INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMIZATION

JOHN E. MITCHELL, PANOS M. PARDALOS, AND MAURICIO G.C. RESENDE

ABSTRACT. In this paper, we review recent interior point approaches for solving com-
binatorial optimization problems. We discuss in detail tecniques for linear and network
programming, branch and bound and branch and cut methods, nonconvex potential func-
tion minimization, lower bounding techniques, and semidefinite programming relaxations.

1. INTRODUCTION

Interior-point methods, originally invented in the context of linear programming, have
found a much broader range of applications, includlisgreteproblems that arise in com-
puter science and operations research as well as continuous computational problems arising
in the natural sciences and engineering. This chapter describes the conceptual basis and
applications of interior-point methods for discrete problems in computing.

The chapter is organized as follows. Section 2 explains the nature and scope of com-
binatorial optimization problems and illustrates the use of interior point approaches for
these problems. Section 3 contrasts the combinatorial and continuous approaches for solv-
ing discrete problems and elaborates on the main ideas underlying the latter approach.
The continuous approach constitutes the conceptual foundation of interior-point methods.
Section 4 is dedicated to interior point algorithms for linear and network optimization.
Sections 5 and 6 discuss branch-and-bound and branch-and-cut methods based on interior
point approaches. Sections 7 and 8 discuss the application of interior point techniques to
minimize nonconvex potential functions to find good feasible solutions to combinatorial
optimization problems as well as good lower bounds. In Section 9, a brief introduction to
semidefinite programming techniques and their application to combinatorial optimization
is presented. We conclude the paper in Section 10 by observing the central role played by
optimization in both natural and man-made sciences. We provide selected pointers to web
sites constaining up-to-date information on interior point methods and their applications to
combinatorial optimaization.

2. COMBINATORIAL OPTIMIZATION

In this section, we discuss several examples of combinatorial optimization problems
and illustrate the application of interior point techniques to the development of algorithms
for these problems.

2.1. Examples of combinatorial optimization problems. As a typical real-life exam-

ple of combinatorial optimization, consider the problem of operating a flight schedule of
an airline at minimum cost. A flight schedule consists of many flights connecting many
cities, with specified arrival and departure times. There are several operating constraints.

Date November 1997. Final version publishedHandbook of Combinatorial Optimizatip.-Z. Du, P.M.
Pardalos, eds., vol. 1, pp. 189-298, Kluwer Academic Publishers, 1998.
Key words and phrasednterior point methods, combinatorial optimization, integer programming, noncovex
programming, branch and bound.
1

2 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

Each plane must fly a round trip route. Each pilot must also fly a round trip route, but not
necessarily the same route taken by the plane, since at each airport the pilot can change
planes. There are obvious timing constraints interlocking the schedules of pilots, planes
and flights. There must be adequate rest built into the pilot schedule and periodic main-
tenance built into the plane schedule. Only certain crews are qualified to operate certain
types of planes. The operating cost consists of many components, some of them more
subtle than others. For example, in an imperfect schedule, a pilot may have to fly as a
passenger on some flight. This results in lost revenue not only because a passenger seat is
taken up but also because the pilot has to be paid even when riding as a passenger. How
does one make an operating plan for an airline that minimizes the total cost while meeting
all the constraints? A problem of this type is calleckenbinatorial optimizatioproblem,

since there are only a finite number of combinations possible, and in principle, one can
enumerate all of them, eliminate the ones that do not meet the conditions and among those
that do, select the one that has the least operating cost. Needless to say, one needs to be
more clever than simple enumeration, due to the vast number of combinations involved.

As another example, consider a communication network consisting of switches inter-
connected by trunks (e.g. terrestrial, oceanic, satellite) in a particular topology. A tele-
phone call originating in one switch can take many different paths (of switches) to ter-
minate in another switch, using up trunks along the path. The problem is to design a
minimum cost network that can carry the expected traffic. After a network is designed
and implemented, operating the network involves various other combinatorial optimiza-
tion problems, e.g. dynamic routing of calls.

As a third example, consider inductive inference, a central problem in artificial intelli-
gence and machine learning. Inductive inference is the process of hypothesizing a general
rule from examples. Inductive inference involves the following steps: (i) Inferring rules
from examples, finding compact abstract models of data or hidden patterns in the data; (ii)
Making predictions based on abstractions; (iii)) Learning, i.e. modifying the abstraction
based on comparing predictions with actual results; (iv) Designing questions to generate
new examples. Consider the first step of the above process, i.e. discovering patterns in
data. For example, given the sequencé @ 8,..., we may ask, “What comes next?”

One could pick any number and justify it by fitting a fourth degree polynomial through the

5 points. However, the answer “10” is considered the most “intelligent.” That is so because
it is based on the first-order polynomial,2vhich is linear and hencgmplerthan a fourth
degree polynomial. The answer to an inductive inference problem is not unique. In induc-
tive inference, one wantssimpleexplanation that fits a given set of observations. Simpler
answers are considered better answers. One therefore needs a way to measure simplicity.
For example, in finite automaton inference, the number of states could be a measure of
simplicity. In logic circuit inference, the measure could be the number of gates and wires.
Inductive inference, in fact leads to a discrete optimization problem, where one wants to
maximize simplicity, or find a model, or set of rules, no more complex than some specified
measure, consistent with already known data.

As a further example, consider the linear ordering problem, an important problem in
economics, the social sciences, and also archaeology. In this problem, we are given several
objects that we wish to place in order. There is a cost associated with placing iobject
before objectj and a cost for placing objegtbefore objeci. The objective is to order
the objects to minimize the total cost. There are methods for ranking sports teams that can
be formulated as linear ordering problems: if team A beats team B then team A should go
ahead of team B in the ranking, but it may be that team B beat team C, who in turn beat

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 3

team A, so the determination of the “best” ordering is a non-trivial task, usually depending
on the margin of victory.

Even though the four examples given above come from four different facets of life and
look superficially to be quite different, they all have a common mathematical structure
and can be described in a common mathematical notation ¢atksger programminglin
integer programming, the unknowns are represented by variables that take on a finite or
discrete set of values. The various constraints or conditions on the problem are captured
by algebraic expressions of these variables. For example, in the airline crew assignment
problem discussed above, let us denote by varigplthe decision quantity that assigns
crewi to flight j. Let there ben crew andn flights. If the variable; takes on a value 1,
then we say that crewis assigned to flight, and the cost of that assignmentis If the
value is 0, then crewis not assigned to flighf. Thus, the total crew-scheduling cost for
the airline is given by the expression

(1) Z Zlcimj'
i=1j=

that must be minimized. The condition that every flight should have exactly one crew is
expressed by the equations

m
2 ZXij =1, foreveryflightj =1,...,n.
i=

We should also stipulate that the variables should take on only values 0 or 1. This condition
is denoted by the notation

) xj €{0,1},1<i<m 1<j<n.

Other conditions on the crew can be expressed in a similar fashion. Thus, an integer pro-
gramming formulation of the airline crew assignment problem is to minimize the operating
cost given by (1) subject to various conditions given by other algebraic equations and in-
equalities. The formulations of the network design problem, the inductive inference prob-
lem, as well as the linear operdering problem, look mathematically similar to the above
problem.

Linear programmings a special and simpler type of combinatorial optimization prob-
lem in which the integrality constraints of the type (3) are absent and we are given a linear
objective function to be minimized subject to linear inequalities and equalities. A standard
form of linear program is stated as follows:

4 in{c'xAx<b; | <x<
(4))@knn{c X|AX< b; | <x<u},

wherec,u,l,x € R", b e RmandA € R™", In (4), x is the vector of decision variables,
Ax < b andl < x < urepresent constraints on the decision variables camds the linear
objective function to be minimized. Figure 1 shows a geometric interpretation of a linear
program on the Euclidean plane. Each linear inequality is represented by a line that par-
titions the plane into twdialf-spaces Each inequality requires that for a solution to be
feasible, it must lie in one of the half-spaces. The feasible region is the intersection of the
half-spaces and is represented in the figure by the hashed area. The objective function,
that must be minimized over the feasible region, is represented by a sliding line. This line
intersects the feasible region in a set of points, all having the same objective value. As
the line is swept across the feasible region in the direction of improvement, its objective
value decreases. The set of points determined by the intersection of the sliding line with

4 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

optimal solution

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA \
\objective function

constraint

FIGURE 1. Geometric view of linear programming

the feasible region that attains the best objective function value is callexbtimeal solu-

tion. In the example of the figure there is a unique optimal solution. In fact, a fundamental
theorem in linear programming states that the optimal solution of a linear program occurs
at a vertex of the polytope defined by the constraints of the linear program. This result
gives linear programming its combinatorial nature. Even though the linear programming
decision variables are continuous in nature, this result states that only a discrete and finite
number of points in the solution space need to be examined.

Linear programming has a wide range of applications, including personnel assignment,
production planning and distribution, refinery planning, target assignment, medical imag-
ing, control systems, circuit simulation, weather forecasting, signal processing and finan-
cial engineering. Many polynomial-time solvable combinatorial problems are special cases
of linear programming (e.g. matching and maximum flow). Linear programming has also
been the source of many theoretical developments, in fields as diverse such as economics
and queueing theory.

Combinatorial problems occur in diverse areas. These include graph theory (e.g. graph
partitioning, network flows, graph coloring), linear inequalities (e.g. linear and integer
programming), number theory (e.g. factoring, primality testing, discrete logarithm), group
theory (e.g. graph isomorphism, group intersection), lattice theory (e.g. basis reduction),
and logic and artificial intelligence (e.g. satisfiability, inductive and deductive inference
boolean function minimization). All these problems, when abstracted mathematically have
a commonality of discreteness. The solution approaches for solving these problems also
have a great deal in common. In fact, attempts to come up with solution techniques revealed
more commonality of the problems than was revealed from just the problem formulation.
The solution of combinatorial problems has been the subject of much research. There is a
continuously evolving body of knowledge, both theoretical and practical, for solving these
problems.

2.2. Scope and computational efficiencyWe illustrate with some examples the broad
scope of applications of the interior-point techniques and their computational effectiveness.
Since the most widely applied combinatorial optimization problem is linear programming,

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 5

TABLE 1. LP relaxations of QAP integer programming formulation

LP relaxation simplex int. pt.
name rows vars itr time itr time time ratio
nug05 210 225 103 0.2s| 14 1.6s| 0.1
nug06 372 486 551 2.3s| 17 2.6s| 0.9
nug07 602 931 2813 22.0s| 19 6.2s| 3.5
nug08 912 1632 5960 91.3s| 18 9.5s| 9.6

nug12 3192 8856| 57524 9959.19 29 754.1s| 13.2
nug15 6330 22275| 239918 192895.2$ 36 5203.8s| 37.1
nug20 15240 72600| est. time:>2 months| 31 6745.5s| -
nug30 52260 379350 did not run 36 35058.0s| -

TABLE 2. CPLEX 3.0 and ADP runs on selected QAPLIB instances

LP relaxation primal simplex dual simplex ADP
prob rows vars itr time itr time itr time
nug05 1410 829 265 1.7s 370 1.1s| 48 3.2s

nug06 3972 288 7222 604.3s] 1872 22.2s| 55 12.2s
nug07 9422 8281 39830 47970.3§ 6057 720.3s| 59 43.3s
nug08 19728 20444 did not run 16034 37577.13 63 139.1s
nugl2 177432 299256 did notrun did not run 91 6504.2s

we begin with this problem. Each step of the interior-point method as applied to linear pro-
gramming involves the solution of a linear system of equations. While a straightforward
implementation of solving these linear systems can still outperform the Simplex Method,
more sophisticated implementations have achieved orders of magnitude improvement over
the Simplex Method. These advanced implementations make use of techniques from many
disciplines such as linear algebra, numerical analysis, computer architecture, advanced
data structures, and differential geometry. Tables 1-2 show the performance comparison
between implementations of the Simplex (CPLEX) and interior-point (ADP [79]) meth-
ods on a class of linear programming relaxations of the quadratic assignment problems
[127, 122]. Similar relative performances have been observed in problems drawn from
disciplines such as operations research, electrical engineering, computer science, and sta-
tistics [79]. As the table shows, the relative superiority of interior-point method over the
Simplex Method grows as the problem size grows and the speed-up factor can exceed 1000.
Larger problems in the table could only be solved by the interior-point method because of
impracticality of running the Simplex Method. In fact, the main practical contribution

of the interior-point method has been to enable the solution of many large-scale real-life
problems in fields such as telecommunication, transportation and defense, that could not
be solved earlier by the Simplex Method.

From the point of view of efficient implementation, interior-point methods have another
important property: they can exploit parallelism rather well [60, 131]. A parallel architec-
ture based on multi-dimensional finite projective geometries, particularly well suited for
interior-point methods, has been proposed [75].

We now illustrate computational experience with an interior point based heuristic for
integer programming [74, 77]. Here again, the main computational task at each iteration,
is the solution of one or more systems of linear equations. These systems have a struc-
ture similar to the system solved in each iteration of interior point algorithms for linear
programming and therefore software developed for linear programming can be reused in
integer programming implementations.

6 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

TABLE 3. SAT: Comparison of Simplex and interior point methods

SAT Problem Size Speed
Variables Claused|) Avg Lits/Clause| Up
50 100 5 5
100 200 5 22
200 400 7 66
400 800 10 319

Consider, as a first example, the Satisfiability (SAT) Problem in propositional calculus,
a central problem in mathematical logic. During the last decade, a variety of heuristics have
been proposed for this problem [61, 30]. A Boolean variatddan assume only values 0
or 1. Boolean variables can be combined by the logical connedativég), and (A) and
not (x) to form Boolean formulae (e.ga A X2 V X3). A variable or a single negation of the
variable is called diteral. A Boolean formula consisting of only literals combined by the
Vv operator is called alause SAT can be stated as follows: Givemclause<L;,...,Cn,
involving n variablesx,, ... ,x,, does the formul&; A --- A Cy, evaluate to 1 for some
Boolean input vectofxy, ... ,X,]? If so, the formula is said to be satisfiable. Otherwise it
is unsatisfiable.

SAT can be formulated as the integer programming feasibility problem

(5) xi— Y xj>1—|J, C=Cq,....Cm,
PR R "

where

{j | literal x; appears in clause}
{j | literal x; appears in clause} .

lc
Ik =

If an integer vectok € {0,1}" is produced satisfying (5), the corresponding SAT problem
is said to be satisfiable.

An interior point implementation was compared with an approach based on the Simplex
Method to prove satisfiability of randomly generated instances of SAT [65]. Instances with
up to 1000 variables and 32,000 clauses were solved. Compared with the Simplex Method
approach on small problems (Table 3), speedups of over two orders of magnitude were
observed. Furthermore, the interior point approach was successful in proving satisfiability
in over 250 instances that the Simplex Method approach failed.

As a second example, consider inductive inference. The interior point approach was
applied to a basic model of inductive inference [68]. In this model there is a black box
(Figure 2) withn Boolean input variables, . .. , x, and a single Boolean output varialyle
The black box contains a hidden Boolean funcfion{0,1}" — {0, 1} that maps inputs to
outputs. Given a limited number of inputs and corresponding outputs, we ask: Does there
exist an algebraic sum-of-products expression with no more kha@noduct terms that
matches this behavior? If so, what is it? It turns out that this problem can be formulated as
a SAT problem.

Consider the hidden logic described by the 32-input, 1-output Boolean exprgssion
XaX11X15%22 + X2X12X15X29 + XaXgX20 -+ X10X11%20X32. This function has ¥ ~ 4.3 x 10° dis-
tinct input-output combinations. Table 4 summarizes the computational results for this
instance, where subsets of input-output examples of size 50, 100 and 400 were considered
and the number of terms in the expression to be synthesized was fikee-at In all
instances, the interior point algorithm synthesized a function that described completely the

X1

X2

Xn

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION

F :{0,1}" - {0,1}

FIGURE 2. Black box with hidden logic

TABLE 4. Inductive inference SAT problems: 32-variable hidden logic

110 SAT Size CPU Prediction
Samples| Vars| [C] itr time Inferred Logic Accuracy
50 332 | 2703 | 49 | e6s| Y Tre2XesXestXiaXi7XesXort 74

X3X9X20 + X11X12X16X32

100 | 404 | 5153 | 78 | 178s| Y TrXeX1wXe2Xeot XuX11Xoot 91
X3X9X2_0 + X1_2X15X];6X29

400 | 824 | 19478 147 | 1227s| Y TX#X11Xe2+ XaoX11Xo0Xs2+ exact
X3XgX20 + X2X12X15X29

TABLE 5. Efficiency oninductive inference problems: interior pointand
combinatorial approaches

Variables SAT Problem| Interior Method| Combinatorial
Hidden Logic| vars |C| itr time | Method (time)
8 396 2798| 1 9.33s 43.05s
8 930 6547| 13 45.72s 11.78s
8 1068 8214 33 122.62s| 9.48s
16 532 7825| 89 375.83s| 20449.20s
16 924 13803| 98 520.60s| *
16 1602 23281| 78 607.80s| *
32 228 1374| 1 5.02s 159.68s
32 249 2182| 1 9.38s 176.32s
32 267 2746| 1 9.76s 144.40s
32 450 9380| 71 390.22s| *
32 759 20862 1 154.62s *

behavior of the sample. With a sample of only 400 input-output patterns the approach
succeeded in exactly describing the hidden logic. The prediction accuracy given in the ta-
ble was computed with Monte Carlo simulation, where 10,000 random vectors were input
to the black box and to the inferred logic and their outputs compared. Table 5 illustrates
the efficiency of the interior-point method compared to the combinatorial Davis-Putnam

Method [24].

x Did not find satisfiable assignment in 43200s.

8 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

A/

FIGURE 3. Wire routing

As another example of an application of the continuous approach to combinatorial prob-
lems, consider the wire routing problem for gate arrays, an important subproblem arising
in VLSI design. As shown in Figure 3, a gate array can be abstracted mathematically as
a grid graph. Input to the wire routing problem consists of a list of wires specified by
end points on a rectangular grid. Each edge of the graph, also known as a channel, has a
prespecified capacity representing the maximum number of wires it can carry. The com-
binatorial problem is to find a wiring pattern without exceeding capacity of horizontal and
vertical channels. This problem can be formulated as an integer programming problem.
The interior-point approach has successfully obtained provably optimal global solutions
to large-scale problems of this type having more than 20,000 wires [109]. On the other
hand, combinatorial heuristics, such as simulated annealing are not comparable either in
the quality of the solution they can find or in terms of the computational cost.

A further example of the successful application of interior point methods to solve com-
binatorial optimization problems comes from statistical physics. The problem of finding
the ground state of an Ising spin glass is related to the magnetism of materials. Finding
the ground state can be modelled as the problem of finding the maximum cut in a graph
whose vertices and edges are those of a grid on a torus. It can be formulated as an integer
programming problem and solved using a cutting plane approach. If the weights on the
edges aret1 then the linear programs suffer from degeneracy, which limits the size of
problems that can be solved efficiently using the Simplex Method. The use of an interior
point algorithm to solve the relaxations allows the solution of far larger problems. For
example, solving problems on a %070 toroidal grid using simplex required up to a day
on a Sun SPARCstation 10 [26], whereas problems on ax1D00 grid could be solved
in an average of about 3 hours 20 minutes on a Sun SPARC 20/71 when using an interior
point code [98].

In the case of many other combinatorial problems, numerous heuristic approaches have
been developed. Many times, the heuristic merely encodes the prior knowledge or an-
ticipation of the structure of solution to a specific class of practical applications into the

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 9

working of the algorithm. This may make a limited improvement in efficiency without re-
ally coming to grips with the problem of exponential growth that plagues the combinatorial
approach. Besides, one needs to develop a wide variety of heuristics to deal with differ-
ent situations. Interior-point methods have provided a unified approach to create efficient
algorithms for many different combinatorial problems.

3. SOLUTION TECHNIQUES

Solution techniques for combinatorial problems can be classified into two groups: com-
binatorial and continuous approaches. In this section, we contrast these approaches.

3.1. Combinatorial approach. The combinatorial approach creates a sequence of states
drawn from a discrete and finite set. Each state represents a suboptimal solution or a partial
solution to the original problem. It may be a graph, a vertex of a polytope, a collection of
subsets of a finite set or some other combinatorial object. At each major step of the algo-
rithm, the next state is chosen in an attempt to improve the current state. The improvement
may be in the quality of the solution measured in terms of the objective function, or it may
be in making the partial solution more feasible. In any case, the improvement is guided
by local search. By local search we mean that the solution procedure only examines a
neighboring set of configurations and greedily selects one that improves the current solu-
tion. Thus, local search is quite myopic, with no consideration given to evaluate whether
this move may make any sense globally. Indeed, a combinatorial approach often lacks
the information needed for making such an evaluation. In many cases, the greedy local im-
provement may trap the solution in a local minimum that is qualitatively much worse than a
true global minimum. To escape from a local minimum, the combinatorial approach needs
to resort to techniques such as backtracking or abandoning the sequences of states created
so far altogether and restarting with a different initial state. Most combinatorial problems
suffer from the property of having a large number of local minima when the search space is
confined to a discrete set. For a majority of combinatorial optimization problems, the phe-
nomenon of multiple local minima may create a problem for the combinatorial approach.

On the other hand, for a limited class of problems, one can rule out the possibility of lo-
cal minima and show that local improvement also leads to global improvement. For many
problems in this class, polynomial-time algorithms (i.e. algorithms whose running time
can be proven to be bounded from above by polynomial functions of the lengths of the
problems) have been known for a long time. Examples of problems in this class are bipar-
tite matching and network flows. It turns out that many of these problems are special cases
of linear programming, which is also a polynomial-time problem. However, the Simplex
Method, which employs a combinatorial approach to solving linear programs, has been
shown to be an exponential-time algorithm. In contrast, all polynomial-time algorithms
for solving the general linear programming problem employ a continuous approach. These
algorithms use either the Ellipsoid Method [81] or one of the variants of the Karmarkar
Method.

