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ABSTRACT. In this paper, we review recent interior point approaches for solving com-
binatorial optimization problems. We discuss in detail tecniques for linear and network
programming, branch and bound and branch and cut methods, nonconvex potential func-
tion minimization, lower bounding techniques, and semidefinite programming relaxations.

1. INTRODUCTION

Interior-point methods, originally invented in the context of linear programming, have
found a much broader range of applications, includingdiscreteproblems that arise in com-
puter science and operations research as well as continuous computational problems arising
in the natural sciences and engineering. This chapter describes the conceptual basis and
applications of interior-point methods for discrete problems in computing.

The chapter is organized as follows. Section 2 explains the nature and scope of com-
binatorial optimization problems and illustrates the use of interior point approaches for
these problems. Section 3 contrasts the combinatorial and continuous approaches for solv-
ing discrete problems and elaborates on the main ideas underlying the latter approach.
The continuous approach constitutes the conceptual foundation of interior-point methods.
Section 4 is dedicated to interior point algorithms for linear and network optimization.
Sections 5 and 6 discuss branch-and-bound and branch-and-cut methods based on interior
point approaches. Sections 7 and 8 discuss the application of interior point techniques to
minimize nonconvex potential functions to find good feasible solutions to combinatorial
optimization problems as well as good lower bounds. In Section 9, a brief introduction to
semidefinite programming techniques and their application to combinatorial optimization
is presented. We conclude the paper in Section 10 by observing the central role played by
optimization in both natural and man-made sciences. We provide selected pointers to web
sites constaining up-to-date information on interior point methods and their applications to
combinatorial optimaization.

2. COMBINATORIAL OPTIMIZATION

In this section, we discuss several examples of combinatorial optimization problems
and illustrate the application of interior point techniques to the development of algorithms
for these problems.

2.1. Examples of combinatorial optimization problems. As a typical real-life exam-
ple of combinatorial optimization, consider the problem of operating a flight schedule of
an airline at minimum cost. A flight schedule consists of many flights connecting many
cities, with specified arrival and departure times. There are several operating constraints.

Date: November 1997. Final version published inHandbook of Combinatorial Optimization, D.-Z. Du, P.M.
Pardalos, eds., vol. 1, pp. 189-298, Kluwer Academic Publishers, 1998.

Key words and phrases.Interior point methods, combinatorial optimization, integer programming, noncovex
programming, branch and bound.

1



2 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

Each plane must fly a round trip route. Each pilot must also fly a round trip route, but not
necessarily the same route taken by the plane, since at each airport the pilot can change
planes. There are obvious timing constraints interlocking the schedules of pilots, planes
and flights. There must be adequate rest built into the pilot schedule and periodic main-
tenance built into the plane schedule. Only certain crews are qualified to operate certain
types of planes. The operating cost consists of many components, some of them more
subtle than others. For example, in an imperfect schedule, a pilot may have to fly as a
passenger on some flight. This results in lost revenue not only because a passenger seat is
taken up but also because the pilot has to be paid even when riding as a passenger. How
does one make an operating plan for an airline that minimizes the total cost while meeting
all the constraints? A problem of this type is called acombinatorial optimizationproblem,
since there are only a finite number of combinations possible, and in principle, one can
enumerate all of them, eliminate the ones that do not meet the conditions and among those
that do, select the one that has the least operating cost. Needless to say, one needs to be
more clever than simple enumeration, due to the vast number of combinations involved.

As another example, consider a communication network consisting of switches inter-
connected by trunks (e.g. terrestrial, oceanic, satellite) in a particular topology. A tele-
phone call originating in one switch can take many different paths (of switches) to ter-
minate in another switch, using up trunks along the path. The problem is to design a
minimum cost network that can carry the expected traffic. After a network is designed
and implemented, operating the network involves various other combinatorial optimiza-
tion problems, e.g. dynamic routing of calls.

As a third example, consider inductive inference, a central problem in artificial intelli-
gence and machine learning. Inductive inference is the process of hypothesizing a general
rule from examples. Inductive inference involves the following steps: (i) Inferring rules
from examples, finding compact abstract models of data or hidden patterns in the data; (ii)
Making predictions based on abstractions; (iii) Learning, i.e. modifying the abstraction
based on comparing predictions with actual results; (iv) Designing questions to generate
new examples. Consider the first step of the above process, i.e. discovering patterns in
data. For example, given the sequence 2,4,6,8, . . . , we may ask, “What comes next?”
One could pick any number and justify it by fitting a fourth degree polynomial through the
5 points. However, the answer “10” is considered the most “intelligent.” That is so because
it is based on the first-order polynomial 2n, which is linear and hencesimplerthan a fourth
degree polynomial. The answer to an inductive inference problem is not unique. In induc-
tive inference, one wants asimpleexplanation that fits a given set of observations. Simpler
answers are considered better answers. One therefore needs a way to measure simplicity.
For example, in finite automaton inference, the number of states could be a measure of
simplicity. In logic circuit inference, the measure could be the number of gates and wires.
Inductive inference, in fact leads to a discrete optimization problem, where one wants to
maximize simplicity, or find a model, or set of rules, no more complex than some specified
measure, consistent with already known data.

As a further example, consider the linear ordering problem, an important problem in
economics, the social sciences, and also archaeology. In this problem, we are given several
objects that we wish to place in order. There is a cost associated with placing objecti
before objectj and a cost for placing objectj before objecti. The objective is to order
the objects to minimize the total cost. There are methods for ranking sports teams that can
be formulated as linear ordering problems: if team A beats team B then team A should go
ahead of team B in the ranking, but it may be that team B beat team C, who in turn beat
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team A, so the determination of the “best” ordering is a non-trivial task, usually depending
on the margin of victory.

Even though the four examples given above come from four different facets of life and
look superficially to be quite different, they all have a common mathematical structure
and can be described in a common mathematical notation calledinteger programming. In
integer programming, the unknowns are represented by variables that take on a finite or
discrete set of values. The various constraints or conditions on the problem are captured
by algebraic expressions of these variables. For example, in the airline crew assignment
problem discussed above, let us denote by variablexi j the decision quantity that assigns
crew i to flight j. Let there bem crew andn flights. If the variablexi j takes on a value 1,
then we say that crewi is assigned to flightj, and the cost of that assignment isci j . If the
value is 0, then crewi is not assigned to flightj. Thus, the total crew-scheduling cost for
the airline is given by the expression

m

∑
i=1

n

∑
j=1

ci j xi j(1)

that must be minimized. The condition that every flight should have exactly one crew is
expressed by the equations

m

∑
i=1

xi j = 1, for every flight j = 1, . . . ,n.(2)

We should also stipulate that the variables should take on only values 0 or 1. This condition
is denoted by the notation

xi j ∈ {0,1}, 1≤ i ≤m; 1≤ j ≤ n.(3)

Other conditions on the crew can be expressed in a similar fashion. Thus, an integer pro-
gramming formulation of the airline crew assignment problem is to minimize the operating
cost given by (1) subject to various conditions given by other algebraic equations and in-
equalities. The formulations of the network design problem, the inductive inference prob-
lem, as well as the linear operdering problem, look mathematically similar to the above
problem.

Linear programmingis a special and simpler type of combinatorial optimization prob-
lem in which the integrality constraints of the type (3) are absent and we are given a linear
objective function to be minimized subject to linear inequalities and equalities. A standard
form of linear program is stated as follows:

min
x∈Rn
{c>x|Ax≤ b; l ≤ x≤ u},(4)

wherec,u, l ,x ∈ Rn, b∈ Rm andA ∈ Rm×n. In (4), x is the vector of decision variables,
Ax≤ b andl ≤ x≤ u represent constraints on the decision variables, andc>x is the linear
objective function to be minimized. Figure 1 shows a geometric interpretation of a linear
program on the Euclidean plane. Each linear inequality is represented by a line that par-
titions the plane into twohalf-spaces. Each inequality requires that for a solution to be
feasible, it must lie in one of the half-spaces. The feasible region is the intersection of the
half-spaces and is represented in the figure by the hashed area. The objective function,
that must be minimized over the feasible region, is represented by a sliding line. This line
intersects the feasible region in a set of points, all having the same objective value. As
the line is swept across the feasible region in the direction of improvement, its objective
value decreases. The set of points determined by the intersection of the sliding line with
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FIGURE 1. Geometric view of linear programming

the feasible region that attains the best objective function value is called theoptimalsolu-
tion. In the example of the figure there is a unique optimal solution. In fact, a fundamental
theorem in linear programming states that the optimal solution of a linear program occurs
at a vertex of the polytope defined by the constraints of the linear program. This result
gives linear programming its combinatorial nature. Even though the linear programming
decision variables are continuous in nature, this result states that only a discrete and finite
number of points in the solution space need to be examined.

Linear programming has a wide range of applications, including personnel assignment,
production planning and distribution, refinery planning, target assignment, medical imag-
ing, control systems, circuit simulation, weather forecasting, signal processing and finan-
cial engineering. Many polynomial-time solvable combinatorial problems are special cases
of linear programming (e.g. matching and maximum flow). Linear programming has also
been the source of many theoretical developments, in fields as diverse such as economics
and queueing theory.

Combinatorial problems occur in diverse areas. These include graph theory (e.g. graph
partitioning, network flows, graph coloring), linear inequalities (e.g. linear and integer
programming), number theory (e.g. factoring, primality testing, discrete logarithm), group
theory (e.g. graph isomorphism, group intersection), lattice theory (e.g. basis reduction),
and logic and artificial intelligence (e.g. satisfiability, inductive and deductive inference
boolean function minimization). All these problems, when abstracted mathematically have
a commonality of discreteness. The solution approaches for solving these problems also
have a great deal in common. In fact, attempts to come up with solution techniques revealed
more commonality of the problems than was revealed from just the problem formulation.
The solution of combinatorial problems has been the subject of much research. There is a
continuously evolving body of knowledge, both theoretical and practical, for solving these
problems.

2.2. Scope and computational efficiency.We illustrate with some examples the broad
scope of applications of the interior-point techniques and their computational effectiveness.
Since the most widely applied combinatorial optimization problem is linear programming,
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TABLE 1. LP relaxations of QAP integer programming formulation

LP relaxation simplex int. pt.
name rows vars itr time itr time time ratio
nug05 210 225 103 0.2s 14 1.6s 0.1
nug06 372 486 551 2.3s 17 2.6s 0.9
nug07 602 931 2813 22.0s 19 6.2s 3.5
nug08 912 1632 5960 91.3s 18 9.5s 9.6
nug12 3192 8856 57524 9959.1s 29 754.1s 13.2
nug15 6330 22275 239918 192895.2s 36 5203.8s 37.1
nug20 15240 72600 est. time:> 2 months 31 6745.5s -
nug30 52260 379350 did not run 36 35058.0s -

TABLE 2. CPLEX 3.0 and ADP runs on selected QAPLIB instances

LP relaxation primal simplex dual simplex ADP
prob rows vars itr time itr time itr time

nug05 1410 825 265 1.7s 370 1.1s 48 3.2s
nug06 3972 2886 7222 604.3s 1872 22.2s 55 12.2s
nug07 9422 8281 39830 47970.3s 6057 720.3s 59 43.3s
nug08 19728 20448 did not run 16034 37577.1s 63 139.1s
nug12 177432 299256 did not run did not run 91 6504.2s

we begin with this problem. Each step of the interior-point method as applied to linear pro-
gramming involves the solution of a linear system of equations. While a straightforward
implementation of solving these linear systems can still outperform the Simplex Method,
more sophisticated implementations have achieved orders of magnitude improvement over
the Simplex Method. These advanced implementations make use of techniques from many
disciplines such as linear algebra, numerical analysis, computer architecture, advanced
data structures, and differential geometry. Tables 1–2 show the performance comparison
between implementations of the Simplex (CPLEX) and interior-point (ADP [79]) meth-
ods on a class of linear programming relaxations of the quadratic assignment problems
[127, 122]. Similar relative performances have been observed in problems drawn from
disciplines such as operations research, electrical engineering, computer science, and sta-
tistics [79]. As the table shows, the relative superiority of interior-point method over the
Simplex Method grows as the problem size grows and the speed-up factor can exceed 1000.
Larger problems in the table could only be solved by the interior-point method because of
impracticality of running the Simplex Method. In fact, the main practical contribution
of the interior-point method has been to enable the solution of many large-scale real-life
problems in fields such as telecommunication, transportation and defense, that could not
be solved earlier by the Simplex Method.

From the point of view of efficient implementation, interior-point methods have another
important property: they can exploit parallelism rather well [60, 131]. A parallel architec-
ture based on multi-dimensional finite projective geometries, particularly well suited for
interior-point methods, has been proposed [75].

We now illustrate computational experience with an interior point based heuristic for
integer programming [74, 77]. Here again, the main computational task at each iteration,
is the solution of one or more systems of linear equations. These systems have a struc-
ture similar to the system solved in each iteration of interior point algorithms for linear
programming and therefore software developed for linear programming can be reused in
integer programming implementations.
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TABLE 3. SAT: Comparison of Simplex and interior point methods

SAT Problem Size Speed
Variables Clauses (|C |) Avg Lits/Clause Up

50 100 5 5
100 200 5 22
200 400 7 66
400 800 10 319

Consider, as a first example, the Satisfiability (SAT) Problem in propositional calculus,
a central problem in mathematical logic. During the last decade, a variety of heuristics have
been proposed for this problem [61, 30]. A Boolean variablex can assume only values 0
or 1. Boolean variables can be combined by the logical connectivesor (∨), and (∧) and
not (x̄) to form Boolean formulae (e.g.x1∧ x̄2∨x3). A variable or a single negation of the
variable is called aliteral. A Boolean formula consisting of only literals combined by the
∨ operator is called aclause. SAT can be stated as follows: Givenm clausesC1, . . . ,Cm

involving n variablesx1, . . . ,xn, does the formulaC1 ∧ ·· · ∧ Cm evaluate to 1 for some
Boolean input vector[x1, . . . ,xn]? If so, the formula is said to be satisfiable. Otherwise it
is unsatisfiable.

SAT can be formulated as the integer programming feasibility problem

∑
j∈IC

xj − ∑
j∈JC

xj ≥ 1−|Jc|, C = C1, . . . ,Cm,(5)

where

IC = { j | literal xj appears in clauseC}
JC = { j | literal x̄j appears in clauseC} .

If an integer vectorx∈ {0,1}n is produced satisfying (5), the corresponding SAT problem
is said to be satisfiable.

An interior point implementation was compared with an approach based on the Simplex
Method to prove satisfiability of randomly generated instances of SAT [65]. Instances with
up to 1000 variables and 32,000 clauses were solved. Compared with the Simplex Method
approach on small problems (Table 3), speedups of over two orders of magnitude were
observed. Furthermore, the interior point approach was successful in proving satisfiability
in over 250 instances that the Simplex Method approach failed.

As a second example, consider inductive inference. The interior point approach was
applied to a basic model of inductive inference [68]. In this model there is a black box
(Figure 2) withn Boolean input variablesx1, . . . ,xn and a single Boolean output variabley.
The black box contains a hidden Boolean functionF : {0,1}n→{0,1} that maps inputs to
outputs. Given a limited number of inputs and corresponding outputs, we ask: Does there
exist an algebraic sum-of-products expression with no more thanK product terms that
matches this behavior? If so, what is it? It turns out that this problem can be formulated as
a SAT problem.

Consider the hidden logic described by the 32-input, 1-output Boolean expressiony =
x4x11x15x̄22+ x2x12x̄15x̄29+ x̄3x9x20+ x̄10x11x̄29x32. This function has 232' 4.3×109 dis-
tinct input-output combinations. Table 4 summarizes the computational results for this
instance, where subsets of input-output examples of size 50, 100 and 400 were considered
and the number of terms in the expression to be synthesized was fixed atK = 4. In all
instances, the interior point algorithm synthesized a function that described completely the
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xn

y
F : {0,1}n→{0,1}

x1

x2

x3

FIGURE 2. Black box with hidden logic

TABLE 4. Inductive inference SAT problems: 32-variable hidden logic

I/O SAT Size CPU Prediction
Samples Vars |C | itr time Inferred Logic Accuracy

50 332 2703 49 66s
y =x̄22x28x̄29+x12x̄17x̄25x27+

x̄3x9x20+x11x12x̄16x̄32
.74

100 404 5153 78 178s
y =x9x11x̄22x̄29+x4x11x̄22+

x̄3x9x20+x12x̄15x̄16x̄29
.91

400 824 19478 147 1227s
y =x4x11x̄22+ x̄10x11x̄29x32+

x̄3x9x20+x2x12x̄15x̄29
exact

TABLE 5. Efficiency on inductive inference problems: interior point and
combinatorial approaches

Variables SAT Problem Interior Method Combinatorial
Hidden Logic vars |C | itr time Method (time)

8 396 2798 1 9.33s 43.05s
8 930 6547 13 45.72s 11.78s
8 1068 8214 33 122.62s 9.48s
16 532 7825 89 375.83s 20449.20s
16 924 13803 98 520.60s *
16 1602 23281 78 607.80s *
32 228 1374 1 5.02s 159.68s
32 249 2182 1 9.38s 176.32s
32 267 2746 1 9.76s 144.40s
32 450 9380 71 390.22s *
32 759 20862 1 154.62s *

∗ Did not find satisfiable assignment in 43200s.

behavior of the sample. With a sample of only 400 input-output patterns the approach
succeeded in exactly describing the hidden logic. The prediction accuracy given in the ta-
ble was computed with Monte Carlo simulation, where 10,000 random vectors were input
to the black box and to the inferred logic and their outputs compared. Table 5 illustrates
the efficiency of the interior-point method compared to the combinatorial Davis-Putnam
Method [24].
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B

A′

B′

A

FIGURE 3. Wire routing

As another example of an application of the continuous approach to combinatorial prob-
lems, consider the wire routing problem for gate arrays, an important subproblem arising
in VLSI design. As shown in Figure 3, a gate array can be abstracted mathematically as
a grid graph. Input to the wire routing problem consists of a list of wires specified by
end points on a rectangular grid. Each edge of the graph, also known as a channel, has a
prespecified capacity representing the maximum number of wires it can carry. The com-
binatorial problem is to find a wiring pattern without exceeding capacity of horizontal and
vertical channels. This problem can be formulated as an integer programming problem.
The interior-point approach has successfully obtained provably optimal global solutions
to large-scale problems of this type having more than 20,000 wires [109]. On the other
hand, combinatorial heuristics, such as simulated annealing are not comparable either in
the quality of the solution they can find or in terms of the computational cost.

