 57, 66]. In the diagonal preconditioner, M = diag (AD;A "), and the preconditioned
residue systems of lines 3 and 11 of the conjugate gradient pseudo-code in Figure 2 can each be solved in
O(m) double precision divisions.

A preconditioner that is observed to improve with the number of interior point iterations is the maximum
weighted spanning tree preconditioner. Since the underlying graph G is not necessarily connected, one can
identify a maximal forest using as weights the diagonal elements of the current scaling matrix,

w = Dye, (15)

where e is a unit n-vector. In practice, Kruskal’s and Prim’s algorithm have been used to compute the maximal
forest. Kruskal’s algorithm, implemented with the data structures in [62] has been applied to arcs, ordered
approximately with a bucket sort [32, 56], or exactly using a hybrid QuickSort [33]. Prim’s algorithm is
implemented in [49] using the data structures presented in [3].

At the k-th interior point iteration, let .S be the submatrix of A with columns corresponding to arcs in the

maximal forest, #1,...,1;. The preconditioner can be written as

M= S5DS,

13

1000

100 |- . .
10 ; L] 0000000000000 7:
1 | | | | | |
0 10 20 30 40 50 60 70

Iteration

Figure 4: Conjugate gradient iterations

where, for example, in the DAS algorithm
Dy = diag(l/z,z1 + l/stzl,...71/z,2q + l/stzq).

For simplicity of notation, we include in .S the linear dependent rows corresponding to the redundant flow

conservation constraints. At each conjugate gradient iteration, the preconditioned residue system
T
(SkDicSic)zie1 = Fig1 (16)

is solved with the variables corresponding to redundant constraints set to zero. As with the diagonal precondi-
tioner, (16) can be solved in O(m) time, as the system coefficient matrix can be ordered into a block triangular
form. Figure 4 shows the number of iterations taken by the preconditioned conjugate gradient during each
interior point iteration on the 16384-node, 131072-arc example. The diagonal preconditioner was used from
iteration 1 to iteration 13. From iteration 14 on the spanning tree preconditioner took effect. Besides checking
the angle every five iterations the conjugate gradient was also stopped by a residual stopping criterion. This
occurred in iterations 16 and 19.

Portugal et al. [49] introduced a preconditioner based on an incomplete QR decomposition (IQRD) for
use in interior point methods to solve transportation problems. They showed empirically, for that class of
problems, that this preconditioner mimics the diagonal preconditioner during the initial iterations of the
interior point method, and the spanning tree preconditioner in the final interior point method iterations, while
causing the conjugate gradient method to take fewer iterations than either method during the intermediate
iterations. In [50], the use of this preconditioner is extended to general minimum cost network flow problems.
In the following discussion, we omit the iteration index k from notation for the sake of simplicity. Let
T= {1,2,...,n}\ 7 be the index set of the arcs not in the computed maximal spanning tree, and let

D
p=| "7

Dz

14

where Dy € R*? is the diagonal matrix with the arc weights of the maximal spanning tree and Dz €

R"~9)*("—4) is the diagonal matrix with weights of the arcs not in the maximal spanning tree. Then

D Al
ADAT= [Ay Az || 77 ;’]
Dy || AL
1
e
= | ArDE AzDY | .
b3Az

The Cholesky factorization of ADA " can be found by simply computing the QR factorization of
_ T
A= . a7

In fact, if QA = R, then

ADAT =ATA=R"Q"OR=R'R.
The computation of the OR factorization is not recommended here, since besides being more expensive than
a Cholesky factorization, it also destroys the sparsity of the matrix A. Instead, Portugal et al. [49] propose
an incomplete QR decomposition of A. Applying Givens rotations [22] to A, using the diagonal elements
of D,%IA;, the elements of D%fA; become null. No fill-in is incurred in this factorization. See [49] for an

example illustrating this procedure. After the factorization, we have the preconditioner
M=FDF',

where F is a matrix with a diagonal of ones that can be reordered to triangular form, and D is a diagonal
matrix with positive elements.

To avoid square root operations, 9 and F are obtained without explicitly computing DIFT. Suppose
that the maximum spanning tree is rooted at node r, corresponding to the flow conservation equation that has
been removed from the formulation. Furthermore, let A4, denote the subset of arcs belonging to the tree and
let p; represent the predecessor of node i in the tree. The procedure used to compute the nonzero elements of
D and the off-diagonal nonzero elements of F is presented in the pseudo-code in Figure 5.

The computation of the preconditioned residual with FDF " requires O(m) divisions, multiplications,
and subtractions, since D is a diagonal matrix and F can be permuted into a triangular matrix with diago-
nal elements equal to one. The construction of F and D, that constitute the preconditioner, requires O(n)
additions and O(m) divisions.

In practice, the diagonal preconditioner is effective during the initial iterations of the DAS algorithm.
As the DAS iterations progress, the spanning tree preconditioner is more effective as it becomes a better
approximation of matrix AD;A . Arguments as to why this preconditioner is effective are given in [32, 49].
The DLNET implementation begins with the diagonal preconditioner and monitors the number of iterations
required by the conjugate gradient algorithm. When the conjugate gradient takes more than [3/m iterations,
where [> 0, DLNET switches to the spanning tree preconditioner. Upper and lower limits to the number of
DAS iterations using a diagonal preconditioned conjugate gradient are specified.

Another preconditioner used in an interior point implementation is the one for general linear program-

ming, developed by Karmarkar and Ramakrishnan and used in [38, 53]. This preconditioner is based on a

15

procedure iqrd(7, 7, A\, D,D,F)
doic N\{r} —

J =i

if(i,j) E/"er[— Q),'iZD,'jﬁ;

if (j,i) € Ay — Dy = Dj; fi;

do (i,j) € A7 —
iti € A0\ {r} — Dii = Dii+ Dj; fi;

1

2

3

4

5 od;
6

7

8 if j € N\ {r} — Djj = Djj + D; fi;
9

od;
10 doieN\{r}—
11 J=pi
12 if je A\ {r} —
13 if (i, j) € A — F;j = Djj/ Dy fi;
14 if (j,i) € A7 — Fji=Dji/ D i
15 fi;
16 od;
end iqrd;

Figure 5: Computing the F and D matrices in IQRD

16

0.85 I I I
0.8 - z-slack o -
0.75 |- s-slack e 4
0.7
o]
0.65 - . og o »
0.6
0.55 . * ° _
0.5 °
045 o0 ° —

T T
o
[
[
o
|

® 0
0
oe

035 - —

0.3 | | | | | | | | |

0 5 10 15 20 25 30 35 40 45 50
Iteration

Figure 6: Dual Slack Ratio (Edge left active)

dynamic scheme to drop elements of the original scaled constraint matrix DA, as well as the from the factors
of the matrix ADA T of the linear system, and use the incomplete Cholesky factors as the preconditioner. Be-
cause of the way elements are dropped, this preconditioner mimics the diagonal preconditioner in the initial
iterations and the tree preconditioner in the final iterations of the interior point algorithm.