3.2. Continuous approach. In the continuous approach to solving discrete problems, the
set of candidate solutions to a given combinatorial problem is embedded in a larger con-
tinuous space. The topological and geometric properties of the continuous space play an
essential role in the construction of the algorithm as well as in the analysis of its efficiency.
The algorithm involves the creation of a sequence of points in the enlarged space that con-
verges to the solution of the original combinatorial problem. At each major step of the
algorithm, the next point in the sequence is obtained from the current point by making a

10 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

o o o O o O O

©) ©)
@) @)
©) ®)
@) O

O O O O O O O
FIGURE 4. Discrete set embedded into continuous set

goodglobal approximation to the entire set of relevant solutions and solving it. Usually it

is also possible to associate a continuous trajectory or a set of trajectories with the limiting
case of the discrete algorithm obtained by taking infinitesimal steps. Topological proper-
ties of the underlying continuous space such as connectivity of the level sets of the function
being optimized are used for bounding the number of local minima and choosing an effec-
tive formulation of the continuous optimization problem. The geometric properties such
as distance, volume and curvature of trajectories are used for analyzing the rate of con-
vergence of an algorithm, whereas the topological properties help determine if a proposed
algorithm will converge at all. We now elaborate further on each of the main concepts
involved in the continuous approach.

3.2.1. Examples of embeddin@uppose the candidate solutions to a discrete problem are
represented as points in thelimensional real spad®'. This solution set can be embedded
into a larger continuous space by forming the convex hull of these points (Figure 4). This
is the most common form of continuous embedding and is used for solving linear and
integer programming problems. As another example, consider a discrete problem whose
candidate solution set is a finite cyclic group. This can be embedded in a continuous Lie
group{€®|0 < 8 < 2m} [20]. A Lie group embedding is useful for the problem of graph
isomorphism or automorphism. In this problem, Aetlenote the adjacency matrix of the
graph. Then the discrete solution set of the automorphism problem is the permutation
group given by{ PJAP= PA; P is a permutation matrik. This can be embedded in a larger
continuous group given by |AU = UA; U is a complex unitary matrix

3.2.2. Global approximation.At each major step of the algorithm, a subproblem is solved

to obtain the next point in the sequence. The subproblem should satisfy two properties: (i)
it should be aglobal approximation to the original problem; and (ii) should be efficiently
solvable. In the context of linear programming, the Karmarkar Method contains a way of
making a global approximation having both of the above desirable properties and is based
on the following theorem.

Theorem 3.1. Given any polytope P and an interior poixi P, there exists a projective
transformation T, that transforms P td Bndx to x’ € P’ so that it is possible to find in the
transformed space a circumscribing bal>8 R) 2 P/, of radius R, centex’, containing
P’ and a inscribing ball Bx',r) C P’ of radius r, centex’ contained in P such that the
ratio R/r is at most n.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 11

The inverse image (unddi) of the inscribed ball is used as the optimization space for
the subproblem and satisfies the two properties stated above, leading to a polynomial-time
algorithm for linear programming. The effectiveness of this global approximation is also
borne out in practice since Karmarkar’'s Method and its variants take very few approxi-
mation steps to find the global optimum of the original problem. Extension of this global
approximation step to integer programming have led to new algorithms for solving NP-
complete problems, as we shall see later.

3.2.3. Continuous trajectoriesSuppose an interior-point method produces an iteration of
the following type,

(6) XKD 0 4 oM+ 0(a?),

wherex(®¥ is thek-th iterate,fK is thek-th direction of improvement, and is the step-
length parameter. Then by taking the limitaas- 0, we get thénfinitesimal versiorf the
algorithm whose continuous trajectories are given by the differential equation

dx
(7) d(] - f(x)v
wheref(x) defines a vector field. Thus, the infinitesimal version of the algorithm can be
thought of as a nonlinear dynamical system. For the projective method for linear program-
ming, the differential equation is given by

% = —[D—xx"]Pap-Dc,

where
Pap = | — DAT(AD?AT)~1AD,

D = diag{x1,X2, -+ ,Xn}-

Similarly, continuous trajectories and the corresponding differential equations can be de-
rived for other interior-point methods. These trajectories have a rich mathematical structure
in them. Many times they also have algebraic descriptions and alternative interpretations.
The continuous trajectory given above for the linear programming problem converges to
an optimal solution of the problem corresponding to the objective function vectdote

that the vector field depends arin a smooth way and as the vectois varied one can

get to each vertex of the polytope as limit of some continuous trajectory. If one were to
attempt a direct combinatorial description of the discrete solution set of a linear program-
ming problem, it would become enormously complex since the number of solutions can
be exponential with respect to the size of the problem. In contrast, the simple differential
equation given above implicitly encodes the complex structure of the solution set. Another
important fact to be noticed is that the differential equation is written in terms afrie

inal input matrixA defining the problem. Viewing combinatorial objects as limiting cases

of continuous objects often makes them more accessible to mathematical reasoning and
also permits construction of more efficient algorithms.

The power of the language of differential equations in describing complex phenomenais
rather well-known in the natural sciences. For example, if one were to attempt a direct de-
scription of the trajectories involved in planetary motion, it would be enormously complex.
However, a small set of differential equations written in terms ofdhginal parameters
of the problem is able to describe the same motion. One of the most important accomplish-
ments of Newtonian mechanics was findingjmpledescription of the apparently complex
phenomena of planetary motion, in the form of differential equations.

12 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

In the context of combinatorial optimization, the structure of the solution set of a dis-
crete problem is often rather complex. As a result, a straightforward combinatorial ap-
proach to solving these problems has not succeeded in many cases and has led to a be-
lief that these problems are intractable. Even for linear programming, which is one of
the simplest combinatorial optimization problems, the best known method, in both theory
and practice, is based on the continuous approach rather than the combinatorial approach.
Underlying this continuous approach is a small set of differential equations, capable of
encoding the complicated combinatorial structure of the solution set. As this approach is
extended and generalized, one hopes to find new and efficient algorithms for many other
combinatorial problems.

3.2.4. Topological properties.There are many ways to formulate a given discrete prob-
lem as a continuous optimization problem, and it is rather easy to make a formulation that
would be difficult to solve even by means of continuous trajectories. How does one make
a formulation that is solvable? The most well-known class of continuous solvable prob-
lems is the class of convex minimization problems. This leads to a natural question: Is
convexity the characteristic property that separates the class of efficiently solvable mini-
mization problems from the rest? To explore this question we need to look at topological
properties. Topology is the study of properties invariant under any continuous, one-to-one
transformation of space having a continuous inverse.

Suppose we have a continuous optimization problem that is solvable by means of contin-
uous trajectories. It may be a convex problem, for example. Suppose we apply a nonlinear
transformation to the space that is a diffeomorphism. The transformed problem need not be
convex, but it will continue to be solvable by means of continuous trajectories. In fact, the
image of the continuous trajectories in the original space, obtained by applyisgriie
diffeomorphism gives us a way of solving the transformed problem. Conversely, if the
original problem was unsolvable, it could not be converted into a solvable problem by any
such transformation. Hence any diffeomorphism maps solvable problems onto solvable
problems and unsolvable problems onto unsolvable problems. This argument suggests that
the property characterizing the solvable class may be a topological property and not simply
a geometric property such as convexity.

The simplest topological property relevant to the performance of interior-point meth-
ods is connectivity of the level sets of the function being optimized. Intuitively, a subset of
continuous space is connected if any two points of the subset can be joined by a continuous
path lying entirely in the subset. In the context of function minimization, the significance
of connectivity lies in the fact that functions having connected level sets do not have spuri-
ous local minima. In other words every local minimum is necessarily a global minimum. A
continuous formulation of NP-complete problems having such desirable topological prop-
erties is given in [74]. The approach described there provides a theoretical foundation for
constructing efficient algorithms for discrete problems on the basis of a common principle.
Algorithms for many practical problems can now be developed which differ mainly in the
way the combinatorial structure of he problem is exploited to gain additional computational
efficiency.

4. INTERIOR POINT METHODS FOR LINEAR AND NETWORK PROGRAMMING

4.1. Linear programming. Interior point methods were first described by Dikin [29] in
the mid 1960s, and current interest in them started with Karmarkar’s algorithm in the mid
1980s [72]. As the name suggests, these algorithms generate a sequence of iterates which

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 13

moves through the relative interior of the feasible region, in marked contrast to the sim-
plex method [22], where each iterate is an extreme point. Like the ellipsoid method [81],
many interior point methods have polynomial complexity, whereas every known variant
of the simplex method can take an exponential number of iterations in the worst case.
Computationally, interior point methods usually require far less time than their worst-case
bounds, and they appear to be superior to the simplex method, at least for problems with
a large number of constraints and variables (say, more than one thousand). Recent books
discussing interior point methods for linear programming include [132, 140, 146, 148].
The dual affine scaling method is similar to Dikin’s original method and is discussed
in section 4.3.1. In this section, we consider a slightly more complicated interior point
method, namely the primal-dual predictor-corrector methpdcm[92, 90]. This is per-
haps the most popular and widely implemented interior point method. The basic idea with
an interior point method is to enable the method to take long steps, by choosing directions
that do not immediately run into the boundary. With #ePcmthis is achieved by con-
sidering a modification of the original problem, with a penalty term for approaching the
boundary. Thus, for the standard form linear programming problem

min c'x
subjectto Ax = b
x > 0

wherec andx are n-vectors,b is anm-vector, andA is dimensioned appropriately, the
barrier function subproblem is constructed:

min c'x—ush,log(x)
subjectto Ax = b
X > 0

Here, log denotes the natural logarithm, anid a positive constant. Note thatxf ap-
proaches zero for any component, then the objective function value appreaches

If the original linear program has a compact set of optimal solutions then each barrier
subproblem will have a unique optimal solution. The set of all these optimal solutions is
known as theentral trajectory The limit point of the central trajectory astends to zero
is an optimal point for the original linear program. If the original linear program has more
than one optimal solution, then the limit point is in the relative interior of the optimal face.

Fiacco and McCormick [34] suggested following the central trajectory to the optimal
solution. This requires solving a barrier subproblem for a particular chojeedeicreasing
Y, and repeating. The hope is that knowing the solution to one subproblem will make it
easy to solve the next one. It also suffices to only solve the subproblems approximately,
both theoretically and practically. Monteiro and Adler [102] showed thatisfdecreased
by a sufficiently small amount then an approximate solution to one subproblem can be
used to obtain an approximate solution to the next one in just one iteration, leading to an
algorithm that require@(nl/ 2) iterations. With a more aggressive reductiomitfor ex-
ample,uis halved at each iteration), more iterations are required to obtain an approximate
solution to the new subproblem, and the best complexity result that has been proved for
such algorithms is that they requit¥n) iterations.

There are several issues that need to be resolved in order to specify the algorithm, in-
cluding the choice of values ¢f, methods for solving the subproblems, and the desired
accuracy of the solutions of the subproblems. Many different choices have been investi-
gated, at least theoretically. Much of the successful computational work has focussed on
thepDPCM and so we now describe that algorithm.

14 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

The optimality conditions for the subproblems can be written:

(8) AX = b
(9) Aly+z = ¢
(10) XZe = pe

wheree denotes the vector of all ones of appropriate dimensiaa,anm-vector,z is a
nonnegative-vector, andX andZ aren x n diagonal matrices witlX; = x; andz; = z for
i =1,...,n. Equation (9) together with the nonnegativity restrictionzmorresponds to
dual feasibility. Notice that the last condition is equivalent to sayingxizat= |1 for each
componeni. Complementary slackness for the original linear program would require
xz = 0 for each componemt The duality gap ix' z, so if a point satisfies the optimality
conditions (8—10) then the duality gap will bew

We assume we have a strictly positive feasible soluti@md a dual feasible solution
(y,2) satisfyingATy+z=c, z> 0. If these assumptions are not satisfied, the algorithm can
be modified appropriately; see, for example, [90] or Zhang [150].

An iteration ofPDPCMconsists of three parts:

o A Newton step to move towards the solution of the linear program is calculated (but
not taken). This is known as theedictor step

e This predictor step is used to update

e A corrector steps taken, which combines the decrease of the predictor step with a
step that tries to stay close to the central trajectory.

The predictor step gives an immediate return on the value of the objective function, and
the corrector step brings the iterate back towards the central trajectory, making it easier to
obtain a good decrease on future steps.

The calculation of the predictor step requires solving the following system of equations
to obtain the search directioA$x, APy, andAPz

(11) AAPXx = 0

(12) ATAPy+ APz = 0

(13) ZAPX+XAPz = —XZe

One method to solve this system is to notice that it requires
(14) AZ IXATAPy = —AXe

The Cholesky factorization of the matZ X AT can be calculated, and this can be used
to obtainAPy. The vector&\PzandAPx can then be calculated from the equations (12) and
(13).

It can be shown that if we choose a step of lengtthen the duality is reduced by a
factor of a, so if we took a step of length one then the duality gap would be reduced to
zero. However, it is not usually possible to take such a large step and still remain feasible.
Thus, we calculate} andaf, the maximum possible step lengths to maintain primal and
dual feasibility.

We use these steplengths to aid in the adaptive updatelbthe steplengths are close
to one, then the duality gap can be decreased dramatically, and thesheuld be consid-
erably smaller than the old value. Conversely, if the steplengths are short then the iterates
are close to the boundary, pshould only be decreased slightly and the iterates should be
pushed back towards the central trajectory. This leads to one possible updat® of

(15) u = (gp/XTZ)ng/n

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 15

wheregp, is the duality gap that would result if primal and dual steps of Iengﬁ‘nandag,
respectively, were taken.

A corrector stefAx, Ay, Az) is used to bring the iterates back towards the central trajec-
tory. This involves solving the system of equations

(16) AAX = 0
(17) AlAy+Az = 0
(18) ZAX+ XAz = pre—XZe— VP

wherevP is ann-vector, with componentg” = APxAPz. This system can be solved using
the Cholesky factors of the matiZ - 1X AT, which were already formed when calculating
the predictor step.

Once the direction has been calculated, the primal and dual step lengémsiap are
chosen to ensure that the next iterate Xfas- 0 andz™ > 0. The iterates are updated as:

(19) X" = X+0apAX

(20) y" = y-+oaply

(21) zZ" = z+aphz

Typically, ap andap are chosen to move the iterates as much as 99.95% of the way to the
boundary.

The predictor-corrector method [103, 92] can be thought of as finding a direction by
using a second order approximation to the central trajectory. A second order solution to
(8—10) would require that the direction satisfy

ZAX+XAz+v=pte—XZe

wherev is a vector to be determined with= AxAz. It is not possible to easily solve this
equation together with (16-17), so it is approximated by the system of equations (16-18).

The method makes just one iteration for each reductien lut typicallypis decreased
very quickly, by perhaps at least a constant factor at each iteration. The duality gap usu-
ally close tony, so the algorithm is terminated when the duality gap drops below some
tolerance. The algorithm typically takes only 40 or so iterations even for problems with
thousands of constraints and/or variables.

The computational work in an iteration is dominated by the factorization of the matrix
AZ-IXAT. The first step in the factorization is usually to permute the rows tofreduce
the number of nonzeroes in the Cholesky factors — this step need only be performed
once in the algorithm. Once the ordering is set, a numerical factorization of the matrix
is performed at each iteration. These factors are then used to calculate the directions by
means of backward and forward substitutions. The use of the correction direction was
found to decrease the number of iterations required to solve a linear program by enough
to justify the extra work at each iteration of calculating an extra direction. Higher order
approximations[13, 14, 3, 76] have proven useful for some problems where the cost of the
factorization is far greater than the cost of backward and forward substitutions — see [148].
For a discussion of the computational issues involed in implementing an interior point
algorithm, see, for example, Adler et al. [3] and Anderstal.[7].

4.2. Network programming. A large number of problems in transportation, communica-
tions, and manufacturing can be modeled as network flow problems. In these problems one
seeks to find the most efficient, or optimal, way to move flow (e.g. materials, information,
buses, electrical currents) on a network (e.g. postal network, computer network, trans-
portation grid, power grid). Among these optimization problems, many are special classes

16 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

of linear programming problems, with combinatorial properties that enable development
of efficient solution techniques. In this section, we limit our discussion to these linear net-
work flow problems. For a treatment of classes of nonlinear network flow problems, the
reader is referred to [31, 50, 51, 114] and references therein.

Given a directed grapB = (N ,A), whereN is a set ofn nodes and\ a set ofn arcs,
let (i, j) denote a directed arc from nodéo nodej. Every node is classified in one of
the following three categorieSourcenodes produce more flow than they consuSiek
nodes consume more flow than they produansshipmenmodes produce as much flow
as they consume. Without loss of generality, one can assume that the total flow produced in
the network equals the total flow consumed. Each arc has associated with it an origination
node and a destination node, implying a direction for flow to follow. Arcs have limitations
(often called capacities or bounds) on how much flow can move through them. The flow on
arc(i, j) must be no less thdp and can be no greater thaf. To set up the problem in the
framework of an optimization problem, a unit flow cast, incurred by each unit of flow
moving through ardi, j), must be defined. Besides being restricted by lower and upper
bounds at each arc, flows must satisfy another important condition, known as Kirchhoff’s
Law (conservation of flow), which states that for every node in the network, the sum of
all incoming flow together with the flow produced at the node must equal the sum of all
outgoing flow and the flow consumed at the node. The objective ofrilnémum cost
network flow problenis to determine the flow on each arc of the network, such that all of
the flow produced in the network is moved from the source nodes to the sink nodes in the
most cost-effective way, while not violating Kirchhoff’'s Law and flow limitations on the
arcs. The minimum cost network flow problem can be formulated as the following linear
program:

(22) min ; Cij Xij
(i,))eA
subject to:
(23) ; Xjk — ; X =Dbj, jeN
(i-k)eA (k,))eA
(24) lij <xij <uij, (i,j) €A.

In this formulation x;; denotes the flow on arg, j) andgc;; is the cost of transporting one
unit of flow on arc(i, j). For each nod¢ € N, letb; denote a quantity associated with
nodej that indicates how much flow is produced or consumed at the nodg>I0, node
j is a source. Ib; < 0, nodej is a sink. Otherwiselj = 0), nodej is a transshipment
node. For each ar@, j) € A, as before, lel;j andu;; denote, respectively, the lower and
upper bounds on flow on af¢, j). The case whera; = «, for all (i, j) € A, gives rise to
theuncapacitateshetwork flow problem. Without loss of generality, can be set to zero.
Most often, the problem data (i.&;, uij, lij, for (i, j) € A andbj, for j € N') are assumed
to be integer, and many codes adopt this assumption. However, there can exist applications
where the data are real numbers, and algorithms should be capable of handling problems
with real data.

Constraints of type (23) are referred to as the flow conservation equations, while con-
straints of type (24) are called the flow capacity constraints. In matrix notation, the above
network flow problem can be formulated as a linear program of the special form

min {c'x| Ax=b, | <x<u},

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 17

whereA is them x n node-arc incidence matriof the graphG = (N ,A), i.e. for each arc

(i,j) in A there is an associated column in matkixvith exactly two nonzero entries: an
entry 1 in rowi and an entry-1 in row j. Note that from thennentries ofA, only 2n are
nonzero and because of this, the node-arc incidence matrix is not a space-efficient repre-
sentation of the network. There are many other ways to represent a network. A popular
representation is theode-node adjacenayatrix B. This is anm x mmatrix with an entry

1 in position(i, j) if arc (i, j) € A and 0 otherwise. Such a representation is efficient for
dense networks, but is inefficient for sparse networks. A more efficient representation of
sparse networks is tredjacency listwhere for each nodiec N there exists a list of arcs
emanating from nodei.e. a list of nodeg such thati, j) € A. Theforward starrepresen-

tation is a multi-array implementation of the adjacency list data structure. The adjacency
list enables easy access to the arcs emanating from a given node, but not the incoming
arcs. Thaeverse starepresentation enables easy access to the list of arcs incoming into
Another representation that is much used in interior point network flow implementations is
a simplearc list, where the arcs are stored in a linear array. The complexity of an algorithm
for solving network flow problems depends greatly on the network representation and the
data structures used for maintaining and updating the intermediate computations.

We denote the-th column of A by A;, thei-th row of A by A; and a submatrix oA
formed by columns with indices in s&by As. If graph G is disconnected and has
connected components, there are exggtigdundant flow conservation constraints, which
are sometimes removed from the problem formulation. We rule out a trivially infeasible
problem by assuming

(25) z bj:O, k=1,...,p,
jeNk

whereN K is the set of nodes for tHeth component 06.
Often it is further required that the flowy; be integer, i.e. we replace (24) with

(26) lij <xj <uij, xj integer (i, j) € A.

Since the node-arc incidence matAxs totally unimodular, when the data is integer all
vertex solutions of the linear program are integer. An algorithm that finds a vertex so-
lution, such as the simplex method, will necessarily produce an integer optimal flow. In
certain types of network flow problems, such as the assignment problem, one may be only
interested in solutions having integer flows, since fractional flows do not have a logical
interpretation.

In the remainder of this section we assume, without loss of generality;jtka® for all
(i,j) € A and thatt # 0. A simple change of variables can transform the original problem
into an equivalent one with; = 0 for all (i, j) € A. The case where= 0 is a simple
feasibility problem, and can be handled by solving a maximum flow problem [4].

Many important combinatorial optimization problems are special cases of the minimum
cost network flow problem. Such problems include the linear assignment and transporta-
tion problems, and the maximum flow and shortest path problems. In the transportation
problem, the underlying graph is bipartite, i.e. there exist two Seésid T such that
SUT =N andSNT = 0 and arcs occur only from nodes &fto nodes ofl . SetS is
usually called the set of source nodes and si the set of sink nodes. For the transporta-
tion problem, the right hand side vector in (23) is given by

bi { sj ifjeS
P70 -t ifjeT,

18 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

wheres; is the supply at nod¢ € S andt; is the demand at nodiec T . The assignment
problem is a special case of the transportation problem, in wdjiehl for all j € S and
ti=1foralljeT.

The computation of the maximum flow from nosl® nodet in G= (N ,A) can be done
by computing a minimum cost flow i = (N’,A’), whereN’ =N andA’ =AU(t,s),

where
0 if(i,j) e
Gij ——{ it (,j)

A
—1 it (i) = (&

s),
and
L [carij) if (i) eA
= o if (i,]) = (t.9),
where cafi, j) is the capacity of ar€i, j) in the maximum flow problem.

The shortest paths from nodéo all nodes inN \ {s} can be computed by solving an
uncapacitated minimum cost network flow problem in whighis the length of argi, j)
and the right hand side vector in (23) is given by

b M- 1 ifj=s
= -1 ifjeN\{s}.