A further example of the successful application of interior point methods to solve com-
binatorial optimization problems comes from statistical physics. The problem of finding
the ground state of an Ising spin glass is related to the magnetism of materials. Finding
the ground state can be modelled as the problem of finding the maximum cut in a graph
whose vertices and edges are those of a grid on a torus. It can be formulated as an integer
programming problem and solved using a cutting plane approach. If the weights on the
edges are±1 then the linear programs suffer from degeneracy, which limits the size of
problems that can be solved efficiently using the Simplex Method. The use of an interior
point algorithm to solve the relaxations allows the solution of far larger problems. For
example, solving problems on a 70×70 toroidal grid using simplex required up to a day
on a Sun SPARCstation 10 [26], whereas problems on a 100× 100 grid could be solved
in an average of about 3 hours 20 minutes on a Sun SPARC 20/71 when using an interior
point code [98].

In the case of many other combinatorial problems, numerous heuristic approaches have
been developed. Many times, the heuristic merely encodes the prior knowledge or an-
ticipation of the structure of solution to a specific class of practical applications into the
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working of the algorithm. This may make a limited improvement in efficiency without re-
ally coming to grips with the problem of exponential growth that plagues the combinatorial
approach. Besides, one needs to develop a wide variety of heuristics to deal with differ-
ent situations. Interior-point methods have provided a unified approach to create efficient
algorithms for many different combinatorial problems.

3. SOLUTION TECHNIQUES

Solution techniques for combinatorial problems can be classified into two groups: com-
binatorial and continuous approaches. In this section, we contrast these approaches.

3.1. Combinatorial approach. The combinatorial approach creates a sequence of states
drawn from a discrete and finite set. Each state represents a suboptimal solution or a partial
solution to the original problem. It may be a graph, a vertex of a polytope, a collection of
subsets of a finite set or some other combinatorial object. At each major step of the algo-
rithm, the next state is chosen in an attempt to improve the current state. The improvement
may be in the quality of the solution measured in terms of the objective function, or it may
be in making the partial solution more feasible. In any case, the improvement is guided
by local search. By local search we mean that the solution procedure only examines a
neighboring set of configurations and greedily selects one that improves the current solu-
tion. Thus, local search is quite myopic, with no consideration given to evaluate whether
this move may make any sense globally. Indeed, a combinatorial approach often lacks
the information needed for making such an evaluation. In many cases, the greedy local im-
provement may trap the solution in a local minimum that is qualitatively much worse than a
true global minimum. To escape from a local minimum, the combinatorial approach needs
to resort to techniques such as backtracking or abandoning the sequences of states created
so far altogether and restarting with a different initial state. Most combinatorial problems
suffer from the property of having a large number of local minima when the search space is
confined to a discrete set. For a majority of combinatorial optimization problems, the phe-
nomenon of multiple local minima may create a problem for the combinatorial approach.

On the other hand, for a limited class of problems, one can rule out the possibility of lo-
cal minima and show that local improvement also leads to global improvement. For many
problems in this class, polynomial-time algorithms (i.e. algorithms whose running time
can be proven to be bounded from above by polynomial functions of the lengths of the
problems) have been known for a long time. Examples of problems in this class are bipar-
tite matching and network flows. It turns out that many of these problems are special cases
of linear programming, which is also a polynomial-time problem. However, the Simplex
Method, which employs a combinatorial approach to solving linear programs, has been
shown to be an exponential-time algorithm. In contrast, all polynomial-time algorithms
for solving the general linear programming problem employ a continuous approach. These
algorithms use either the Ellipsoid Method [81] or one of the variants of the Karmarkar
Method.

3.2. Continuous approach. In the continuous approach to solving discrete problems, the
set of candidate solutions to a given combinatorial problem is embedded in a larger con-
tinuous space. The topological and geometric properties of the continuous space play an
essential role in the construction of the algorithm as well as in the analysis of its efficiency.
The algorithm involves the creation of a sequence of points in the enlarged space that con-
verges to the solution of the original combinatorial problem. At each major step of the
algorithm, the next point in the sequence is obtained from the current point by making a
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FIGURE 4. Discrete set embedded into continuous set

goodglobalapproximation to the entire set of relevant solutions and solving it. Usually it
is also possible to associate a continuous trajectory or a set of trajectories with the limiting
case of the discrete algorithm obtained by taking infinitesimal steps. Topological proper-
ties of the underlying continuous space such as connectivity of the level sets of the function
being optimized are used for bounding the number of local minima and choosing an effec-
tive formulation of the continuous optimization problem. The geometric properties such
as distance, volume and curvature of trajectories are used for analyzing the rate of con-
vergence of an algorithm, whereas the topological properties help determine if a proposed
algorithm will converge at all. We now elaborate further on each of the main concepts
involved in the continuous approach.

3.2.1. Examples of embedding.Suppose the candidate solutions to a discrete problem are
represented as points in then-dimensional real spaceRn. This solution set can be embedded
into a larger continuous space by forming the convex hull of these points (Figure 4). This
is the most common form of continuous embedding and is used for solving linear and
integer programming problems. As another example, consider a discrete problem whose
candidate solution set is a finite cyclic group. This can be embedded in a continuous Lie
group{eiθ|0≤ θ < 2π} [20]. A Lie group embedding is useful for the problem of graph
isomorphism or automorphism. In this problem, letA denote the adjacency matrix of the
graph. Then the discrete solution set of the automorphism problem is the permutation
group given by{P|AP= PA; P is a permutation matrix}. This can be embedded in a larger
continuous group given by{U |AU = UA; U is a complex unitary matrix}.

3.2.2. Global approximation.At each major step of the algorithm, a subproblem is solved
to obtain the next point in the sequence. The subproblem should satisfy two properties: (i)
it should be aglobal approximation to the original problem; and (ii) should be efficiently
solvable. In the context of linear programming, the Karmarkar Method contains a way of
making a global approximation having both of the above desirable properties and is based
on the following theorem.

Theorem 3.1. Given any polytope P and an interior pointx ∈ P, there exists a projective
transformation T , that transforms P to P′ andx to x′ ∈P′ so that it is possible to find in the
transformed space a circumscribing ball B(x′,R) ⊇ P′, of radius R, centerx′, containing
P′ and a inscribing ball B(x′, r) ⊆ P′ of radius r, centerx′ contained in P′ such that the
ratio R/r is at most n.
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The inverse image (underT) of the inscribed ball is used as the optimization space for
the subproblem and satisfies the two properties stated above, leading to a polynomial-time
algorithm for linear programming. The effectiveness of this global approximation is also
borne out in practice since Karmarkar’s Method and its variants take very few approxi-
mation steps to find the global optimum of the original problem. Extension of this global
approximation step to integer programming have led to new algorithms for solving NP-
complete problems, as we shall see later.

3.2.3. Continuous trajectories.Suppose an interior-point method produces an iteration of
the following type,

x(k+1)← x(k) + αf(k) + O(α2),(6)

wherex(k) is thek-th iterate,f(k) is thek-th direction of improvement, andα is the step-
length parameter. Then by taking the limit asα→ 0, we get theinfinitesimal versionof the
algorithm whose continuous trajectories are given by the differential equation

dx
dα

= f(x),(7)

wheref(x) defines a vector field. Thus, the infinitesimal version of the algorithm can be
thought of as a nonlinear dynamical system. For the projective method for linear program-
ming, the differential equation is given by

dx
dt

=−[D−xx>]PAD ·Dc,

where

PAD = I −DA>(AD2A>)−1AD,

D = diag{x1,x2, · · · ,xn}.
Similarly, continuous trajectories and the corresponding differential equations can be de-
rived for other interior-point methods. These trajectories have a rich mathematical structure
in them. Many times they also have algebraic descriptions and alternative interpretations.
The continuous trajectory given above for the linear programming problem converges to
an optimal solution of the problem corresponding to the objective function vectorc. Note
that the vector field depends onc in a smooth way and as the vectorc is varied one can
get to each vertex of the polytope as limit of some continuous trajectory. If one were to
attempt a direct combinatorial description of the discrete solution set of a linear program-
ming problem, it would become enormously complex since the number of solutions can
be exponential with respect to the size of the problem. In contrast, the simple differential
equation given above implicitly encodes the complex structure of the solution set. Another
important fact to be noticed is that the differential equation is written in terms of theorig-
inal input matrixA defining the problem. Viewing combinatorial objects as limiting cases
of continuous objects often makes them more accessible to mathematical reasoning and
also permits construction of more efficient algorithms.

The power of the language of differential equations in describing complex phenomena is
rather well-known in the natural sciences. For example, if one were to attempt a direct de-
scription of the trajectories involved in planetary motion, it would be enormously complex.
However, a small set of differential equations written in terms of theoriginal parameters
of the problem is able to describe the same motion. One of the most important accomplish-
ments of Newtonian mechanics was finding asimpledescription of the apparently complex
phenomena of planetary motion, in the form of differential equations.
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In the context of combinatorial optimization, the structure of the solution set of a dis-
crete problem is often rather complex. As a result, a straightforward combinatorial ap-
proach to solving these problems has not succeeded in many cases and has led to a be-
lief that these problems are intractable. Even for linear programming, which is one of
the simplest combinatorial optimization problems, the best known method, in both theory
and practice, is based on the continuous approach rather than the combinatorial approach.
Underlying this continuous approach is a small set of differential equations, capable of
encoding the complicated combinatorial structure of the solution set. As this approach is
extended and generalized, one hopes to find new and efficient algorithms for many other
combinatorial problems.

3.2.4. Topological properties.There are many ways to formulate a given discrete prob-
lem as a continuous optimization problem, and it is rather easy to make a formulation that
would be difficult to solve even by means of continuous trajectories. How does one make
a formulation that is solvable? The most well-known class of continuous solvable prob-
lems is the class of convex minimization problems. This leads to a natural question: Is
convexity the characteristic property that separates the class of efficiently solvable mini-
mization problems from the rest? To explore this question we need to look at topological
properties. Topology is the study of properties invariant under any continuous, one-to-one
transformation of space having a continuous inverse.

Suppose we have a continuous optimization problem that is solvable by means of contin-
uous trajectories. It may be a convex problem, for example. Suppose we apply a nonlinear
transformation to the space that is a diffeomorphism. The transformed problem need not be
convex, but it will continue to be solvable by means of continuous trajectories. In fact, the
image of the continuous trajectories in the original space, obtained by applying thesame
diffeomorphism gives us a way of solving the transformed problem. Conversely, if the
original problem was unsolvable, it could not be converted into a solvable problem by any
such transformation. Hence any diffeomorphism maps solvable problems onto solvable
problems and unsolvable problems onto unsolvable problems. This argument suggests that
the property characterizing the solvable class may be a topological property and not simply
a geometric property such as convexity.

The simplest topological property relevant to the performance of interior-point meth-
ods is connectivity of the level sets of the function being optimized. Intuitively, a subset of
continuous space is connected if any two points of the subset can be joined by a continuous
path lying entirely in the subset. In the context of function minimization, the significance
of connectivity lies in the fact that functions having connected level sets do not have spuri-
ous local minima. In other words every local minimum is necessarily a global minimum. A
continuous formulation of NP-complete problems having such desirable topological prop-
erties is given in [74]. The approach described there provides a theoretical foundation for
constructing efficient algorithms for discrete problems on the basis of a common principle.
Algorithms for many practical problems can now be developed which differ mainly in the
way the combinatorial structure of he problem is exploited to gain additional computational
efficiency.

4. INTERIOR POINT METHODS FOR LINEAR AND NETWORK PROGRAMMING

4.1. Linear programming. Interior point methods were first described by Dikin [29] in
the mid 1960s, and current interest in them started with Karmarkar’s algorithm in the mid
1980s [72]. As the name suggests, these algorithms generate a sequence of iterates which
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moves through the relative interior of the feasible region, in marked contrast to the sim-
plex method [22], where each iterate is an extreme point. Like the ellipsoid method [81],
many interior point methods have polynomial complexity, whereas every known variant
of the simplex method can take an exponential number of iterations in the worst case.
Computationally, interior point methods usually require far less time than their worst-case
bounds, and they appear to be superior to the simplex method, at least for problems with
a large number of constraints and variables (say, more than one thousand). Recent books
discussing interior point methods for linear programming include [132, 140, 146, 148].

The dual affine scaling method is similar to Dikin’s original method and is discussed
in section 4.3.1. In this section, we consider a slightly more complicated interior point
method, namely the primal-dual predictor-corrector methodPDPCM [92, 90]. This is per-
haps the most popular and widely implemented interior point method. The basic idea with
an interior point method is to enable the method to take long steps, by choosing directions
that do not immediately run into the boundary. With thePDPCM this is achieved by con-
sidering a modification of the original problem, with a penalty term for approaching the
boundary. Thus, for the standard form linear programming problem

min cTx
subject to Ax = b

x ≥ 0

wherec and x aren-vectors,b is an m-vector, andA is dimensioned appropriately, the
barrier function subproblem is constructed:

min cTx−µ∑n
i=1 log(xi)

subject to Ax = b
x ≥ 0

Here, log denotes the natural logarithm, andµ is a positive constant. Note that ifxi ap-
proaches zero for any component, then the objective function value approaches∞.

If the original linear program has a compact set of optimal solutions then each barrier
subproblem will have a unique optimal solution. The set of all these optimal solutions is
known as thecentral trajectory. The limit point of the central trajectory asµ tends to zero
is an optimal point for the original linear program. If the original linear program has more
than one optimal solution, then the limit point is in the relative interior of the optimal face.

Fiacco and McCormick [34] suggested following the central trajectory to the optimal
solution. This requires solving a barrier subproblem for a particular choice ofµ, decreasing
µ, and repeating. The hope is that knowing the solution to one subproblem will make it
easy to solve the next one. It also suffices to only solve the subproblems approximately,
both theoretically and practically. Monteiro and Adler [102] showed that ifµ is decreased
by a sufficiently small amount then an approximate solution to one subproblem can be
used to obtain an approximate solution to the next one in just one iteration, leading to an
algorithm that requiresO(n1/2) iterations. With a more aggressive reduction inµ (for ex-
ample,µ is halved at each iteration), more iterations are required to obtain an approximate
solution to the new subproblem, and the best complexity result that has been proved for
such algorithms is that they requireO(n) iterations.

There are several issues that need to be resolved in order to specify the algorithm, in-
cluding the choice of values ofµ, methods for solving the subproblems, and the desired
accuracy of the solutions of the subproblems. Many different choices have been investi-
gated, at least theoretically. Much of the successful computational work has focussed on
thePDPCM, and so we now describe that algorithm.
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The optimality conditions for the subproblems can be written:

Ax = b(8)

ATy+ z = c(9)

XZe = µe(10)

wheree denotes the vector of all ones of appropriate dimension,y is anm-vector,z is a
nonnegativen-vector, andX andZ aren×n diagonal matrices withXii = xi andZii = zi for
i = 1, . . . ,n. Equation (9) together with the nonnegativity restriction onz corresponds to
dual feasibility. Notice that the last condition is equivalent to saying thatxizi = µ for each
componenti. Complementary slackness for the original linear program would require
xizi = 0 for each componenti. The duality gap isxTz, so if a point satisfies the optimality
conditions (8–10) then the duality gap will benµ.

We assume we have a strictly positive feasible solutionx and a dual feasible solution
(y,z) satisfyingATy+z= c, z> 0. If these assumptions are not satisfied, the algorithm can
be modified appropriately; see, for example, [90] or Zhang [150].

An iteration ofPDPCMconsists of three parts:

• A Newton step to move towards the solution of the linear program is calculated (but
not taken). This is known as thepredictor step.
• This predictor step is used to updateµ.
• A corrector stepis taken, which combines the decrease of the predictor step with a

step that tries to stay close to the central trajectory.

The predictor step gives an immediate return on the value of the objective function, and
the corrector step brings the iterate back towards the central trajectory, making it easier to
obtain a good decrease on future steps.

The calculation of the predictor step requires solving the following system of equations
to obtain the search directions∆px, ∆py, and∆pz:

A∆px = 0(11)

AT∆py+ ∆pz = 0(12)

Z∆px+ X∆pz = −XZe.(13)

One method to solve this system is to notice that it requires

AZ−1XAT∆py =−AXe.(14)

The Cholesky factorization of the matrixAZ−1XAT can be calculated, and this can be used
to obtain∆py. The vectors∆pzand∆px can then be calculated from the equations (12) and
(13).

It can be shown that if we choose a step of lengthα then the duality is reduced by a
factor of α, so if we took a step of length one then the duality gap would be reduced to
zero. However, it is not usually possible to take such a large step and still remain feasible.
Thus, we calculateαp

P andαp
D, the maximum possible step lengths to maintain primal and

dual feasibility.
We use these steplengths to aid in the adaptive update ofµ. If the steplengths are close

to one, then the duality gap can be decreased dramatically, and the newµshould be consid-
erably smaller than the old value. Conversely, if the steplengths are short then the iterates
are close to the boundary, soµ should only be decreased slightly and the iterates should be
pushed back towards the central trajectory. This leads to one possible update ofµ as

µ+ = (gp/x
Tz)2gp/n(15)
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wheregp is the duality gap that would result if primal and dual steps of lengthsαp
P andαp

D,
respectively, were taken.