3.4 Identifying the optimal partition

One way to stop an interior point algorithm before the (fractional) interior point iterates converge is to estimate
(or guess) the optimal partition of arcs at each iteration, attempt to recover the flow from the partition and, if
a feasible flow is produced, test if that flow is optimal. In the discussion that follows we describe a strategy
to partition the set of arcs in the dual affine scaling algorithm. The discussion follows [54] closely, using a
dual affine scaling method for uncapacitated networks to illustrate the procedure.
Let A eR™", ¢,x,s €R and b,y €R". Consider the linear programming problem
minimize ¢'x
(18)
subjectto Ax=b, x>0

and its dual
maximize b'y
(19)
subjectto A'y+s=c, s>0.
The dual affine scaling algorithm starts with an initial dual solution y® € {y : s=c—ATy >0} and obtains
iterate y“! from y* according to y¥*1 = y* + o*d¥, where the search direction dy is d* = (AD*A™)~'b and
Dy = diag(s’{, ...,sK). A step moving a fraction 7y of the way to the boundary of the feasible region is taken at

17

each iteration, namely,
of =yxmin{—s/(d"); : (d*); <0,i=1,....n}, (20)

where df = —ATd§c is a unit displacement vector in the space of slack variables. At each iteration, a tentative
primal solution is computed by x* = D, AT (AD[2A")~'b. The set of optimal solutions is referred to as the
optimal face. We use the index set N, for the always-active index set on the optimal face of the primal, and
B, for its complement. It is well-known that B, is the always-active index set on the optimal face of the dual,
and N, is its complement. An indicator is a quantity to detect whether an index belongs to N, or B,.. We next
describe three indicators that can be implemented in the DAS algorithm. For pointers to other indicators, see
[18].

Under a very weak condition, the iterative sequence of the DAS algorithm converges to a relative interior
point of a face on which the objective function is constant, i.e. the sequence {y*} converges to an interior
point of a face on which the objective function is constant. Let B be the always-active index set on the face
and N be its complement, and let b~ be the limiting objective function value. There exists a constant Cyp > 0
such that

k
limsup———— < C (21)
k—o0 b= — bTyk
for all i € B, while
k
s
b b1y (22)

diverges to infinity for all i € N. Denote by s the limiting slack vector. Then s > 0 and s% = 0. The vector

p_ (DOTlak DR

S N R @3
plays an important role, since
. T . (sk)Txk
fim (@) e = fim e = e

Consequently, in the limit 5= — b Ty* can be estimated by (s*) " x* asymptotically, and (21) can be stated as

k
K
li —L— <.
m sup (F) Tk = 0
Then, if i € B, for any B such that 0 < B < 1,
k
lim sup =0,

i

since ((s*)Tx*)B converges to zero at a slower rate than ((s¥)Tx*) for any B such that 0 < B < 1. Therefore,
if B = 1/2, the following indicator has the property that lim ... N* = N..
Indicator 1: Let C; > 0 be any constant, and define

NE={icE : s8 <Cpy/(sk)Tak). (25)

This indicator is available under very weak assumptions, so it can be used to detect B, and N, without
any substantial restriction on step-size. On the other hand, it gives the correct partition only if the limit point
y~ happens to be a relative interior point of the optimal face of the dual and thus lacks a firm theoretical

justification. However, since we know by experience that y™ usually lies in the relative interior of the optimal

18

1.1 T I I I I I I
1 —;820 ,00©0000000000000000000000000004
.. °
0.9 | 8 ° .
0.8 . °” ‘e
. [e] (o) ¢
0.7 | ‘o e e e -
o oo oo .
0.6 - ‘.’o '. o R _
o%e o of
0.5 ° . o |
z-slack o .®
0.4 - s-slack e o oo |
0%¢0g040040
0.3 l l l l l l l 1 1

0 5 10 15 20 25 30 35 40 45 50
Iteration

Figure 7: Dual Slack Ratio (Edge set to upper bound)

face, we may expect that it should work well in practice. Another potential problem with this indicator is that
it is not scaling invariant, so that it will behave differently if the scaling of the problem is changed.

Now we assume that the step-size is asymptotically less than or equal to 2/3. Then the limiting point
exists in the interior of the optimal face and »> is the optimal value. Specifically, {y*} converges to an
interior point of the optimal face of the dual problem, {x*} converges to the analytic center of the optimal
face of the primal problem, and {b"y*} converges linearly to the optimal value 5> asymptotically, where the

(asymptotic) reduction rate is exactly 1 —y. Furthermore, one can show that

klijr;uf =1/|B,| forieB, (26)
]}im uf =0 otherwise. 27

The vector u* is not available because the exact optimal value is unknown a priori, but b — b y* can be
estimated by (s%) " x* to obtain

T for i 28

kﬂm— /|B*| OI‘ZEBx< ()
kk

lim W —0 otherwise. (29)

On the basis of this fact, the following procedure to construct N¥, which asymptotically coincides with N,:

Indicator 2: Let 3 be a constant between 0 and 1. We obtain N* according to the following procedure:

k

e Step 1: Sort gf»‘ = si-‘xl- /(s5)TxF according to its order of magnitude. Denote #; the index for the /-th largest

component.

19

e Step 2: For p:=1,2,... compare g;, and 8/p, and let p* be the first number such that gz < 8/p*. Then set

NE = {1 iz, eyipe1 }.