Although all of the above combinatorial optimization problems are formulated as min-
imum cost network flow problems, several specialized algorithms have been devised for
solving them efficiently.

In many practical applications, flows in networks with more than one commaodity need
to be optimized. In the multicommodity network flow problekncommodities are to be
moved in the network. The set of commodities is denotet(byLetxikj denote the flow of
commodityk in arc (i, j). The multicommodity network flow problem can be formulated
as the following linear program:

(27) min ; ol Xk
ke; iGea

subject to:
(28) ; X — x5 =b% jeN, keK
(j,h)eA (1,J)eA
(29) X <uij, (i,]) €A,
ke; i 1]
(30) x>0, (i,j) €A, keK.

The minimum cost network flow problem is a special case of the multicommaodity network
flow problem, in which there is only one commodity.

In the 1940s, Hitchcock [58] proposed an algorithm for solving the transportation prob-
lem and later Dantzig [23] developed the Simplex Method for linear programming prob-
lems. In the 1950s, Kruskal [83] developed a minimum spanning tree algorithm and Prim
[118] devised an algorithm for the shortest path problem. During that decade, commercial
digital computers were introduced widely. The first book on network flows was published
by Ford and Fulkerson [37] in 1962. Since then, active research produced a variety of
algorithms, data structures, and software for solving network flow problems. For an intro-
duction to network flow problems and applications, see the books [4, 15, 31, 37, 80, 84,
133, 137].

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 19

4.3. Components of interior point network flow methods. Since Karmarkar's break-
throughin 1984, many variants of his algorithm, including the dual affine scaling, with and
without centering, reduced dual affine scaling, primal path following (method of centers),
primal-dual path following, predictor-corrector primal-dual path following, and the infea-
sible primal-dual path following, have been used to solve network flow problems. Though
these algorithms are, in some sense, different, they share many of the same computational
requirements. The key ingredients for efficient implementation of these algorithms are:

1. The solution of the linear systeADA"u =t, whereD is a diagonah x n scaling
matrix, andu andt arem-vectors. This requires an iterative algorithm for computing
approximate directions, preconditioners, stopping criteria for the iterative algorithm,
etc.

2. The recovery of the desired optimal solution. This may depend on how the problem
is presented (integer data or real data), and what type of solution is required (frac-
tional or integer solutiorg-optimal or exact solution, primal optimal or primal-dual
optimal solution, etc.).

In this subsection, we present in detail these components, illustrating their implementa-
tion in the dual affine scaling network flow algorittmaNET of Resende and Veiga [130].

4.3.1. The dual affine scaling algorithmThe dual affine scalingbas) algorithm [12,

29, 135, 141] was one of the first interior point methods to be shown to be competive
computationally with the simplex method [2, 3]. As before Adie anm x n matrix, ¢, u,

andx ben-dimensional vectors arflanm-dimensional vector. Theas algorithm solves

the linear program

min{c" x| Ax=b, 0<x<u}
indirectly, by solving its dual
(31) max{b'y—u'z|A'y—z+s=c, z>0,5s>0},

wherezandsare am-dimensional vectors ands anm-dimensional vector. The algorithm
starts with an initial interior solutiofiy®, 22, s°} such that

ATW_—2L1P=c >0 L>0,
and iterates according to
[y 24 dH) — (yK & &Y o {Ay,Az,As),
where the search directioAy, Az, andAs satisfy
AZE+SH ALY = b-AZ(Z+S) My

Az = ZHZ+S) A Ay - S),

As = Az—AThy,
where

Z =diag %, ... ,Z) andS, = diags;, ... ,§)

anda is such that**! > 0 ands“*! > 0, i.e.a = y x min{a,as}, where 0< y < 1 and

o, = min{—Z/(A2); | (A2); <0,i=1,...,n}

s = min{—s‘/(As); | (As); < 0,i=1,...,n}.

20 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

procedure pcg (A, D, b, gcg, Ay)
1 Ayy:=0;

2 ro:=b;

3 =M1l

4 poi=72;

5 i:=0;

6 do stopping criterion not satisfied:
7 g :=ADA" pi;

8 ai :=2z'ri/p G;

9 Ay, 1 =4y, +aipi;
10 Mit1 == Tri — 0i0;

11 Ziy1 =Mt

12 Bi =2z qriv1/z ri;
13 Pi+1:=2Z1+Bipi;
14 i=i+1

15 od;

16 Ay:=Ay,

endpcg;

FIGURE 5. The preconditioned conjugate gradient algorithm

The dual problem (31) has a readily available initial interior point solution:

W = 0i=1..,n
L = c¢+Ai=1..,n
2 = \i=1,...,n

whereA is a scalar such that> 0 and\ > —c;, i=1,... ,n. The algorithm described above
has two important parameteysandA. For example, iLNET, y= 0.95 and\ = 2 ||c]|2.

4.3.2. Computing the directionThe computational efficiency of interior point network
flow methods relies heavily on a preconditioned conjugate gradient algorithm to solve the
direction finding system at each iteration. The preconditioned conjugate gradient algorithm
is used to solve

(32) M~1(ADA Ay =M"tb

whereM is a positive definite matrix and, in the case of ties algorithm,b = b—AZ2Dyu,
andDy = (ZE + Sf)‘l is a diagonal matrix of positive elements. The objective is to make
the preconditioned matrix

(33) M~1(ADAT)

less ill-conditioned tha\DyA', and improve the convergence of the conjugate gradient
algorithm.

The pseudo-code for the preconditioned conjugate gradient algorithm is presented in
Figure 5. The computationally intensive steps in the preconditioned conjugate gradient
algorithm are lines 3, 7 and 11 of the pseudo-code. These lines correspond to a matrix-
vector multiplication (7) and solving linear systems of equations (3 and 11). Line 3 is
computed once and lines 7 and 11 are computed once every conjugate gradient iteration.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 21

The matrix-vector multiplications are of the for&D A" pj, carried out without form-
ing ADKAT explicitly. One way to compute the above matrix-vector multiplication is to
decompose it into three sparse matrix-vector multiplications. Let

U=A"p and " =D
Then
(A (D (A" pi))) =AL".
The complexity of this matrix-vector multiplication @(n), involving n additions, 2 sub-
tractions anah floating point multiplications.

The preconditioned residual is computed in lines 3 and 11 when the system of linear
equations

(34) Mz 1 ="rit1,

is solved, wherd/ is a positive definite matrix. An efficient implementation requires a pre-
conditioner that can make (34) easy to solve. On the other hand, one needs a preconditioner
that makes (33) well conditioned. In the next subsection, we show several preconditioners
that satisfy, to some extent, these two criteria.

To determine when the approximate directiyp produced by the conjugate gradient
algorithm is satisfactory, one can compute the aigbetween(AD A")Ay; andb and
stop when|1 — cos9| < gcos, Whereeggos is some small tolerance. In practice, one can
initially use gcos = 102 and tighten the tolerance as the interior point iterations proceed,
aS€cos = €cos X 0.95. The exact computation of

Ib” (ADAT Ay
|b[2- [(ADKAT)2y 2

has the complexity of one conjugate gradient iteration and is therefore expensive if com-
puted at each conjugate gradient iteration. One way to proceed is to compute the cosine
everylcos conjugate gradient iterations. A more efficient procedure [116] follows from the
observation thatAD A")Ay; is approximately equal tb — ri, wherer; is the estimate of

the residual at théth conjugate gradient iteration. Using this approximation, the cosine
can be estimated by

cosP =

b’ (b—ri)|
[[bll2- [(b—ri)ll2
Since, in practice, the conjugate gradient method finds good directions in few iterations,

this estimate has been shown to be effective and can be computed at each conjugate gradi-
ent iteration.

cosf =

4.3.3. Network preconditioners for conjugate gradient methdduseful preconditioner

for the conjugate gradient algorithm must be one that allows the efficient solution of (34),
while at the same time causing the number of conjugate gradient iterations to be small. Five
preconditioners have been found useful in conjugate gradient based interior point network
flow methods: diagonal, maximum weighted spanning tree, incom@QIRtdecomposi-

tion, the Karmarkar-Ramakrishnan preconditioner for general linear programming, and
the approximate Cholesky decomposition preconditioner [93] .

A diagonal matrix constitutes the most straightforward preconditioner used in conjunc-
tion with the conjugate gradient algorithm [45]. They are simple to compute, t&king
double precision operations, and can be effective [129, 131, 149]. In the diagonal precondi-
tioner,M = diag(ADkA"), and the preconditioned residue systems of lines 3 and 11 of the

22 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

conjugate gradient pseudo-code in Figure 5 can each be sol@@rindouble precision
divisions.

A preconditioner that is observed to improve with the number of interior point iterations
is the maximum weighted spanning tree preconditioner. Since the underlying@riaph
not necessarily connected, one can identify a maximal forest using as weights the diagonal
elements of the current scaling matrix,

(35) w = Dye,

wheree is a unitn-vector. In practice, Kruskal's and Prim’s algorithm have been used to
compute the maximal forest. Kruskal’s algorithm, implemented with the data structures
in [137] has been applied to arcs, ordered approximately with a bucket sort [62, 130], or
exactly using a hybrid QuickSort [64]. Prim’s algorithm is implemented in [116] using the
data structures presented in [4].

At the k-th interior point iteration, lefy be the submatrix oA with columns corre-
sponding to arcs in the maximal forest,. .. ,tq. The preconditioner can be written as

M= SkaSkT,
where, for example, in theas algorithm

D =diag1/7. +1/s,...,1/Z, + 1/)-

For simplicity of notation, we include ik the linear dependent rows corresponding to the
redundant flow conservation constraints. At each conjugate gradient iteration, the precon-
ditioned residue system

(36) (SkDKS()zi41 =risa

is solved with the variables corresponding to redundant constraints set to zero. As with the
diagonal preconditioner, (36) can be solvedifm) time, as the system coefficient matrix
can be ordered into a block triangular form.

Portugal et al. [116] introduced a preconditioner based on an inconprRtecom-
position (QRD) for use in interior point methods to solve transportation problems. They
showed empirically, for that class of problems, that this preconditioner mimics the diagonal
preconditioner during the initial iterations of the interior point method, and the spanning
tree preconditioner in the final interior point method iterations, while causing the conju-
gate gradient method to take fewer iterations than either method during the intermediate
iterations. In [117], the use of this preconditioner is extended to general minimum cost
network flow problems. In the following discussion, we omit the iteration inkiécom
notation for the sake of simplicity. Ldt = {1,2,...,n} \ T be the index set of the arcs
not in the computed maximal spanning tree, and let

_| Dt
D_[DT_},

whereD7 € R9*Y s the diagonal matrix with the arc weights of the maximal spanning tree
andDs € R("-9*(-4) js the diagonal matrix with weights of the arcs not in the maximal

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 23

spanning tree. Then

o w1[* o,][]

Ar
b aT
Di Aq
1
2ZpL
DiAr

The Cholesky factorization gfDA" can be found by simply computing tigRfactoriza-
tion of

[Ar D3 AT—DT%— }

>
I
o]

(37)

>
— =

O
S e INTH

In fact, if QA_: R, then
ADA" =ATA=R'Q"'QR=R'R

The computation of th€R factorization is not recommended here, since besides being
more expensive than a Cholesky factorization, it also destroys the sparsity of the matrix
A. Instead, Portugal et al. [116] propose iacomplete QRIecomposition ofA. Ap-

1

plying Givens rotations [39] té, using the diagonal elements PE A, the elements of

1
D2AL become null. No fill-in is incurred in this factorization. See [116] for an example
illustrating this procedure. After the factorization, we have the preconditioner

M =FDF',

whereF is a matrix with a diagonal of ones that can be reordered to triangular form, and
D is a diagonal matrix with positive elements.
To avoid square root operatiorld, andF are obtained without explicitly computing

D3FT. Suppose that the maximum spanning tree is rooted at nocd@responding to

the flow conservation equation that has been removed from the formulation. Furthermore,
let At denote the subset of arcs belonging to the tree angl letpresent the predecessor

of nodei in the tree. The procedure used to compute the nonzero elemddtsiodl the
off-diagonal nonzero elements Bfis presented in the pseudo-code in Figure 6.

The computation of the preconditioned residual Wit F " requiresO(m) divisions,
multiplications, and subtractions, sinBeis a diagonal matrix anBl can be permuted into
a triangular matrix with diagonal elements equal to one. The constructiérantiD, that
constitute the preconditioner, requi@én) additions and(m) divisions.

In practice, the diagonal preconditioner is effective during the initial iterations of the
DAS algorithm. As theDAS iterations progress, the spanning tree preconditioner is more
effective as it becomes a better approximation of mad¢A’. Arguments as to why
this preconditioner is effective are given in [62, 116]. ThevET implementation begins
with the diagonal preconditioner and monitors the number of iterations required by the
conjugate gradient algorithm. When the conjugate gradient takes mor@{faritera-
tions, where3 > 0, DLNET switches to the spanning tree preconditioner. Upper and lower
limits to the number obAs iterations using a diagonal preconditioned conjugate gradient
are specified.

24 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

procedureigrd (T, T,N,D,D,F)

1 doieN\{r}—

2 j=pi

3 if (i,j) € Ar — Di =Djj fi;

4 if (j,i) € Ay — Dji =Dji fi;

5 od

6 do(i,j)eAr —

7 if i e N\ {r} — Di =Dj +Djj fi;

8 if je N \{r} — Dj; =Djj+Djj fi;
9 o

10 doieN\{r}—

11 =i

12 if jeN\{r}—

13 if (i,j) € At — Rj = Djj/D;j fi;
14 if (j,i) € Ay — Fji = Dji/D; fi;
15 fi;

16 od;

endigrd ;

FIGURE 6. Computing thé&= andD matrices inQRD

In [93], is proposed a Cholesky decomposition of an approximation of the nigd@x
(cpAm) as preconditioner. This preconditioner has the form

(38) M=LL",
whith L the lower triangular Cholesky factor of the matrix
(39) BOgB' +p x diagNONyN "),

whereB andN are such thaf = [B N] with B a basis matrix®g and®y are the diagonal
submatrices 0® corresponding t@ andN, respectively, ang is a parameter.

Another preconditioner used in an interior point implementation is the one for general
linear programming, developed by Karmarkar and Ramakrishnan and used in [79, 120].
This preconditioner is based on a dynamic scheme to drop elements of the original scaled
constraint matrixDA, as well as the from the factors of the matADA" of the linear
system, and use the incomplete Cholesky factors as the preconditioner. Because of the way
elements are dropped, this preconditioner mimics the diagonal preconditioner in the initial
iterations and the tree preconditioner in the final iterations of the interior point algorithm.

4.3.4. Identifying the optimal partition One way to stop an interior point algorithm before
the (fractional) interior point iterates converge is to estimate (or guess) the optimal partition
of arcs at each iteration, attempt to recover the flow from the partition and, if a feasible
flow is produced, test if that flow is optimal. In the discussion that follows we describe
a strategy to partition the set of arcs in the dual affine scaling algorithm. The discussion
follows [128] closely, using a dual affine scaling method for uncapacitated networks to
illustrate the procedure.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 25

LetAe R™" ¢ x,se R"andb,y € R™. Consider the linear programming problem

minimize c¢'x

(40) .
subjectto Ax=hb, x>0
and its dual
maximize b'y
(41)

subjectto A'y+s=c, s>0.

The dual affine scaling algorithm starts with an initial dual soluBre {y : s=c—
ATy> 0} and obtains iteratg“"* from y* according to/*"* = y* + akdY, where the search
directiondy is df = (AD, *AT) b andDy = diag(sY, ...,s). A step moving a fractioy of
the way to the boundary of the feasible region is taken at each iteration, namely,

(42) af=yxmin{—s/(dX); : (d)i<0,i=1,..,n},

wheredX = —ATd>‘§ is a unit displacement vector in the space of slack variables. At each
iteration, a tentative primal solution is computedxy= D;ZAT (AD;ZAT)‘lb. The set
of optimal solutions is referred to as tloptimal face We use the index sé. for the
always-active index set on the optimal face of the primal, Bntbr its complement. It is
well-known thatB, is the always-active index set on the optimal face of the dualNand
is its complement. Arndicatoris a quantity to detect whether an index belonghliamr
B.. We next describe three indicators that can be implemented ipAlealgorithm. For
pointers to other indicators, see [33].

Under a very weak condition, the iterative sequence oftthe algorithm converges
to a relative interior point of a face on which the objective function is constant, i.e. the
sequencgy¥} converges to an interior point of a face on which the objective function is
constant. LeB be the always-active index set on the face Btk its complement, and let
b* be the limiting objective function value. There exists a constgnt 0 such that

— <
(43) Ilrlzlsotjpboo_bTyk <G
for alli € B, while
#<
(49 B by

diverges to infinity for ali € N. Denote bys* the limiting slack vector. Theg > 0 and
sg = 0. The vector

_ (DY D
b* by b _blyk

(45) u

plays an important role, since
. KT o 1 (Sk)TXk _
“e) fim () o= lim g g =1
Consequently, in the limib® — by can be estimated bigk) " x< asymptotically, and (43)
can be stated as
-)
| < Cp.

TX_

26 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

Then, ifi € B, for any3 such that < B < 1,

. S
I
since((s4) Tx¥)B converges to zero at a slower rate thigsf) "x*) for any such that 0<
B < 1. Therefore, i = 1/2, the following indicator has the property that lim, N = N,.

Indicator 1: LetC; > 0 be any constant, and define
(47) NK={i eE : &< Cp/(8)Tx}.

This indicator is available under very weak assumptions, so it can be used toRletect
and N, without any substantial restriction on step-size. On the other hand, it gives the
correct partition only if the limit poiny® happens to be a relative interior point of the
optimal face of the dual and thus lacks a firm theoretical justification. However, since we
know by experience thgt° usually lies in the relative interior of the optimal face, we may
expect that it should work well in practice. Another potential problem with this indicator is
that it is not scaling invariant, so that it will behave differently if the scaling of the problem
is changed.

Now we assume that the step-sizes asymptotically less than or equal to 2/3. Then
the limiting point exists in the interior of the optimal face abf is the optimal value.
Specifically,{y¥} converges to an interior point of the optimal face of the dual problem,
{X} converges to the analytic center of the optimal face of the primal problend enyé}
converges linearly to the optimal valb® asymptotically, where the (asymptotic) reduction
rate is exactly I y. Furthermore, one can show that

(48) Jiﬂl“ik: 1/|B,| forieB,

(49) lim u¢=0 otherwise
k— 00

The vectoru® is not available because the exact optimal value is unknown a priori, but
b* —b"y* can be estimated big¢) " x* to obtain

- .
(50) dmw_lﬂm fori € B.
g .
(52) Ilmo)R =0 otherwise

On the basis of this fact, the following procedure to constNIitwhich asymptotically
coincides with\.,:

Indicator 2: Letd be a constant between 0 and 1. We obMiraccording to the following
procedure:

e Step 1: Sorg = §%€/(s¢) "X according to its order of magnitude. Dendtehe
index for thel-th largest component.

e Step 2: Forp:= 1,2,... compareg;, andd/p, and letp* be the first number such
thatg; . < 0/p*. Then set

(52) NK = {i1,ip,...,ip-—1}.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 27

To state the third, and most practical indicator, let us turn our attention to the asymptotic
behavior ofg"1 /€. If i € N, thens® converges to a positive value, and hence

+1
(53) lim3 =1

koo gﬁk

If i € B,, § converges to zero. Since

e 1
2 i -

xik converges to a positive number, and the objective function reduces with a rateypf 1
then

+1
(55) lim —=1-vy,

k—o0 $<
which leads to the following indicator:

Indicator 3: Take a constanj such that 1-y<n < 1. Then let

1
(56) NK={i: i >n}

Bl

be defined as the index set. Theh= N, holds asymptotically.

Of the three indicators described here, Indicators 2 and 3 stand on the firmest theoretical
basis. Furthermore, unlike Indicator 1, both are scaling invariant. The above discussion
can be easily extended for the case of capacitated network flow probRmET uses
Indicator 3 to identify the set of active arcs defining the optimal face by examining the
ratio between subsequent iterates of each dual slack. At the optimum, the flow on each arc
can be classified as being at its upper bound, lower bound, or as active. From the discussion
above, if the flow on arcconverges to its upper bound,

lim §</§< 1—1-y and Ilmz,k/i< t=

If the flow on arc converges to its lower bound,

lim s‘f/§< 1—1 and I|mz|k/zf<_

If the flow on ard is active,
lim sk/gk 1—1-yand nmzk/z,k o1y

From a practical point of view, scale invariance is the most interesting feature of this
indicator. An implementable version can use constants which depend only on the step size
factory. Letkg = .7 andky = .9. At each iteration obLNET, the arcs are classified as
follows:

o If /&1 < kgandz'/Z1 > Ky, arci is set to its upper bound.

o If /1 > kg andZ /21 < Ko, arci is set to its lower bound.
e Otherwise, art is set active, defining the tentative optimal face.

28 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

4.3.5. Recovering the optimal flowThe simplex method restricts the sequence of solu-
tions it generates to nodes of the linear programming polytope. Since the iaiiithe
network linear program is totally unimodular, when a simplex variant is applied to a net-
work flow problem with integer data, the optimal solution is also integer. On the other
hand, an interior point algorithm generates a sequence of interior point (fractional) solu-
tions. Unless the primal optimal solution is unique, the primal solution that an interior
point algorithm converges to is not guaranteed to be integer. In an implementation of an
interior point network flow method, one would like to be capable of recovering an integer
flow even when the problem has multiple optima. We discuss below the stopping strategies
implemented imLNET and used to recover an integer optimal solution.

Besides the indicator described in subsection 4[8.4ET uses the arcs of the spanning
forest of the tree preconditioner as an indicator. If there exists a unique optimal flow, this
indicator correctly identifies an optimal primal basic sequence, and an integer flow can be
easily recovered by solving a triangular system of linear equations. In general, however,
the arc indices do not converge to a basic sequencel lef{ts, ... ,tq} denote the set of
arc indices in the spanning forest. To obtain a tentative primal basic solution, first set flow
on arcs not in the forest to either their upper or lower bound, i.e. forah \ T :

*_{o if §¢ > 2
%= u; otherwise,
wheres® andZ are the current iterates of the dual slack vectors as defined in (31). The
remaining basic arcs have flows that satisfy the linear system
(57) Arxp =b— % UA;,

ieQ~
whereQ~ ={i e A\T : §< < z‘k}. Becausé\r can be reordered in a triangular form, (57)
can be solved i) (m) operations. lur > x; > 0 then the primal solution is feasible and
optimality can be tested.