A corrector step(∆x,∆y,∆z) is used to bring the iterates back towards the central trajec-
tory. This involves solving the system of equations

A∆x = 0(16)

AT∆y+ ∆z = 0(17)

Z∆x+ X∆z = µ+e−XZe−vp(18)

wherevp is ann-vector, with componentsvp
i = ∆pxi∆pzi . This system can be solved using

the Cholesky factors of the matrixAZ−1XAT , which were already formed when calculating
the predictor step.

Once the direction has been calculated, the primal and dual step lengthsαP andαD are
chosen to ensure that the next iterate hasx+ > 0 andz+ > 0. The iterates are updated as:

x+ = x+ αP∆x(19)

y+ = y+ αD∆y(20)

z+ = z+ αD∆z.(21)

Typically, αP andαD are chosen to move the iterates as much as 99.95% of the way to the
boundary.

The predictor-corrector method [103, 92] can be thought of as finding a direction by
using a second order approximation to the central trajectory. A second order solution to
(8–10) would require that the direction satisfy

Z∆x+ X∆z+ v= µ+e−XZe

wherev is a vector to be determined withvi = ∆xi∆zi . It is not possible to easily solve this
equation together with (16–17), so it is approximated by the system of equations (16–18).

The method makes just one iteration for each reduction inµ, but typicallyµ is decreased
very quickly, by perhaps at least a constant factor at each iteration. The duality gap usu-
ally close tonµ, so the algorithm is terminated when the duality gap drops below some
tolerance. The algorithm typically takes only 40 or so iterations even for problems with
thousands of constraints and/or variables.

The computational work in an iteration is dominated by the factorization of the matrix
AZ−1XAT . The first step in the factorization is usually to permute the rows ofA to reduce
the number of nonzeroes in the Cholesky factors — this step need only be performed
once in the algorithm. Once the ordering is set, a numerical factorization of the matrix
is performed at each iteration. These factors are then used to calculate the directions by
means of backward and forward substitutions. The use of the correction direction was
found to decrease the number of iterations required to solve a linear program by enough
to justify the extra work at each iteration of calculating an extra direction. Higher order
approximations [13, 14, 3, 76] have proven useful for some problems where the cost of the
factorization is far greater than the cost of backward and forward substitutions — see [148].
For a discussion of the computational issues involed in implementing an interior point
algorithm, see, for example, Adler et al. [3] and Andersenet al. [7].

4.2. Network programming. A large number of problems in transportation, communica-
tions, and manufacturing can be modeled as network flow problems. In these problems one
seeks to find the most efficient, or optimal, way to move flow (e.g. materials, information,
buses, electrical currents) on a network (e.g. postal network, computer network, trans-
portation grid, power grid). Among these optimization problems, many are special classes
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of linear programming problems, with combinatorial properties that enable development
of efficient solution techniques. In this section, we limit our discussion to these linear net-
work flow problems. For a treatment of classes of nonlinear network flow problems, the
reader is referred to [31, 50, 51, 114] and references therein.

Given a directed graphG = (N ,A), whereN is a set ofm nodes andA a set ofn arcs,
let (i, j) denote a directed arc from nodei to node j. Every node is classified in one of
the following three categories.Sourcenodes produce more flow than they consume.Sink
nodes consume more flow than they produce.Transshipmentnodes produce as much flow
as they consume. Without loss of generality, one can assume that the total flow produced in
the network equals the total flow consumed. Each arc has associated with it an origination
node and a destination node, implying a direction for flow to follow. Arcs have limitations
(often called capacities or bounds) on how much flow can move through them. The flow on
arc(i, j) must be no less thanli j and can be no greater thanui j . To set up the problem in the
framework of an optimization problem, a unit flow costci j , incurred by each unit of flow
moving through arc(i, j), must be defined. Besides being restricted by lower and upper
bounds at each arc, flows must satisfy another important condition, known as Kirchhoff’s
Law (conservation of flow), which states that for every node in the network, the sum of
all incoming flow together with the flow produced at the node must equal the sum of all
outgoing flow and the flow consumed at the node. The objective of theminimum cost
network flow problemis to determine the flow on each arc of the network, such that all of
the flow produced in the network is moved from the source nodes to the sink nodes in the
most cost-effective way, while not violating Kirchhoff’s Law and flow limitations on the
arcs. The minimum cost network flow problem can be formulated as the following linear
program:

min ∑
(i, j)∈A

ci j xi j(22)

subject to:

∑
( j ,k)∈A

xjk− ∑
(k, j)∈A

xk j = bj , j ∈N(23)

li j ≤ xi j ≤ ui j , (i, j) ∈ A .(24)

In this formulation,xi j denotes the flow on arc(i, j) andci j is the cost of transporting one
unit of flow on arc(i, j). For each nodej ∈ N , let bj denote a quantity associated with
node j that indicates how much flow is produced or consumed at the node. Ifbj > 0, node
j is a source. Ifbj < 0, node j is a sink. Otherwise (bj = 0), node j is a transshipment
node. For each arc(i, j) ∈ A , as before, letli j andui j denote, respectively, the lower and
upper bounds on flow on arc(i, j). The case whereui j = ∞, for all (i, j) ∈ A , gives rise to
theuncapacitatednetwork flow problem. Without loss of generality,li j can be set to zero.
Most often, the problem data (i.e.ci j ,ui j , li j , for (i, j) ∈ A andbj , for j ∈N ) are assumed
to be integer, and many codes adopt this assumption. However, there can exist applications
where the data are real numbers, and algorithms should be capable of handling problems
with real data.

Constraints of type (23) are referred to as the flow conservation equations, while con-
straints of type (24) are called the flow capacity constraints. In matrix notation, the above
network flow problem can be formulated as a linear program of the special form

min {c>x | Ax= b, l ≤ x≤ u},
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whereA is them×n node-arc incidence matrixof the graphG = (N ,A), i.e. for each arc
(i, j) in A there is an associated column in matrixA with exactly two nonzero entries: an
entry 1 in rowi and an entry−1 in row j. Note that from themnentries ofA, only 2n are
nonzero and because of this, the node-arc incidence matrix is not a space-efficient repre-
sentation of the network. There are many other ways to represent a network. A popular
representation is thenode-node adjacencymatrixB. This is anm×mmatrix with an entry
1 in position(i, j) if arc (i, j) ∈ A and 0 otherwise. Such a representation is efficient for
dense networks, but is inefficient for sparse networks. A more efficient representation of
sparse networks is theadjacency list, where for each nodei ∈N there exists a list of arcs
emanating from nodei, i.e. a list of nodesj such that(i, j)∈A . Theforward starrepresen-
tation is a multi-array implementation of the adjacency list data structure. The adjacency
list enables easy access to the arcs emanating from a given node, but not the incoming
arcs. Thereverse starrepresentation enables easy access to the list of arcs incoming intoi.
Another representation that is much used in interior point network flow implementations is
a simplearc list, where the arcs are stored in a linear array. The complexity of an algorithm
for solving network flow problems depends greatly on the network representation and the
data structures used for maintaining and updating the intermediate computations.

We denote thei-th column ofA by Ai , the i-th row of A by A.i and a submatrix ofA
formed by columns with indices in setS by AS. If graph G is disconnected and hasp
connected components, there are exactlyp redundant flow conservation constraints, which
are sometimes removed from the problem formulation. We rule out a trivially infeasible
problem by assuming

∑
j∈N k

bj = 0, k = 1, . . . , p,(25)

whereN k is the set of nodes for thek-th component ofG.
Often it is further required that the flowxi j be integer, i.e. we replace (24) with

li j ≤ xi j ≤ ui j , xi j integer, (i, j) ∈ A .(26)

Since the node-arc incidence matrixA is totally unimodular, when the data is integer all
vertex solutions of the linear program are integer. An algorithm that finds a vertex so-
lution, such as the simplex method, will necessarily produce an integer optimal flow. In
certain types of network flow problems, such as the assignment problem, one may be only
interested in solutions having integer flows, since fractional flows do not have a logical
interpretation.

In the remainder of this section we assume, without loss of generality, thatli j = 0 for all
(i, j) ∈ A and thatc 6= 0. A simple change of variables can transform the original problem
into an equivalent one withli j = 0 for all (i, j) ∈ A . The case wherec = 0 is a simple
feasibility problem, and can be handled by solving a maximum flow problem [4].

Many important combinatorial optimization problems are special cases of the minimum
cost network flow problem. Such problems include the linear assignment and transporta-
tion problems, and the maximum flow and shortest path problems. In the transportation
problem, the underlying graph is bipartite, i.e. there exist two setsS and T such that
S ∪T = N andS ∩T = /0 and arcs occur only from nodes ofS to nodes ofT . SetS is
usually called the set of source nodes and setT is the set of sink nodes. For the transporta-
tion problem, the right hand side vector in (23) is given by

bj =
{

sj if j ∈ S
−t j if j ∈ T ,
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wheresj is the supply at nodej ∈ S andt j is the demand at nodej ∈ T . The assignment
problem is a special case of the transportation problem, in whichsj = 1 for all j ∈ S and
t j = 1 for all j ∈ T .

The computation of the maximum flow from nodes to nodet in G= (N ,A) can be done
by computing a minimum cost flow inG′ = (N ′,A ′), whereN ′ = N andA ′ = A ∪ (t,s),
where

ci j =
{

0 if (i, j) ∈ A
−1 if (i, j) = (t,s),

and

ui j =
{

cap(i, j) if (i, j) ∈ A
∞ if (i, j) = (t,s),

where cap(i, j) is the capacity of arc(i, j) in the maximum flow problem.
The shortest paths from nodes to all nodes inN \{s} can be computed by solving an

uncapacitated minimum cost network flow problem in whichci j is the length of arc(i, j)
and the right hand side vector in (23) is given by

bj =
{

m−1 if j = s
−1 if j ∈N \{s}.

Although all of the above combinatorial optimization problems are formulated as min-
imum cost network flow problems, several specialized algorithms have been devised for
solving them efficiently.

In many practical applications, flows in networks with more than one commodity need
to be optimized. In the multicommodity network flow problem,k commodities are to be
moved in the network. The set of commodities is denoted byK . Let xk

i j denote the flow of
commodityk in arc(i, j). The multicommodity network flow problem can be formulated
as the following linear program:

min ∑
k∈K

∑
(i, j)∈A

ck
i j x

k
i j(27)

subject to:

∑
( j ,l)∈A

xk
jl − ∑

(l , j)∈A
xk

l j = bk
j , j ∈N , k∈K(28)

∑
k∈K

xk
i j ≤ ui j , (i, j) ∈ A ,(29)

xk
i j ≥ 0, (i, j) ∈ A , k∈K .(30)

The minimum cost network flow problem is a special case of the multicommodity network
flow problem, in which there is only one commodity.

In the 1940s, Hitchcock [58] proposed an algorithm for solving the transportation prob-
lem and later Dantzig [23] developed the Simplex Method for linear programming prob-
lems. In the 1950s, Kruskal [83] developed a minimum spanning tree algorithm and Prim
[118] devised an algorithm for the shortest path problem. During that decade, commercial
digital computers were introduced widely. The first book on network flows was published
by Ford and Fulkerson [37] in 1962. Since then, active research produced a variety of
algorithms, data structures, and software for solving network flow problems. For an intro-
duction to network flow problems and applications, see the books [4, 15, 31, 37, 80, 84,
133, 137].
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4.3. Components of interior point network flow methods. Since Karmarkar’s break-
through in 1984, many variants of his algorithm, including the dual affine scaling, with and
without centering, reduced dual affine scaling, primal path following (method of centers),
primal-dual path following, predictor-corrector primal-dual path following, and the infea-
sible primal-dual path following, have been used to solve network flow problems. Though
these algorithms are, in some sense, different, they share many of the same computational
requirements. The key ingredients for efficient implementation of these algorithms are:

1. The solution of the linear systemADA>u = t, whereD is a diagonaln× n scaling
matrix, andu andt arem-vectors. This requires an iterative algorithm for computing
approximate directions, preconditioners, stopping criteria for the iterative algorithm,
etc.

2. The recovery of the desired optimal solution. This may depend on how the problem
is presented (integer data or real data), and what type of solution is required (frac-
tional or integer solution,ε-optimal or exact solution, primal optimal or primal-dual
optimal solution, etc.).

In this subsection, we present in detail these components, illustrating their implementa-
tion in the dual affine scaling network flow algorithmDLNET of Resende and Veiga [130].

4.3.1. The dual affine scaling algorithm.The dual affine scaling (DAS) algorithm [12,
29, 135, 141] was one of the first interior point methods to be shown to be competive
computationally with the simplex method [2, 3]. As before, letA be anm×n matrix,c, u,
andx ben-dimensional vectors andb anm-dimensional vector. TheDAS algorithm solves
the linear program

min {c>x | Ax= b, 0≤ x≤ u}

indirectly, by solving its dual

max{b>y−u>z | A>y−z+ s= c, z≥ 0,s≥ 0},(31)

wherezandsare ann-dimensional vectors andy is anm-dimensional vector. The algorithm
starts with an initial interior solution{y0,z0,s0} such that

A>y0−z0 + s0 = c, z0 > 0, s0 > 0,

and iterates according to

{yk+1,zk+1,sk+1}= {yk,zk,sk}+ α {∆y,∆z,∆s},
where the search directions∆y,∆z, and∆ssatisfy

A(Z2
k + S2

k)−1A>∆y = b−AZ2
k(Z2

k + S2
k)−1u,

∆z = Z2
k(Z2

k + S2
k)−1(A>∆y−S2

ku),

∆s = ∆z−A>∆y,

where

Zk = diag(zk
1, . . . ,z

k
n) andSk = diag(sk

1, . . . ,s
k
n)

andα is such thatzk+1 > 0 andsk+1 > 0, i.e.α = γ×min{αz,αs}, where 0< γ< 1 and

αz = min{−zk
i /(∆z)i | (∆z)i < 0, i = 1, . . . ,n}

αs = min{−sk
i /(∆s)i | (∆s)i < 0, i = 1, . . . ,n}.
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procedurepcg (A,Dk, b̄,εcg,∆y)
1 ∆y0 := 0;
2 r0 := b̄;
3 z0 := M−1r0;
4 p0 := z0;
5 i := 0;
6 do stopping criterion not satisfied→
7 qi := ADkA> pi ;
8 αi := z>i ri/p>i qi ;
9 ∆yi+1 := ∆yi + αi pi ;
10 ri+1 := ri −αiqi ;
11 zi+1 := M−1ri+1;
12 βi := z>i+1ri+1/z>i ri ;
13 pi+1 := zi+1 + βi pi ;
14 i := i + 1
15 od;
16 ∆y := ∆yi
end pcg ;

FIGURE 5. The preconditioned conjugate gradient algorithm

The dual problem (31) has a readily available initial interior point solution:

y0
i = 0, i = 1, . . . ,n

s0
i = ci + λ, i = 1, . . . ,n

z0
i = λ, i = 1, . . . ,n,

whereλ is a scalar such thatλ>0 andλ>−ci , i = 1, . . . ,n. The algorithm described above
has two important parameters,γ andλ. For example, inDLNET, γ = 0.95 andλ = 2 ‖c‖2.

4.3.2. Computing the direction.The computational efficiency of interior point network
flow methods relies heavily on a preconditioned conjugate gradient algorithm to solve the
direction finding system at each iteration. The preconditioned conjugate gradient algorithm
is used to solve

M−1(ADkA
>)∆y = M−1b̄(32)

whereM is a positive definite matrix and, in the case of theDAS algorithm,b̄= b−AZ2
kDku,

andDk = (Z2
k + S2

k)−1 is a diagonal matrix of positive elements. The objective is to make
the preconditioned matrix

M−1(ADkA
>)(33)

less ill-conditioned thanADkA>, and improve the convergence of the conjugate gradient
algorithm.

The pseudo-code for the preconditioned conjugate gradient algorithm is presented in
Figure 5. The computationally intensive steps in the preconditioned conjugate gradient
algorithm are lines 3, 7 and 11 of the pseudo-code. These lines correspond to a matrix-
vector multiplication (7) and solving linear systems of equations (3 and 11). Line 3 is
computed once and lines 7 and 11 are computed once every conjugate gradient iteration.
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The matrix-vector multiplications are of the formADkA> pi , carried out without form-
ing ADkA> explicitly. One way to compute the above matrix-vector multiplication is to
decompose it into three sparse matrix-vector multiplications. Let

ζ′ = A>pi and ζ′′ = Dkζ′.

Then

(A (Dk (A>pi))) = Aζ′′.

The complexity of this matrix-vector multiplication isO(n), involvingn additions, 2n sub-
tractions andn floating point multiplications.

The preconditioned residual is computed in lines 3 and 11 when the system of linear
equations

Mzi+1 = ri+1,(34)

is solved, whereM is a positive definite matrix. An efficient implementation requires a pre-
conditioner that can make (34) easy to solve. On the other hand, one needs a preconditioner
that makes (33) well conditioned. In the next subsection, we show several preconditioners
that satisfy, to some extent, these two criteria.