(30)

To state the third, and most practical indicator, let us turn our attention to the asymptotic behavior of

skt /sk 1f i € N, then s¥ converges to a positive value, and hence

k+1
.S
lim +— =1.

k—oo S{»(

If i € By, sf»‘ converges to zero. Since
s{‘x{‘ 1

lim — 21—
b bk B

xi-‘ converges to a positive number, and the objective function reduces with a rate of 1 —, then
ket
lim +—=1-
k—oo sff ¥

which leads to the following indicator:
Indicator 3: Take a constant 1 such that 1 —y <1 < 1. Then let
Nk _ { . Sf'{Jrl >
=iz n}

1

be defined as the index set. Then N* = N, holds asymptotically.

€1y

(32)

(33)

(34)

Of the three indicators described here, Indicators 2 and 3 stand on the firmest theoretical basis. Further-

more, unlike Indicator 1, both are scaling invariant. The above discussion can be easily extended for the case

of capacitated network flow problems. DLNET uses Indicator 3 to identify the set of active arcs defining the

optimal face by examining the ratio between subsequent iterates of each dual slack. At the optimum, the flow

on each arc can be classified as being at its upper bound, lower bound, or as active. From the discussion

above, if the flow on arc i converges to its upper bound,

khlgsi'{/s{'{il =1-—v and l}iﬂn;z?/szl =1
If the flow on arc i converges to its lower bound,

;ﬂsﬁf/s{fl =1 and kliﬂn;zf»‘/szfl =1-y.

If the flow on arc i is active,

lim s¥/s5~! =1 —v and]}im) =1-7.

k—so0 !

From a practical point of view, scale invariance is the most interesting feature of this indicator. An

implementable version can use constants which depend only on the step size factor y. Let k9 = .7 and

K1 = .9. At each iteration of DLNET, the arcs are classified as follows:
o If si-‘/sf»‘fl < Ko and zf»‘/zf»‘*l > K1, arc i is set to its upper bound.

o If sf.‘/sffl > K1 and z{‘/z{fl < Ko, arc i is set to its lower bound.

20

z-slack o

11 * s-slack e

1 —I............l...............H
[]

* L]
0.9 4
0.8 .o _
0.7 o o °Co -

0.6 ‘o . 9

I
o
[e]
o
o
[e]
[e]

04 08%,° oo o0 |
0960600000°°
| |

0.3 ! ! ! ! ! ! !
0 5 10 15 20 25 30 35 40 45 50
Iteration

Figure 8: Dual Slack Ratio (Edge set to lower bound)

e Otherwise, arc i is set active, defining the tentative optimal face.

Figures 6, 7, and 8, illustrate the behavior of the ratios of dual slacks corresponding to arcs converging to a
value away from its bounds, to its lower bound, and to its upper bound, respectively. The step size fraction
used is Y= 2/3. The vertical line in each of the figures shows when the indicator successfully identified the
optimal partition. The data points on the right of the vertical line illustrate the behavior of the indicator as the

iterates of the algorithm converge to optimal solution.

3.5 Recovering the optimal flow

The simplex method restricts the sequence of solutions it generates to nodes of the linear programming
polytope. Since the matrix A of the network linear program is totally unimodular, when a simplex variant is
applied to a network flow problem with integer data, the optimal solution is also integer. On the other hand,
an interior point algorithm generates a sequence of interior point (fractional) solutions. Unless the primal
optimal solution is unique, the primal solution that an interior point algorithm converges to is not guaranteed
to be integer. In an implementation of an interior point network flow method, one would like to be capable
of recovering an integer flow even when the problem has multiple optima. We discuss below the stopping
strategies implemented in DLNET and used to recover an integer optimal solution.

Besides the indicator described in subsection 3.4, DLNET uses the arcs of the spanning forest of the tree
preconditioner as an indicator. If there exists a unique optimal flow, this indicator correctly identifies an
optimal primal basic sequence, and an integer flow can be easily recovered by solving a triangular system of
linear equations. In general, however, the arc indices do not converge to a basic sequence. Let 7 = {t1,...,,}

denote the set of arc indices in the spanning forest. To obtain a tentative primal basic solution, first set flow

21

on arcs not in the forest to either their upper or lower bound, i.e. foralli € 4\ 7:

e ko ok
. 0 ifs;>z
u; otherwise,

where s* and Z* are the current iterates of the dual slack vectors as defined in (11). The remaining basic arcs

have flows that satisfy the linear system

Agxy =b— Y ui;, (35)
i€Q-
where Q~ = {i € A\ 7T : s¥ <z}, Because A7 can be reordered in a triangular form, (35) can be solved in
O(m) operations. If uq > x7- > 0 then the primal solution is feasible and optimality can be tested.
Optimality can be verified producing a dual feasible solution (y*,s*,z*) that is either complementary or
that implies in a duality gap less than 1. The first step to build a tentative optimal dual solution is identify the

set of dual constraints defining the supporting affine space of the dual face complementary to x*,
F={ieT :0<x<u},

i.e. the set of arcs with zero dual slacks. Since, in general, x* is not feasible, ¥ is usually determined by the
indicators of subsection 3.4, as the index-set of active arcs. To ensure a complementary primal-dual pair, the
current dual interior vector y* is projected orthogonally onto this affine space. The solution y* of the least

squares problem

. * k T . %
min4{|[y"=y|2 : Agy =c (36)
min (I =2l s ATy =er)

is the projected dual iterate.