Optimality can be verified by producing a dual feasible solutions®, z*) that is either
complementary or that implies a duality gap less than 1. The first step to build a tentative
optimal dual solution is identify the set of dual constraints defining the supporting affine
space of the dual face complementarxtp

F={ieT :0<x <u},
i.e. the set of arcs with zero dual slacks. Since, in gengtag not feasibleF is usu-
ally determined by the indicators of subsection 4.3.4, as the index-set of active arcs. To
ensure a complementary primal-dual pair, the current dual interior vgftismprojected
orthogonally onto this affine space. The solutidrof the least squares problem
(58) Jmin {ly" =¥z : Aey'=cr }
is the projected dual iterate.

LetGg = (N ,F) be the subgraph & with F as its set of arcs. Since this subgraph is
a forest, its incidence matridr , can be reordered into a block triangular form, with each
block corresponding to a tree in the forest. AssuBgehasp components, witfy,..., Ty
as the sets of arcs in each component tree. After reordering, the incidence matrix can be
represented as

A,

>
P
Il

p

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 29

The supporting affine space of the dual face can be expressed as the sum of orthogonal
one-dimensional subspaces. The operation in (58) can be performed by computing the
orthogonal projections onto each individual subspace independently, and therefore can be
completed ifO(m) time. Fori =1,...,p, denote the number of arcs Thby m;, and the

set of nodes spanned by those arcd\NpyAr, is an(m; + 1) x my matrix and each subspace

Wi = {yy, € R™ 1 Ay, =cr}

has dimension one. For @.I,Lli ey,

(59) Y, = YR, + iR

wherey&i is a given solution in¥; and lei is a solution of the homogeneous system
A{yNi = 0. SinceAy; is the incidence matrix of a tree, the unit vector is a homogeneous

solution. The given solutior;rﬁIi can be computed by selectings N;, settingy? = 0,
removing the row corresponding to nod&om matrix Ar. and solving the resulting trian-
gular system

ATYNA) = O

With the representation in (59), the orthogonal projectioy,\ﬁ)fonto subspack; is

Tmrn M

wheree is the unit vector. The orthogonal projection, as indicated in (58), is obtained by
combining the projections onto each subspace,

Yy = (W\li"" ,y;,q).
A feasible dual solution is built by computing the slacks as
7 = —& ifd<O0 « | O if&<0
10 otherwise 1 & otherwise,

whered; = ¢ — ATy*.

If the solution of (57) is feasible, optimality can be checked at this point, using the pro-
jected dual solution as a lower bound on the optimal flow. The primal and dual solugions,
and(y*,s*,z"), are optimal if complementary slackness is satisfied, i.e. if faral\ \ T
eithers’ > 0 andx" = 0 orz* > 0 andx" = u;. Otherwise, the primal solutior;, is still
optimal if the duality gap is less than 1, i.ecifx* —b'y* +u'z < 1.

However, in general, the method proceeds attempting to find a feasiblecfltvat is
complementary to the projected dual solutién Based on the projected dual solutign
a refined tentative optimal face is selected by redefining the set of active arcs as

F ={icA :|g—Aly|<e}

Next, the method attempts to build a primal feasible solutiéncomplementary to the
tentative dual optimal solution by setting the inactive arcs to lower or upper bounds, i.e.,
forie A\F,

,_ [0 ifieQt={icA\F :c-Aly >0}
T u ificQ ={icA\F : ¢g—Aly <0}.

30 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

By considering only the active arcsyastricted networks built, represented by the con-
straint set

(60) Aexg =b=b— S uA;,
ieQ—
(61) o<x<u, icF.

Clearly, from the flow balance constraints (60), if a feasible ﬂgw‘or the restricted net-
work exists, it defines, along witkf,, andxg,, a primal feasible solution complementary
toy*. A feasible flow for the restricted network can be determined by solving a maximum
flow problem on theugmented networtkefined by underlying grap = (N ,A), where

N ={c}u{6}UN
and
A=sUOUF.

In addition, for each ar¢i, j) € F there is an associated capaaity. The additional arcs
are such that

S={(o,i) :ieN"},
with associated capacity for each ardo,i), and
0={(i,0) :ieN},

with associated capacityb; for each ardi,8), whereN + = {ie N : b >0} andN ~ =
{ieN : b <0}. It can be shown that i, ¢ is the maximum flow value frora to 8, and
%is a maximal flow on the augmented network, thdae = 5.y - b if and only ifX= isa
feasible flow for the restricted network. Therefore, finding a feasible flow for the restricted
network involves the solution a maximum flow problem. Furthermore, this feasible flow is
integer, as we can select a maximum flow algorithm [4] that provides an integer solution.

5. BRANCH AND BOUND METHODS

Branch and bound methods are exact algorithms for integer programming problems —
given enough time, they are guaranteed to find an optimal solution. If there is not enough
time available to solve a given problem exactly, a branch and bound algorithm can still
be used to provide a bound on the optimal value. These methods can be used in con-
junction with a heuristic algorithm such as local search, tabu search, simulated annealing,
GRASP, genetic algorithms, or more specialized algorithms, to give a good solution to a
problem, with a guarantee on the maximum possible improvement available over this good
solution. Branch and bound algorithms work by solving relaxations of the integer pro-
gramming problem, and selectively partitioning the feasible region to eventually find the
optimal solution.

5.1. General concepts.Consider an integer programming problem of the form

min c'x
subjectto Ax < b
X > 0, integer,

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 31

whereA is anm x n matrix, c andx aren-vectors, and is anm-vector. The linear pro-
gramming relaxationl(P relaxatior) of this problemis

min c'x
subjectto Ax < b
x > 0.

If the optimal solutionx* to the LP relaxation is integral then it solves the integer program-
ming problem also. Generally, the optimal solution to the LP relaxation will not be an
integral point. In this case, the value of the LP relaxation provides a lower bound on the
optimal value of the integer program, and we attempt to improve the relaxation.

In a branch and bound method, the relaxation is improved by dividing the relaxation
into two subproblems, where one of the variables is restricted to take certain values. For
example, ifx’ = 0.4, we may set up one subproblem whgrenust be zero and another
subproblem wherg; is restricted to take a value of at least one. We think of the subprob-
lems as forming a tree, rooted at the initial relaxation.

If the solution to the relaxation of one of the subproblems in the tree is integral then
it provides an upper bound on the optimal value of the complete integer program. If the
solution to the relaxation of another subproblem has value larger than this upper bound,
then that subproblem can be pruned, as no feasible solution for it can be optimal for the
complete problem. If the relaxation of the subproblem is infeasible then the subproblem
itself is infeasible and can be pruned. The only other possibility at a node of the tree
is that the solution to the relaxation is fractional, with value less than that of the best
known integral solution. In this case, we further subdivide the subproblem. There are
many techniques available for choosing the branching variable and for choosing the next
subproblem to examine; for more details, see, for example, Parker and Rardin [115].

Interior point methods are good for linear programming problems with a large number
of variables, so they should also be useful for large integer programming problems. Unfor-
tunately, large integer programming problems are often intractable for a general purpose
method like branch and bound, because the tree becomes prohibitively large. Branch and
bound interior point methods have proven successful for problems such as capacitated fa-
cility location problems [19, 25], where the integer variables correspond to the decision as
to whether to build a facility at a particular location, and there are a large number of con-
tinuous variables corresponding to transporting goods from the facilities to customers. For
these problems, the LP relaxations can be large even for instances with only a few integer
variables.

As with interior point cutting plane methods (see section 6), the most important tech-
nigue for making an interior point branch and bound method competitive is early termi-
nation. There are four possible outcomes at each node of the branch and bound tree; for
three of these, it suffices to solve the relaxation approximately. The first outcome is that the
relaxation has value greater than the known upper bound on the optimal value, so the node
can be pruned by bounds. Usually, an interior point method will get close to the optimal
value quickly, so the possibility of pruning by bounds can be detected early. The second
possible outcome is that the relaxation is infeasible. Even if this is not detected quickly,
we can usually iterate with a dual feasible algorithm (as with interior point cutting plane
algorithms), so if the dual value becomes larger than the known bound we can prune. The
third possible outcome is that the optimal solution to the relaxation is fractional. In this
case, there are methods (including the Tapia indicator [33] and other indicators discussed
in section 4.3.4) for detecting whether a variable is converging to a fractional value, and

32 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

these can be used before optimality is reached. The final possible outcome is that the opti-
mal solution to the relaxation is integral. In this situation, we can prune the node, perhaps
resulting in an improvement in the value of the best known integral solution. Thus, we are
able to prune in the only situation where it is necessary to solve the relaxation to optimality.

If the optimal solution to the relaxation is fractional, then the subproblem must be sub-
divided. The iterate for the parent problem will be dual feasible but primal infeasible for
the child problems. The solution process can be restarted at these child problems either by
using an infeasible interior point method or by using methods similar to those described
for interior point cuting plane methods in section 6. For very large or degenerate problems,
the interior point method has proven superior to simplex even when the interior point code
is started from scratch at each node.

The first interior point branch and bound code was due to Borchers and Mitchell [19].
This method was adapted by De Silva and Abramson [25] specifically for facility location
problems. Ramakrishnaat al. [119] have developed a branch and bound algorithm for
the quadratic assignment problem. The linear programming relaxations at the nodes of the
tree for this problem are so large that it was necessary to use an interior point method to
solve them. Lee and Mitchell have been developing a parallel interior point branch and cut
algorithm for mixed integer nonlinear programming problems [85].

5.2. An example: The QAP. The quadratic assignment problem (QAP) can be stated as

n n
min ii Doy,
oo i;j;au p(i)p(j)

wherefll is the set of all permutations 1L, 2,... ,n}, A= (aj) € R™", B= (bj;) € R™".
Resende, Ramakrishnan, and Drezner [127] consider the following linear program as a
lower bound (see also [1]) to the optimal solution of a QAP.

i<j) (r#s

min (; ;> J% S; (aijbrs + ajibsr)Yirjs

(i>1) (i<i)
Yirjs + Yisit = Xir, 1 €L,r €l,s€l(S#£T),

subject to:

(r#s)
Z Yirjs =Xir, 1€L,r el jel (j>i),
sc

(r#9) . . o
Zyjsir:Xil'v |€|7r€|7JEI(J<I)a
se

inr:]-; r€|7
le
inr:]., |EI7
re

0<x <1, ielrel,

O0<wrs <l ielreljelsel,

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 33

TABLE 6. Dimension of lower bound linear programs

n | constraints variables
2 12 6
3 42 27
4 104 88
5 210 225
6 372 486
7 602 931
8 912 1632
9 1314 2673
10 1820 4150
11 2442 6171
12 3192 8856
13 4082 12337
14 5124 16758

where the set = {1,2,... ,n}. This linear program has?(n— 1)2/2 +n? variables and
2n?(n— 1) + 2n constraints. Table 6 shows the dimension of theses linear programs for
several values ai.

The linear programs were solved with ADP [79], a dual interior point algorithm (see
Subsection 2.2). The solver produces a sequence of lower bounds (dual interior solutions),
each of which can be compared with the best upper bound to decide if pruning of the search
tree can be done at the node on which the lower bound is computed. Figure 7 illustrates the
sequence of lower bounds produced by ADP, compared to the sequence of feasible primal
solutions produced by the primal simplex code of CPLEX on QAPLIB test probigpb .

The figure suggests that the algorithm can be stopped many iterations prior to convergence
to the optimal value and still be close in value to the optimal solution. This is importantin
branch and bound codes, where often a lower bound needed to prune the search tree is less
than the value of the best lower bound.

Pardalos, Ramakrishnan, Resende, and Li[110] describe a branch and bound algorithm
used to study the effectiveness of a variance reduction based lower bound proposed by Li,
Pardalos, Ramakrishnan, and Resende [87]. This branch and bound algorithm is used by
Ramakrishnan, Pardalos, and Resende [121] in conjunction with the LP-based lower bound
described earlier.

In the first step, an initial upper bound is computed and an initial branch-and-bound
search tree is set up. The branch and bound tree is a binary tree, each node having a left
and right child. For the purpose of describing the branching process, denote, at any node
of the branch and bound treg, to be the set of already assigned facilities in the partial
assignmentSe the facilities that will never be in the partial assignment in any node of the
subtree rooted at the current node. Skt §- andS,, St be the corresponding sets for
the left and right children of the current node. lgetlenote the partial assignment at the
current node. Each node of the branch and bound tree is organized as a heap with a key
that is equal to the lower bound on the solution to the original QAP obtainable by any node
in the subtree rooted at this node. The binary tree is organized in maximum order, i.e. the
node with the largest lower bound is first.

The initial best known upper bound is computed by the GRASP heuristic described
in [88, 126]. The initial search tree consistsrohodes withSy = {i} and S = 0 for

34

J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

1600\\\ T T T 1T T T T 1T T T T T 1T
X
X
X
X
X
X
X
X
1400 - X -
X
1200
obj
1000
800 - ADP + -
simplex x
optimal QAP bound—
T
600 L] | Lol Lol
100 1000 10000 100000
seconds
FIGURE 7. CPLEX simplex and ADP iterates angl5

i=1,...,n,andq(i) = p(i), wherep is the permutation obtained by the GRASP and for
k+#1i, q(k) =0 and a key of 0.

In the second step, the four procedures of the branch-and-bound as described earlier are:

e Selection The selection procedure simply chooses the partial permutation stored in
the root of the heap, i.e. we pick the node with the maximum key.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 35

TABLE 7. Branch and bound algorithm oang05

permutation

node| UB LB
1| 52 58
2| 52 55
3| 52 52
4| 52 57
5| 52 50
6| 52 57
7| 52 50
8| 52 56
9| 52 56
10| 52 50
11| 52 60
12| 52 50
50 -

13| 50 56
14| 50 50

AP DPNWOAOAONPRE
PR RPEPNW!

PN O1LO1TOo1T ool oot

e Branching The branching procedure creates two children, the left and right children,

as follows:

pick i ¢&Sa

gA == SA

S = Ssufi}

S\ = Sau{i}

S =0

qd =g

d = qandq(i) = p(i),wherepis the incumbent

and the key of left child is the same as the key of the current node and the key of the
right child is the newly computed lower bound.

e Elimination The elimination procedure compares the newly computed lower bound
of the right child to the incumbent and deletes the right child if its key is greater than
the incumbent, thus pruning the entire subtree rooted at the right child.

e Termination TestThe algorithm stops if, and only if, the heap is empty.

In the final step, a best permutation found is taken as the global optimal permutation.

As an example of the branch and bound algorithm, consider the QAPLIB instance
nug05 . The iterations of the branch and bound algorithm are summarized in Table 7. The
GRASP approximation algorithm produced a solution (UB) having cost 52. The branch
and bound algorithm examined 14 nodes of the search tree. In the first five nodes, each
facility was fixed to location 1 and the lower bounds of each branch computed. The lower
bounds corresponding to branches rooted at nodes 1 through 4 were all greater than or
equal to the upper bound, and thus those branches of the tree could be pruned. At node 6 a
level-2 branching begins with a lower bound less than the upper bound produced at node 7.
Deeper branchings are done at nodes 8, 11, and 12, at which point a new upper bound is
computed having value 50. Nodes 13 and 14 complete the search. The same branch and
bound algorithm using the GLB scans 44 nodes of the tree to prove optimality.

36 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

TABLE 8. QAP test instances: LP-based vs. GLB-based B&B algorithms

LP-based B&B| GLB-based B&B time nodes
problem dim| nodes time nodes time| ratio ratio
nug05 5 12 11.7 44 0.1 117.0 3.7
nug06 6 6 9.5 82 0.1 95.0 13.7
nug07 7 7 16.6 115 0.1 166.0 16.4
nug08 8 8 35.1 895 0.2 175.5 111.9
nugl2 12| 220 5238.2 49063 14.6 358.8 223.0
nugl5 15| 1195 87085.7 1794507 9124 954 1501.7
scrl0 10 19 202.1 1494 0.6 336.8 78.6
scrl2 12| 252 5118.7 12918 4.8 1066.4 51.3
scrl5 15 228 3043.3 506360 274.7 11.1 2220.9
roul0 10 52 275.7 2683 0.8 344.6 51.6
roul2 12| 152 2715.9 37982 12.3 220.8 249.9
roul5 15/ 991 30811.7 4846805 2240.3 13.8 4890.8
esc08a 8 8 37.4 57464 7.0 53 7183.0
esc08b 8 208 491.1 7352 0.7 701.6 35.3
esc08c 8 8 42.7 2552 0.3 142.3 319.0
esc08d 8 8 38.1 2216 0.3 127.0 277.0
esc08e 8 64 251.0 10376 1.0 251.0 162.1
esc08f 8 8 37.6 1520 0.3 125.3 190.0
chriza 12 12 312.0 672 0.7 4457 56.0
chrizb 12 12 289.4 318 0.6 482.3 26.5
chrl2c¢ 12 12 386.1 3214 1.5 257.4 267.8
chrisa 15 15 1495.9 413825 235.5 6.4 27588.3
chri5b 15 15 1831.9 396255 217.8 8.4 26417.0
chri5c¢ 15 15 1908.5 428722 240.0 8.0 28581.5
chri8a 18 35 1600.0] >1.6x10° >10°| <6480 1 >45x10°

We tested the codes on several instances from the QAP library QAPLIB. Table 8 sum-
marizes the runs on both algorithms. For each instance it displays the name and dimension
of the problem, as well as the solution times and number of branch and bound search tree
nodes examined by each of the algorithms. The ratio of CPU times is also displayed.

The number of GRASP iterations was set to 100,000 for all runs.

Table 9 shows statistics for the LP-based algorithm. For each run, the table lists the
number of nodes examined, the number of nodes on which the lower bound obtained was
greater than the best upper bound at that moment, the number of nodes on which the lower
bound obtained was less than or equal to the best upper bound at that moment, and the
percentage of nodes examined that were of levels 1, 2, 3, 4, and 5 or greater.

6. BRANCH AND CUT METHODS

For some problems, branch and bound algorithms can be improved by refining the re-
laxations solved at each node of the tree, so that the relaxation becomes a better and better
approximation to the set of integral feasible solutions. In a general branch and cut method,
many linear programming relaxations are solved at each node of the tree. Like branch and
bound, a branch and cut method is an exact algorithm for an integer programming problem.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION

TABLE 9. QAP test instances: B&B tree search

nodes of B&B tree| percentage of nodes of level
problem| scan good bad 1 2 3 4 >5
nug05| 14 10 4| 357 28.6 214 143 0.0
nug06 6 6 0/1000 0.0 00 0.0 0.0
nug07 7 7 0| 1000 0.0 00 0.0 0.0
nug08 8 8 0| 1000 0.0 00 0.0 0.0
nugl2| 220 200 20 5.5 45.0 455 41 0.0
nugl5| 1195 1103 92 1.3 176 56.6 21.1 35
scrlol 19 18 1| 526 474 00 0.0 0.0
scrl2| 252 228 24 4.8 437 238 214 6.3
scrl5| 228 211 17 6.6 49.1 114 105 224
roul0| 54 46 8| 185 16.7 14.8 13.0 37.0
roul2| 154 137 17| 7.8 57.1 6.5 58 227
roul5| 991 912 79 15 21.2 695 12 6.6
esc08a 8 8 0/ 1000 0.0 0.0 0.0 0.0
escO8b 208 176 321 3.8 269 69.2 00 0.0
esc08c 8 8 0| 1000 0.0 00 0.0 0.0
esc08d 8 8 0| 1000 0.0 00 0.0 0.0
esc08¢ 64 56 8| 125 875 0.0 00 0.0
esc08f 8 8 0/1000 0.0 00 0.0 0.0
chrl2a| 12 12 0| 1000 0.0 00 0.0 0.0
chri2b| 12 12 0/ 1000 0.0 0.0 0.0 0.0
chri2c| 12 12 0/ 1000 0.0 0.0 0.0 0.0
chrisa| 15 15 0/ 1000 0.0 0.0 0.0 0.0
chri5b| 15 15 0| 1000 0.0 00 0.0 0.0
chri5sc| 15 15 0| 1000 0.0 00 0.0 0.0
chrl8a| 35 17 18| 514 486 00 0.0 0.0

37

In a cutting plane method, extra constraints are added to the relaxation. These extra
constraints are satisfied by all feasible solutions to the integer programming problem, but
they are violated by the optimal solution to the LP relaxation, so we call thething
planes As the nhame suggests, a branch and cut method combines a cutting plane approach
with a branch and bound method, attacking the subproblems at the nodes of the tree using
a cutting plane method until it appears that no further progress can be made in a reasonable
amount of time.

Consider, for example, the integer programming problem

min —2X1 — X2
s.t. X1 + 2 < 7
2X1 — X < 3
X1, X2 > 0, integer

This problem s illustrated in figure 8. The feasible integer points are indicated. The LP re-
laxation is obtained by ignoring the integrality restrictions; this is given by the polyhedron
contained in the solid lines. The boundary of teavex hullof the feasible integer points

38 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

X2

FIGURE 8. A cutting plane example

is indicated by dashed lines and can be described by the inequalities

Xy — X < 1
X1 < 2
X1+ X < 4
X < 3

X,X2 > 0.

When solving this problem using a cutting plane algorithm, the linear programming
relaxation is first solved, giving the poirt = 2.6, x, = 2.2, which has value-7.4. The
inequalitiesx; + x2 < 4 andx; < 2 are satisfied by all the feasible integer points but they
are violated by the poini2.6,2.2). Thus, these two inequalities are vatidtting planes
Adding these two inequalities to the relaxation and solving again gives thexpoing,
x2 = 2, with value—6. Notice that this point is feasible in the original integer program,
so it must actually be optimal for that problem, since it is optimal for a relaxation of the
integer program.

If instead of adding both inequalities, we had just added the inequality 2, the
optimal solution to the new relaxation would have bgegr- 2, x, = 2.5, with value—6.5.