To determine when the approximate direction∆yi produced by the conjugate gradient
algorithm is satisfactory, one can compute the angleθ between(ADkA>)∆yi and b̄ and
stop when|1− cosθ| < εcos, whereεcos is some small tolerance. In practice, one can
initially useεcos = 10−3 and tighten the tolerance as the interior point iterations proceed,
asεcos= εcos×0.95. The exact computation of

cosθ =
|b̄>(ADkA>)∆yi |

‖b̄‖2 · ‖(ADkA>)∆yi‖2
has the complexity of one conjugate gradient iteration and is therefore expensive if com-
puted at each conjugate gradient iteration. One way to proceed is to compute the cosine
everylcos conjugate gradient iterations. A more efficient procedure [116] follows from the
observation that(ADkA>)∆yi is approximately equal tōb− ri , whereri is the estimate of
the residual at thei-th conjugate gradient iteration. Using this approximation, the cosine
can be estimated by

cosθ =
|b̄>(b̄− ri)|

‖b̄‖2 · ‖(b̄− ri)‖2
.

Since, in practice, the conjugate gradient method finds good directions in few iterations,
this estimate has been shown to be effective and can be computed at each conjugate gradi-
ent iteration.

4.3.3. Network preconditioners for conjugate gradient method.A useful preconditioner
for the conjugate gradient algorithm must be one that allows the efficient solution of (34),
while at the same time causing the number of conjugate gradient iterations to be small. Five
preconditioners have been found useful in conjugate gradient based interior point network
flow methods: diagonal, maximum weighted spanning tree, incompleteQR decomposi-
tion, the Karmarkar-Ramakrishnan preconditioner for general linear programming, and
the approximate Cholesky decomposition preconditioner [93] .

A diagonal matrix constitutes the most straightforward preconditioner used in conjunc-
tion with the conjugate gradient algorithm [45]. They are simple to compute, takingO(n)
double precision operations, and can be effective [129, 131, 149]. In the diagonal precondi-
tioner,M = diag(ADkA>), and the preconditioned residue systems of lines 3 and 11 of the
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conjugate gradient pseudo-code in Figure 5 can each be solved inO(m) double precision
divisions.

A preconditioner that is observed to improve with the number of interior point iterations
is the maximum weighted spanning tree preconditioner. Since the underlying graphG is
not necessarily connected, one can identify a maximal forest using as weights the diagonal
elements of the current scaling matrix,

w = Dke,(35)

wheree is a unitn-vector. In practice, Kruskal’s and Prim’s algorithm have been used to
compute the maximal forest. Kruskal’s algorithm, implemented with the data structures
in [137] has been applied to arcs, ordered approximately with a bucket sort [62, 130], or
exactly using a hybrid QuickSort [64]. Prim’s algorithm is implemented in [116] using the
data structures presented in [4].

At the k-th interior point iteration, letSk be the submatrix ofA with columns corre-
sponding to arcs in the maximal forest,t1, . . . ,tq. The preconditioner can be written as

M = SkDkS>k ,

where, for example, in theDAS algorithm

Dk = diag(1/z2
t1 + 1/s2

t1, . . . ,1/z
2
tq + 1/s2

tq).

For simplicity of notation, we include inSk the linear dependent rows corresponding to the
redundant flow conservation constraints. At each conjugate gradient iteration, the precon-
ditioned residue system

(SkDkS>k )zi+1 = ri+1(36)

is solved with the variables corresponding to redundant constraints set to zero. As with the
diagonal preconditioner, (36) can be solved inO(m) time, as the system coefficient matrix
can be ordered into a block triangular form.

Portugal et al. [116] introduced a preconditioner based on an incompleteQR decom-
position (IQRD) for use in interior point methods to solve transportation problems. They
showed empirically, for that class of problems, that this preconditioner mimics the diagonal
preconditioner during the initial iterations of the interior point method, and the spanning
tree preconditioner in the final interior point method iterations, while causing the conju-
gate gradient method to take fewer iterations than either method during the intermediate
iterations. In [117], the use of this preconditioner is extended to general minimum cost
network flow problems. In the following discussion, we omit the iteration indexk from
notation for the sake of simplicity. Let̄T = {1,2, . . . ,n} \T be the index set of the arcs
not in the computed maximal spanning tree, and let

D =
[

DT
DT̄

]
,

whereDT ∈ Rq×q is the diagonal matrix with the arc weights of the maximal spanning tree
andDT̄ ∈ R(n−q)×(n−q) is the diagonal matrix with weights of the arcs not in the maximal
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spanning tree. Then

ADA> =
[

AT AT̄
][ DT

DT̄

][
A>T
A>T̄

]

=
[

AT D
1
2
T AT̄ D

1
2
T̄

] D
1
2
T A>T

D
1
2
T̄ A>T̄

 .
The Cholesky factorization ofADA> can be found by simply computing theQRfactoriza-
tion of

Ā =

 D
1
2
T A>T

D
1
2
T̄ A>T̄

 .(37)

In fact, if QĀ = R, then

ADA> = Ā>Ā = R>Q>QR= R>R.

The computation of theQR factorization is not recommended here, since besides being
more expensive than a Cholesky factorization, it also destroys the sparsity of the matrix
Ā. Instead, Portugal et al. [116] propose anincomplete QRdecomposition ofĀ. Ap-

plying Givens rotations [39] tōA, using the diagonal elements ofD
1
2
T A>T , the elements of

D
1
2
T̄ A>T̄ become null. No fill-in is incurred in this factorization. See [116] for an example

illustrating this procedure. After the factorization, we have the preconditioner

M = FDF>,

whereF is a matrix with a diagonal of ones that can be reordered to triangular form, and
D is a diagonal matrix with positive elements.

To avoid square root operations,D andF are obtained without explicitly computing
D

1
2 F>. Suppose that the maximum spanning tree is rooted at noder, corresponding to

the flow conservation equation that has been removed from the formulation. Furthermore,
let AT denote the subset of arcs belonging to the tree and letρi represent the predecessor
of nodei in the tree. The procedure used to compute the nonzero elements ofD and the
off-diagonal nonzero elements ofF is presented in the pseudo-code in Figure 6.

The computation of the preconditioned residual withFDF> requiresO(m) divisions,
multiplications, and subtractions, sinceD is a diagonal matrix andF can be permuted into
a triangular matrix with diagonal elements equal to one. The construction ofF andD, that
constitute the preconditioner, requiresO(n) additions andO(m) divisions.

In practice, the diagonal preconditioner is effective during the initial iterations of the
DAS algorithm. As theDAS iterations progress, the spanning tree preconditioner is more
effective as it becomes a better approximation of matrixADkA>. Arguments as to why
this preconditioner is effective are given in [62, 116]. TheDLNET implementation begins
with the diagonal preconditioner and monitors the number of iterations required by the
conjugate gradient algorithm. When the conjugate gradient takes more thanβ

√
m itera-

tions, whereβ> 0, DLNET switches to the spanning tree preconditioner. Upper and lower
limits to the number ofDAS iterations using a diagonal preconditioned conjugate gradient
are specified.
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procedure iqrd (T , T̄ ,N ,D,D,F)
1 do i ∈N \{r} →
2 j = ρi ;
3 if (i, j) ∈AT → Dii = Di j fi;
4 if ( j, i) ∈AT → Dii = Dji fi;
5 od;
6 do (i, j) ∈ AT̄ →
7 if i ∈N \{r} → Dii = Dii + Di j fi;
8 if j ∈N \{r} → D j j = D j j + Di j fi;
9 od;
10 do i ∈N \{r} →
11 j = ρi ;
12 if j ∈N \{r} →
13 if (i, j) ∈ AT → Fi j = Di j /Dii fi;
14 if ( j, i) ∈ AT → Fji = Dji/Dii fi;
15 fi;
16 od;
end iqrd ;

FIGURE 6. Computing theF andD matrices inIQRD

In [93], is proposed a Cholesky decomposition of an approximation of the matrixAΘA>

(CDAM) as preconditioner. This preconditioner has the form

M = LL>,(38)

whith L the lower triangular Cholesky factor of the matrix

BΘBB>+ ρ×diag(NΘNN>),(39)

whereB andN are such thatA = [B N] with B a basis matrix,ΘB andΘN are the diagonal
submatrices ofΘ corresponding toB andN, respectively, andρ is a parameter.

Another preconditioner used in an interior point implementation is the one for general
linear programming, developed by Karmarkar and Ramakrishnan and used in [79, 120].
This preconditioner is based on a dynamic scheme to drop elements of the original scaled
constraint matrixDA, as well as the from the factors of the matrixADA> of the linear
system, and use the incomplete Cholesky factors as the preconditioner. Because of the way
elements are dropped, this preconditioner mimics the diagonal preconditioner in the initial
iterations and the tree preconditioner in the final iterations of the interior point algorithm.

4.3.4. Identifying the optimal partition.One way to stop an interior point algorithm before
the (fractional) interior point iterates converge is to estimate (or guess) the optimal partition
of arcs at each iteration, attempt to recover the flow from the partition and, if a feasible
flow is produced, test if that flow is optimal. In the discussion that follows we describe
a strategy to partition the set of arcs in the dual affine scaling algorithm. The discussion
follows [128] closely, using a dual affine scaling method for uncapacitated networks to
illustrate the procedure.
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Let A∈ Rm×n, c,x,s∈ Rn andb,y∈ Rm. Consider the linear programming problem

minimize c>x

subject to Ax= b, x≥ 0
(40)

and its dual

maximize b>y

subject to A>y+ s= c, s≥ 0.
(41)

The dual affine scaling algorithm starts with an initial dual solutiony0 ∈ {y : s = c−
A>y> 0} and obtains iterateyk+1 from yk according toyk+1 = yk +αkdk

y, where the search

directiondy is dk
y = (AD−2

k A>)−1b andDk = diag(sk
1, ...,s

k
n). A step moving a fractionγ of

the way to the boundary of the feasible region is taken at each iteration, namely,

αk = γ×min{−sk
i /(d

k
s)i : (dk

s)i < 0, i = 1, ...,n},(42)

wheredk
s = −A>dk

y is a unit displacement vector in the space of slack variables. At each

iteration, a tentative primal solution is computed byxk = D−2
k A>(AD−2

k A>)−1b. The set
of optimal solutions is referred to as theoptimal face. We use the index setN∗ for the
always-active index set on the optimal face of the primal, andB∗ for its complement. It is
well-known thatB∗ is the always-active index set on the optimal face of the dual, andN∗
is its complement. Anindicator is a quantity to detect whether an index belongs toN∗ or
B∗. We next describe three indicators that can be implemented in theDAS algorithm. For
pointers to other indicators, see [33].

Under a very weak condition, the iterative sequence of theDAS algorithm converges
to a relative interior point of a face on which the objective function is constant, i.e. the
sequence{yk} converges to an interior point of a face on which the objective function is
constant. LetB be the always-active index set on the face andN be its complement, and let
b∞ be the limiting objective function value. There exists a constantC0 > 0 such that

limsup
k→∞

sk
i

b∞−b>yk
≤C0(43)

for all i ∈ B, while

sk
i

b∞−b>yk
(44)

diverges to infinity for alli ∈ N. Denote bys∞ the limiting slack vector. Thens∞
N > 0 and

s∞
B = 0. The vector

uk≡ (Dk)−1dk
s

b∞−b>yk
=

Dkxk

b∞−b>yk
(45)

plays an important role, since

lim
k→∞

(uk)>e= lim
k→∞

(sk)>xk

b∞−b>yk
= 1.(46)

Consequently, in the limitb∞−b>yk can be estimated by(sk)>xk asymptotically, and (43)
can be stated as

lim
k→∞

sup
sk
i

(sk)>xk
≤C0.



26 J. E. MITCHELL, P. M. PARDALOS, AND M. G. C. RESENDE

Then, if i ∈ B, for anyβ such that 0< β< 1,

lim
k→∞

sup
sk
i

((sk)>xk)β = 0,

since((sk)>xk)β converges to zero at a slower rate than((sk)>xk) for anyβ such that 0<
β< 1. Therefore, ifβ = 1/2, the following indicator has the property that limk→∞ Nk = N∗.

Indicator 1: Let C1 > 0 be any constant, and define

Nk = {i ∈ E : sk
i ≤C1

√
(sk)>xk}.(47)

This indicator is available under very weak assumptions, so it can be used to detectB∗
andN∗ without any substantial restriction on step-size. On the other hand, it gives the
correct partition only if the limit pointy∞ happens to be a relative interior point of the
optimal face of the dual and thus lacks a firm theoretical justification. However, since we
know by experience thaty∞ usually lies in the relative interior of the optimal face, we may
expect that it should work well in practice. Another potential problem with this indicator is
that it is not scaling invariant, so that it will behave differently if the scaling of the problem
is changed.

Now we assume that the step-sizeγ is asymptotically less than or equal to 2/3. Then
the limiting point exists in the interior of the optimal face andb∞ is the optimal value.
Specifically,{yk} converges to an interior point of the optimal face of the dual problem,
{xk} converges to the analytic center of the optimal face of the primal problem, and{b>yk}
converges linearly to the optimal valueb∞ asymptotically, where the (asymptotic) reduction
rate is exactly 1− γ. Furthermore, one can show that

lim
k→∞

uk
i = 1/|B∗| for i ∈ B∗(48)

lim
k→∞

uk
i = 0 otherwise.(49)

The vectoruk is not available because the exact optimal value is unknown a priori, but
b∞−b>yk can be estimated by(sk)>xk to obtain

lim
k→∞

sk
i x

k
i

(sk)>xk
= 1/|B∗| for i ∈ B∗(50)

lim
k→∞

sk
i x

k
i

(sk)>xk
= 0 otherwise.(51)

On the basis of this fact, the following procedure to constructNk, which asymptotically
coincides withN∗:

Indicator 2: Let δ be a constant between 0 and 1. We obtainNk according to the following
procedure:

• Step 1: Sortgk
i = sk

i x
k
i /(s

k)>xk according to its order of magnitude. Denoteil the
index for thel -th largest component.
• Step 2: Forp := 1,2, ... comparegip andδ/p, and letp∗ be the first number such

thatgip∗ ≤ δ/p∗. Then set

Nk = {i1, i2, ..., i p∗−1}.(52)
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To state the third, and most practical indicator, let us turn our attention to the asymptotic
behavior ofsk+1

i /sk
i . If i ∈N∗, thensk

i converges to a positive value, and hence

lim
k→∞

sk+1
i

sk
i

= 1.(53)

If i ∈ B∗, sk
i converges to zero. Since

lim
k→∞

sk
i x

k
i

b∞−b>yk
=

1
|B∗|

,(54)

xk
i converges to a positive number, and the objective function reduces with a rate of 1− γ,

then

lim
k→∞

sk+1
i

sk
i

= 1− γ,(55)

which leads to the following indicator:

Indicator 3: Take a constantη such that 1− γ< η< 1. Then let

Nk = {i :
sk+1
i

sk
i

≥ η}(56)

be defined as the index set. ThenNk = N∗ holds asymptotically.
Of the three indicators described here, Indicators 2 and 3 stand on the firmest theoretical

basis. Furthermore, unlike Indicator 1, both are scaling invariant. The above discussion
can be easily extended for the case of capacitated network flow problems.DLNET uses
Indicator 3 to identify the set of active arcs defining the optimal face by examining the
ratio between subsequent iterates of each dual slack. At the optimum, the flow on each arc
can be classified as being at its upper bound, lower bound, or as active. From the discussion
above, if the flow on arci converges to its upper bound,

lim
k→∞

sk
i /s

k−1
i = 1− γ and lim

k→∞
zk
i /z

k−1
i = 1.

If the flow on arci converges to its lower bound,

lim
k→∞

sk
i /s

k−1
i = 1 and lim

k→∞
zk
i /z

k−1
i = 1− γ.

If the flow on arci is active,

lim
k→∞

sk
i /s

k−1
i = 1− γ and lim

k→∞
zk
i /z

k−1
i = 1− γ.

From a practical point of view, scale invariance is the most interesting feature of this
indicator. An implementable version can use constants which depend only on the step size
factor γ. Let κ0 = .7 andκ1 = .9. At each iteration ofDLNET, the arcs are classified as
follows:

• If sk
i /s

k−1
i < κ0 andzk

i /z
k−1
i > κ1, arci is set to its upper bound.

• If sk
i /s

k−1
i > κ1 andzk

i /z
k−1
i < κ0, arci is set to its lower bound.

• Otherwise, arci is set active, defining the tentative optimal face.
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4.3.5. Recovering the optimal flow.The simplex method restricts the sequence of solu-
tions it generates to nodes of the linear programming polytope. Since the matrixA of the
network linear program is totally unimodular, when a simplex variant is applied to a net-
work flow problem with integer data, the optimal solution is also integer. On the other
hand, an interior point algorithm generates a sequence of interior point (fractional) solu-
tions. Unless the primal optimal solution is unique, the primal solution that an interior
point algorithm converges to is not guaranteed to be integer. In an implementation of an
interior point network flow method, one would like to be capable of recovering an integer
flow even when the problem has multiple optima. We discuss below the stopping strategies
implemented inDLNET and used to recover an integer optimal solution.

Besides the indicator described in subsection 4.3.4,DLNET uses the arcs of the spanning
forest of the tree preconditioner as an indicator. If there exists a unique optimal flow, this
indicator correctly identifies an optimal primal basic sequence, and an integer flow can be
easily recovered by solving a triangular system of linear equations. In general, however,
the arc indices do not converge to a basic sequence. LetT = {t1, . . . ,tq} denote the set of
arc indices in the spanning forest. To obtain a tentative primal basic solution, first set flow
on arcs not in the forest to either their upper or lower bound, i.e. for alli ∈ A \T :

x∗i =
{

0 if sk
i > zk

i
ui otherwise,

wheresk andzk are the current iterates of the dual slack vectors as defined in (31). The
remaining basic arcs have flows that satisfy the linear system

AT x∗T = b− ∑
i∈Ω−

uiAi ,(57)

whereΩ− = {i ∈A \T : sk
i ≤ zk

i }. BecauseAT can be reordered in a triangular form, (57)
can be solved inO(m) operations. IfuT ≥ x∗T ≥ 0 then the primal solution is feasible and
optimality can be tested.