Let Gg = (A, F) be the subgraph of G with ¥ as its set of arcs. Since this subgraph is a forest, its
incidence matrix, A ¢, can be reordered into a block triangular form, with each block corresponding to a tree
in the forest. Assume G4 has p components, with 71, ..., T}, as the sets of arcs in each component tree. After
reordering, the incidence matrix can be represented as

A,
Ag =
At

P

The supporting affine space of the dual face can be expressed as the sum of orthogonal one-dimensional
subspaces. The operation in (36) can be performed by computing the orthogonal projections onto each
individual subspace independently, and therefore can be completed in O(m) time. Fori = 1,..., p, denote the
number of arcs in 7; by m;, and the set of nodes spanned by those arcs by Afj. Ar; is an (m; + 1) X m; matrix
and each subspace
i = {yx emitl A;gyg\é =cr}

has dimension one. For all y AN c¥;,

Vag = Yoy 0V (37)

where yg\& is a given solution in ¥; and y’;\é is a solution of the homogeneous system A;,yM = 0. Since A7,

is the incidence matrix of a tree, the unit vector is a homogeneous solution. The given solution y(g)\é can be

22

computed by selecting v € A, setting y) = 0, removing the row corresponding to node v from matrix A7 and
solving the resulting triangular system

AT

ALYag\ v} = €Ti-

With the representation in (37), the orthogonal projection of y o ONto subspace ¥, is

T _\0
f 0 L eag Wy ym&)e
YNTINT T) N
where e is the unit vector. The orthogonal projection, as indicated in (36), is obtained by combining the
projections onto each subspace,
Y=g Vag)-

A feasible dual solution is built by computing the slacks as

" —5,’ if8,~<0 "
< = i

S-
0 otherwise,

_{ 0 ifd<0

o; otherwise,

where §; = ¢; — A Ty*.

If the solution of (35) is feasible, optimality can be checked at this point, using the projected dual solution
as a lower bound on the optimal flow. The primal and dual solutions, x* and (y*,s*,z*), are optimal if
complementary slackness is satisfied, i.e. if for all i € 4\ T either s; > 0 and x; =0 or z; > 0 and x} = u;.
Otherwise, the primal solution, x*, is still optimal if the duality gap is less than 1,i.e. if ¢ "x* —b y* +u'z* <
1.

However, in general, the method proceeds attempting to find a feasible flow x* that is complementary to
the projected dual solution y*. Based on the projected dual solution y*, a refined tentative optimal face is

selected by redefining the set of active arcs as
F={iea: |ci—Aly|<e}.

Next, the method attempts to build a primal feasible solution, x*, complementary to the tentative dual optimal
solution by setting the inactive arcs to lower or upper bounds, i.e., fori € 4\ T,

. Jo ifieat={ica\T :c—-Aly" >0}
' w ificeQ ={ica\F :c—-Aly <o}

By considering only the active arcs, a restricted network is built, represented by the constraint set

Agxy =b=b—Y wuaA;, (38)
i€Q~
ng,'gui,iei. (39)

Clearly, from the flow balance constraints (38), if a feasible flow x} for the restricted network exists, it
defines, along with x5, and x,_, a primal feasible solution complementary to y*. A feasible flow for the
restricted network can be determined by solving a maximum flow problem on the augmented network defined
by underlying graph G = (fi[,), where

A = {oy U{B}UN

23

10000000 ¢ | |

1000000 .
100000 f *° .

10000 *
1000

100

10 | .

1 i | | | | | |
0 10 20 30 40 50 60
Iteration

-3
(e]

Figure 9: Difference between flow requested and maximum flow found

and
4=YXUOUF¥.

In addition, for each arc (i, j) € F there is an associated capacity u; ;. The additional arcs are such that
L={(o,i) : ie N},

with associated capacity b; for each arc (o, i), and
0={({0) :ie N},

with associated capacity —b; for each arc (i,0), where N'* = {i € AL : b; >0} and N~ ={i€ N : b; <0}. It
can be shown that if %,e is the maximum flow value from & to 0, and ¥ is a maximal flow on the augmented
network, then 9"[0,9 = Z,@\U Bi if and only if f? is a feasible flow for the restricted network. Therefore,
finding a feasible flow for the restricted network involves the solution a maximum flow problem. Furthermore,
this feasible flow is integer, as we can select a maximum flow algorithm that provides an integer solution.

Figures 9 and 10 show, respectively, the difference between the flow requested and maximum flow found
in the maximum flow termination criterion and the number of primal infeasibilities in the spanning tree on
the 16384-node, 131072-arc example. On iteration 69, the requested flow of 18720642 units was found and a
primal-dual complementary integer solution was recovered. That iteration still had four primal infeasibilities,
the smallest number over all interior point iterations.

4 Computational challenge to the network simplex

In this section, we illustrate interior point network flow methods by comparing DLNET [56], an implemen-

tation of the dual affine scaling algorithm for network flows with CPLEX NETOPT, the network simplex

24

10000

E I I 3

1000 ¢ ’ E

100 £ E

10 E ..o. 3

1 i ! ! ! ! ! |

10 20 30 40 50 60 70
Iteration

Figure 10: Number of primal infeasibilities in spanning tree

16 150 MHZ IP19 Processors

CPU: MIPS R4400 Processor Chip Revision: 5.0

FPU: MIPS R4010 Floating Point Chip Revision: 0.0

Data cache size: 16 Kbytes

Instruction cache size: 16 Kbytes

Secondary unified instruction/data cache size: 1 Mbyte

Main memory size: 1536 Mbytes, 8-way interleaved

Figure 11: Hardware configuration (partial output of system command hinv)

25

implementation in the CPLEX mathematical programming system [13]. The experiment was run on an SGI
Challenge computer with the configuration summarized in Figure 11.
Version 2.2a of DLNET was used in the experiments. The stepsize parameter Y* was set to 0.99 for the

first 10 dual affine scaling iterations and at each iteration, the relative dual objective function improvement

(bTyk _ uTzk) _ (bTykfl _ MTZkfl)

* =
|bTyk _ MTZk|

is computed. After iteration 10, the stepsize is determined as follows:

0.95, if I >0.0001,
¥ =< 066, if0.00001 < I¥ <0.0001,
0.50, if I* < 0.00001.

Indicator 3, described in Section 3.4, with parameters ko = 0.7 and K; = 0.9 is used. DLNET uses diagonal
and spanning tree preconditioners and the switching heuristic described in Section 3.3. The PB stopping
criterion was checked every iteration on which the spanning tree preconditioner was used. The MF criterion
was never checked during the first 5 iterations. Once I¥ < 107! the MF was checked every 10 iterations,
and when I* < 10712 it was checked every 5 iterations. The conjugate gradient cosine parameter €., was
set fixed to 10~ throughout all iterations and the exact cosine rule was checked every 5 conjugate gradient
iterations.

Version 3.0 (1994) of CPLEX NETOPT was used with default parameter settings.