We could then have looked for a cutting plane that separates this point from the convex
hull, for examplex; + x2 < 4, added this to the relaxation and solved the new relaxation.
This illustrates the basic structure of a cutting plane algorithm:

e Solve the linear programming relaxation.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 39

o If the solution to the relaxation is feasible in the integer programming problem,
STOP with optimality.

e Else, find one or more cutting planes that separate the optimal solution to the re-
laxation from the convex hull of feasible integral points, and add a subset of these
constraints to the relaxation.

e Return to the first step.

Notice that the values of the relaxations provide lower bounds on the optimal value of
the integer program. These lower bounds can be used to measure progress towards opti-
mality, and to give performance guarantees on integral solutions. None of these constraints
can be omitted from the description of the convex hull, and they are daltexdsof the
convex hull. Cutting planes that define facets are the strongest possible cutting planes, and
they should be added to the relaxation in preference to non-facet defining inequalities, if
possible. Families of facet defining inequalities are known for many classes of integer pro-
gramming problems (for example, the traveling salesman problem [47, 108], the matching
problem [32], the linear ordering problem [48], and the maximum cut problem [27, 28]).
Jinger et al. [63] contains a survey of cutting plane methods for various integer program-
ming problems. Nemhauser and Wolsey [105] gives more background on cutting plane
methods for integer programming problems.

Traditionally, Gomory cutting planes [46] were used to improve the relaxation. These
cuts are formed from the optimal tableau for the LP relaxation of the integer program.
Cutting plane methods fell out of favour for many years because algorithms using Gomory
cuts showed slow convergence. The resurgence of interestin these methods is due to the use
of specialized methods that search for facets, enabling the algorithm to converge far more
rapidly. The cutting planes are determined usingeparation routingwhich is usually
very problem specific. General integer programming problems have been solved by using
cutting planes based on facets of kmapsack problemin{c"x:a"x < b,x > 0,x intege#:
each constraint of the general problem can be treated as a knapsack constraint [59]. Other
general cutting plane techniques include lift-and-project methods [10]. Gomory cutting
planes have also been the subject of a recent investigation [11]. It appears that they are not
as bad as originally thought, and they in fact work quite well if certain modifications are
made, such as adding many constraints at once.

The separation problenfor the problem mific™x : Ax < b, x intege can be defined
as:

Given a point, either determine thatis in the convex hul of the feasible
integer points, or find a cutting plane that separatiesm the convex hull.

Grétschel et al. [49] used the ellipsoid algorithm to show that if the separation problem can
be solved in polynomial time then the probléiR) itself can also be solved in polynomial
time. It follows that the separation problem for AlP-hard problem cannot be solved

in polynomial time, unles® = NP. Many of the separation routines in the literature are
heuristics designed to find cutting planes belonging to certain families of facets; there
are many undiscovered families of facets, and N&hard problems, it is unlikely that a
complete description of the facets of the convex hull will be discovered. Such a description
would certainly contain an exponential number of facets (provilegdNP). Even small
problems can have many facets. For example, the convex hull of the travelling salesman
problem with only nine cities has over 42 million facets [21].

40 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

1. Solve the current relaxation @if°) approximately using an inte
rior point method.

2. Generate an integral feasible solution from the approximate primal
solution.

3. If the gap between the best integral solution found so far and the
best lower bound provided by a dual solution is sufficiently small,
STOP with an optimal solution to the original problem.

4. Otherwise, use a separation routine to generate cutting planes, add
these constraints to the LP relaxation, and return to Step 1.

FIGURE 9. A conceptual interior point cutting plane algorithm

6.1. Interior point cutting plane methods. We now assume that our integer program-
ming problem takes the form

min c'x
subject to AX = b
0<x < u (IP)
Xi binary fori in |
X satisfies some additional conditions

whereA is anm x n matrix of rankm, ¢, u, andx aren-vectorsb is anm-vector, and is

a subset of 1,... ,n}. We assume that these additional conditions can be represented by
linear constraints, perhaps by an exponential number of such constraints. For example, the
traveling salesman problem can be represented in this form, with the additional conditions
being the subtour elimination constraints [47, 108], and the condii@asb representing

the degree constraints that the tour must enter and leave each vertex exactly once. It is
also possible that the problem does not need any such additional conditions. Of course,
problems with inequality constraints can be written in this form by including slack vari-
ables. Note that we allow a mixture of integer and continuous variables. In this section,
we describe cutting plane methods to solve (IP) where the LP relaxations are solved using
interior point methodsComputational experience with interior point cutting plane meth-
ods is described in [99, 96, 101]. Previous surveys on interior point cutting plane methods
include [94, 95].

It has been observed that interior point algorithms do not work very well when started
from close to a nonoptimal extreme point. Of course, this is exactly what we will have to
do if we solve the LP relaxation to optimality, since the fractional optimal solution to the
relaxation will be a nonoptimal infeasible extreme point after adding a cutting plane. The
principal method used to overcome this drawback is to only solve the relaxation approxi-
mately. We use this approximate solution to generate an integral feasible point that is, with
luck, close to the optimal integral solution. The best integral solution found so far gives an
upper bound on the optimal value @P) and the value of the dual solution gives a lower
bound. A conceptual interior point cutting plane algorithm is given in Figure 9.

To make this algorithm practical, we have to decide how accurately to solve the relax-
ations. Notice that if the entries inare integral then it is sufficient to reduce the gap
between the integral solution and the lower bound to be less than one. Other refinements
include methods for choosing which cuts to add, generating good integral solutions, drop-
ping unimportant constraints, and fixing variables at their bounds. We discuss all of these

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 41

issues, and conclude by presenting the complete algorithm, and some typical computa-
tional results.

In what follows, we refer several times to the linear ordering problem and to finding
the ground state of an Ising spin glass with no external force, which we call the Ising spin
glass problem. We now define those problems.

The linear ordering problem:
Given p sectors with costg;j for placing sector before sectoj for each pair
i andj of sectors, find a permutation of the sectors with minimum total cost.

This problem can be represented algebraically as follows:

min Yi<i<pici<pizjGijXi
subject to Xij+X;i = 1forall pairsi and]
X binary

X satisfies the triangle inequalities,

where the triangle inequalities require that
Xij + Xjk + X < 2

for each triple(i, j,k). When this problem is solved using a cutting plane approach, the
triangle inequalities are used as cuts. They define facets of the convex hull of feasible solu-
tions. Other facets are known (seeo@chel et al. [48]), but these prove to be unnecessary
for many problems.

The Ising spin glass problem:

Given a grid of points on a torus, and given interaction forgebetween
each point and each of its neighbours, partition the vertices into two sets to
minimize the total cost, where the total cost is the sum of all interaction forces
between vertices that are in different sets.

The physical interpretation of this problem is that each point possesses either a positive
or a negative charge, and the interaction force will be eithéror —1 depending on the
charges on the neighbours. The interactions between the points can be measured, but the
charges at the points cannot and need to be determined. The Ising spin glass problem is a
special case of theaximum cut problem

Given a grapl = (V, E) and edge weightw;, partition the vertices into two
sets to maximize the value of the cut, that is, the sum of the weights of edges
where the two ends of the edge are in opposite sets of the partition.

This problem can be represented as an integer program, whieidicates whethegis in
the cut:
min c'x
subjectto x is binary
X satisfies the cycle/cut inequalities.

The cycle/cut inequalities exploit the fact that every cycle and every cut intersect in an even
number of edges. They can be stated as

X(F)=x(C\F) <[F| -1

for setsF of odd cardinality, wher€ is a cycle in the graph, andS) := ¥ ¢csXe for any
subset of the edges. An inequality of this form defines a facet if the c@die chordless.

42 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

6.2. Solving the relaxations approximately. The principle technique used to make an
interior point cutting plane algorithm practical is early termination: the current relaxation
is only solved approximately. Typically, the relaxations are solved more exactly as the
algorithm proceeds.

There are two main, related, advantages to early termination. In the first place, iter-
ations are saved on the current relaxation and the early solution is usually good enough
to enable the efficient detection of cutting planes, so solving the relaxation to optimality
would not provide any additional information but would require additional computational
effort. Secondly, the approximate solution provides a better starting point for the method
on the next relaxation, because it is more centered than the optimal solution.

The disadvantages result from the fact that the solution to the current relaxation may
be the optimal solution to the integer program. It is possible that the approximate solution
is not in the convex hull of feasible integral solutions, even though the optimal solution
is in this set, and so cutting planes may be generated and the relaxation may be modified
unnecessarily. On the other hand, if the approximate solution is in the convex hull, the
separation routines will not find cutting planes, but time will be wasted in trying to find
cuts. The effect of the first drawback can be mitigated by initializing the relaxation with a
point that is not too far from the center of the convex hull, and by solving the relaxation to
optimality occasionally, for example on every tenth relaxation. This last technique proved
to be very useful in the experiments on Ising spin glass problems described in [96].

One way to reduce the cost of the first drawback is to control how accurately the re-
laxations are solved by using a dynamically adjusted tolerance for the duality gap: one
searches for cutting planes once the duality gap falls below this tolerance. If many cutting
planes are found, then perhaps one did not need to solve the current relaxation so accu-
rately, so one can increase this tolerance. On the other hand, if only a few cutting planes
are found then the tolerance should be decreased. In most of those experiments, the toler-
ance was initiliazed with a value of 0.3 on the relative duality gap and then was modified
by multiplying by a power of 1.1, with the power depending on the number of cuts found
and on how badly these cuts were violated by the current iterate.

Other ways to control the accuracy include requiring that the current primal solution
should have better value than the best known integral solution, and that the dual solution
should be better than the best known lower bound. Perhaps surprisingly, it was observed
that the condition based on the dual value is in general too restrictive, forcing the algorithm
to perform more iterations than necessary on the current relaxation without resulting in a
reduction in the total number of relaxations solved. Mitchell has even had mixed results
with the condition on the primal solution: for the linear ordering problem, this condition
resulted in an increase in computational times, but it improved runtimes for Ising spin glass
problems. (The Ising spin glass problems are harder than the linear ordering problems.)

A more sophisticated condition is to require that the relaxations be solved to an accuracy
such that it appears that the optimal value to the relaxation would not be sufficiently good
to enable the algorithm to terminate, unless it provided an optimal integral solution. For
example, one can require that the average of the primal and dual values should be at least
one less than the best known integral value, if all the data is integral. If one solves such a
relaxation to optimality, the lower bound would not be sufficient to prove optimality with
the current best known integral solution. A similar condition was helpful for the Ising spin
glass problems.

6.3. Restarting. When cutting planes are added, the current primal iterate is no longer
feasible, and the algorithm must be restarted. Itis possible to restart from the current iterate

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 43

using a primal-dual infeasible interior point method, perhaps with an initial centering step,
but it has been observed that other techniques have proved superior in practice.
After adding cutting planes, the primal relaxation becomes

min c'x
subjectto Ax = b
A + x° = b®° (LPnew
0 < x < u
0 < X < W,

wherex, is the vector of slack variables for the cutting planes giveAby< b°. The dual
(LDnew) to this problem can be written

max b’y + boTy° — u'w — uwTwe
subjectto ATy + ATy 4+ 7z — w = c
y° + 2 - w = 0
z,2° wwl > 0.

Since one uses an interior point method, and did not solve the last relaxation to optimality,
the last iterate is a primal dual pair(y, z,w) satisfyingAx=Db, 0< X< u, ATy+z—-w=c,
z>0,w>0.

A feasible interior solution tol(Dnew) is obtained by setting® = 0 andz’ =w° = ¢ for
any positivee (a typical value is 10%). It is often beneficial to update the dual solution to
an older iterate thafy, z,w), which will be more centered. It is also useful to increase any
small components off or zup toe if necessary; ifv; is increased, thep is also increased
to maintain dual feasibility, and vice versa.

Primal feasibility is harder to maintain, sinééx > b. Possible updating schemes are
based upon knowing a poir® in the interior of the convex hull of feasible integer points.
Of course, such a point will be an interior point(ioBPnew. One can either update to this
point, or to an appropriate convex combination of this point &antt is often straightfor-
ward to initializexQ: for the linear ordering problem and for the maximum cut problem,
one can takeQ to be the vector of halves; for the undirected traveling salesman problem
on a complete graph with cities, one can take each componenBfto be 2/(n— 1)
(each component corresponds to an edge; an edg the tour if and only ifxe = 1).
The pointx? can be updated by moving towards the current primal iterate or by moving
towards the best integral solution found so far. For the Ising spin glass problem, Mitchell
found it best not to update?, but to restart by taking a convex combinationx8fandx
which was 95% of the way from® to the boundary of new the relaxation. On the other
hand, updating® by moving towards the current primal iterate worked well for the linear
ordering problem. Another possible restarting scheme is to store earlier iterates, and take
the most recent iterate that is feasible in the current relaxation. This works well on some
instances, but it is generally outperformed by methods basef.on

6.4. Primal heuristics and termination. A good primal heuristic can save many itera-
tions and stages, especially if the objective function data is integral. The algorithm ter-
minates when the gap between the best known integral solution and the best lower bound
drops below some tolerance. If the data is integer, then a tolerance of one is sufficient, so
it is not necessary to refine the relaxation to such a degree that it completely describes the
convex hull in the region of the optimal integral solution.

The importance of the primal heuristic varies from problem to problem. Mitchell found
that his runtimes improved dramatically for the Ising spin glass problem when he imple-
mented a good local search heuristic, even though the heuristic itself required as much as

44 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

60% of the total runtime on some large instances. The primal heuristic was not nearly
so important for the linear ordering problem, where it was relatively easy to generate the
optimal ordering from a very good fractional solution. Another indication of the difference
in the importance of the primal heuristic for these two problems could be observed when
Mitchell tried to solve them so that the gap between the best integral solution and the lower
bound was less than, say, ¥0 The linear ordering problems could be solved almost as
easily as before, but the larger spin glass problems became computationally intractable.

6.5. Separation routines. Separation routines are problem specific. Good routines for
simplex based cutting plane algorithms can usually be adapted to interior point cutting
plane methods. Because the iterates generated by the interior point approach are more
centered, it may be possible to find deeper cuts and cutting planes that are more important.
This is a topic that warrants further investigation.

One issue that is specific to separation routines for interior point cutting plane algo-
rithms is the effect of the cutting planes on the sparsity of the ma#x (Here,A rep-
resents the whole constraint matrix.) If the structure of this matrix is unfavourable, then a
simplex method will outperform an interior point method based on Cholesky factorization,
even for the linear programming relaxation (see, for example, [90]). For this reason, it is
often useful to add cuts that are variable-disjoint, that is, a partisukgspears in just one
of the constraints added at a particular stage.

6.6. Fixing variables. When using a simplex cutting plane algorithm, it is well known
that a variable can be fixed at zero or one if the corresponding reduced cost is sufficiently
large (see, for example [108]). The dual variables can be used for the same purpose if an
interior point method is used.

When using a cutting plane algorithm, an upper bounan the optimal value is pro-
vided by a feasible integral solution. Lebe the value of the current dual itergiez, w).

It was shown in [97] that if; > vy — Vthenx; must be zero in any optimal integral solution.
Similarly, if wi > w, — vthenx must be one in any optimal solution.

These techniques can be very useful for reducing the size of the relaxations. They are
most useful when the objective function data is fractional, since the gap between the upper
and lower bounds has to become small in order to prove optimality, so many of the dual
variables will eventually be large enough that the integral variables can be fixed.

Notice that if a variable is fixed, and thus eliminated from the relaxation, the g8int
is no longer feasible. Therefore care has to be taken when restarting the algorithm. In
particular, it is useful to examine the logical implications of fixing a variable; it may be
possible to fix further variables, or to impose constraints on the remaining variables. For
example, when solving a maximum cut problem, if one fixes two of the edges of a cycle of
length 3 then the third edge can also be fixed. If one fixes one edge of a cycle of length 3,
then the variables for the other two edges can be constrained to either take the same values
as each other, or to take opposite values, depending on the value of the fixed edge. Fixing
variables and adding these logical constraints can worsen the conditioning of the constraint
matrix, perhaps introducing rank deficiencies. Thus, care must be exercised.

6.7. Dropping constraints. Dropping unimportant constraints reduces the size of the re-
laxation and so enables the relaxation to be solved more quickly. It is possible to develop
tests based on ellipsoids to determine when a constraint can be dropped, but the cost of
these tests outweighs the computational savings. Therefore, an implementation will gen-
erally drop a constraint based on the simple test that its slack variable is large. Of course,

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 45

1. Initialize: Read in the problem. Set up the initial relaxation. Find
initial interior feasible primal and dual points. Find a paiftin
the interior of the convex hull of feasible integral solutions. Chopse
a tolerancea on optimality for the integer program. Choose a tpl-
erancep on the duality gap for the relaxation. Initialize the upper
and lower bounds” andv* on the optimal value appropriately.

2. lterate: Take a primal-dual predictor-corrector step from the dur-
rent iterate.

3. Add cuts? If the relative duality ga@ is smaller tharp (and per-
haps if other conditions on the primal and dual values are met),
then go to Step 4; otherwise, return to Step 2.

4. Primal heuristic; Search for a good integral solution, starting
from the current primal iterate. Upda#¥ if a solution is found
which is better than this bound.

5. Check for optimality: If W —v- < 1, STOP: the best integer so-
lution found so far is optimal.

6. Search for cutting planes: Use the separation routines to find
cutting planes. If cutting planes are found, go to Step 7. If npne
are found an® > 108, reducep and return to Step 2. If none are
found andd < 10~8 then STOP with a nonoptimal solution; use
branch and bound to find the optimal solution.

7. Modify the relaxation: Add an appropriate subset of the violat
constraints to the relaxation. Incregséf it appears that the re
laxations do not need to be solved so accurately. Decg#sé
appears that the relaxations need to be solved more accurately. Fix
any variables if possible, and add any resulting constraints. Drop
unimportant constraints.

8. Restart; Update the primal and dual solutions to give feasible
terior points in the new relaxation. Return to Step 2.

1%
o

n_

FIGURE 10. An interior point cutting plane algorithm

it is undesirable to have a constraint be repeatedly added and dropped; a possible remedy
is to insist that a constraint cannot be dropped for several stages.
The development of efficient, rigorous tests for dropping constraints would be useful.

6.8. The complete algorithm. The complete algorithm is contained in figure 10.

If a primal feasible solution is known can be initialized in Step 1 to take the value
of that solution; otherwisg! should be some large number. If all the objective function
coefficientsc; correspond to binary variables, then the lower bodndan be initialized
to bey; min{c;,0}; otherwise, the lower bound can be taken to be a negative number with
large absolute value.

6.9. Some computational results.We present some computational results for Ising spin
glass problems on grid of sizes up to 20000 in Table 10. For comparison, De Simone et

al. [26] have solved problems of size up tox @0 with a simplex cutting plane algorithm
using CPLEX3.0 on a Sun Sparc 10 workstation, requiring up to a day for each problem.
The results in Table 10 were obtained on a Sun Sparc 20/71, and are taken from [98]. As
can be seen, even the largest problems were solved in an average of Ies% thans3

46

J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

L | Sample Mean| Std Dev| Minimum | Maximum
Size

10| 100 0.42 0.20 0.17 1.17
20| 100 4.87 2.01 1.30 12.48
30| 100 24.32| 11.84 7.42 87.00
40| 100 88.46| 43.68 32.50 259.02
50| 100 272.86| 151.59 96.35 795.50
60| 100 860.57| 969.79 227.38| 7450.18
70| 100 1946.14| 1286.13| 593.57| 8370.37
80| 100 5504.11| 4981.00| 1403.27| 32470.40
90| 100 || 10984.82 6683.37| 2474.20| 28785.30
100| 100 || 12030.69 3879.55| 3855.02| 21922.60

TABLE 10. Time (seconds) to solve Ising spin glass problems

They needed approximately nine iterations per relaxation — the later relaxations required
more iterations and the earlier relaxations fewer. The primal heuristic took approximately
40% of the total runtime.

6.10. Combining interior point and simplex cutting plane algorithms. Practical expe-

rience with interior point cutting plane algorithms has shown that often initially they add

a large number of constraints at a time (hundreds or even thousands), and the number of
added constraints decreases to just a handful at a time towards the end. The number of iter-
ations to reoptimize increases slightly as optimality is approached, because the relaxations
are solved to a higher degree of accuracy.

When a simplex method is used to solve the relaxations, the number of iterations to
reoptimize depends greatly on the number of added constraints. Initially, when many con-
straints are added, the dual simplex method can take a long time to reoptimize, but towards
the end it can reoptimize in very few iterations, perhaps as few as ten.

Because of the time required for an iteration of an interior point method, it is very hard
to compete with the speed of simplex for solving these last few relaxations. Conversely,
the interior point method is considerably faster for the first few stages. The interior point
method may also make a better selection of cutting planes in these initial stages, because
it is cutting off an interior point that is well-centered, a property that is intensified because
it is looking for cutting planes before termination.

Mitchell and Borchers [100] investigated solving linear ordering problems with a cut-
ting plane code that uses an interior point method for the first few stages and a dual simplex
method for the last few stages. Computational results are contained in table 11. These prob-

n | % zeros| Interior | Simplex| Combined
150 0 206 75 68
200 0 755 385 209
250 0 4492 3797 592
100 20%| 1405 1296 230
150 10%| 2247 1294 208
200 10% N/A 9984 879

TABLE 11. Preliminary Results on Linear Ordering Problems.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 47

lems have up to 250 sectors, with a percentage of the cost entries zeroed out. The nonzero
costs above the diagonal were uniformly distributed between 0 and 99, and those below
the diagonal were uniformly distributed between 0 and 39. The table contains runtimes in
seconds on a Sun SPARC 20/71 for an interior point cutting plane code, a simplex cutting
plane code using CPLEX 4.0, and a combined cutting plane code. The interior point code
was unable to solve the problems with 200 sectors and 20% of the entries zeroed out be-
cause of space limitations. As can be seen the combined code is more than 10 times faster
than the simplex code on the largest problems, and the interior point and simplex codes
require similar amounts of time, at least on the harder problems.

6.11. Interior point column generation methods for other problems. A cutting plane
method can be regarded as a column generation method applied to the dual problem. In-
terior point methods have been successfully applied in several other situations amenable
to solution by a column generation approach. Goffin et al. [42] have solved nondifferen-
tiable optimization problems. Bahn et al. [9] have used an interior point method within the
L-shaped decomposition method of Van Slyke and Wets [136] for stochastic programming
problems. Goffin et al. [41] have also solved multicommaodity network flow problems using
an interior point column generation approach. In this method, the columns correspond to
different paths from an origin to a destination, and they are generated by solving a shortest
path problem with an appropriate cost vector.