Optimality can be verified by producing a dual feasible solution(y∗,s∗,z∗) that is either
complementary or that implies a duality gap less than 1. The first step to build a tentative
optimal dual solution is identify the set of dual constraints defining the supporting affine
space of the dual face complementary tox∗,

F = {i ∈ T : 0< x∗i < ui},
i.e. the set of arcs with zero dual slacks. Since, in general,x∗ is not feasible,F is usu-
ally determined by the indicators of subsection 4.3.4, as the index-set of active arcs. To
ensure a complementary primal-dual pair, the current dual interior vectoryk is projected
orthogonally onto this affine space. The solutiony∗ of the least squares problem

min
y∗∈Rm

{‖y∗ −yk‖2 : A>F y∗ = cF }(58)

is the projected dual iterate.
Let GF = (N ,F ) be the subgraph ofG with F as its set of arcs. Since this subgraph is

a forest, its incidence matrix,AF , can be reordered into a block triangular form, with each
block corresponding to a tree in the forest. AssumeGF hasp components, withT1, . . . ,Tp

as the sets of arcs in each component tree. After reordering, the incidence matrix can be
represented as

AF =

 AT1

...
ATp

 .
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The supporting affine space of the dual face can be expressed as the sum of orthogonal
one-dimensional subspaces. The operation in (58) can be performed by computing the
orthogonal projections onto each individual subspace independently, and therefore can be
completed inO(m) time. Fori = 1, . . . , p, denote the number of arcs inTi by mi , and the
set of nodes spanned by those arcs byNi . ATi is an(mi +1)×mi matrix and each subspace

Ψi = {yNi
∈ Rmi+1 : A>Ti

yNi
= cTi}

has dimension one. For allyNi
∈Ψi ,

yNi
= y0

Ni
+ αiy

h
Ni
,(59)

wherey0
Ni

is a given solution inΨi and yh
Ni

is a solution of the homogeneous system

A>Ti
yNi

= 0. SinceATi is the incidence matrix of a tree, the unit vector is a homogeneous

solution. The given solutiony0
Ni

can be computed by selectingv ∈ Ni , settingy0
v = 0,

removing the row corresponding to nodev from matrixATi and solving the resulting trian-
gular system

Ã>Ti
yNi\{v} = cTi .

With the representation in (59), the orthogonal projection ofyNi
onto subspaceΨi is

y∗Ni
= y0

Ni
+

e>Ni
(yNi
−y0

Ni
)

(mi + 1)
eNi

wheree is the unit vector. The orthogonal projection, as indicated in (58), is obtained by
combining the projections onto each subspace,

y∗ = (y∗Ni
, . . . ,y∗Nq

).

A feasible dual solution is built by computing the slacks as

z∗i =
{
−δi if δi < 0
0 otherwise,

s∗i =
{

0 if δi < 0
δi otherwise,

whereδi = ci−A>y∗.
If the solution of (57) is feasible, optimality can be checked at this point, using the pro-

jected dual solution as a lower bound on the optimal flow. The primal and dual solutions,x∗

and(y∗,s∗,z∗), are optimal if complementary slackness is satisfied, i.e. if for alli ∈ A \T
eithers∗i > 0 andx∗i = 0 or z∗i > 0 andx∗i = ui . Otherwise, the primal solution,x∗, is still
optimal if the duality gap is less than 1, i.e. ifc>x∗ −b>y∗+ u>z∗ < 1.

However, in general, the method proceeds attempting to find a feasible flowx∗ that is
complementary to the projected dual solutiony∗. Based on the projected dual solutiony∗,
a refined tentative optimal face is selected by redefining the set of active arcs as

F̃ = {i ∈ A : |ci−A>·i y∗|< ε}.

Next, the method attempts to build a primal feasible solution,x∗, complementary to the
tentative dual optimal solution by setting the inactive arcs to lower or upper bounds, i.e.,
for i ∈A \ F̃ ,

x∗i =
{

0 if i ∈Ω+ = {i ∈ A \ F̃ : ci−A>·i y∗ > 0}
ui if i ∈Ω− = {i ∈ A \ F̃ : ci−A>·i y∗ < 0}.
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By considering only the active arcs, arestricted networkis built, represented by the con-
straint set

AF̃ xF̃ = b̃ = b− ∑
i∈Ω−

uiAi ,(60)

0≤ xi ≤ ui , i ∈ F̃ .(61)

Clearly, from the flow balance constraints (60), if a feasible flowx∗F̃ for the restricted net-
work exists, it defines, along withx∗Ω+ andx∗Ω− , a primal feasible solution complementary
to y∗. A feasible flow for the restricted network can be determined by solving a maximum
flow problem on theaugmented networkdefined by underlying graph̃G = (Ñ ,Ã), where

Ñ = {σ}∪{θ}∪N

and

Ã = Σ∪Θ∪ F̃ .

In addition, for each arc(i, j) ∈ F̃ there is an associated capacityui j . The additional arcs
are such that

Σ = {(σ, i) : i ∈N +},

with associated capacitỹbi for each arc(σ, i), and

Θ = {(i,θ) : i ∈N −},

with associated capacity−b̃i for each arc(i,θ), whereN + = {i ∈N : b̃i > 0} andN − =
{i ∈N : b̃i < 0}. It can be shown that ifMσ,θ is the maximum flow value fromσ to θ, and
x̃ is a maximal flow on the augmented network, thenMσ,θ = ∑i∈N + b̃i if and only if x̃F̃ is a
feasible flow for the restricted network. Therefore, finding a feasible flow for the restricted
network involves the solution a maximum flow problem. Furthermore, this feasible flow is
integer, as we can select a maximum flow algorithm [4] that provides an integer solution.

5. BRANCH AND BOUND METHODS

Branch and bound methods are exact algorithms for integer programming problems —
given enough time, they are guaranteed to find an optimal solution. If there is not enough
time available to solve a given problem exactly, a branch and bound algorithm can still
be used to provide a bound on the optimal value. These methods can be used in con-
junction with a heuristic algorithm such as local search, tabu search, simulated annealing,
GRASP, genetic algorithms, or more specialized algorithms, to give a good solution to a
problem, with a guarantee on the maximum possible improvement available over this good
solution. Branch and bound algorithms work by solving relaxations of the integer pro-
gramming problem, and selectively partitioning the feasible region to eventually find the
optimal solution.

5.1. General concepts.Consider an integer programming problem of the form

min cTx
subject to Ax ≤ b

x ≥ 0, integer,
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whereA is anm×n matrix, c andx aren-vectors, andb is anm-vector. The linear pro-
gramming relaxation (LP relaxation) of this problem is

min cTx
subject to Ax ≤ b

x ≥ 0.

If the optimal solutionx∗ to the LP relaxation is integral then it solves the integer program-
ming problem also. Generally, the optimal solution to the LP relaxation will not be an
integral point. In this case, the value of the LP relaxation provides a lower bound on the
optimal value of the integer program, and we attempt to improve the relaxation.

In a branch and bound method, the relaxation is improved by dividing the relaxation
into two subproblems, where one of the variables is restricted to take certain values. For
example, ifx∗i = 0.4, we may set up one subproblem wherexi must be zero and another
subproblem wherexi is restricted to take a value of at least one. We think of the subprob-
lems as forming a tree, rooted at the initial relaxation.

If the solution to the relaxation of one of the subproblems in the tree is integral then
it provides an upper bound on the optimal value of the complete integer program. If the
solution to the relaxation of another subproblem has value larger than this upper bound,
then that subproblem can be pruned, as no feasible solution for it can be optimal for the
complete problem. If the relaxation of the subproblem is infeasible then the subproblem
itself is infeasible and can be pruned. The only other possibility at a node of the tree
is that the solution to the relaxation is fractional, with value less than that of the best
known integral solution. In this case, we further subdivide the subproblem. There are
many techniques available for choosing the branching variable and for choosing the next
subproblem to examine; for more details, see, for example, Parker and Rardin [115].

Interior point methods are good for linear programming problems with a large number
of variables, so they should also be useful for large integer programming problems. Unfor-
tunately, large integer programming problems are often intractable for a general purpose
method like branch and bound, because the tree becomes prohibitively large. Branch and
bound interior point methods have proven successful for problems such as capacitated fa-
cility location problems [19, 25], where the integer variables correspond to the decision as
to whether to build a facility at a particular location, and there are a large number of con-
tinuous variables corresponding to transporting goods from the facilities to customers. For
these problems, the LP relaxations can be large even for instances with only a few integer
variables.

As with interior point cutting plane methods (see section 6), the most important tech-
nique for making an interior point branch and bound method competitive is early termi-
nation. There are four possible outcomes at each node of the branch and bound tree; for
three of these, it suffices to solve the relaxation approximately. The first outcome is that the
relaxation has value greater than the known upper bound on the optimal value, so the node
can be pruned by bounds. Usually, an interior point method will get close to the optimal
value quickly, so the possibility of pruning by bounds can be detected early. The second
possible outcome is that the relaxation is infeasible. Even if this is not detected quickly,
we can usually iterate with a dual feasible algorithm (as with interior point cutting plane
algorithms), so if the dual value becomes larger than the known bound we can prune. The
third possible outcome is that the optimal solution to the relaxation is fractional. In this
case, there are methods (including the Tapia indicator [33] and other indicators discussed
in section 4.3.4) for detecting whether a variable is converging to a fractional value, and
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these can be used before optimality is reached. The final possible outcome is that the opti-
mal solution to the relaxation is integral. In this situation, we can prune the node, perhaps
resulting in an improvement in the value of the best known integral solution. Thus, we are
able to prune in the only situation where it is necessary to solve the relaxation to optimality.

If the optimal solution to the relaxation is fractional, then the subproblem must be sub-
divided. The iterate for the parent problem will be dual feasible but primal infeasible for
the child problems. The solution process can be restarted at these child problems either by
using an infeasible interior point method or by using methods similar to those described
for interior point cuting plane methods in section 6. For very large or degenerate problems,
the interior point method has proven superior to simplex even when the interior point code
is started from scratch at each node.

The first interior point branch and bound code was due to Borchers and Mitchell [19].
This method was adapted by De Silva and Abramson [25] specifically for facility location
problems. Ramakrishnanet al. [119] have developed a branch and bound algorithm for
the quadratic assignment problem. The linear programming relaxations at the nodes of the
tree for this problem are so large that it was necessary to use an interior point method to
solve them. Lee and Mitchell have been developing a parallel interior point branch and cut
algorithm for mixed integer nonlinear programming problems [85].

5.2. An example: The QAP. The quadratic assignment problem (QAP) can be stated as

min
p∈Π

n

∑
i=1

n

∑
j=1

ai j bp(i)p( j),

whereΠ is the set of all permutations of{1,2, . . . ,n}, A = (ai j ) ∈ Rn×n, B = (bi j ) ∈ Rn×n.
Resende, Ramakrishnan, and Drezner [127] consider the following linear program as a

lower bound (see also [1]) to the optimal solution of a QAP.

min
(i< j)

∑
i∈I

(r 6=s)

∑
r∈I

∑
j∈I

∑
s∈I

(ai j brs + ajibsr)yir js

subject to:

( j>i)

∑
j∈I

yir js +
( j<i)

∑
j∈I

yjsir = xir , i ∈ I , r ∈ I ,s∈ I (s 6= r),

(r 6=s)

∑
s∈I

yir js = xir , i ∈ I , r ∈ I , j ∈ I ( j > i),

(r 6=s)

∑
s∈I

yjsir = xir , i ∈ I , r ∈ I , j ∈ I ( j < i),

∑
i∈I

xir = 1, r ∈ I ,

∑
r∈I

xir = 1, i ∈ I ,

0≤ xir ≤ 1, i ∈ I , r ∈ I ,

0≤ yir js ≤ 1, i ∈ I , r ∈ I , j ∈ I ,s∈ I ,
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TABLE 6. Dimension of lower bound linear programs

n constraints variables
2 12 6
3 42 27
4 104 88
5 210 225
6 372 486
7 602 931
8 912 1632
9 1314 2673

10 1820 4150
11 2442 6171
12 3192 8856
13 4082 12337
14 5124 16758

where the setI = {1,2, . . . ,n}. This linear program hasn2(n−1)2/2+ n2 variables and
2n2(n− 1) + 2n constraints. Table 6 shows the dimension of theses linear programs for
several values ofn.

The linear programs were solved with ADP [79], a dual interior point algorithm (see
Subsection 2.2). The solver produces a sequence of lower bounds (dual interior solutions),
each of which can be compared with the best upper bound to decide if pruning of the search
tree can be done at the node on which the lower bound is computed. Figure 7 illustrates the
sequence of lower bounds produced by ADP, compared to the sequence of feasible primal
solutions produced by the primal simplex code of CPLEX on QAPLIB test problemnug15 .
The figure suggests that the algorithm can be stopped many iterations prior to convergence
to the optimal value and still be close in value to the optimal solution. This is important in
branch and bound codes, where often a lower bound needed to prune the search tree is less
than the value of the best lower bound.

Pardalos, Ramakrishnan, Resende, and Li [110] describe a branch and bound algorithm
used to study the effectiveness of a variance reduction based lower bound proposed by Li,
Pardalos, Ramakrishnan, and Resende [87]. This branch and bound algorithm is used by
Ramakrishnan, Pardalos, and Resende [121] in conjunction with the LP-based lower bound
described earlier.

In the first step, an initial upper bound is computed and an initial branch-and-bound
search tree is set up. The branch and bound tree is a binary tree, each node having a left
and right child. For the purpose of describing the branching process, denote, at any node
of the branch and bound tree,SA to be the set of already assigned facilities in the partial
assignment,SE the facilities that will never be in the partial assignment in any node of the
subtree rooted at the current node. LetSl

A, Sl
E andSr

A, Sr
E be the corresponding sets for

the left and right children of the current node. Letq denote the partial assignment at the
current node. Each node of the branch and bound tree is organized as a heap with a key
that is equal to the lower bound on the solution to the original QAP obtainable by any node
in the subtree rooted at this node. The binary tree is organized in maximum order, i.e. the
node with the largest lower bound is first.

The initial best known upper bound is computed by the GRASP heuristic described
in [88, 126]. The initial search tree consists ofn nodes withSA = {i} andSE = /0 for
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FIGURE 7. CPLEX simplex and ADP iterates onnug15

i = 1, . . . ,n, andq(i) = p(i), wherep is the permutation obtained by the GRASP and for
k 6= i, q(k) = 0 and a key of 0.

In the second step, the four procedures of the branch-and-boundas described earlier are:

• Selection: The selection procedure simply chooses the partial permutation stored in
the root of the heap, i.e. we pick the node with the maximum key.
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TABLE 7. Branch and bound algorithm onnug05

node UB LB permutation
1 52 58 1 - - - -
2 52 55 2 - - - -
3 52 52 5 - - - -
4 52 57 3 - - - -
5 52 50 4 - - - -
6 52 57 4 3 - - -
7 52 50 4 5 - - -
8 52 56 4 5 3 - -
9 52 56 4 5 2 - -

10 52 50 4 5 1 - -
11 52 60 4 5 1 3 -
12 52 50 4 5 1 2 -

50 - 4 5 1 2 3
13 50 56 4 2 - - -
14 50 50 4 1 - - -

• Branching: The branching procedure creates two children, the left and right children,
as follows:

pick i 6∈ SA

Sl
A = SA

Sl
E = SE ∪{i}

Sr
A = SA∪{i}

Sr
E = /0
ql = q

qr = q andq(i) = p(i),wherep is the incumbent,

and the key of left child is the same as the key of the current node and the key of the
right child is the newly computed lower bound.
• Elimination: The elimination procedure compares the newly computed lower bound

of the right child to the incumbent and deletes the right child if its key is greater than
the incumbent, thus pruning the entire subtree rooted at the right child.
• Termination Test: The algorithm stops if, and only if, the heap is empty.

In the final step, a best permutation found is taken as the global optimal permutation.
As an example of the branch and bound algorithm, consider the QAPLIB instance

nug05 . The iterations of the branch and bound algorithm are summarized in Table 7. The
GRASP approximation algorithm produced a solution (UB) having cost 52. The branch
and bound algorithm examined 14 nodes of the search tree. In the first five nodes, each
facility was fixed to location 1 and the lower bounds of each branch computed. The lower
bounds corresponding to branches rooted at nodes 1 through 4 were all greater than or
equal to the upper bound, and thus those branches of the tree could be pruned. At node 6 a
level-2 branching begins with a lower bound less than the upper bound produced at node 7.
Deeper branchings are done at nodes 8, 11, and 12, at which point a new upper bound is
computed having value 50. Nodes 13 and 14 complete the search. The same branch and
bound algorithm using the GLB scans 44 nodes of the tree to prove optimality.
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TABLE 8. QAP test instances: LP-based vs. GLB-based B&B algorithms

LP-based B&B GLB-based B&B time nodes
problem dim nodes time nodes time ratio ratio

nug05 5 12 11.7 44 0.1 117.0 3.7
nug06 6 6 9.5 82 0.1 95.0 13.7
nug07 7 7 16.6 115 0.1 166.0 16.4
nug08 8 8 35.1 895 0.2 175.5 111.9
nug12 12 220 5238.2 49063 14.6 358.8 223.0
nug15 15 1195 87085.7 1794507 912.4 95.4 1501.7
scr10 10 19 202.1 1494 0.6 336.8 78.6
scr12 12 252 5118.7 12918 4.8 1066.4 51.3
scr15 15 228 3043.3 506360 274.7 11.1 2220.9
rou10 10 52 275.7 2683 0.8 344.6 51.6
rou12 12 152 2715.9 37982 12.3 220.8 249.9
rou15 15 991 30811.7 4846805 2240.3 13.8 4890.8

esc08a 8 8 37.4 57464 7.0 5.3 7183.0
esc08b 8 208 491.1 7352 0.7 701.6 35.3
esc08c 8 8 42.7 2552 0.3 142.3 319.0
esc08d 8 8 38.1 2216 0.3 127.0 277.0
esc08e 8 64 251.0 10376 1.0 251.0 162.1
esc08f 8 8 37.6 1520 0.3 125.3 190.0
chr12a 12 12 312.0 672 0.7 445.7 56.0
chr12b 12 12 289.4 318 0.6 482.3 26.5
chr12c 12 12 386.1 3214 1.5 257.4 267.8
chr15a 15 15 1495.9 413825 235.5 6.4 27588.3
chr15b 15 15 1831.9 396255 217.8 8.4 26417.0
chr15c 15 15 1908.5 428722 240.0 8.0 28581.5
chr18a 18 35 1600.0 > 1.6×109 > 106 < 648.0−1 > 45×106

We tested the codes on several instances from the QAP library QAPLIB. Table 8 sum-
marizes the runs on both algorithms. For each instance it displays the name and dimension
of the problem, as well as the solution times and number of branch and bound search tree
nodes examined by each of the algorithms. The ratio of CPU times is also displayed.