All problems considered in this section are from the set of network flow benchmarks collected for the
First DIMACS Algorithm Implementation Challenge [31]. The generators can be retrieved from the DIMACS
FTP site: dimacs.rutgers.edu.

For each problem class, instances of increasing sizes were generated and run on both codes. For each
class, the runs are summarized with a table and a figure. The tables list network dimensions, number of
interior point iterations, total CPU time for the interior point algorithm, total number of conjugate gradient
iterations, number of calls to the maximum flow (MF) stopping criterion, total CPU to run the MF stopping
criterion, number of simplex iterations, and total CPU time for the network simplex code. The figures show,
in a log-log plot, CPU time ratios between the simplex code and the interior point code.

The first class of problem is Grid-Density. The networks in this class of problems are obtained by remov-
ing the minimum number of arcs from a grid graph embedded on a torus such that all vertical paths wrap
around and no horizontal path wraps around, and adding a source and sink node with arcs going from the
source to all nodes on one side of the resulting tube network and from all nodes on the other side to the sink.
Network density is controlled by adding extra arcs in both the horizontal and vertical directions. All nodes
other than the source and sink nodes are transshipment nodes. Costs and capacities are uniformly distributed
in the intervals [0,4096] and [0, 16384], respectively.

These instances are generated with the minimum cost network flow test problem generator goto.c by
Goldberg [16]. Two subclasses of problems are generated: Grid-Density-8 and Grid-Density-16. Let m and n
denote the number of nodes and arcs of the network, respectively. For Grid-Density-8, n = 8 m; and for Grid-
Density-16, n = 16 m. For Grid-Density-8, instances having 256,1024,...,65536 nodes are generated. For
Grid-Density-16, instances with 512,2048,...,32768 nodes are generated. The random number generator
seed 270001 was used to generate all instances for each problem size.

26

Table 1: Problem statistics: test problem class Grid-Density-8

DLNET CPLEX

network size int point alg CcG max flow stopping
|| |4] | itrs time itrs calls time criterion itr time
256 2048 | 21 1.16 181 0 - PB 4137 0.36
1024 8192 | 29 6.46 234 0 - PB 34172 8.02
4096 32768 | 32 40.47 376 0 - PB 184044 139.83
16384 131072 | 43 419.32 615 0 - PB 875318 4162.20
65536 524288 | 65 6336.61 1114 1 255.56 MF 4244165 106956.76

.0

10 F o E

a CPLEX/DLNET -o- - 1

I o’ |

Ratio . o B

= o’ :

0.1 | | | |
210 212 214 216 218 220

Number of arcs

Figure 12: CPU time ratios for problem class Grid-Density-8

Table 2: Problem statistics: test problem class Grid-Density-16

DLNET CPLEX
network size int point alg CG max flow stopping
[N |4a] | itrs time itrs calls time criterion itr time
512 8192 | 60 12.30 426 1 0.05 MF 24725 2.59
2048 32768 | 79 76.45 661 1 0.44 MF 148281 63.34
8192 131072 | 99 814.52 1052 1 4.06 MF 884825 1673.75
32768 524288 | 94 3939.72 1223 1 5857 MF 5399631 46479.68

27

CPLEX/DLNET -eo- -

)
L

Ratio

o’ i

01 | | | | | | |
212 213 214 215 216 217 218 219 220
Number of arcs

Figure 13: CPU time ratios for problem class Grid-Density-16

Table 1 and Figure 12 summarize the runs for Grid-Density-8. Table 2 and Figure 13 summarize the runs
for Grid-Density-16.

The next class is Grid-Graph. The networks in this class are formed on a grid of nodes of height # and
width w. Two additional nodes complete the node set: a source node S and a sink node 7. Arcs go from the
source to each node in the first column of the grid and from each node in the last column of the grid to the
sink node. On the grid, arcs go from node to nearest neighbor node oriented left to right and top to bottom.
Grid arc costs and capacities are generated uniformly in the interval [1,10000]. Arcs from the source and into
the sink have cost zero and are uncapacitated. All nodes, except for source and sink, are transshipment nodes.
The source has a supply of Msr, the maximum flow from § to 7', and the sink has a demand of Myr.

These instances are generated with the minimum cost network flow test problem generator ggraphl.f
of Resende [16]. Two subclasses of problems are generated: Grid-Wide and Grid-Long. Grid-Wide uses
parameters w = 16 and & = 32,64, ..., while Grid-Long uses 7 = 16 and w = 32,64,

The random number generator seed 270001 was used to generate the instances. For both Grid-Long and
Grid-Wide, instances having 1026,4098, . ..,65538 nodes were generated. Table 3 and Figure 14 summarize
the runs for Grid-Long. Table 4 and Figure 15 summarize the runs for Grid-Wide.

Most computational studies of network optimization codes in the past have used the minimum cost net-
work flow test generator NETGEN [40] of Klingman, Napier and Stutz. We tested the codes on two classes
of networks generated with NETGEN: Netgen-Lo and Netgen-Hi. Figure 16 lists the NETGEN parameters
used to generate the class Netgen-Lo. Networks in class Netgen-Hi are generated with the same parameters
except for maxcap, which is set to 16384. For both subclasses, an instance of each size was generated. Sizes
correspond to the settings x =8,9,...,16. Table 5 and Figure 17 summarize the runs for Netgen-Hi. Table 6
and Figure 18 summarize the runs for Netgen-Lo.