6.12. Theoretical issues and future directions.As mentioned earlier, the ellipsoid al-
gorithm can be used to solve an integer programming problem in polynomial time if the
separation problem can be solved in polynomial time. It is not currently known how to use
an interior point method in an exactly analogous way. Atkinson and Vaidya [8] developed
an interior point algorithm for this process, but their algorithm requires that unimportant
constraints be dropped, unlike the ellipsoid algorithm. Vaidya later obtained a similar result
for an algorithm that used the volumetric center [138]. Goffin et al. [44] have proposed a
fully polynomial algorithm that does not require that unimportant constraints be removed.
Itis an interesting open theoretical question to find an interior point algorithm that does not
require that unimportant constraints be removed, and also solves the optimization problem
in polynomial time provided the separation problem can be solved in polynomial time.

The algorithms proposed in [8, 138, 44] required that only a single constraint be added
at a time, and that the constraint be added far from the current iterate. These algorithms
have been extended to situations where many cuts are added at once, and the constraints are
added right through the currentiterate, with no great increase in the complexity bound [124,
125, 43]. It has been shown thafaftonstraints are added through the analytic center then
the analytic center of the new feasible region can be four@ ijfp) iterations [124].

There are several open computational questions with interior point cutting plane meth-
ods. Combining interior point methods with the simplex algorithm needs to be investigated
further. When a direct method is used to calculate the Newton direction, it is necessary to
choose an ordering of the columnsAAT to reduce fill in the Cholesky factor; it would
be interesting to see if the ordering from one stage can be efficiently modified to give an
ordering for the next stage, rather than calculating an ordering from scratch. When the con-
straint matrix contains many dense columns, it becomes expensive to use a direct method
to calculate the Newton direction; it would be interesting to examine whether it is efficient
to switch to a preconditioned conjugate gradient method in the later stages.

48 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

7. NONCONVEX POTENTIAL FUNCTION MINIMIZATION

Consider the problem of maximizing a convex quadratic function defined as

m
(62) maxw'w=$ w?
2"
subject to
(63) ATw < b.

The significance of this optimization problem is that many combinatorial optimization
problems can be formulated as above with the additional requirement that the variables
are binary.

In [73, 77] a new affine scaling algorithm was proposed for solving the above problem
using a logarithmic potential function. Consider the nonconvex optimization problem

(64) min {$(w) | A'w < b},
where
_ B 2 1g .
(65) dw) = log(m—w'w)"?—= i;logd. (w)
m—w'w
(66) = 'Og{iﬂ'h”:l Gw) /n}
and where
(67) dw)=b—a'w, i=1,...,n,

are the slacks. The denominator of the log term @) is the geometric mean of the slacks
and is maximized at the analytic center of the polytope defined by
L={weR™ ATw<b}.
To find a local (perhaps global) solution of (64), an approach similar to the classical
Levenberg-Marquardt methods [86, 91] is used. Let
W e L= {we R™|ATw < b}

be a given initial interior point. The algorithm generates a sequence of interior polnts of
Let wX e L9 be thek-th iterate. Around* a quadratic approximation of the potential

function is set up. LeD = diag(dy(w), ... ,dn(W)), e= (1,...,1), fo = m—w'wandC be

a constant. The quadratic approximationpéiv) aroundwX is given by

(68) QW) = 5 (W—WA)TH (W) + T (W wh) +C
where the Hessian is
(69) He -2 2™ 4 Lap2aT

fo fg n

and the gradient is
(70) he —Lwktlaple
fo n

Recall that minimizing (68) over a polytope is NP-complete. However, if the polytope is
substituted by an inscribed ellipsoid, the resulting approximate problem can be solved in
polynomial time [147]. Since preliminary implementations of this algorithm indicate that

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 49

trust region methods are more efficient for solving these problems, in the discussion that
follows we consider a trust region approach.
Consider the ellipsoid

E(r)= {we R™ | (w—wK)TAD2AT (w—wK) < rz}.
To see that the ellipsoil (r) is inscribed in the polytopk, assume that = 1 and let
ye E(1). Then
(y—w)TAD?AT(y—wf) <1
and consequently
D'AT(y-w) <e,
wherew® ¢ L. Denoting the-th row of AT by a", we have

1 T wk ,
—a (Y— <lvVvi=1...,n
Hence,
al (y—wK) <b—a/ws Vi=1,...,n,
and consequently
ay<b, Vi=1,....n,

i.e. ATy < b, showing thay € L. This shows thaE (1) ¢ L and sinceE (r) ¢ E(1), for
0<r<1,thenE(r) cL,i.e. E(r)isaninscribed ellipsoid ik.

Substituting the polytope by the appropriate inscribed ellipsoid and |iting w—wX
results in the minimization of a quadratic function over an ellipsoid, i.e.

(71) min %(AW)T HAw+h'Aw
subject to
(72) (Aw)TAD2AT (Aw) < 12,

The optimal solutiod\w* to (71-72) is a descent direction @{w) from wX. For a given
radiusr > 0, the value of the original potential functigr(w) may increase by moving

in the directionAw*, because of the higher order terms ignored in the approximation. It
can be easily verified, however, that if the radius is decreased sufficiently, the value of
the potential function will decrease by moving in the n&w* direction. We shall say a
local minimumto (64) has been found if the radius must be reduced below a tolegdace
achieve a reduction in the value of the potential function.

The following result, proved in [73], characterizes the optimal solution of (71-72). Us-
ing a linear transformation, the problem is transformed into the minimization of a quadratic
function over a sphere.

Consider the optimization problem

(73) min %XTQX—F c'x

subject to

(74) x'x<r?,

whereQ € R™™M js symmetric and indefinites,c € R™ and O<r € R. Letus,...,uUn
denote a full set of orthonormal eigenvectors spanRfigand letA, ..., Ay be the cor-

responding eigenvalues ordered so thatk A2 < --- < Ap-1 < Ap. Denote 0> Apin =

50 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

min{A1,... ,Am} andumi, the corresponding eigenvector. Furthermoreglbe such that
Amin=A1="--- = Aq < Agq+1. TO describe the solution to (73—74) consider two cases:
Case 1: Assumg; ,(c"ui)? > 0. Let the scalak € (—,Amin) and consider the paramet-
ric family of vectors

M (AT
N=-3 (‘;i ‘f);'

For anyr > 0, denote byA(r) the unique solution of the equatioi\)"x(A) = r? in A.
Thenx(A(r)) is the unique optimal solution of (73—74).

Case 2: Assume'u; = 0,Vi = 1,...,q. Let the scalai € (—oo,Amin) and consider the
parametric family of vectors

m(cTu)uy

A=A

(75) X(\) = —
i=0+1

Let

Fmax= [X(Amin)||2-
If r < rmaxthen for any O< r < rmax denote byA(r) the unique solution of the equation
X(A)TX(A) =r2in A. Thenx(A(r)) is the unique optimal solution of (73-74).
If r > rmax then letay, 0o, ... ,aq be any real scalars such that

q

2 __ .2 2
_Zlai =I"—T'max
i=

Then
q m (cTui)ui
Xx=Y ajuj — —_—
D

is an optimal solution of (73—74). Since the choicexg$ is arbitrary, this solution is not
unique.

This shows the existence of a unique optimal solution to (73—#4Xif max The proof
of this result is based on another fact, used to develop the algorithm described in [73, 77],
that we state next.

Let the length ok(A) be

L (x(A) = [XAW)]Z = x(A)Tx(N),

thenl (x(A)) is monotonically increasing ik in the interval\ € (—o,Amin). To see this is
so, consider two cases. First, assupfle; (c"uj)? > 0. Consider the parametric family of
vectors

[LLEFPN TR
=3 S,

for A € (—o0, Amin). Now, assume that'u; = 0,Vi = 1,...,q and consider the parametric
family of vectors

M (cTu)u

A=A

(76) X(\) = —
i=g+1

for A € (—o0, Amin). Furthermore, assume
F < |[X(Amin)|[2-
Thenl (x(A)) is monotonically increasing ik in the interval\ € (—co, Apin).

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 51

procedure cmg(n, A, b, o, 1o, 1o)

1 k=0;y=1/(o+1/n); L=ly I=lp; K=0;
2 = get_start_point(A,b);

3 dol>eg—

4 AW* = descent_direction(y,wWX,1,1);

5 do d(WK+aAw*) > d(WX) and T >€ —
6 I=1/Iy;

7 AW* = descent_direction(y,wWX,1,1);
8 od;

9 if &(WK+ aAw*) < o(WK) —

10 WL = WK+ aAw,

11 k=k+1;

12 fi;

13 od;

endcmg;

FIGURE 11. Proceduremg: Algorithm for nonconvex potential func-
tion minimization

The above result suggests an approach to solve the nonconvex optimization problem
(64). At each iteration, a quadratic approximation of the potential fundtiov) around
the iteraten® is minimized over an ellipsoid inscribed in the polytopre < R™ATw < b}
and centered at¥. Either a descent directidaw* of ¢ (w) is produced onX is said to be a
local minimum. A new iterat@¥*1 is computed by moving fromX in the directionAw*
such thath(wKt1) < ¢(wX). This can be done by moving a fixed stepn the direction
Aw* or by doing a line search to firthat minimizes the potential functi@r{wX + aAw*)
[134].
Figure 11 shows a pseudo-code procedu® for finding a local minimum of the con-
vex quadratic maximization problem. Procedumg takes as input the problem dimension
n, the A matrix, theb right hand side vector, an initial estimaig of parametep and ini-
tial lower and upper bounds on the acceptable lengtandlo, respectively. In line 2,
\g/];t _stagt _point returns a strict interior point of the polytope under consideration, i.e.
eLO.
The algorithm iterates in the loop between lines 3 and 13, terminating when a local
optimum is found. At each iteration, a descent direction of the potential fundiion
is produced in lines 4 through 8. In line 4, the minimization of a quadratic function over
an ellipsoid (71-72) is solved. Because of higher order terms the direction returned by
descent _direction may not be a descent direction fpfw). In this case, loop 5to 8 is
repeated until an improving direction for the potential function is produced or the largest
acceptable length falls below a given tolerance
If an improving direction foxp(w) is found, a new point*** is defined (in line 10) by
moving from the current iterate® in the directiorAw* by a step lengtl < 1.

7.1. Computing the descent direction. Now consider in more detail the computation of
the descent direction for the potential function. The algorithm described in this section is
similar to the trust region method described in Earid Sorensen [104].

52 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

As discussed previously, the algorithm solves the optimization problem

1
(77) min E(Aw)THAw+ h' Aw
subject to
(78) (Aw)TAD2ATAW <2 <1

to produce a descent directidmv* for the potential functiop(w). A solutionAw* € R™
to (77-78) is optimal if and only if there exigtis> 0 such that

(79) (H +pAD2AT) Aw* = —
(80) H((aw")TAD?ATAW —12) =0
(81) H + uAD AT is positive semidefinite

With the change of variablas= 1/(u+ 1/n) and substituting the Hessian (69) and the
gradient (70) into (79) we obtain

-1
AW = — (ADZAT 2VwkwkT =) X
0
1 —1
(82) y ——Wk+—AD e
fo n
that satisfies (79). Note thatdoes not appear in (82) and that (82) is not defined for all

values ofr. However, if the radius of the ellipsoid (78) is kept within a certain range,
then there exists an intervakQy < ymax such that

(83) AD2AT — 2VwkwkT — f—
0

is nonsingular. Next, we show that fvusmall enougliw* is a descent direction @f(w).
Note that

T (ADZAT - %’MWT - %l)ly<—fiwk+ %AD1e>
_ —[ADZAT{I—V(ADZAT)1< Swiwk — £)Hlx
y L tapte
(o)
-y P iy(AD‘ZAT)‘l (f—zgvxlkmlkT + f—10|ﬂ - (AD2AT)-1
(-%war %AD1e>
_ y[l +0y(AD—2AT)—l (%wkwkT =)]_lx

(84) (AD2AT)~1(—h).

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 53
Lety=¢€ > 0 and consider Iig‘nTAW*. Since
e—0

lim Aw* =& (AD2AT)"1(—h)
e—0T

then
lim, h"Aw* = —e hT (AD72AT) " 1h,
£—
Since, by assumptios,> 0 andh” (AD—2AT)~th > 0 then
lim h"Aw* < 0,
e—0t

showing that there existg> 0 such that the directioAw*, given in (82), is a descent
direction of¢ (w).

The idea of the algorithm is to solve (77-78), more than once if necessary, with the
radiusr as a variable. Parameteis varied untilr takes a value in some given interval.
Each iteration of this algorithm is comprised of two tasks. To simplify notation, let

(85) He = AD2AT
2 1
fs fo
and define
M = Hc+ yHo.

Given the current iterateX, we first seek a value gfsuch thaMAw = yh has a solution
Aw*. This can be done by binary search, as we will see shortly. Once such a paraimeter
found, the linear system

(87) MAW* = yh

is solved forAw* = Aw*(y(r)). As was shown previously, the lendtfiw*(y)) is a mono-
tonically increasing function of in the interval 0< y < ymax. Optimality condition (80)
implies thatr = /I (Aw*(y)) if u> 0. Small lengths result in small changes in the potential
function, sincer is small and the optimal solution lies on the surface of the ellipsoid. A
length that is too large may not correspond to an optimal solution of (77-78), since this
may requirer > 1. An interval(l,l) called theacceptable length regions defined such

that a length (Aw* (y)) is accepted if < I(Aw*(y)) <I. If I(Aw*(y)) < |, yis increased and

(87) is resolved with the neM matrix andh vector. On the other hand, lifaw* (y)) > 1,

yis reduced and (87) is resolved. Once an acceptable length is produced & (geas

the descent direction.

Figure 12 presents pseudo-code for procedaseent _direction , where (77-78) is
optimized. As input, procedurdescent _direction is given an estimate for parame-
ter y, the current iterateV® around which the inscribing ellipsoid is to be constructed
and the current acceptable length region defined bydI. The value ofy passed to
descent _direction at minor iteratiork of cmqis the value returned kdescent _direction
at minor iteratiork — 1. It returns a descent directidw* of the quadratic approximation
of the potential functior(w) from wX, the next estimate for parameteand the current
lower bound of the acceptable length region

In line 1, the lengtH is set to a large number and several logical keys are initialized:
LDyeyis true if a linear dependency in the rows bf is ever found during the solution of

54 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

proceduredescent _direction (y,wX,1,T)

1 | =0 LDkey=falsg Ve, = false Yiey™ false
2 dol>T or (<] and LDy, = false) —
3 M =Hc+YHo; b=Yh;

4 do MAw = b has no solution—

5 Y=V/Yr; LDkey= true;

6 M =Hc+YyHo, b=yh;

7 od;

8 Aw* =M~1b; | = (Aw*)TAD2AT AW,
9 if | <1 and LDyey= false—

10 Y=Y, _/key: true;

11 if Vyey=true —y= \/gvfi;

12 if Vyey= false— y=y-y fi;

13 fi;

15 Y=YV, Vkey: true;

16 if Yiey™ true — y= \/gvfi;

17 if Yiey™ false— y=vy/y fi;

18 fi;

19 od;

20 dol <! and LDgey=true —1=1/I; od;
21 return (Aw®);

enddescent _direction

FIGURE 12. Proceduralescent _direction : Algorithm to compute
descent direction in nonconvex potential function minimization

the linear system (87) and false otherwise ¥y (Yke)) is true if an upper (lower) bound
for an acceptablg has been found arfdlse otherwise.

The problem of minimizing a nonconvex quadratic function over an ellipsoid is carried
out in the loop going from line 2 to 19. The loop is repeated until either a ldrigtfound
such that <1 <Torl <| due to a linear dependency found during the solution of (87),
i.e. if LDyey = true. Lines 3 to 8 produce a descent direction that may not necessarily
have an acceptable length. In line 3 the maklixand the right hand side vectbrare
formed. The linear system (87) is tentatively solved in line 4. The solution procedure may
not be successful, i.eM may be singular. This implies that parametés too large and
parametey is reduced in line 5 of loop 4-7, which is repeated until a nonsingular matrix
M is produced.

Once a nonsingulayl matrix is available, a descent directidw* is computed in line
8 along with its corresponding lengthThree cases can occur) { the length is too small
even though no linear dependency was detected in the factorizai)jorthg length is too
large; or (i) - the length is acceptable. Casig)(is the termination condition for the main
loop 2-19. In lines 9-13 the first case is considered. The valyaoh lower bound on an
acceptable value gfand is recorded in line 10 and the corresponding logical key is set. If
an upper boung for an acceptable value gthas been found the new estimate yas set

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 55

to the geometric mean gfandy in line 11. Otherwisey is increased by a fixed factor in
line 12.

Similar to the treatment of casé),(case i) is handled in lines 14-18. The current
value ofyis an upper bound on an acceptable valugafd is recorded in line 15 and the
corresponding logical key is set. If a lower bounfbr an acceptable value gfhas been
found the new estimate faris set to the geometric meanpéndy in line 16. Otherwise
yis decreased by a fixed factor in line 17. -

Finally, in line 20, the lower boundmay have to be adjustedlik | andLDyey = true.

Note that the key.Dyey is used only to allow the adjustment in the range of the acceptable
length, so that the range returned contains the current léngth

7.2. Some computational considerations.The density of the linear system solved at
each iteration oflescent _direction is determined by the density of the Hessian matrix.
Using the potential function described in the previous section, this Hessian,

M= AD2AT — 2wk’ — 1)
f2 fo
is totally dense, because of the rank one compon%aﬁfvvk Consequently, direct fac-

torization solution techniques must be ruled out for large instances. However, in the case
where the matrixA is sparse, iterative methods can be applied to approximately solve
the linear system. In [71], a preconditioned conjugate gradient algorithm, using diagonal
preconditioning, was used to solve the system efficiently taking advantage of the special
structure of the coefficient matrix. In this approach, the main computational effort is the
multiplication of a dense vect@rand the coefficient matri, i.e. M&. This multiplica-

tion can be done efficiently, by considering fact tiWais the sum of three matrices, each

of which has special structure. The first multiplication,

1

—I

fo :
is simply a scaling of. The second product,
2 T
—wnK
A
is done in two steps. First, an inner produkf £ is computed. Then, the vectggwk is

0
scaled by the inner product. The third product,
AD 2ATE

is done in three steps. First the prodA¢€ is carried out. The resulting vector is scaled
by D2 and multipliesA. Therefore, ifA is sparse, the entire matrix vector multiplication

can be done efficiently.
In a recent study, Warners et al. [142] describe a new potential function

@(W) =m—w'w— ipi logdi (w),

whose gradient and Hessian are given by
h=—2w+AD Ip,
and
H=-2I+AD PD AT,

56 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

wherep = (p1,...,pn) andP =diag(p). Note that the density of the Hessian depends only
on the density oAAT. Consequently, direct factorization methods can be used efficiently
when the density ohAT is small.

7.3. Application to combinatorial optimization. The algorithms discussed in this sec-
tion have been applied to the following integer programming problem: GienR™"
andb’ € R", findw € R™ such that:

(88) ATw <

(89) wi = {-11},i=1....,m

The more common form of integer programming, where variakléske on (0,1) values,
can be converted to the above form with the change of variables

1+wi
=——i=1,...,m
2 Y I) Y
More specifically, let denote aim x midentity matrix,
A= [A’H : —|] € R™N
and
bl
1
b=| . | €R"
1
and let

| ={weR™ATw<b andw = {-1,1}}.

With this notation, we can state the integer programming problem aswFndl.
As before, let

L={weR™ ATw<b}

and consider the linear programming relaxation of (88—89), i.e miiad_. One way of se-
lecting=+1 integer solutions over fractional solutions in linear programming is to introduce
the quadratic objective function,

m
max w'w = Z\WIZ
i=

and solve the nonconvex quadratic programming problem (62—-63). Note/that m,
with the equality only occurring whemw; = +1, j =1,...,m. Furthermore, ifv € | then
we L andw; = +1, i =1,...,mand thereforav"w = m. Hence, ifw is the optimal
solution to (62—63) thew € L. If www= mthenw, = +1, i = 1,... ,m and therefore
w € |. Consequently, this shows thatfc L thenw < | if and only if w"w = m.

In place of (62—63), one solves the nonconvex potential function minimization

(90) min {¢(w) | ATw < b},

whered(w) is given by (65-67). The generally applied scheme rounds each iterate to an
integer solution, terminating if a feasible integer solution is produced. If the algorithm
converges to a nonglobal local minimum of (90), then the problem is modified by adding

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 57

a cut and the algorithm is applied to the augmented problemv hetthe integer solution
rounded off from the local minimum. A valid cut is

(91) viw<m-2.

Observe that ifiv = v thenv'w = m. Otherwisey"w < m— 2. Therefore, the cut (91)
excludess but does not exclude any other feasible integral solution of (88—89).

We note that adding a cut of the type above will not, theoretically, prevent the algorithm
from converging to the same local minimum twice. In practice [77], the addition of the
cut changes the objective function, consequently altering the trajectory followed by the
algorithm.

Most combinatorial optimization problems have very natural equivalentinteger and qua-
dratic programming formulations [113]. The algorithms described in this section have
been applied to a variety of problems, including maximum independent set [78], set cov-
ering [77], satisfiability [71, 134], inductive inference [69, 70], and frequency assignment
in cellular telephone systems [143].

8. A LOWER BOUNDING TECHNIQUE

A lower bound for the globally optimal solution of the quadratic program

(92) min q(x) = %XTQX—F c'x
subject to
(93) xeP ={xeR"|Ax=b, x> 0},

whereQ € R™", A e R™" ¢ e R", andb € R™, can be obtained by minimizing the ob-
jective function over the largest ellipsoid inscribed”n This technique can be applied to
guadratic integer programming, a problem that is NP-hard in the general case. Kamath and
Karmarkar [66] proposed a polynomial time interior point algorithm for computing these
bounds. This is one of the first computational approaches to solve semidefinite program-
ming relaxations. The problem is solved as a minimization of the trace of a matrix subject
to positive definiteness conditions. The algorithm takes no more @{ah) iterations
(wherelL is the the number of bits required to represent the input). The algorithm does two
matrix inversions per iteration.