The number of GRASP iterations was set to 100,000 for all runs.
Table 9 shows statistics for the LP-based algorithm. For each run, the table lists the

number of nodes examined, the number of nodes on which the lower bound obtained was
greater than the best upper bound at that moment, the number of nodes on which the lower
bound obtained was less than or equal to the best upper bound at that moment, and the
percentage of nodes examined that were of levels 1, 2, 3, 4, and 5 or greater.

6. BRANCH AND CUT METHODS

For some problems, branch and bound algorithms can be improved by refining the re-
laxations solved at each node of the tree, so that the relaxation becomes a better and better
approximation to the set of integral feasible solutions. In a general branch and cut method,
many linear programming relaxations are solved at each node of the tree. Like branch and
bound, a branch and cut method is an exact algorithm for an integer programming problem.
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TABLE 9. QAP test instances: B&B tree search

nodes of B&B tree percentage of nodes of level
problem scan good bad 1 2 3 4 ≥ 5

nug05 14 10 4 35.7 28.6 21.4 14.3 0.0
nug06 6 6 0 100.0 0.0 0.0 0.0 0.0
nug07 7 7 0 100.0 0.0 0.0 0.0 0.0
nug08 8 8 0 100.0 0.0 0.0 0.0 0.0
nug12 220 200 20 5.5 45.0 45.5 4.1 0.0
nug15 1195 1103 92 1.3 17.6 56.6 21.1 3.5
scr10 19 18 1 52.6 47.4 0.0 0.0 0.0
scr12 252 228 24 4.8 43.7 23.8 21.4 6.3
scr15 228 211 17 6.6 49.1 11.4 10.5 22.4
rou10 54 46 8 18.5 16.7 14.8 13.0 37.0
rou12 154 137 17 7.8 57.1 6.5 5.8 22.7
rou15 991 912 79 1.5 21.2 69.5 1.2 6.6

esc08a 8 8 0 100.0 0.0 0.0 0.0 0.0
esc08b 208 176 32 3.8 26.9 69.2 0.0 0.0
esc08c 8 8 0 100.0 0.0 0.0 0.0 0.0
esc08d 8 8 0 100.0 0.0 0.0 0.0 0.0
esc08e 64 56 8 12.5 87.5 0.0 0.0 0.0
esc08f 8 8 0 100.0 0.0 0.0 0.0 0.0
chr12a 12 12 0 100.0 0.0 0.0 0.0 0.0
chr12b 12 12 0 100.0 0.0 0.0 0.0 0.0
chr12c 12 12 0 100.0 0.0 0.0 0.0 0.0
chr15a 15 15 0 100.0 0.0 0.0 0.0 0.0
chr15b 15 15 0 100.0 0.0 0.0 0.0 0.0
chr15c 15 15 0 100.0 0.0 0.0 0.0 0.0
chr18a 35 17 18 51.4 48.6 0.0 0.0 0.0

In a cutting plane method, extra constraints are added to the relaxation. These extra
constraints are satisfied by all feasible solutions to the integer programming problem, but
they are violated by the optimal solution to the LP relaxation, so we call themcutting
planes. As the name suggests, a branch and cut method combines a cutting plane approach
with a branch and bound method, attacking the subproblems at the nodes of the tree using
a cutting plane method until it appears that no further progress can be made in a reasonable
amount of time.

Consider, for example, the integer programming problem

min −2x1 − x2

s.t. x1 + 2x2 ≤ 7
2x1 − x2 ≤ 3

x1,x2 ≥ 0, integer.

This problem is illustrated in figure 8. The feasible integer points are indicated. The LP re-
laxation is obtained by ignoring the integrality restrictions; this is given by the polyhedron
contained in the solid lines. The boundary of theconvex hullof the feasible integer points
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FIGURE 8. A cutting plane example

is indicated by dashed lines and can be described by the inequalities

x1 − x2 ≤ 1
x1 ≤ 2
x1 + x2 ≤ 4

x2 ≤ 3
x1,x2 ≥ 0.

When solving this problem using a cutting plane algorithm, the linear programming
relaxation is first solved, giving the pointx1 = 2.6, x2 = 2.2, which has value−7.4. The
inequalitiesx1 + x2 ≤ 4 andx1 ≤ 2 are satisfied by all the feasible integer points but they
are violated by the point(2.6,2.2). Thus, these two inequalities are validcutting planes.
Adding these two inequalities to the relaxation and solving again gives the pointx1 = 2,
x2 = 2, with value−6. Notice that this point is feasible in the original integer program,
so it must actually be optimal for that problem, since it is optimal for a relaxation of the
integer program.

If instead of adding both inequalities, we had just added the inequalityx1 ≤ 2, the
optimal solution to the new relaxation would have beenx1 = 2, x2 = 2.5, with value−6.5.
We could then have looked for a cutting plane that separates this point from the convex
hull, for examplex1 + x2 ≤ 4, added this to the relaxation and solved the new relaxation.
This illustrates the basic structure of a cutting plane algorithm:

• Solve the linear programming relaxation.
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• If the solution to the relaxation is feasible in the integer programming problem,
STOP with optimality.
• Else, find one or more cutting planes that separate the optimal solution to the re-

laxation from the convex hull of feasible integral points, and add a subset of these
constraints to the relaxation.
• Return to the first step.

Notice that the values of the relaxations provide lower bounds on the optimal value of
the integer program. These lower bounds can be used to measure progress towards opti-
mality, and to give performance guarantees on integral solutions. None of these constraints
can be omitted from the description of the convex hull, and they are calledfacetsof the
convex hull. Cutting planes that define facets are the strongest possible cutting planes, and
they should be added to the relaxation in preference to non-facet defining inequalities, if
possible. Families of facet defining inequalities are known for many classes of integer pro-
gramming problems (for example, the traveling salesman problem [47, 108], the matching
problem [32], the linear ordering problem [48], and the maximum cut problem [27, 28]).
Jünger et al. [63] contains a survey of cutting plane methods for various integer program-
ming problems. Nemhauser and Wolsey [105] gives more background on cutting plane
methods for integer programming problems.

Traditionally, Gomory cutting planes [46] were used to improve the relaxation. These
cuts are formed from the optimal tableau for the LP relaxation of the integer program.
Cutting plane methods fell out of favour for many years because algorithms using Gomory
cuts showed slow convergence. The resurgence of interest in these methods is due to the use
of specialized methods that search for facets, enabling the algorithm to converge far more
rapidly. The cutting planes are determined using aseparation routine, which is usually
very problem specific. General integer programming problems have been solved by using
cutting planes based on facets of theknapsack problemmin{cTx : aTx≤ b,x≥ 0,x integer}:
each constraint of the general problem can be treated as a knapsack constraint [59]. Other
general cutting plane techniques include lift-and-project methods [10]. Gomory cutting
planes have also been the subject of a recent investigation [11]. It appears that they are not
as bad as originally thought, and they in fact work quite well if certain modifications are
made, such as adding many constraints at once.

The separation problemfor the problem min{cTx : Ax≤ b, x integer} can be defined
as:

Given a point ¯x, either determine that ¯x is in the convex hullQ of the feasible
integer points, or find a cutting plane that separates ¯x from the convex hull.

Grötschel et al. [49] used the ellipsoid algorithm to show that if the separation problem can
be solved in polynomial time then the problem(IP) itself can also be solved in polynomial
time. It follows that the separation problem for anNP-hard problem cannot be solved
in polynomial time, unlessP = NP. Many of the separation routines in the literature are
heuristics designed to find cutting planes belonging to certain families of facets; there
are many undiscovered families of facets, and, forNP-hard problems, it is unlikely that a
complete description of the facets of the convex hull will be discovered. Such a description
would certainly contain an exponential number of facets (providedP 6= NP). Even small
problems can have many facets. For example, the convex hull of the travelling salesman
problem with only nine cities has over 42 million facets [21].
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1. Solve the current relaxation of(IP) approximately using an inte-
rior point method.

2. Generate an integral feasible solution from the approximate primal
solution.

3. If the gap between the best integral solution found so far and the
best lower bound provided by a dual solution is sufficiently small,
STOP with an optimal solution to the original problem.

4. Otherwise, use a separation routine to generate cutting planes, add
these constraints to the LP relaxation, and return to Step 1.

FIGURE 9. A conceptual interior point cutting plane algorithm

6.1. Interior point cutting plane methods. We now assume that our integer program-
ming problem takes the form

min cTx
subject to Ax = b

0 ≤ x ≤ u (IP)
xi binary fori in I
x satisfies some additional conditions

whereA is anm×n matrix of rankm, c, u, andx aren-vectors,b is anm-vector, andI is
a subset of{1, . . . ,n}. We assume that these additional conditions can be represented by
linear constraints, perhaps by an exponential number of such constraints. For example, the
traveling salesman problem can be represented in this form, with the additional conditions
being the subtour elimination constraints [47, 108], and the conditionsAx= b representing
the degree constraints that the tour must enter and leave each vertex exactly once. It is
also possible that the problem does not need any such additional conditions. Of course,
problems with inequality constraints can be written in this form by including slack vari-
ables. Note that we allow a mixture of integer and continuous variables. In this section,
we describe cutting plane methods to solve (IP) where the LP relaxations are solved using
interior point methods. Computational experience with interior point cutting plane meth-
ods is described in [99, 96, 101]. Previous surveys on interior point cutting plane methods
include [94, 95].

It has been observed that interior point algorithms do not work very well when started
from close to a nonoptimal extreme point. Of course, this is exactly what we will have to
do if we solve the LP relaxation to optimality, since the fractional optimal solution to the
relaxation will be a nonoptimal infeasible extreme point after adding a cutting plane. The
principal method used to overcome this drawback is to only solve the relaxation approxi-
mately. We use this approximate solution to generate an integral feasible point that is, with
luck, close to the optimal integral solution. The best integral solution found so far gives an
upper bound on the optimal value of(IP) and the value of the dual solution gives a lower
bound. A conceptual interior point cutting plane algorithm is given in Figure 9.

To make this algorithm practical, we have to decide how accurately to solve the relax-
ations. Notice that if the entries inc are integral then it is sufficient to reduce the gap
between the integral solution and the lower bound to be less than one. Other refinements
include methods for choosing which cuts to add, generating good integral solutions, drop-
ping unimportant constraints, and fixing variables at their bounds. We discuss all of these
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issues, and conclude by presenting the complete algorithm, and some typical computa-
tional results.

In what follows, we refer several times to the linear ordering problem and to finding
the ground state of an Ising spin glass with no external force, which we call the Ising spin
glass problem. We now define those problems.

The linear ordering problem:
Givenp sectors with costsgi j for placing sectori before sectorj for each pair
i and j of sectors, find a permutation of the sectors with minimum total cost.

This problem can be represented algebraically as follows:

min ∑1≤i≤p,1≤ j≤p,i 6= j gi j xi j

subject to xi j + xji = 1 for all pairsi and j
x binary
x satisfies the triangle inequalities,

where the triangle inequalities require that

xi j + xjk + xki ≤ 2

for each triple(i, j,k). When this problem is solved using a cutting plane approach, the
triangle inequalities are used as cuts. They define facets of the convex hull of feasible solu-
tions. Other facets are known (see Gr¨otschel et al. [48]), but these prove to be unnecessary
for many problems.

The Ising spin glass problem:
Given a grid of points on a torus, and given interaction forcesci j between
each point and each of its neighbours, partition the vertices into two sets to
minimize the total cost, where the total cost is the sum of all interaction forces
between vertices that are in different sets.

The physical interpretation of this problem is that each point possesses either a positive
or a negative charge, and the interaction force will be either+1 or−1 depending on the
charges on the neighbours. The interactions between the points can be measured, but the
charges at the points cannot and need to be determined. The Ising spin glass problem is a
special case of themaximum cut problem:

Given a graphG = (V,E) and edge weightswi j , partition the vertices into two
sets to maximize the value of the cut, that is, the sum of the weights of edges
where the two ends of the edge are in opposite sets of the partition.

This problem can be represented as an integer program, wherexe indicates whethere is in
the cut:

min cTx
subject to x is binary

x satisfies the cycle/cut inequalities.

The cycle/cut inequalities exploit the fact that every cycle and every cut intersect in an even
number of edges. They can be stated as

x(F)−x(C\F)≤|F | −1

for setsF of odd cardinality, whereC is a cycle in the graph, andx(S) := ∑e∈Sxe for any
subsetSof the edges. An inequality of this form defines a facet if the cycleC is chordless.
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6.2. Solving the relaxations approximately. The principle technique used to make an
interior point cutting plane algorithm practical is early termination: the current relaxation
is only solved approximately. Typically, the relaxations are solved more exactly as the
algorithm proceeds.

There are two main, related, advantages to early termination. In the first place, iter-
ations are saved on the current relaxation and the early solution is usually good enough
to enable the efficient detection of cutting planes, so solving the relaxation to optimality
would not provide any additional information but would require additional computational
effort. Secondly, the approximate solution provides a better starting point for the method
on the next relaxation, because it is more centered than the optimal solution.

The disadvantages result from the fact that the solution to the current relaxation may
be the optimal solution to the integer program. It is possible that the approximate solution
is not in the convex hull of feasible integral solutions, even though the optimal solution
is in this set, and so cutting planes may be generated and the relaxation may be modified
unnecessarily. On the other hand, if the approximate solution is in the convex hull, the
separation routines will not find cutting planes, but time will be wasted in trying to find
cuts. The effect of the first drawback can be mitigated by initializing the relaxation with a
point that is not too far from the center of the convex hull, and by solving the relaxation to
optimality occasionally, for example on every tenth relaxation. This last technique proved
to be very useful in the experiments on Ising spin glass problems described in [96].

One way to reduce the cost of the first drawback is to control how accurately the re-
laxations are solved by using a dynamically adjusted tolerance for the duality gap: one
searches for cutting planes once the duality gap falls below this tolerance. If many cutting
planes are found, then perhaps one did not need to solve the current relaxation so accu-
rately, so one can increase this tolerance. On the other hand, if only a few cutting planes
are found then the tolerance should be decreased. In most of those experiments, the toler-
ance was initiliazed with a value of 0.3 on the relative duality gap and then was modified
by multiplying by a power of 1.1, with the power depending on the number of cuts found
and on how badly these cuts were violated by the current iterate.

Other ways to control the accuracy include requiring that the current primal solution
should have better value than the best known integral solution, and that the dual solution
should be better than the best known lower bound. Perhaps surprisingly, it was observed
that the condition based on the dual value is in general too restrictive, forcing the algorithm
to perform more iterations than necessary on the current relaxation without resulting in a
reduction in the total number of relaxations solved. Mitchell has even had mixed results
with the condition on the primal solution: for the linear ordering problem, this condition
resulted in an increase in computational times, but it improved runtimes for Ising spin glass
problems. (The Ising spin glass problems are harder than the linear ordering problems.)

A more sophisticated condition is to require that the relaxations be solved to an accuracy
such that it appears that the optimal value to the relaxation would not be sufficiently good
to enable the algorithm to terminate, unless it provided an optimal integral solution. For
example, one can require that the average of the primal and dual values should be at least
one less than the best known integral value, if all the data is integral. If one solves such a
relaxation to optimality, the lower bound would not be sufficient to prove optimality with
the current best known integral solution. A similar condition was helpful for the Ising spin
glass problems.

6.3. Restarting. When cutting planes are added, the current primal iterate is no longer
feasible, and the algorithm must be restarted. It is possible to restart from the current iterate
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using a primal-dual infeasible interior point method, perhaps with an initial centering step,
but it has been observed that other techniques have proved superior in practice.

After adding cutting planes, the primal relaxation becomes

min cTx
subject to Ax = b

Aox + xo = bo (LPnew)
0 ≤ x ≤ u
0 ≤ xo ≤ uo,

wherexo is the vector of slack variables for the cutting planes given byAox≤ bo. The dual
(LDnew) to this problem can be written

max bTy + boTyo − uTw − uoTwo

subject to ATy + AoTyo + z − w = c
yo + zo − wo = 0

z,zo w,wo ≥ 0.

Since one uses an interior point method, and did not solve the last relaxation to optimality,
the last iterate is a primal dual pair ¯x, (ȳ, z̄,w̄) satisfyingAx̄= b, 0< x̄< u, ATȳ+ z̄− w̄= c,
z̄> 0, w̄> 0.

A feasible interior solution to (LDnew) is obtained by settingyo = 0 andzo = wo = ε for
any positiveε (a typical value is 10−3). It is often beneficial to update the dual solution to
an older iterate than(ȳ, z̄,w̄), which will be more centered. It is also useful to increase any
small components ofw or zup toε if necessary; ifwi is increased, thenzi is also increased
to maintain dual feasibility, and vice versa.