The last class of problems considered is Mesh-4. Networks in this class are formed on a grid of nodes

28

Table 3: Problem statistics: test problem class Grid-Long

DLNET CPLEX
network size int point alg CcG max flow stopping
[|4l | itrs time itrs calls time criterion itr time
1026 2000 29 2.56 402 0 - PB 2171 0.29
4098 7952 73 29.24 1112 1 033 MF 7776 4.59
16386 31760 84 284.88 2517 0 - PB 29729 85.77
65538 126992 | 169 4925.54 4228 0 - PB 92599 1471.92
Lr]
. CPLEX/DLNET -o- - B
Ratio / |
| @ ® |
0
0.1 9 I I I I I I
210 211 212 213 214 215 216 217
Number of arcs
Figure 14: CPU time ratios for problem class Grid-Long

Table 4: Problem statistics: test problem class Grid-Wide

DLNET CPLEX
network size int point alg CcG max flow stopping
[N |A4] | itrs time itrs calls time criterion itr time
1026 2096 | 30 248 391 0 - PB 2449 0.23
4098 8432 | 38 13.90 536 0 - PB 10685 1.28
16386 33776 | 49 77.05 458 0 - PB 37044 8.63
65538 135152 | 74 702.05 377 0 - PB 140428 55.84

29

Ratio L

0.1

CPLEX/DLNET -eo- -

212 213 214 215

Number of arcs

Figure 15: CPU time ratios for problem class Grid-Wide

seed
problem
nodes
sources
sinks
density
mincost
maxcost
supply
tsources
tsinks
hicost
capacitated
mincap

maxcap

Random number seed:

Problem number (for output):

Number of nodes:

Number of sources:
Number of sinks:

Number of (requested) arcs:
Minimum arc cost:
Maximum arc cost:

Total supply:
Transshipment sources:
Transshipment sinks:
Skeleton arcs with max cost:
Capacitated arcs:

Minimum arc capacity:

Maximum arc capacity:

270001

Figure 16: NETGEN specification file for Netgen-Lo

30

Table 5: Problem statistics: test problem class Netgen-Hi

DLNET CPLEX
network size int point alg CcG max flow stopping
[N |4] | itrs time itrs calls time criterion itr time
256 2048 29 1.55 255 0 - PB 1033 0.18
1024 8214 41 10.43 537 0 - PB 6679 1.22
4096 32877 61 82.97 989 0 - PB 29330 13.77
16384 131409 74 83542 2012 0 - PB 137023 248.34
65536 525803 | 107 14861.27 5153 1 162.33 MF 1077281 21046.19
o}
Lr]
. CPLEX/DLNET -o- - B
Ratio / |
. . G .
.o
@« e o
0.1 | | | |
210 212 214 216 218 220
Number of arcs
Figure 17: CPU time ratios for problem class Netgen-Hi
Table 6: Problem statistics: test problem class Netgen-Lo
DLNET CPLEX
network size int point alg CcG max flow stopping

|| |4l | itrs time itrs calls time criterion itr time

256 2048 19 1.11 233 0 - PB 2876 0.24

1024 8214 36 9.72 532 0 - PB 16956 2.08

4096 32858 42 60.75 644 0 - PB 63856 19.48

16384 131409 73 584.65 1220 1 10.54 MF 218163 231.59

65536 525803 | 102 5703.28 1685 1 190.26 MF 1212399 9459.77

31

| CPLEX/DLNET -o- - |
L . _
1F .
Ratio E
L o _

L e _

L O o _

0.1 | | | |
210 212 214 216 218 220
Number of arcs
Figure 18: CPU time ratios for problem class Netgen-Lo
Table 7: Problem statistics: test problem class Mesh-4
DLNET CPLEX
network size int point alg CG max flow stopping

[N |4] | itrs time itrs calls time criterion itr time
256 2048 21 1.18 245 0 - PB 4790 0.36
1024 8192 56 11.67 475 1 0.10 MF 25459 4.13
4096 32768 88 90.02 779 1 0.68 MF 125315 68.34
16384 131072 60 520.57 662 1 7.82 MF 712187 1406.08
65536 524288 83 5972.02 1035 1 104.39 MF 3231833 28801.18

embedded on a torus. Arcs connect nodes in the same row or column of the grid. All horizontal arcs have
the same orientation. Similarly, all vertical arcs are oriented in the same direction. Each node has arcs going
to its 8 nearest neighbors (four in the horizontal direction, the other four in the vertical direction). Costs
are generated uniformly in the interval [—1000, 1000]. Capacities are generated in the interval [—1000, 1000)

with a bias that makes longer arcs have smaller capacities.

The instances are generated with the minimum cost network flow test generator mesh. c by Goldberg [16].
All node sets are i x w grids. We generated all instances with 7 = w. Instances are generated with parameters
h=w=16,32,...,256, having 256,1024,...,65536 nodes. The random number generator seed 270001 was

used to generate the instances.

Table 7 and Figure 19 summarize the runs for Mesh-4.

We conclude this section with some remarks:

e Both codes found optimal solutions to all the instances tested.

32

10 :

CPLEX/DLNET -o- - o

Ratio 1

01 | | | |
210 212 214 216 218 220
Number of arcs

Figure 19: CPU time ratios for problem class Mesh-4

Both codes produced integer flows as output.

Of the 32 instances optimized, the interior point code stopped with the maximum flow (MF) criterion on

13 instances and with the primal basic (PB) criterion on 19 instances.
On all 32 instances, the interior point code found optimal primal-dual complementary solutions.

The triggering mechanism for the maximum flow stopping criterion, based on relative dual improvement,

worked well, since on every instance MF was never called more than once.

The preconditioners used resulted in small average number of conjugate gradient iterations. For the largest
instance in each problem class, the average number of conjugate gradient iterations per interior point
iteration was 17.1, 13.0, 25.0, 48.2, 16.5, and 12.5.

On all but one of the problem classes, we observed an improvement in the performance of the interior point
code with respect to the simplex code, as the sizes of the instances increase. On Grid-Wide, the class in
which no improvement was observed, it is unclear which code is asymptotically superior.

In all but two problem classes, the interior point code was faster than the simplex code on the largest
instances tested. Interior point to simplex time ratios were 16.9, 11.8, 0.3, 0.1, 1.4, 1.7, and 4.8, for Grid-
Density-8, Grid-Density-16, Grid-Long, Grid-Wide, Netgen-Hi, Netgen-Lo, and Mesh-4, respectively.

Though the hardware used in these experiments is fast by today’s standards, it was not specifically designed
for floating point computations. A new processor recently introduced by SGI, the MIPS R8000, is about
three times as fast as the R4400 processor (used in this study) on floating point computations. Because
DLENT does a large amount of floating point computations, it is expected to benefit from the new hardware,

while NETOPT, which does mainly integer arithmetic is not expected to benefit at all.

33

e Parallel implementation of the conjugate gradient algorithm has been shown to improve the performance
of conjugate gradient based interior point codes more than parallel implementations speedup the simplex

method. One should expect larger time ratios in favor of interior point codes on parallel architectures.