Consider the quadratic integer program

(94) min f(x) = x" Qx
subject to
(95) xeS={-1,1}",

whereQ € R™" is symmetric. Letfmin be the value of the optimal solution of (94-95).
Consider the problem of finding good lower boundsfgf. To apply an interior point
method to this problem, one needs to embed the discre®iset continuous sef O S,
Clearly, the minimum off (x) overT is a lower bound oripmin.
A commonly used approach is to choose the continuous set to be the box

B={xeR"| —-1<x<1li=1...,n}.

However, if f (X) is not convex, the problem of minimizinfyx) overB is NP-hard. Con-
sider this difficult case, and therefore assume @ats at least one negative eigenvalue.
Since optimizing over a box can be hard, instead enclose the box in an ellipsoéd

U={w=(wi,...,wn) €R" | 3w =1andw >0,i=1,...,n,},

58 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

and consider the parameterized ellipsoid
E(w) = {xe R"| x"TWx< 1},
wherew € U andW = diag'w).
Clearly, the setSis contained inE(w). If Amin(w) is the minimum eigenvalue of
W-12QwW-1/2, then
e . X"W-12Qw-1/2x
N ST Wx — XT X

= Amin(W),
and therefore
X" QX > Amin(W), VX € E(W).

Hence, the minimum value df(x) overE(w) can be obtained by simply computing the
minimum eigenvalue ofV~Y/2QW~1/2, To further improve the bound ofiyn requires
thatAmin(w) be maximized over the set. Therefore, the problem of finding a better lower
bound is transformed into the optimization problem

max H
subject to

T
))((T—V?I))((z B, vx € R"\ {0} andw e U.
One can further simplify the problem by definidg= (ds,... ,dn) € R"such thaty [; di =
0. LetD =diag(d). If
x"(Q—D)x
XTW x
then, sincg ! ;w, =1 andy] ;d =0,

> U,

X" Qx> uX"Wx+x"Dx = 1,
for x € S. Now, definez= pw+d and letZ = diagz). Forallxe S,
X' Zx=e"z=,
and therefore the problem becomes
maxe' z
subject to
X' (Q—2Z)x> 0.

Let M(z) = Q—Z. Observe that solving the above problem amounts to minimizing the
trace ofM(z) while keepingM(z) positive semidefinite. Sinckl(z) is real and symmet-
ric, it hasn real eigenvalue&;(M(z)),i = 1,...,n. To ensure positive definiteness, the
eigenvalues oM (z) must be nonnegative. Hence, the above problem is reformulated as

min tr(M(z))
subject to
Ai(M(2) >0,i=1,...,n.

Kamath and Karmarkar [66, 67] proposed an interior point approach to solve the above
trace minimization problem, that takes no more @&tL) iterations, having two matrix
inversions per iteration. Figure 13 shows a pseudo code for this algorithm.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 59

proceduregplb (Q,€,zopt)

1 29 =\min(Q - e

2 VvO=p;

3 MZ9=Q-29;k=0;

4 dotr(M(z4)) — ())23—>

5 ConstrucH ® WhereH<k> = (g'M(ZN)1g))?;
6 £ (2) = 2nin(tr(M (2%)) — V) —Indet(ZX);
7 gk =0 ()(()),

8 5:0.5/\/ KTH) lg K:

9 SolveH®Az = —pg®

10 if gTAz< 05 —

11 Increase® until g¥TAz= 0.5;

12 fi;

13 2K = 2K 4 Az k= k4 1;

14 od;

15 z=2Y;0pt = tr(Q) — v{¥;

endgplb ;

FIGURE 13. Procedureplb : Interior point algorithm for computing
lower bounds

To analyze the algorithm, consider the parametric family of potential functions given by

9(z,v) = 2nIn(tr(M(2)) — v) — IndetM(2)),

wherev € R is a parameter. This algorithm will generate a monotonically increasing se-
quence of parameterg® that converges to the optimal valve. The sequence® is
constructed together with the sequed&eof interior points, as shown in the pseudo code
in Figure 13. Sinc& — Z* is a positive definite matrixy®© = 0 < v* is used as the initial
point in the sequence.

Let g<1 (z,v) be the linear approximation gf z,v) atzZ¥. Then

2n

—— eTz+OIndetM(Z¥)Tz+C
(M) —v© 2+ HIndetME) 2+ C

o¥(zv) = -

whereC is a constant. Kamath and Karmarkar show rgﬁb?/(z,v) can be reduced by a
constant amount at each iteration. They prove that it is possible to comptitec R and
a pointz*tY) in a closed ball of radiua centered ar¥) such thaw¥ < v+ < v* and

g(lk)(z(k+1)7v(k+1)) _ g(lk)(z(k) V(k+1)) < _

Using this fact, they show that,af) is the current interior point and®) < v* is the current
estimate of the optimal value, then

2

(k1) kDY (AR Ky « g%
gz V) —g(z29 v < a+2(1_0),

wherezk+D) andv(kt1) are the new interior point and new estimate, respectively. This
proves polynomial-time complexity for the algorithm.

60 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

9. SEMIDEFINITE PROGRAMMING RELAXATIONS

There has been a great deal of interest recently in solving semidefinite programming
relaxations of combinatorial optimization problems [5, 6, 40, 144, 145, 152, 54, 53, 57,
112, 123, 111]. The semidefinite relaxations are solved by an interior point approach.
These papers have shown the strength of the relaxations, and some of these papers have
discussed cutting plane and branch and cut approaches using these relaxations. The bounds
obtained from semidefinite relaxations are often better than those obtained using linear
programming relaxations, but they are also usually more expensive to compute.

Semidefinite programming relaxations of some integer programming problems have
proven to be very powerful, and they can often provide better bounds than those given
by linear programming relaxations. There has been interest in semidefinite programming
relaxations since at least the seventies (seea&pVy89]). These were regarded as being
purely of theoretical interest until the recent development of interior point methods for
semidefinite programming problems [6, 106, 56, 107, 82, 139]. Interest was increased
further by Goemans and Williamson [40], who showed that the bounds generated by semi-
definite programming relaxations for the maximum cut and satisfiability problems were
considerably better than those that could be obtained from a linear programming relax-
ation, in the worst case, and that the solutions to these relaxations could be exploited to
generate good integer solutions.

For an example of a semidefinite programming relaxation, consider the quadratic integer
programming problem

min f(x) = x" Qx
subject to
xeS={-11}",

whereQ € R™" is symmetric, first discussed in equations (94) and (95) in section 8.
We let tracell) denote the trace of a square matrix. By exploiting the fact that tt&)efraceBA),
we can rewrite the produgf Qx:

X" Qx = tracex' Qx) = tracd Qxx')
This lets us reformulate the quadratic program as

min tracéQX)
subjectto X =xx
Xi=1 1i=1...,n

The constraint thaX = xx" is equivalent to saying tha¢ must have rank equal to one.
This is a hard constraint to enforce, so it is relaxed to the constrainKtisgtositive semi-
definite, writtenX > 0. This gives the following semidefinite programming relaxation:

min tracéQX)
subjectto Xj=1 i=1,...,n
X =0.

Once we have a good relaxation, we can then (in principle) use a branch and bound (or
branch and cut) method to solve the problem to optimality. Helmberg et al. [53] showed
that the semidefinite programming relaxations of general constrainreddduadratic pro-
gramming problems could be strengthened by using valid inequalities of the cut-polytope.
There are a large number of such inequalities, and in [54], a branch and cut approach using
semidefinite relaxations is used to solve quadrftid, 1} problems with dense cost ma-
trices. They branch using the criterion that two variables either take the same value or they

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 61

take opposite values. This splits the current SDP relaxation into two SDP subproblems,
each corresponding to quadrafie 1,1} problems of dimension one less. They are able to
solve problems with up to about 100 variables in a reasonable amount of time.

Helmberg et al. [57] contains a nice discussion of different families of constraints for
semidefinite relaxations of the quadratic knapsack problem. They derive semidefinite con-
straints from both the objective function and from the knapsack constraint. Many of the
semidefinite constraints derived from the objective function are manipulations of the lin-
ear constraints for the Boolean quadric polytope. Similarly, they derive semidefinite con-
straints from known facets of the knapsack polytope. They attempt to determine the relative
importance of different families of constraints.

The bottleneck with the branch and cut approach is the time required to solve each
relaxation, and in particular to calculate the interior point directions. One way to reduce
this time is to fix variables at -1 or 1, in much the same way that variables with large
reduced costs can be fixed when we use a branch and cut algorithm that solves linear
programming relaxations at each node. Helmberg [52] has proposed a method to determine
whether a variable can be fixed when solving an SDP relaxation. This method examines
the dual to the SDP relaxation. If it appears that a variable should be fixed at 1, say, then
the effect of adding an explicit constraint that the variable should take the vdluis
examined. The change in the dual value that would result is then bounded; if this change
is large enough then the variable can be fixed at 1.

The papers [54, 53, 57, 18] all contain semidefinite relaxations of quadratic program-
ming problems with at most one constraint. By contrast, Wolkowicz and Zhao [144, 145]
and Zhao et al. [152] have looked at semidefinite relaxations of more complicated integer
programming problems. This required the development of some techniques that appear to
be widely applicable. For these problems, the primal semidefinite programming relaxation
does not have an interior feasible point, that is, there is no positive definite matrix that
satisfies all the constraints. This implies that the dual problem will have an unbounded
optimal face, so the problem is computationally intractable for an interior point method.
To overcome this difficulty, the authors recast the problem in a lower dimensional space,
where the barycenter of the known integer solutions corresponds to an interior point. In
particular, ifX is the matrix of variables for the original semidefinite formulation, a con-
stant matrixV is determined so that the problem can be recast in terms of a niZatrix
variables, withX =V ZV' andZ is of smaller dimension thaX. To ensure that the new
problem corresponds to the original problengangster operators used, which forces
some components &ZV" to be zero. With this reformulation, an interior point method
can be used successfully to solve the semidefinite relaxations. An extension of the gangster
operator may make it possible to use these relaxations in a branch and cut approach.

Another interesting aspect of [145] is the development of an alternative, slightly weaker,
semidefinite relaxation that allows the exploitation of some sparsity in the original matrix
for the set covering problem. The resulting relaxation contains both semidefinite con-
straints and linear constraints. This may make the semidefinite approach viable for prob-
lems of this type which are far larger than those previously tackled with semidefinite pro-
gramming approaches. Whether this approach can be extended to other problems is an
interesting question.

Some work on attempting to exploit sparsity in the general setting has been performed
by Fujisawa et al. [38], and by Helmberg et al. [56] in their MATLAB implementation.
Zhao et al. [152, 151] propose using a preconditioned conjugate gradient method to calcu-
late the directions for the quadratic assignment problem (QAP) within a primal-infeasible
dual-feasible variant of the method proposed in [56]. In the setting of solving a QAP, the

62 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

semidefinite relaxation is used to obtain a lower bound on the optimal value; this bound is
provided by the dual solution. Thus, only dual feasibility is needed to get a lower bound,
and so primal feasibility is not as important, and it is possible to solve the Newton sys-
tem of equations only approximately while still maintaining dual feasibility. It should be
possible to extend this approach to other problems.

Zhao et al. [152] also developed another relaxation for the QAP which contains a large
number of constraints. This second relaxation is stronger than the relaxation that uses the
gangster operator, but because of the number of constraints, they could only use it in a
cutting plane algorithm. Due to memory limitations, the gangster approach provided a
better lower bound than the other relaxation for larger problems.

One way to solve sparse problems using semidefinite programming techniques is to
look at the dual problem. Benson et al. [16] and Helmberg and Rendl [55] have both re-
cently proposed methods that obtain very good bounds and sometimes optimal solutions
for sparse combinatorial optimization problems by looking at the dual problem or relax-
ations of the dual.

There are several freely available implementations of SDP methods. Many of these
codes are written in MATLAB. One of the major costs in an iteration of an SDP algorithm
is constructing the Newton system of equations, with a serifes ofoops. MATLAB does
not appear to handle this well, because of the slowness of its interpreted loops: in compiled
C code, each iteration of these loops takes half a dozen machine language instructions,
while in the interpreted code, each pass through one of these loops takes 100 or more
instructions. For details of a freely available C implementation, see [17].

10. CONCLUDING REMARKS

Optimization is of central importance in both the natural sciences, such as physics,
chemistry and biology, as well as artificial or man-made sciences, such as computer science
and operations research. Nature inherently seeks optimal solutions. For instance, crys-
talline structure is the minimum energy state for a set of atoms, and light travels through
the shortest path. The behavior of nature can often be explained on the basis of varia-
tional principles. Laws of nature then simply become optimality conditions. Concepts
from continuous mathematics have always played a central role in the description of these
optimality conditions and in analysis of the structure of their solutions. On the other hand,
in artificial sciences, the problems are stated using the language of discrete mathematics or
logic, and a simple-minded search for their solution confines one to a discrete solution set.

With the advent of interior point methods, the picture is changing, because these meth-
ods do not confine their working to a discrete solution set, but instead view combinatorial
objects as limiting cases of continuous objects and exploit the topological and geometric
properties of the continuous space. As a result, the number of efficiently solvable com-
binatorial problems is expanding. Also, the interior-point methods have revealed that the
mathematical structure relevant to optimization in the natural and artificial sciences have
a great deal in common. Recent conferences on global optimization (e.g. [35, 36]) are at-
tracting researchers from diverse fields, ranging from computer science to molecular biol-
ogy, thus merging the development paths of natural and artificial sciences. The phenomena
of multiple solutions to combinatorial problems is intimately related to multiple configu-
rations a complex molecule can assume. Thus, understanding the structure of solution sets
of nonlinear problems is a common challenge faced by both natural and artificial sciences,
to explain natural phenomena in the former case and to create more efficient interior-point
algorithms in the latter case.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 63

In the last decade we have witnessed computational breakthroughs in the approximate
solution of large scale combinatorial optimization problems. Many of these breakthroughs
are due to the development of interior point algorithms and implementations. Starting
with linear programming in 1984 [72], these developments have spanned a wide range of
problems, including network flows, graph problems, and integer programming. There is a
continuing activity with new papers and codes being announced almost on daily basis. The
interested reader can consult the following web sites:

1. http://www.mcs.anl.gov:80/home/otc/InteriorPoint
is an archive of technical reports and papers on interior-point methods, maintained
by S.J. Wright at Argonne National Laboratory.

2. http://lwww.zib.de/helmberg/semidef.html
contains a special home page for semidefinite programming organized by C. Helm-
berg, at Berlin Center for Scientific Computing, Konrad Zuse Zentrum fur Informa-
tionstechnik, Berlin.

3. ftp://orion.uwaterloo.ca/pub/henry/reports/psd.bib.gz
contains a bib file with papers related to SDP.

ACKNOWLEDGEMENT

The first author acknowledges support in part by ONR grant NO0014-94-1-0391, and
by a grant from the Dutch NWO and by Delft University of Technology for 1997-98,
while visiting TWI/SSOR at Delft University of Technology. The second author acknowl-
edges support in part by NSF grant BIR-9505913 and U.S. Department of Air Force grant
F08635-92-C-0032.

REFERENCES

[1] W.P. Adams and T.A. Johnson. Improved linear programming-based lower bounds for the quadratic assign-
ment problem. In P.M. Pardalos and H. Wolkowicz, edit@sadratic assignment and related problems
volume 16 ofDIMACS Series on Discrete Mathematics and Theoretical Computer Scigsmes 43—-75.
American Mathematical Society, 1994.

[2] I. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga. Data structures and programming techniques for
the implementation of Karmarkar’s algorith®RSA Journal on Computind:84-106, 1989.

[3] I. Adler, N. Karmarkar, M.G.C. Resende, and G. Veiga. An implementation of Karmarkar’s algorithm for

linear programmingMathematical Programmingt4:297-335, 1989.

Navindra K. Ahuja, Thomas L. Magnanti, and James B. Ofietwork Flows Prentice Hall, Englewood

Cliffs, NJ, 1993.

F. Alizadeh. Optimization over positive semi-definite cone: Interior-point methods and combinatorial ap-

plications. In P.M. Pardalos, editgdvances in Optimization and Parallel Computipgges 1-25. North—
Holland, Amsterdam, 1992.
F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial opti-
mization.SIAM Journal on Optimizatigrb(1):13-51, 1995.
[7] E. D. Andersen, J. Gondzio, C.&4zros, and X. Xu. Implementation of interior point methods for large
scale linear programming. In T. Terlaky, editdmterior Point Methods in Mathematical Programming
chapter 6. Kluwer Academic Publishers, 1996.
[8] D. S. Atkinson and P. M. Vaidya. A cutting plane algorithm for convex programming that uses analytic
centersMathematical Programming9:1-43, 1995.
[9] O. Bahn, O. Du Merle, J. L. Goffin, and J. P. Vial. A cutting plane method from analytic centers for
stochastic programmind/lathematical Programming39:45-73, 1995.
[10] E. Balas, S. Ceria, and G. Comjals. A lift-and-project cutting plane algorithm for mixed 0-1 programs.
Mathematical Programmingd8:295-324, 1993.

[11] E. Balas, S. Ceria, G. Corgjols, and N. Natraj. Gomory cuts revisite@perations Research Letters
19:1-9, 1996.

[12] E.R. Barnes. A variation on Karmarkar's algorithm for solving linear programming probMathemati-
cal Programming 36:174-182, 1986.

[4

5

[6

64 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

[13] D. A. Bayer and J. C. Lagarias. The nonlinear geometry of linear programming, |. Affine and projective
scaling trajectoriesTransactions of the American Mathematical Socigty:499-526, 1989.

[14] D. A. Bayer and J. C. Lagarias. The nonlinear geometry of linear programming, Il. Legendre transform
coordinates and central trajectori@$ansactions of the American Mathematical Sogi@y4:527-581,

1989.

[15] M.S. Bazaraa, J.J. Jarvis, and H.D. Shetahear Programming and Network FlowsViley, New York,
NY, 1990.

[16] S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial
optimization. Technical report, Department of Management Sciences, University of lowa, lowa City, lowa
52242, September 1997.

[17] B. Borchers. CSDP, a C library for semidefinite programming. Technical report, Mathematics Department,
New Mexico Tech, Socorro, NM 87801, March 1997.

[18] B. Borchers, S. Joy, and J. E. Mitchell. Three methods to the exact solution of max-sat
problems. Talk given aiNFORMS Conference, Atlanta, 199&lides available from the URL
http: //wwwnmteduy/~borchergatlslidesps, 1996.

[19] B. Borchers and J. E. Mitchell. Using an interior point method in a branch and bound algorithm for integer
programming. Technical Report 195, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY
12180, March 1991. Revised July 7, 1992.

[20] C. ChevalleyTheory of Lie GroupsPrinceton University Press, Princeton, New Jersey, 1946.

[21] T. Christof and G. Reinelt. Parallel cutting plane generation for the tsp (extended abstract). Technical
report, IWR Heidelberg, Germany, 1995.

[22] G. B. Dantzig. Maximization of a linear function of variables subject to linear inequalities. In Tj. C. Koop-
mans, editorActivity Analysis of Production and Allocatippages 339-347. Wiley, New York, 1951.

[23] G.B. Dantzig. Application of the simplex method to a transportation problem. In T.C. Koopsmans, editor,
Activity Analysis of Production and Allocatiodohn Wiley and Sons, 1951.

[24] M. Davis and H. Putnam. A computing procedure for quantification thelayrnal of the ACM7:201—

215, 1960.

[25] A. de Silva and D. Abramson. A parallel interior point method and its application to facility location
problems. Technical report, School of Computing and Information Technology, Griffith University, Nathan,
QLD 4111, Australia, 1995.

[26] C. De Simone, M. Diehl, M. u¥iger, P. Mutzel, G. Reinelt, and G. Rinaldi. Exact ground states of two-
dimensionattJ Ising spin glassedlournal of Statistical Physic84:1363—-1371, 1996.

[27] M. Deza and M. Laurent. Facets for the cut conelathematical Programmind6:121-160, 1992.

[28] M. Deza and M. Laurent. Facets for the cut cone II: Clique-web inequalMiathematical Programming
56:161-188, 1992.

[29] 1. I. Dikin. Iterative solution of problems of linear and quadratic programmiduklady Akademiia Nauk
SSSR174:747-748, 1967. English Translatiddoviet Mathematics Doklad$967, Volume 8, pp. 674—

675.

[30] D. Z. Du, J. Gu, and P. M. Pardalos, editdgatisfiability Problem: Theory and Applicatignslume 35
of DIMACS Series on Discrete Mathematics and Theoretical Computer Sciémaican Mathematical
Society, 1997.

[31] Ding-Zhu Du and Panos M. Pardalos, editd¥etwork Optimization Problems: Algorithms, Applications
and ComplexityWorld Scientific, 1993.

[32] J. Edmonds. Maximum matching and a polyhedron with O, 1 vertioesnal of Research National Bureau
of Standards69B:125-130, 1965.

[33] A. S. El-Bakry, R. A. Tapia, and Y. Zhang. A study of indicators for identifying zero variables in interior—
point methodsSIAM Review36:45—-72, 1994.

[34] A. V. Fiacco and G. P. McCormickNonlinear Programming: Sequential Unconstrained Minimization
TechniquesJohn Wiley and Sons, New York, 1968. Reprinted as Volume 4 of the SIAM Classics in
Applied Mathematics Series, 1990.

[35] C. Floudas and P. Pardald@ecent Advances in Global Optimizatidfrinceton Series in Computer Sci-
ence. Princeton University Press, 1992.

[36] C. Floudas and P. Pardal@&tate of the Art in Global Optimization: Computational Methods and Applica-
tions. Kluwer Academic Publishers, 1996.

[37] L.R. Ford and D.R. Fulkersofrlows in NetworksPrinceton University Press, Princeton, NJ, 1990.

[38] K. Fujisawa, M. Kojima, and K. Nakata. Exploiting sparsity in primal-dual interior-point methods for
semidefinite programming. Technical report, Department of Mathematical and Computing Sciences, Tokyo
Institute of Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152, Japan, January 1997.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 65

[39] A. George and M. Heath. Solution of sparse linear least squares problems using Givens radtissams.
Algebra and Its Applications34:69—-83, 1980.

[40] Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms for Maximum Cut
and Satisfiability Problems Using Semidefinite Programmihgdssoc. Comput. Magh42:1115-1145,

1995.