Primal feasibility is harder to maintain, sinceAox̄> b. Possible updating schemes are
based upon knowing a pointxQ in the interior of the convex hull of feasible integer points.
Of course, such a point will be an interior point in(LPnew). One can either update to this
point, or to an appropriate convex combination of this point and ¯x. It is often straightfor-
ward to initializexQ: for the linear ordering problem and for the maximum cut problem,
one can takexQ to be the vector of halves; for the undirected traveling salesman problem
on a complete graph withn cities, one can take each component ofxQ to be 2/(n− 1)
(each component corresponds to an edge; an edgee is in the tour if and only ifxe = 1).
The pointxQ can be updated by moving towards the current primal iterate or by moving
towards the best integral solution found so far. For the Ising spin glass problem, Mitchell
found it best not to updatexQ, but to restart by taking a convex combination ofxQ andx̄
which was 95% of the way fromxQ to the boundary of new the relaxation. On the other
hand, updatingxQ by moving towards the current primal iterate worked well for the linear
ordering problem. Another possible restarting scheme is to store earlier iterates, and take
the most recent iterate that is feasible in the current relaxation. This works well on some
instances, but it is generally outperformed by methods based onxQ.

6.4. Primal heuristics and termination. A good primal heuristic can save many itera-
tions and stages, especially if the objective function data is integral. The algorithm ter-
minates when the gap between the best known integral solution and the best lower bound
drops below some tolerance. If the data is integer, then a tolerance of one is sufficient, so
it is not necessary to refine the relaxation to such a degree that it completely describes the
convex hull in the region of the optimal integral solution.

The importance of the primal heuristic varies from problem to problem. Mitchell found
that his runtimes improved dramatically for the Ising spin glass problem when he imple-
mented a good local search heuristic, even though the heuristic itself required as much as
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60% of the total runtime on some large instances. The primal heuristic was not nearly
so important for the linear ordering problem, where it was relatively easy to generate the
optimal ordering from a very good fractional solution. Another indication of the difference
in the importance of the primal heuristic for these two problems could be observed when
Mitchell tried to solve them so that the gap between the best integral solution and the lower
bound was less than, say, 10−6. The linear ordering problems could be solved almost as
easily as before, but the larger spin glass problems became computationally intractable.

6.5. Separation routines. Separation routines are problem specific. Good routines for
simplex based cutting plane algorithms can usually be adapted to interior point cutting
plane methods. Because the iterates generated by the interior point approach are more
centered, it may be possible to find deeper cuts and cutting planes that are more important.
This is a topic that warrants further investigation.

One issue that is specific to separation routines for interior point cutting plane algo-
rithms is the effect of the cutting planes on the sparsity of the matrixAAT . (Here,A rep-
resents the whole constraint matrix.) If the structure of this matrix is unfavourable, then a
simplex method will outperform an interior point method based on Cholesky factorization,
even for the linear programming relaxation (see, for example, [90]). For this reason, it is
often useful to add cuts that are variable-disjoint, that is, a particularxi appears in just one
of the constraints added at a particular stage.

6.6. Fixing variables. When using a simplex cutting plane algorithm, it is well known
that a variable can be fixed at zero or one if the corresponding reduced cost is sufficiently
large (see, for example [108]). The dual variables can be used for the same purpose if an
interior point method is used.

When using a cutting plane algorithm, an upper boundvU on the optimal value is pro-
vided by a feasible integral solution. Let ¯v be the value of the current dual iterate(ȳ, z̄,w̄).
It was shown in [97] that ifzi > vU− v̄ thenxi must be zero in any optimal integral solution.
Similarly, if w̄i > vU − v̄ thenxi must be one in any optimal solution.

These techniques can be very useful for reducing the size of the relaxations. They are
most useful when the objective function data is fractional, since the gap between the upper
and lower bounds has to become small in order to prove optimality, so many of the dual
variables will eventually be large enough that the integral variables can be fixed.

Notice that if a variable is fixed, and thus eliminated from the relaxation, the pointxQ

is no longer feasible. Therefore care has to be taken when restarting the algorithm. In
particular, it is useful to examine the logical implications of fixing a variable; it may be
possible to fix further variables, or to impose constraints on the remaining variables. For
example, when solving a maximum cut problem, if one fixes two of the edges of a cycle of
length 3 then the third edge can also be fixed. If one fixes one edge of a cycle of length 3,
then the variables for the other two edges can be constrained to either take the same values
as each other, or to take opposite values, depending on the value of the fixed edge. Fixing
variables and adding these logical constraints can worsen the conditioning of the constraint
matrix, perhaps introducing rank deficiencies. Thus, care must be exercised.

6.7. Dropping constraints. Dropping unimportant constraints reduces the size of the re-
laxation and so enables the relaxation to be solved more quickly. It is possible to develop
tests based on ellipsoids to determine when a constraint can be dropped, but the cost of
these tests outweighs the computational savings. Therefore, an implementation will gen-
erally drop a constraint based on the simple test that its slack variable is large. Of course,
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1. Initialize: Read in the problem. Set up the initial relaxation. Find
initial interior feasible primal and dual points. Find a pointxQ in
the interior of the convex hull of feasible integral solutions. Choose
a toleranceτ on optimality for the integer program. Choose a tol-
eranceρ on the duality gap for the relaxation. Initialize the upper
and lower boundsvU andvL on the optimal value appropriately.

2. Iterate: Take a primal-dual predictor-corrector step from the cur-
rent iterate.

3. Add cuts? If the relative duality gapδ is smaller thanρ (and per-
haps if other conditions on the primal and dual values are met),
then go to Step 4; otherwise, return to Step 2.

4. Primal heuristic: Search for a good integral solution, starting
from the current primal iterate. UpdatevU if a solution is found
which is better than this bound.

5. Check for optimality: If vU −vL < τ, STOP: the best integer so-
lution found so far is optimal.

6. Search for cutting planes: Use the separation routines to find
cutting planes. If cutting planes are found, go to Step 7. If none
are found andδ≥ 10−8, reduceρ and return to Step 2. If none are
found andδ < 10−8 then STOP with a nonoptimal solution; use
branch and bound to find the optimal solution.

7. Modify the relaxation: Add an appropriate subset of the violated
constraints to the relaxation. Increaseρ if it appears that the re-
laxations do not need to be solved so accurately. Decreaseρ if it
appears that the relaxations need to be solved more accurately. Fix
any variables if possible, and add any resulting constraints. Drop
unimportant constraints.

8. Restart: Update the primal and dual solutions to give feasible in-
terior points in the new relaxation. Return to Step 2.

FIGURE 10. An interior point cutting plane algorithm

it is undesirable to have a constraint be repeatedly added and dropped; a possible remedy
is to insist that a constraint cannot be dropped for several stages.

The development of efficient, rigorous tests for dropping constraints would be useful.

6.8. The complete algorithm. The complete algorithm is contained in figure 10.
If a primal feasible solution is known,vU can be initialized in Step 1 to take the value

of that solution; otherwisevU should be some large number. If all the objective function
coefficientsci correspond to binary variables, then the lower boundvL can be initialized
to be∑i min{ci,0}; otherwise, the lower bound can be taken to be a negative number with
large absolute value.

6.9. Some computational results.We present some computational results for Ising spin
glass problems on grid of sizes up to 100×100 in Table 10. For comparison, De Simone et
al. [26] have solved problems of size up to 70×70 with a simplex cutting plane algorithm
using CPLEX3.0 on a Sun Sparc 10 workstation, requiring up to a day for each problem.
The results in Table 10 were obtained on a Sun Sparc 20/71, and are taken from [98]. As
can be seen, even the largest problems were solved in an average of less than 31

2 hours.
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L Sample Mean Std Dev Minimum Maximum
Size

10 100 0.42 0.20 0.17 1.17
20 100 4.87 2.01 1.30 12.48
30 100 24.32 11.84 7.42 87.00
40 100 88.46 43.68 32.50 259.02
50 100 272.86 151.59 96.35 795.50
60 100 860.57 969.79 227.38 7450.18
70 100 1946.14 1286.13 593.57 8370.37
80 100 5504.11 4981.00 1403.27 32470.40
90 100 10984.82 6683.37 2474.20 28785.30

100 100 12030.69 3879.55 3855.02 21922.60
TABLE 10. Time (seconds) to solve Ising spin glass problems

They needed approximately nine iterations per relaxation — the later relaxations required
more iterations and the earlier relaxations fewer. The primal heuristic took approximately
40% of the total runtime.

6.10. Combining interior point and simplex cutting plane algorithms. Practical expe-
rience with interior point cutting plane algorithms has shown that often initially they add
a large number of constraints at a time (hundreds or even thousands), and the number of
added constraints decreases to just a handful at a time towards the end. The number of iter-
ations to reoptimize increases slightly as optimality is approached, because the relaxations
are solved to a higher degree of accuracy.

When a simplex method is used to solve the relaxations, the number of iterations to
reoptimize depends greatly on the number of added constraints. Initially, when many con-
straints are added, the dual simplex method can take a long time to reoptimize, but towards
the end it can reoptimize in very few iterations, perhaps as few as ten.

Because of the time required for an iteration of an interior point method, it is very hard
to compete with the speed of simplex for solving these last few relaxations. Conversely,
the interior point method is considerably faster for the first few stages. The interior point
method may also make a better selection of cutting planes in these initial stages, because
it is cutting off an interior point that is well-centered, a property that is intensified because
it is looking for cutting planes before termination.

Mitchell and Borchers [100] investigated solving linear ordering problems with a cut-
ting plane code that uses an interior point method for the first few stages and a dual simplex
method for the last few stages. Computational results are contained in table 11. These prob-

n % zeros Interior Simplex Combined
150 0 206 75 68
200 0 755 385 209
250 0 4492 3797 592
100 20% 1405 1296 230
150 10% 2247 1294 208
200 10% N/A 9984 879

TABLE 11. Preliminary Results on Linear Ordering Problems.
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lems have up to 250 sectors, with a percentage of the cost entries zeroed out. The nonzero
costs above the diagonal were uniformly distributed between 0 and 99, and those below
the diagonal were uniformly distributed between 0 and 39. The table contains runtimes in
seconds on a Sun SPARC 20/71 for an interior point cutting plane code, a simplex cutting
plane code using CPLEX 4.0, and a combined cutting plane code. The interior point code
was unable to solve the problems with 200 sectors and 20% of the entries zeroed out be-
cause of space limitations. As can be seen the combined code is more than 10 times faster
than the simplex code on the largest problems, and the interior point and simplex codes
require similar amounts of time, at least on the harder problems.

6.11. Interior point column generation methods for other problems. A cutting plane
method can be regarded as a column generation method applied to the dual problem. In-
terior point methods have been successfully applied in several other situations amenable
to solution by a column generation approach. Goffin et al. [42] have solved nondifferen-
tiable optimization problems. Bahn et al. [9] have used an interior point method within the
L-shaped decomposition method of Van Slyke and Wets [136] for stochastic programming
problems. Goffin et al. [41] have also solved multicommodity network flow problems using
an interior point column generation approach. In this method, the columns correspond to
different paths from an origin to a destination, and they are generated by solving a shortest
path problem with an appropriate cost vector.

6.12. Theoretical issues and future directions.As mentioned earlier, the ellipsoid al-
gorithm can be used to solve an integer programming problem in polynomial time if the
separation problem can be solved in polynomial time. It is not currently known how to use
an interior point method in an exactly analogous way. Atkinson and Vaidya [8] developed
an interior point algorithm for this process, but their algorithm requires that unimportant
constraints be dropped, unlike the ellipsoid algorithm. Vaidya later obtained a similar result
for an algorithm that used the volumetric center [138]. Goffin et al. [44] have proposed a
fully polynomial algorithm that does not require that unimportant constraints be removed.
It is an interesting open theoretical question to find an interior point algorithm that does not
require that unimportant constraints be removed, and also solves the optimization problem
in polynomial time provided the separation problem can be solved in polynomial time.

The algorithms proposed in [8, 138, 44] required that only a single constraint be added
at a time, and that the constraint be added far from the current iterate. These algorithms
have been extended to situations where many cuts are added at once, and the constraints are
added right through the current iterate, with no great increase in the complexity bound [124,
125, 43]. It has been shown that ifp constraints are added through the analytic center then
the analytic center of the new feasible region can be found inO(

√
p) iterations [124].

There are several open computational questions with interior point cutting plane meth-
ods. Combining interior point methods with the simplex algorithm needs to be investigated
further. When a direct method is used to calculate the Newton direction, it is necessary to
choose an ordering of the columns ofAAT to reduce fill in the Cholesky factor; it would
be interesting to see if the ordering from one stage can be efficiently modified to give an
ordering for the next stage, rather than calculating an ordering from scratch. When the con-
straint matrix contains many dense columns, it becomes expensive to use a direct method
to calculate the Newton direction; it would be interesting to examine whether it is efficient
to switch to a preconditioned conjugate gradient method in the later stages.
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7. NONCONVEX POTENTIAL FUNCTION MINIMIZATION

Consider the problem of maximizing a convex quadratic function defined as

max wTw =
m

∑
i=1

w2
i(62)

subject to

ATw≤ b.(63)

The significance of this optimization problem is that many combinatorial optimization
problems can be formulated as above with the additional requirement that the variables
are binary.

In [73, 77] a new affine scaling algorithm was proposed for solving the above problem
using a logarithmic potential function. Consider the nonconvex optimization problem

min {ϕ(w) | ATw≤ b},(64)

where

ϕ(w) = log(m−wTw)1/2− 1
n

n

∑
i=1

logdi(w)(65)

= log

{
m−wTw

2∏n
i=1di(w)1/n

}
(66)

and where

di(w) = bi−aT
i w, i = 1, . . . ,n,(67)

are the slacks. The denominator of the log term ofϕ(w) is the geometric mean of the slacks
and is maximized at the analytic center of the polytope defined by

L =
{

w∈ Rm | ATw≤ b
}
.

To find a local (perhaps global) solution of (64), an approach similar to the classical
Levenberg-Marquardt methods [86, 91] is used. Let

w0 ∈ L0 =
{

w∈ Rm | ATw< b
}

be a given initial interior point. The algorithm generates a sequence of interior points ofL .
Let wk ∈ L0 be thek-th iterate. Aroundwk a quadratic approximation of the potential

function is set up. LetD = diag(d1(w), . . . ,dn(w)), e= (1, . . . ,1), f0 = m−wTw andC be
a constant. The quadratic approximation ofϕ(w) aroundwk is given by

Q(w) =
1
2

(w−wk)TH(w−wk)+ hT(w−wk)+C(68)

where the Hessian is

H =− 1
f0

I − 2

f 2
0

wkwkT
+

1
n

AD−2AT(69)

and the gradient is

h =− 1
f0

wk +
1
n

AD−1e.(70)

Recall that minimizing (68) over a polytope is NP-complete. However, if the polytope is
substituted by an inscribed ellipsoid, the resulting approximate problem can be solved in
polynomial time [147]. Since preliminary implementations of this algorithm indicate that
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trust region methods are more efficient for solving these problems, in the discussion that
follows we consider a trust region approach.

Consider the ellipsoid

E(r) =
{

w∈ Rm | (w−wk)TAD−2AT(w−wk)≤ r2
}
.

To see that the ellipsoidE(r) is inscribed in the polytopeL , assume thatr = 1 and let
y∈ E(1). Then

(y−wk)TAD−2AT(y−wk)≤ 1

and consequently

D−1AT(y−wk)≤ e,

wherewk ∈ L0. Denoting thei-th row ofAT by aT
i· , we have

1
bi−aT

i·w
k
aT

i· (y−wk)≤ 1, ∀i = 1, . . . ,n.

Hence,

aT
i· (y−wk)≤ bi−aT

i·w
k, ∀i = 1, . . . ,n,

and consequently

aT
i·y≤ bi, ∀i = 1, . . . ,n,

i.e. ATy≤ b, showing thaty∈ L . This shows thatE(1) ⊂ L and sinceE(r) ⊂ E(1), for
0≤ r < 1, thenE(r)⊂ L , i.e. E(r) is an inscribed ellipsoid inL .

Substituting the polytope by the appropriate inscribed ellipsoid and letting∆w≡w−wk

results in the minimization of a quadratic function over an ellipsoid, i.e.

min
1
2

(∆w)TH∆w+ hT∆w(71)

subject to

(∆w)TAD−2AT(∆w)≤ r2.(72)

The optimal solution∆w∗ to (71–72) is a descent direction ofQ(w) from wk. For a given
radiusr > 0, the value of the original potential functionϕ(w) may increase by moving
in the direction∆w∗, because of the higher order terms ignored in the approximation. It
can be easily verified, however, that if the radius is decreased sufficiently, the value of
the potential function will decrease by moving in the new∆w∗ direction. We shall say a
local minimumto (64) has been found if the radius must be reduced below a toleranceε to
achieve a reduction in the value of the potential function.

The following result, proved in [73], characterizes the optimal solution of (71–72). Us-
ing a linear transformation, the problem is transformed into the minimization of a quadratic
function over a sphere.

Consider the optimization problem

min
1
2

xTQx+ cTx(73)

subject to

xTx≤ r2,(74)

whereQ ∈ Rm×m is symmetric and indefinite,x,c ∈ Rm and 0< r ∈ R. Let u1, . . . ,um

denote a full set of orthonormal eigenvectors spanningRm and letλ1, . . . , λm be the cor-
responding eigenvalues ordered so thatλ1 ≤ λ2 ≤ ·· · ≤ λm−1 ≤ λm. Denote 0> λmin =
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min{λ1, . . . ,λm} andumin the corresponding eigenvector. Furthermore, letq be such that
λmin = λ1 = · · ·= λq< λq+1. To describe the solution to (73–74) consider two cases:
Case 1: Assume∑q

i=1(cTui)2> 0. Let the scalarλ ∈ (−∞,λmin) and consider the paramet-
ric family of vectors

x(λ) =−
m

∑
i=1

(cTui)ui

λi−λ
.