5 Concluding remarks

In this chapter, we discussed different issues related to the implementation of interior point methods for
solving linear network flow problems. These methods provide, in addition to the plethora of existing solution
techniques, new ways to solve large scale network flow problems. Though interior point methods have not, so
far, been shown to outperform all other methods in several classes of large scale problems, there exist many
classes where interior point codes are currently the most efficient computational solution approaches. In this
way, interior point methods should not be thought of as a substitute for existing algorithms, but rather they
are an addition to the class of computationally efficient network flow algorithms. It is expected that in the
near future robust interior point codes for solving network flow problems will be widely available.

In addition to the codes developed for the single commodity network flow problem, initial attempts to
use interior point methods to solve the more difficult multicommodity network flow problem can be found in
[24, 35].

References

[1] I. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga. Data structures and programming techniques
for the implementation of Karmarkar’s algorithm. ORSA Journal on Computing, 1:84-106, 1989.

[2] I. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga. An implementation of Karmarkar’s algorithm
for linear programming. Mathematical Programming, 44:297-335, 1989.

[3] Navindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows. Prentice Hall, Engle-
wood Cliffs, NJ, 1993.

[4] A. Armacost and S. Mehrotra. Computational comparison of the network simplex method with the
affine scaling method. Opsearch, 28:26-43,1991.

[5] J. Aronson, R. Barr, R. Helgason, J. Kennington, A. Loh, and H. Zaki. The projective transformation
algorithm of Karmarkar: A computational experiment with assignment problems. Technical Report 85-
OR-3, Department of Operations Research, Southern Methodist University, Dallas, TX, August 1985.

[6] E.R. Barnes. A variation on Karmarkar’s algorithm for solving linear programming problems. Mathe-
matical Programming, 36:174-182, 1986.

[71 M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear Programming and Network Flows. Wiley, New
York, NY, 1990.

[8] D. Bertsekas. Linear network optimization: Algorithms and codes. MIT Press, Cambridge, MA, 1991.
[9] D.P. Bertsekas and D.A. Castafion. The auction algorithm for transportation problems. Annals of

Operations Research, 20:67-96, 1989.

34

[10] D.P. Bertsekas and P. Tseng. Relaxation methods for minimum cost ordinary and generalized network
flow problems. Operations Research, 36:93—114, 1988.

[11] G.H. Bradley, G.G. Brown, and G.W. Graves. Design and implementation of large scale primal trans-
shipment algorithms. Management Science, 24:1-34, 1977.

[12] Y. C. Cheng, D. J. Houck, J. M. Liu, M. S. Meketon, L. Slutsman, R. J. Vanderbei, and P. Wang. The
AT&T KORBX System. AT&T Technical Journal, 68:7-19, 1989.

[13] CPLEX Optimization, Inc. Using the CPLEX " callable library and CPLEX "'mixed integer library
including the CPLEX"linear optimizer and CPLEX “'mixed integer optimizer — Version 3.0. Incline
Village, NV, 1994.

[14] G.B. Dantzig. Application of the simplex method to a transportation problem. In T.C. Koopsmans,
editor, Activity Analysis of Production and Allocation. John Wiley and Sons, 1951.

[15] LI. Dikin. Iterative solution of problems of linear and quadratic programming. Soviet Mathematics
Doklady, 8:674-675, 1967.

[16] DIMACS. The first DIMACS international algorithm implementation challenge: The benchmark ex-
periments. Technical report, DIMACS, New Brunswick, NJ, 1991.

[17] Ding-Zhu Du and Panos M. Pardalos, editors. Network Optimzation Problems: Algorithms, Applica-
tions and Complexity. World Scientific, 1993.

[18] A.S.El-Bakry, R.A. Tapia, and Y. Zhang. A study of indicators for identifying zero variables in interior-
point methods. Technical Report TR91-15, Department of Mathematical Sciences, Rice University,
Houston, TX 77251, 1991.

[19] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ, 1990.

[20] D. Gay. Electronic mail distribution of linear programming test problems. COAL Newsletter, 13:10-12,
1985.

[21] D.M. Gay. Stopping tests that compute optimal solutions for interior-point linear programming algo-
rithms. Technical report, AT&T Bell Laboratories, Murray Hill, NJ, 1989.

[22] A. George and M. Heath. Solution of sparse linear least squares problems using Givens rotations. Linear
Algebra and Its Applications, 34:69-83, 1980.

[23] F. Glover and D. Klingman. The simplex SON algorithm for LP/embedded network problems. Mathe-
matical Programming Study, 15:148-176, 1981.

[24] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial. Solving nonlinear multicommodity flow problems
by the analytic center cutting plane method. Technical report, GERARD, McGill University, Montreal,
1994.

[25] Andrew V. Goldberg. An efficient implementation of a scaling minimum-cost flow algorithm. Technical
report, Department of Computer Science, Stanford University, Stanford, CA 94305, 1992.

35

[26] G.H. Golub and C.F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore,
MD, 1983.

[27] M.D. Grigoriadis. An efficient implementation of the network simplex method. Mathematical Pro-
gramming Study, 26:83-111, 1986.

[28] G.M. Guisewite. Network problems. In Reiner Horst and Panos M. Pardalos, editors, Handbook of
global optimization. Kluwer Academic Publishers, 1995.

[29] G.M. Guisewite and P.M. Pardalos. Minimum concave cost network flow problems: Applications,

complexity, and algorithms. Annals of Operations Research, 25:75-100, 1990.

[30] EL. Hitchcock. The distribution of product from several sources to numerous facilities. Journal of
Mathematical Physics, 20:224-230, 1941.

[31] D.S. Johnson and C.C. McGeoch, editors. Network flows and matching: First DIMACS implementation
challenge, volume 12 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science.
American Mathematical Society, 1993.

[32] A. Joshi, A.S. Goldstein, and PM. Vaidya. A fast implementation of a path-following algorithm for
maximizing a linear function over a network polytope. In David S. Johnson and Catherine C. Mc-
Geoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, volume 12 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 267-298. American
Mathematical Society, 1993.

[33] J.A.Kaliski and Y. Ye. A decomposition variant of the potential reduction algorithm for linear program-
ming. Management Science, 39:757-776, 1993.