[41] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial. Solving nonlinear multicommodity network flow
problems by the analytic center cutting plane metiddthematical Programming’6:131-154, 1997.

[42] J.-L. Goffin, A. Haurie, and J.-P. Vial. Decomposition and nondifferentiable optimization with the projec-
tive algorithm.Management Scienc88:284—-302, 1992.

[43] J.-L. Goffin, Z.-Q. Luo, and Y. Ye. Further complexity analysis of a primal-dual column generation algo-
rithm for convex or quasiconvex feasibility problems. Technical report, Faculty of Management, McGill
University, Montgal, Qebec, Canada, November 1993.

[44] J.-L. Goffin, Z.-Q. Luo, and Y. Ye. On the complexity of a column generation algorithm for convex or
quasiconvex problems. loarge Scale Optimization: The State of the.Afluwer Academic Publishers,
1993.

[45] G.H. Golub and C.F. van LoamMatrix Computations The Johns Hopkins University Press, Baltimore,
MD, 1983.

[46] R. E. Gomory. Outline of an algorithm for integer solutions to linear progréuBetin of the American
Mathematical Society64:275—-278, 1958.

[47] M. Grotschel and O. Holland. Solution of large-scale travelling salesman probMateematical Pro-
gramming 51(2):141-202, 1991.

[48] M. Grotschel, M. dinger, and G. Reinelt. A cutting plane algorithm for the linear ordering protlgrer-
ations Researcl82:1195-1220, 1984.

[49] M. Grotschel, L. Lovasz, and A. SchrijveGGeometric Algorithms and Combinatorial Optimization
Springer-Verlag, Berlin, Germany, 1988.

[50] G.M. Guisewite. Network problems. In Reiner Horst and Panos M. Pardalos, etitordpbook of global
optimization Kluwer Academic Publishers, 1994.

[51] G.M. Guisewite and P.M. Pardalos. Minimum concave cost network flow problems: Applications, com-
plexity, and algorithmsAnnals of Operations Researc@b:75-100, 1990.

[52] C. Helmberg. Fixing variables in semidefinite relaxations. Technical Report SC-96-43, Konrad-Zuse-
Zentrum fuer Informationstechnik, Berlin, December 1996.

[53] C. Helmberg, S. Poljak, F. Rendl, and H. Wolkowicz. Combining semidefinite and polyhedral relaxations
for integer programs. In E. Balas and J. Clausen, editotsger Programming and Combinatorial Opti-
mization, Lecture Notes in Computer Scigngg@ume 920, pages 124-134. Springer, 1995.

[54] C. Helmberg and F. Rendl. Solving quadratic (0,1)-problems by semidefinite programs and cutting planes.
Technical Report SC-95-35, Konrad-Zuse-Zentrum fuer Informationstechnik, Berlin, 1995.

[55] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming. Technical Report
SC-97-37, Konrad-Zuse-Zentrum fuer Informationstechnik, Berlin, August 1997. Revised: October 1997.

[56] C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior point method for semidefinite
programmingSIAM Journal on Optimizatiqrb:342—361, 1996.

[57] C. Helmberg, F. Rendl, and R. Weismantel. Quadratic knapsack relaxations using cutting planes and semi-
definite programming. In W. H. Cunningham, S. T. McCormick, and M. Queyranne, editteger Pro-
gramming and Combinatorial Optimization, Lecture Notes in Computer Scieobeme 1084, pages
175-189. Springer, 1996.

[58] F.L.Hitchcock. The distribution of product from several sources to numerous faciliesial of Mathe-
matical Physics20:224-230, 1941.

[59] K.L.Hoffman and M. Padberg. Improving LP-representation of zero-one linear programs for branch-and-
cut. ORSA Journal on Computing(2):121-134, 1991.

[60] E. Housos, C. Huang, and L. Liu. Parallel algorithms for the AT&T KORBX Syst&m&T Technical
Journal 68:37—47, 1989.

[61] D. S. Johnson and M. A. Trick, editor€liques, Coloring, and Satisfiability: Second DIMACS Imple-
mentation Challengevolume 26 ofDIMACS Series on Discrete Mathematics and Theoretical Computer
ScienceAmerican Mathematical Society, 1996.

[62] A.Joshi, A.S. Goldstein, and P.M. Vaidya. A fast implementation of a path-following algorithm for maxi-
mizing a linear function over a network polytope. In David S. Johnson and Catherine C. McGeoch, editors,
Network Flows and Matching: First DIMACS Implementation Challeng#gume 12 ofDIMACS Series
in Discrete Mathematics and Theoretical Computer Sciepages 267—298. American Mathematical So-
ciety, 1993.

66 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

[63] M. Jdiinger, G. Reinelt, and S. Thienel. Practical problem solving with cutting plane algorithms in com-
binatorial optimization. InCombinatorial Optimization: DIMACS Series in Discrete Mathematics and
Theoretical Computer Sciengeages 111-152. AMS, 1995.

[64] J.A. Kaliski and Y. Ye. A decomposition variant of the potential reduction algorithm for linear program-
ming. Management Scienc89:757-776, 1993.

[65] A. P. Kamath, N. K. Karmarkar, K. G. Ramakrishnan, and M. G. C. Resende. Computational experience
with an interior point algorithm on the Satisfiability problesnnals of Operations Researc?b:43-58,

1990.

[66] A.P.Kamath and N. Karmarkar. A continuous method for computing bounds in integer quadratic optimiza-
tion problemsJournal of Global Optimization2:229-241, 1992.

[67] A.P. Kamath and N. Karmarkar. A®(nL) iteration algorithm for computing bounds in quadratic opti-
mization problems. In P.M. Pardalos, edit6gmplexity in Numerical Optimizatippages 254-268. World
Scientific, Singapore, 1993.

[68] A.P. Kamath, N. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. A continuous approach to induc-
tive inference Mathematical Programminds7:215-238, 1992.

[69] A.P. Kamath, N. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. A continuous approach to induc-
tive inference Mathematical Programminds7:215-238, 1992.

[70] A.P. Kamath, N. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. An interior point approach to
Boolean vector function synthesis. Bioceedings of the 36th MSCAsges 185-189, 1993.

[71] A.P. Kamath, N. Karmarkar, N. Ramakrishnan, and M.G.C. Resende. Computational experience with an
interior point algorithm on the Satisfiability problesnnals of Operations Researcb:43-58, 1990.

[72] N. Karmarkar. A new polynomial-time algorithm for linear programmi@pmbinatorica 4:373-395,

1984.

[73] N. Karmarkar. An interior-point approach for NP-complete proble@entemporary Mathematics
114:297-308, 1990.

[74] N. Karmarkar. An interior-point approach to NP-complete problem$£rbteedings of the First Integer
Programming and Combinatorial Optimization Conferengages 351-366, University of Waterloo, 1990.

[75] N.Karmarkar. A new parallel architecture for sparse matrix computation based on finite projective geome-
tries. InProceedings of Supercomputing ;9dages 358-369. IEEE Computer Society, 1991.

[76] N.Karmarkar, J. Lagarias, L. Slutsman, and P. Wang. Power series variants of Karmarkar-type algorithms.
AT&T Technical Journal68:20-36, 1989.

[77] N. Karmarkar, M.G.C. Resende, and K. Ramakrishnan. An interior point algorithm to solve computation-
ally difficult set covering problemsviathematical Programming2:597-618, 1991.

[78] N. Karmarkar, M.G.C. Resende, and K.G. Ramakrishnan. An interior point approach to the maximum
independent set problem in dense random graphBrdoeedings of the XllI Latin American Conference
on Informatics volume 1, pages 241-260, Santiago, Chile, July 1989.

[79] N. K. Karmarkar and K. G. Ramakrishnan. Computational results of an interior point algorithm for large
scale linear programming/athematical Programmingd2:555-586, 1991.

[80] J.L. Kennington and R.V. HelgasoAlgorithms for network programminglohn Wiley and Sons, New
York, NY, 1980.

[81] L. G. Khachiyan. A polynomial algorithm in linear programmirigoklady Akademiia Nauk SSSR
224:1093-1096, 1979. English Translati@uviet Mathematics Dokladyolume 20, pp. 1093-1096.

[82] M. Kojima, S. Shindoh, and S. Hara. Interior point methods for the monotone semidefinite linear comple-
mentarity problem in symmetric matriceSLAM Journal on Optimizatiqr/:86-125, 1997.

[83] J.B. Kruskal. On the shortest spanning tree of graph and the traveling salesman pRiblesadings of
the American Mathematical Socie,48-50, 1956.

[84] Eugene LawlerCombinatorial Optimization: Networks and Matroid$olt, Rinehart and Winston, 1976.

[85] E. K. Lee and J. E. Mitchell. Computational experience in nonlinear mixed integer programmifrg- In
ceedings of Symposium on Operations Research, August 1996, Braunschweig, Gpagasyd5-100.
Springer-Verlag, 1996.

[86] K. Levenberg. A method for the solution of certain problems in least squ@test. Appl. Math, 2:164—

168, 1944.

[87] Y. Li, P.M. Pardalos, K.G. Ramakrishnan, and M.G.C. Resende. Lower bounds for the quadratic assign-
ment problemAnnals of Operations ReseardD:387-410, 1994.

[88] Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search procedure for the qua-
dratic assignment problem. In P.M. Pardalos and H. Wolkowicz, edifaradratic assignment and related
problems volume 16 ofDIMACS Series on Discrete Mathematics and Theoretical Computer Science
pages 237-262. American Mathematical Society, 1994.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 67

[89] L. Lovasz. On the Shannon capacity of a grdftiEE Transactions on Information Theoi35:1-7, 1979.

[90] I. J. Lustig, R. E. Marsten, and D. F. Shanno. Interior point methods for linear programming: Computa-
tional state of the arORSA Journal on Computing(1):1-14, 1994. See also the following commentaries
and rejoinder.

[91] D. Marquardt. An algorithm for least-squares estimation of nonlinear paramgtédsl J. Appl. Math.
11:431-441, 1963.

[92] S. Mehrotra. On the implementation of a (primal—-dual) interior point metSb&M Journal on Optimiza-
tion, 2(4):575-601, 1992.

[93] S. Mehrotra and J. Wang. Conjugate gradient based implementation of interior point methods for network
flow problems. In L. Adams and J. Nazareth, editdvigear and Nonlinear Conjugate Gradient Related
Methods SIAM, 1995.

[94] J. E. Mitchell. Interior point algorithms for integer programming. In J. E. Beasley, edithrances in
Linear and Integer Programminghapter 6, pages 223-248. Oxford University Press, 1996.

[95] J. E. Mitchell. Interior point methods for combinatorial optimization. In @arierlaky, editor]nterior
Point Methods in Mathematical Programmirghapter 11, pages 417-466. Kluwer Academic Publishers,
1996.

[96] J. E. Mitchell. Computational experience with an interior point cutting plane algorithm. Technical report,
Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, February 1997. Revised:
April 1997.

[97] J. E. Mitchell. Fixing variables and generating classical cutting planes when using an interior point branch
and cut method to solve integer programming probleEwwopean Journal of Operational Research
97:139-148, 1997.

[98] J. E. Mitchell. An interior point cutting plane algorithm for Ising spin glass problems. Technical report,
Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, July 1997.

[99] J. E. Mitchell and B. Borchers. Solving real-world linear ordering problems using a primal-dual interior
point cutting plane method\nnals of Operations Resear@®2:253-276, 1996.

[100] J. E. Mitchell and B. Borchers. Solving linear ordering problems with a combined interior point/simplex
cutting plane algorithm. Technical report, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy,
NY 12180-3590, September 1997.

[101] J. E. Mitchell and M. J. Todd. Solving combinatorial optimization problems using Karmarkar’s algorithm.
Mathematical Programming>6:245-284, 1992.

[102] R.D.C. Monteiro and I. Adler. Interior path following primal-dual algorithms. Part I: Linear programming.
Mathematical Programming?4(1):27-41, 1989.

[103] R.D.C. Monteiro, I. Adler, and M. G. C. Resende. A polynomial-time primal-dual affine scaling algorithm
for linear and convex quadratic programming and its power series exteMatinematics of Operations
Research15(2):191-214, 1990.

[104] J.J. Mo€ and D.C. Sorenson. Computing a trust region s&#AM J. of Stat. Sci. Compu#:553-572,

1983.

[105] G.L.Nemhauser and L. A. Wolsdnteger and Combinatorial Optimizatiodohn Wiley, New York, 1988.

[106] Y. E. Nesterov and A. S. NemirovsKnterior Point Polynomial Methods in Convex Programming : Theory
and Algorithms SIAM Publications. SIAM, Philadelphia, USA, 1993.

[107] Y. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for convex programming.
Mathematics of Operations Resear@2:1-42, 1997.

[108] M. W. Padberg and G. Rinaldi. A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problentSIAM Review33(1):60-100, 1991.

[109] R. Pai, N. K. Karmarkar, and S. S. S. P. Rao. A global router for gate-arrays based on Karmarkar’s interior
point methods. IProceedings of the Third International Workshop on VLSI System Dgwges 73-82,

1990.

[110] P. M. Pardalos, K. G. Ramakrishnan, M. G. C. Resende, and Y. Li. Implementation of a variance reduction-
based lower bound in a branch-and-bound algorithm for the quadratic assignment p&idlhdournal
on Optimization 7:280-294, 1997.

[111] P. M. Pardalos and M.G.C. Resende. Interior point methods for global optimization problems. In T. Ter-
laky, editor, Interior Point Methods of Mathematical Programmijngages 467-500. Kluwer Academic
Publishers, 1996.

[112] P. M. Pardalos and H. Wolkowicz, editof@pics in Semidefinite and Interior-Point Metho#igelds Insti-
tute Communications Series. American Mathematical Society, New Providence, Rhode Island, 1997.

[113] P.M. Pardalos. Continuous approaches to discrete optimization problems. In G. Di Pillo and F. Giannessi,
editors,Nonlinear optimization and application®lenum Publishing, 1996.

68 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

[114] P.M. Pardalos and H. Wolkowicz, editof@uadratic assignment and related probleraslume 16 ofDI-
MACS Series in Discrete Mathematics and Theoretical Computer Sciénearican Mathematical Soci-
ety, 1994.

[115] R. G. Parker and R. L. Rardibiscrete OptimizationAcademic Press, San Diego, CA 92101, 1988.

[116] L. Portugal, F. Bastos, Judice, J. Paiad, and T. Terlaky. An investigation of interior point algorithms for
the linear transportation probler8IAM J. Sci. Computingl7:1202—-1223, 1996.

[117] L. Portugal, M.G.C. Resende, G. Veiga, andudlidé. An efficient implementation of an infeasible primal-
dual network flow method. Technical report, AT&T Bell Laboratories, Murray Hill, New Jersey, 1994.

[118] R.C. Prim. Shortest connection networks and some generalizatd®is.System Technical Journal
36:1389-1401, 1957.

[119] K. G. Ramakrishnan, M. G. C. Resende, and P. M. Pardalos. A branch and bound algorithm for the qua-
dratic assignment problem using a lower bound based on linear programming. In C. Floudas and P.M.
Pardalos, editorsState of the Art in Global Optimization: Computational Methods and Applications
Kluwer Academic Publishers, 1995.

[120] K.G. Ramakrishnan, N.K. Karmarkar, and A.P. Kamath. An approximate dual projective algorithm for
solving assignment problems. In David S. Johnson and Catherine C. McGeoch, édiéoverk Flows
and Matching: First DIMACS Implementation Challengelume 12 ofDIMACS Series in Discrete Math-
ematics and Theoretical Computer Sciengages 431-451. American Mathematical Society, 1993.

[121] K.G. Ramakrishnan, M.G.C. Resende, and P.M. Pardalos. A branch and bound algorithm for the quadratic
assignment problem using a lower bound based on linear programmi&tatinof the Art in Global Opti-
mization: Computational Methods and Applicatippages 57—73. Kluwer Academic Publishers, 1996.

[122] K.G. Ramakrishnan, M.G.C. Resende, B. Ramachandran, and J.F. Pekny. Tight QAP bounds vias linear
programming. IrfFrom Local to Global OptimizatiaonKluwer Academic Publishers, 1998. To appear.

[123] M. Ramana and P. M. Pardalos. Semidefinite programming. In T. Terlaky, dditnipr Point Methods
of Mathematical Programmingrages 369-398. Kluwer Academic Publishers, 1996.

[124] S. Ramaswamy and J. E. Mitchell. On updating the analytic center after the addition of multiple cuts.
Technical Report 37-94-423, DSES, Rensselaer Polytechnic Institute, Troy, NY 12180, October 1994.

[125] S. Ramaswamy and J. E. Mitchell. A long step cutting plane algorithm that uses the volumetric barrier.
Technical report, DSES, Rensselaer Polytechnic Institute, Troy, NY 12180, June 1995.

[126] M.G.C. Resende, P.M. Pardalos, and Y. Li. FORTRAN subroutines for approximate solution of dense
quadratic assignment problems using GRASEM Transactions on Mathematical Softwafe appear.

[127] M.G.C. Resende, K.G. Ramakrishnan, and Z. Drezner. Computing lower bounds for the quadratic assign-
ment problem with an interior point algorithm for linear programmi®gerations Researci43(5):781—

791, 1995.

[128] M.G.C. Resende, T. Tsuchiya, and G. Veiga. Identifying the optimal face of a network linear program with
a globally convergent interior point method. In W.W. Hager, D.W. Hearn, and P.M. Pardalos, dgitges,
scale optimization: State of the apfages 362-387. Kluwer Academic Publishers, 1994.

[129] M.G.C. Resende and G. Veiga. Computing the projection in an interior point algorithm: An experimental
comparisonlnvestigaobh Operativa 3:81-92, 1993.

[130] M.G.C. Resende and G. Veiga. An efficient implementation of a network interior point method. In David S.
Johnson and Catherine C. McGeoch, editbistwork Flows and Matching: First DIMACS Implementa-
tion Challengevolume 12 oDIMACS Series in Discrete Mathematics and Theoretical Computer Science
pages 299-348. American Mathematical Society, 1993.

[131] M.G.C. Resende and G. Veiga. An implementation of the dual affine scaling algorithm for minimum cost
flow on bipartite uncapaciated networl&AM Journal on Optimizatiqr8:516-537, 1993.

[132] C. Roos, T. Terlaky, and J.-Ph. Vidlheory and Algorithms for Linear Optimization: An Interior Point
Approach John Wiley, Chichester, 1997.

[133] Gtinther RuheAlgorithmic Aspects of Flows in Networkikluwer Academic Publishers, Boston, MA,
1991.

[134] C.-J. Shi, A. Vannelli, and J. Vlach. An improvement on Karmarkar’s algorithm for integer programming.
In P.M. Pardalos and M.G.C. Resende, edit@®AL Bulletin — Special issue on Computational Aspects
of Combinatorial Optimizationvolume 21, pages 23—-28. Mathematical Programming Society, 1992.

[135] L.P. Sinha, B.A. Freedman, N.K. Karmarkar, A. Putcha, and K.G. Ramakrishnan. Overseas network plan-
ning. In Proceedings of the Third International Network Planning Symposium — NETWORK®BI§és
8.2.1-8.2.4, June 1986.

[136] R. Van Slyke and R. Wet&-shaped linear programs with applications to optimal control and stochastic
linear programsSIAM Journal on Applied Mathematic$7:638—663, 1969.

INTERIOR POINT METHODS FOR COMBINATORIAL OPTIMZIZATION 69

[137] R.E. TarjanData Structures and Network AlgorithmSociety for Industrial and Applied Mathematics,
Philadelphia, PA, 1983.

[138] P. M. Vaidya. A new algorithm for minimizing convex functions over convex $é&thematical Program-
ming, 73:291-341, 1996.

[139] L. Vandenberghe and S. Boyd. Semidefinite programn8hyM Review38:49-95, 1996.

[140] R.J. Vanderbelinear Programming: Foundations and Extensiolkigiwer Academic Publishers, Boston,
1996.

[141] R.J. Vanderbei, M.S. Meketon, and B.A. Freedman. A modification of Karmarkar’s linear programming
algorithm.Algorithmica 1:395-407, 1986.

[142] J. P. Warners, T. Terlaky, C. Roos, and B. Jansen. Potential reduction algorothms for structured combina-
torial optimization problemdOperations Research Lettei21:55-64, 1997.

[143] J. P. Warners, T. Terlaky, C. Roos, and B. Jansen. A potential reduction approach to the frequency assign-
ment problemDiscrete Applied Mathematic38:251-282, 1997.

[144] H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for the graph partitioning problem.
Technical report, Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1
Canada, October 1996.

[145] H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for the set partitioning problem. Tech-
nical report, Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1
Canada, October 1996.

[146] S. Wright.Primal-dual interior point methodsSIAM, Philadelphia, 1996.

[147] Y. Ye. On affine scaling algorithms for nonconvex quadratic programnilaghematical Programming
56:285-300, 1992.

[148] Y. Ye.Interior Point Algorithms: Theory and Analysidohn Wiley, New York, 1997.

[149] Quey-Jen YehA reduced dual affine scaling algorithm for solving assignment and transportation prob-
lems PhD thesis, Columbia University, New York, NY, 1989.

[150] Y. Zhang. On the convergence of a class of infeasible interior-point methods for the horizontal linear
complementarity problenSIAM Journal on Optimizatigrd(1):208-227, 1994.

[151] Q. Zhao.Semidefinite programming for assignment and partitioning probl®&nB thesis, Combinatorics
and Optimization, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada, 1996.

[152] Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations for the qua-
dratic assignment problem. Technical Report 95-27, Combinatorics and Optimization, University of Wa-
terloo, Waterloo, Ontario, N2L 3G1, Canada, September 1996.

MATHEMATICAL SCIENCES RENSSELAERPOLYTECHNICINSTITUTE, TROY, NY 12180 USA
E-mail addressmitchj@rpi.edu

CENTER FORAPPLIED OPTIMIZATION, ISE DEPARTMENT, UNIVERSITY OF FLORIDA, GAINESVILLE,
FL 32611 USA.
E-mail addresspardalos@ufl.edu

INFORMATION SCIENCESRESEARCH AT&T L ABS RESEARCH FLORHAM PARK, NJ 07932 USA.
E-mail addressmgcr@research.att.com