[34] Anil Kamath and Omri Palmon. Improved interior point algorithms for exact and approximate solu-
tion of multicommodity flow problems. Technical report, Department of Computer Science, Stanford
University, Stanford, CA 94305, 1994.

[35] A.P. Kamath, N.K. Karmarkar, and K.G. Ramakrishnan. Computational and complexity results for an
interior point algorithm for multicommodity flow problems. Technical Report TR-21/93, Dipartimento
di Informatica, Universita di Pisa, 1993. Extended abstracts of NETFLOW’93.

[36] S. Kapoor and P.M. Vaidya. Fast algorithms for convex quadratic programming and multicommodity
flows. In Proceedings of 18th Annual ACM Symposium on the Theory of Computing, pages 147-159,
1986.

[37] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica, 4:373-395,
1984.

[38] N.K. Karmarkar and K.G. Ramakrishnan. Computational results of an interior point algorithm for large

scale linear programming. Mathematical Programming, 52:555-586, 1991.

[39] J.L. Kennington and R.V. Helgason. Algorithms for network programming. John Wiley and Sons, New
York, NY, 1980.

36

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

D. Klingman, A. Napier, and J. Stutz. Netgen: A program for generating large scale capacitated assign-
ment, transportation, and minimum cost flow network problems. Management Science, 20:814-821,
1974.

J.B. Kruskal. On the shortest spanning tree of graph and the traveling salesman problem. Proceedings
of the American Mathematical Society, 7:48-50, 1956.

Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston,
1976.

J.M. Mulvey. Testing of a large scale network optimization program. Mathematical Programming,
15:291-315, 1978.

B.A. Murtagh and M. A. Saunders. Minos 5.1 user’s guide. Technical Report SOL 83-20R, Systems Op-
timization Laboratory, Department of Operations Research, Stanford University, Stanford, CA 94305,
1983. revised 1987.

J.B. Orlin. A faster strongly polynomial minimum cost flow algorithm. In Proceedings of 20th Annual

ACM Symposium on the Theory of Computing, pages 377-387, 1988.

C.C. Paige and M.A. Saunders. Algorithm 583 — LSQR: Sparse linear equations and least square
problems. ACM Transactions on Mathematical Software, 8:195-209, 1982.

P.M. Pardalos and K.G. Ramakrishnan. On the expected optimal value of random assignment problems:
Experimental results and open questions. Computational Optimization and Applications, 2:261-271,
1993.

P.M. Pardalos and H. Wolkowicz, editors. Quadratic assignment and related problems, volume 16 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical
Society, 1994.

L. Portugal, F. Bastos, J. Judice, J. Paixdo, and T. Terlaky. An investigation of interior point algorithms
for the linear transportation problem. Technical report, Department of Mathematics, University of

Coimbra, Coimbra, Portugal, 1993. To appear in SIAM J. Sci. Computing.

L. Portugal, M.G.C. Resende, G. Veiga, and J. Judice. A truncated primal-infeasible dual-feasible
network interior point method. Technical report, AT&T Bell Laboratories, Murray Hill, New Jersey,
1994.

R.C. Prim. Shortest connection networks and some generalizations. Bell System Technical Journal,
36:1389-1401, 1957.

A. Rajan. An empirical comparison of KORBX against RELAXT, a special code for network flow
problems. Technical report, AT&T Bell Laboratories, Holmdel, NJ, 1989.

K.G. Ramakrishnan, N.K. Karmarkar, and A.P. Kamath. An approximate dual projective algorithm

for solving assignment problems. In David S. Johnson and Catherine C. McGeoch, editors, Network

37

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Flows and Matching: First DIMACS Implementation Challenge, volume 12 of DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, pages 431-451. American Mathematical Society,
1993.

M.G.C. Resende, T. Tsuchiya, and G. Veiga. Identifying the optimal face of a network linear program
with a globally convergent interior point method. In W.W. Hager, D.W. Hearn, and P.M. Pardalos,
editors, Large scale optimization: State of the art, pages 362—-387. Kluwer Academic Publishers, 1994.

M.G.C. Resende and G. Veiga. Computing the projection in an interior point algorithm: An experimen-

tal comparison. Investigacion Operativa, 3:81-92, 1993.

M.G.C. Resende and G. Veiga. An efficient implementation of a network interior point method. In
David S. Johnson and Catherine C. McGeoch, editors, Network Flows and Matching: First DIMACS
Implementation Challenge, volume 12 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 299-348. American Mathematical Society, 1993.

M.G.C. Resende and G. Veiga. An implementation of the dual affine scaling algorithm for minimum

cost flow on bipartite uncapaciated networks. SIAM Journal on Optimization, 3:516-537, 1993.

Giinther Ruhe. Algorithmic Aspects of Flows in Networks. Kluwer Academic Publishers, Boston, MA,
1991.

B. Simeone, P. Toth, G. Gallo, F. Maffioli, and S. Pallottino, editors. Fortran codes for network opti-
mization, volume 13 of Annals of Operations Research. J.C. Baltzer, Basel, Switzerland, 1988.

L.P. Sinha, B.A. Freedman, N.K. Karmarkar, A. Putcha, and K.G. Ramakrishnan. Overseas network
planning. In Proceedings of the Third International Network Planning Symposium — NETWORKS’86,
pages 8.2.1-8.2.4, June 1986.

E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs. Operations Re-
search, 34:250-256, 1986.

R.E. Tarjan. Data Structures and Network Algorithms. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1983.

PM. Vaidya. Speeding up linear programming using fast matrix multiplication. In Proceedings of 30th

IEEE Annual Symposium on Foundations of Computer Science, pages 332-337, 1989.

R.J. Vanderbei, M.S. Meketon, and B.A. Freedman. A modification of Karmarkar’s linear programming
algorithm. Algorithmica, 1:395-407, 1986.

Stephen A. Vavasis and Yinyu Ye. Accelerated interior point method whose running time depends only
of A (extended abstract). In Proceedings of 26th Annual ACM Symposium on the Theory of Computing,
pages 512-521, 1994.

Quey-Jen Yeh. A reduced dual affine scaling algorithm for solving assignment and transportation
problems. PhD thesis, Columbia University, New York, NY, 1989.

38