For anyr > 0, denote byλ(r) the unique solution of the equationx(λ)Tx(λ) = r2 in λ.
Thenx(λ(r)) is the unique optimal solution of (73–74).
Case 2: AssumecTui = 0,∀i = 1, . . . ,q. Let the scalarλ ∈ (−∞,λmin) and consider the
parametric family of vectors

x(λ) =−
m

∑
i=q+1

(cTui)ui

λi−λ
.(75)

Let

rmax= ‖x(λmin)‖2.
If r < rmax then for any 0< r < rmax, denote byλ(r) the unique solution of the equation
x(λ)Tx(λ) = r2 in λ. Thenx(λ(r)) is the unique optimal solution of (73–74).
If r ≥ rmax, then letα1,α2, . . . ,αq be any real scalars such that

q

∑
i=1

α2
i = r2− r2

max.

Then

x =
q

∑
i

αiui−
m

∑
i=q+1

(cTui)ui

(λi−λmin)

is an optimal solution of (73–74). Since the choice ofαi ’s is arbitrary, this solution is not
unique.

This shows the existence of a unique optimal solution to (73–74) ifr < rmax. The proof
of this result is based on another fact, used to develop the algorithm described in [73, 77],
that we state next.

Let the length ofx(λ) be

l (x(λ))≡ ‖x(λ)‖22 = x(λ)Tx(λ),

thenl (x(λ)) is monotonically increasing inλ in the intervalλ ∈ (−∞,λmin). To see this is
so, consider two cases. First, assume∑q

i=1(cTui)2 > 0. Consider the parametric family of
vectors

x(λ) =−
m

∑
i=1

(cTui)ui

λi−λ
,

for λ ∈ (−∞,λmin). Now, assume thatcTui = 0,∀i = 1, . . . ,q and consider the parametric
family of vectors

x(λ) =−
m

∑
i=q+1

(cTui)ui

λi−λ
,(76)

for λ ∈ (−∞,λmin). Furthermore, assume

r < ‖x(λmin)‖2.
Thenl (x(λ)) is monotonically increasing inλ in the intervalλ ∈ (−∞,λmin).
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procedurecmq(n,A,b,µ0, l0, l0)
1 k = 0; γ = 1/(µ0 + 1/n); l = l0; l = l0; K = 0;
2 wk = get start point(A,b);
3 do l̄ > ε→
4 ∆w∗ = descent direction(γ,wk, l , l);
5 do ϕ(wk + α∆w∗)≥ ϕ(wk) and l > ε→
6 l = l/l r ;
7 ∆w∗ = descent direction(γ,wk, l , l);
8 od;
9 if ϕ(wk + α∆w∗)< ϕ(wk)→
10 wk+1 = wk + α∆w∗;
11 k = k+ 1;
12 fi;
13 od;
end cmq;

FIGURE 11. Procedurecmq: Algorithm for nonconvex potential func-
tion minimization

The above result suggests an approach to solve the nonconvex optimization problem
(64). At each iteration, a quadratic approximation of the potential functionϕ(w) around
the iteratewk is minimized over an ellipsoid inscribed in the polytope{w∈ Rm|ATw≤ b}
and centered atwk. Either a descent direction∆w∗ of ϕ(w) is produced orwk is said to be a
local minimum. A new iteratewk+1 is computed by moving fromwk in the direction∆w∗

such thatϕ(wk+1) < ϕ(wk). This can be done by moving a fixed stepα in the direction
∆w∗ or by doing a line search to findα that minimizes the potential functionϕ(wk +α∆w∗)
[134].

Figure 11 shows a pseudo-code procedurecmq, for finding a local minimum of the con-
vex quadratic maximization problem. Procedurecmq takes as input the problem dimension
n, theA matrix, theb right hand side vector, an initial estimateµ0 of parameterµ and ini-
tial lower and upper bounds on the acceptable length,l0 and l0, respectively. In line 2,
get start point returns a strict interior point of the polytope under consideration, i.e.
wk ∈ L0.

The algorithm iterates in the loop between lines 3 and 13, terminating when a local
optimum is found. At each iteration, a descent direction of the potential functionϕ(w)
is produced in lines 4 through 8. In line 4, the minimization of a quadratic function over
an ellipsoid (71–72) is solved. Because of higher order terms the direction returned by
descent direction may not be a descent direction forϕ(w). In this case, loop 5 to 8 is
repeated until an improving direction for the potential function is produced or the largest
acceptable length falls below a given toleranceε.

If an improving direction forϕ(w) is found, a new pointwk+1 is defined (in line 10) by
moving from the current iteratewk in the direction∆w∗ by a step lengthα< 1.

7.1. Computing the descent direction.Now consider in more detail the computation of
the descent direction for the potential function. The algorithm described in this section is
similar to the trust region method described in Mor´e and Sorensen [104].
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As discussed previously, the algorithm solves the optimization problem

min
1
2

(∆w)TH∆w+ hT∆w(77)

subject to

(∆w)TAD−2AT∆w≤ r2 ≤ 1(78)

to produce a descent direction∆w∗ for the potential functionϕ(w). A solution∆w∗ ∈ Rm

to (77–78) is optimal if and only if there existsµ≥ 0 such that

(
H + µAD−2AT)∆w∗ =−h(79)

µ
(
(∆w∗)TAD−2AT∆w∗ − r2)= 0(80)

H + µAD−2AT is positive semidefinite.(81)

With the change of variablesγ = 1/(µ+ 1/n) and substituting the Hessian (69) and the
gradient (70) into (79) we obtain

∆w∗ = −
(

AD−2AT− 2γ
f 2
0

wkwkT− γ
f0

I

)−1

×

γ
(
− 1

f0
wk +

1
n

AD−1e

)
(82)

that satisfies (79). Note thatr does not appear in (82) and that (82) is not defined for all
values ofr. However, if the radiusr of the ellipsoid (78) is kept within a certain range,
then there exists an interval 0≤ γ≤ γmax such that

AD−2AT − 2γ
f 2
0

wkwkT − γ
f0

I(83)

is nonsingular. Next, we show that forγ small enough∆w∗ is a descent direction ofϕ(w).
Note that

∆w∗ = −
(

AD−2AT− 2γ
f 2
0

wkwkT − 1γ
f0

I

)−1

γ
(
− 1

f0
wk +

1
n

AD−1e

)
= −

[
AD−2AT

{
I − γ(AD−2AT)−1

(
− 2

f 2
0

wkwkT− 1
f0

I

)}]−1

×

γ
(
− 1

f0
wk +

1
n

AD−1e

)
= −γ

[
I + γ(AD−2AT)−1

(
2

f 2
0

wkwkT
+

1
f0

I

)]−1

(AD−2AT)−1×(
− 1

f0
wk +

1
n

AD−1e

)
= γ

[
I + γ(AD−2AT)−1

(
2

f 2
0

wkwkT
+

1
f0

I

)]−1

×

(AD−2AT)−1(−h).(84)
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Let γ = ε> 0 and consider lim
ε→0+

hT∆w∗. Since

lim
ε→0+

∆w∗ = ε (AD−2AT)−1(−h)

then

lim
ε→0+

hT∆w∗ =−ε hT(AD−2AT)−1h.

Since, by assumption,ε> 0 andhT(AD−2AT)−1h> 0 then

lim
ε→0+

hT∆w∗ < 0,

showing that there existsγ > 0 such that the direction∆w∗, given in (82), is a descent
direction ofϕ(w).

The idea of the algorithm is to solve (77–78), more than once if necessary, with the
radiusr as a variable. Parameterγ is varied untilr takes a value in some given interval.
Each iteration of this algorithm is comprised of two tasks. To simplify notation, let

Hc = AD−2AT(85)

Ho =− 2

f 2
0

wkwkT − 1
f0

I(86)

and define

M = Hc + γHo.

Given the current iteratewk, we first seek a value ofγ such thatM∆w = γh has a solution
∆w∗. This can be done by binary search, as we will see shortly. Once such a parameterγ is
found, the linear system

M∆w∗ = γh(87)

is solved for∆w∗ ≡ ∆w∗(γ(r)). As was shown previously, the lengthl(∆w∗(γ)) is a mono-
tonically increasing function ofγ in the interval 0≤ γ ≤ γmax. Optimality condition (80)
implies thatr =

√
l(∆w∗(γ)) if µ> 0. Small lengths result in small changes in the potential

function, sincer is small and the optimal solution lies on the surface of the ellipsoid. A
length that is too large may not correspond to an optimal solution of (77–78), since this
may requirer > 1. An interval(l , l) called theacceptable length region, is defined such
that a lengthl(∆w∗(γ)) is accepted ifl ≤ l(∆w∗(γ))≤ l . If l(∆w∗(γ))< l , γ is increased and
(87) is resolved with the newM matrix andh vector. On the other hand, ifl(∆w∗(γ)) > l ,
γ is reduced and (87) is resolved. Once an acceptable length is produced we use∆w∗(γ) as
the descent direction.

Figure 12 presents pseudo-code for proceduredescent direction , where (77–78) is
optimized. As input, proceduredescent direction is given an estimate for parame-
ter γ, the current iteratewk around which the inscribing ellipsoid is to be constructed
and the current acceptable length region defined byl and l . The value ofγ passed to
descent direction at minor iterationk of cmq is the value returned bydescent direction
at minor iterationk−1. It returns a descent direction∆w∗ of the quadratic approximation
of the potential functionQ(w) from wk, the next estimate for parameterγ and the current
lower bound of the acceptable length regionl .

In line 1, the lengthl is set to a large number and several logical keys are initialized:
LDkey is true if a linear dependency in the rows ofM is ever found during the solution of
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proceduredescent direction (γ,wk, l , l )
1 l = ∞; LDkey= false; γkey= false; γ

key
= false;

2 do l > l or (l < l and LDkey = false)→
3 M = Hc + γHo; b = γh;
4 do M∆w = b has no solution→
5 γ = γ/γr ; LDkey= true;
6 M = Hc + γHo; b = γh;
7 od;
8 ∆w∗ = M−1b; l = (∆w∗)TAD−2AT∆w∗;
9 if l < l and LDkey= false→
10 γ = γ; γ

key
= true;

11 if γkey= true→ γ =
√

γγ fi;

12 if γkey= false→ γ = γ · γr fi;
13 fi;
14 if l > l →
15 γ = γ; γkey= true;

16 if γ
key

= true→ γ =
√

γγ fi;

17 if γ
key

= false→ γ = γ/γr fi;

18 fi;
19 od;
20 do l < l and LDkey= true→ l = l/lr od;
21 return (∆w∗);
end descent direction ;

FIGURE 12. Proceduredescent direction : Algorithm to compute
descent direction in nonconvex potential function minimization

the linear system (87) and isfalseotherwise;γkey (γ
key

) is true if an upper (lower) bound
for an acceptableγ has been found andfalseotherwise.

The problem of minimizing a nonconvex quadratic function over an ellipsoid is carried
out in the loop going from line 2 to 19. The loop is repeated until either a lengthl is found
such thatl ≤ l ≤ l or l ≤ l due to a linear dependency found during the solution of (87),
i.e. if LDkey = true. Lines 3 to 8 produce a descent direction that may not necessarily
have an acceptable length. In line 3 the matrixM and the right hand side vectorb are
formed. The linear system (87) is tentatively solved in line 4. The solution procedure may
not be successful, i.e.M may be singular. This implies that parameterγ is too large and
parameterγ is reduced in line 5 of loop 4–7, which is repeated until a nonsingular matrix
M is produced.

Once a nonsingularM matrix is available, a descent direction∆w∗ is computed in line
8 along with its corresponding lengthl . Three cases can occur: (i) - the length is too small
even though no linear dependency was detected in the factorization; (ii ) - the length is too
large; or (iii ) - the length is acceptable. Case (iii ) is the termination condition for the main
loop 2-19. In lines 9-13 the first case is considered. The value ofγ is a lower bound on an
acceptable value ofγ and is recorded in line 10 and the corresponding logical key is set. If
an upper boundγ for an acceptable value ofγ has been found the new estimate forγ is set
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to the geometric mean ofγ andγ in line 11. Otherwiseγ is increased by a fixed factor in
line 12.

Similar to the treatment of case (i), case (ii ) is handled in lines 14-18. The current
value ofγ is an upper bound on an acceptable value ofγ and is recorded in line 15 and the
corresponding logical key is set. If a lower boundγ for an acceptable value ofγ has been
found the new estimate forγ is set to the geometric mean ofγ andγ in line 16. Otherwise
γ is decreased by a fixed factor in line 17.

Finally, in line 20, the lower boundl may have to be adjusted ifl < l andLDkey= true.
Note that the keyLDkey is used only to allow the adjustment in the range of the acceptable
length, so that the range returned contains the current lengthl .

7.2. Some computational considerations.The density of the linear system solved at
each iteration ofdescent direction is determined by the density of the Hessian matrix.
Using the potential function described in the previous section, this Hessian,

M = AD−2AT− 2

f 2
0

wkwkT − 1
f0

I ,

is totally dense, because of the rank one component2
f 2
0
wkwkT

. Consequently, direct fac-

torization solution techniques must be ruled out for large instances. However, in the case
where the matrixA is sparse, iterative methods can be applied to approximately solve
the linear system. In [71], a preconditioned conjugate gradient algorithm, using diagonal
preconditioning, was used to solve the system efficiently taking advantage of the special
structure of the coefficient matrix. In this approach, the main computational effort is the
multiplication of a dense vectorξ and the coefficient matrixM, i.e. Mξ. This multiplica-
tion can be done efficiently, by considering fact thatM is the sum of three matrices, each
of which has special structure. The first multiplication,

1
f0

Iξ

is simply a scaling ofξ. The second product,

2

f 2
0

wkwkTξ

is done in two steps. First, an inner productwkTξ is computed. Then, the vector4
f 2
0
wk is

scaled by the inner product. The third product,

AD−2ATξ

is done in three steps. First the productATξ is carried out. The resulting vector is scaled
by D−2 and multipliesA. Therefore, ifA is sparse, the entire matrix vector multiplication
can be done efficiently.

In a recent study, Warners et al. [142] describe a new potential function

φρ(w) = m−wTw−
n

∑
i=1

ρi logdi(w),

whose gradient and Hessian are given by

h =−2w+ AD−1ρ,

and

H =−2I + AD−1PD−1AT ,
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whereρ = (ρ1, . . . ,ρn) andP= diag(ρ). Note that the density of the Hessian depends only
on the density ofAAT . Consequently, direct factorization methods can be used efficiently
when the density ofAAT is small.

7.3. Application to combinatorial optimization. The algorithms discussed in this sec-
tion have been applied to the following integer programming problem: GivenA′ ∈ Rm×n′

andb′ ∈ Rn′ , find w∈ Rm such that:

A
′Tw ≤ b′(88)

wi = {−1,1}, i = 1, . . . ,m.(89)

The more common form of integer programming, where variablesxi take on (0,1) values,
can be converted to the above form with the change of variables

xi =
1+ wi

2
, i = 1, . . . ,m.

More specifically, letI denote anm×m identity matrix,

A =
[
A′

... I
... − I

]
∈ Rm×n

and

b =


b′

1
...
1

 ∈ Rn

and let

I =
{

w∈ Rm | ATw≤ b and wi = {−1,1}
}
.

With this notation, we can state the integer programming problem as: Findw∈ I .
As before, let

L =
{

w∈ Rm | ATw≤ b
}

and consider the linear programming relaxation of (88–89), i.e. findw∈L . One way of se-
lecting±1 integer solutions over fractional solutions in linear programming is to introduce
the quadratic objective function,

max wTw =
m

∑
i=1

w2
i

and solve the nonconvex quadratic programming problem (62–63). Note thatwTw≤ m,
with the equality only occurring whenwj =±1, j = 1, . . . ,m. Furthermore, ifw∈ I then
w ∈ L andwi = ±1, i = 1, . . . ,m and thereforewTw = m. Hence, ifw is the optimal
solution to (62–63) thenw ∈ L . If wTw = m thenwi = ±1, i = 1, . . . ,m and therefore
w∈ I . Consequently, this shows that ifw∈ L thenw∈ I if and only if wTw = m.

In place of (62–63), one solves the nonconvex potential function minimization

min {ϕ(w) | ATw≤ b},(90)

whereϕ(w) is given by (65–67). The generally applied scheme rounds each iterate to an
integer solution, terminating if a feasible integer solution is produced. If the algorithm
converges to a nonglobal local minimum of (90), then the problem is modified by adding
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a cut and the algorithm is applied to the augmented problem. Letv be the integer solution
rounded off from the local minimum. A valid cut is

vTw≤m−2.(91)

Observe that ifw = v thenvTw = m. Otherwise,vTw≤ m− 2. Therefore, the cut (91)
excludesv but does not exclude any other feasible integral solution of (88–89).

We note that adding a cut of the type above will not, theoretically, prevent the algorithm
from converging to the same local minimum twice. In practice [77], the addition of the
cut changes the objective function, consequently altering the trajectory followed by the
algorithm.

Most combinatorial optimization problems have very natural equivalent integer and qua-
dratic programming formulations [113]. The algorithms described in this section have
been applied to a variety of problems, including maximum independent set [78], set cov-
ering [77], satisfiability [71, 134], inductive inference [69, 70], and frequency assignment
in cellular telephone systems [143].

8. A LOWER BOUNDING TECHNIQUE

A lower bound for the globally optimal solution of the quadratic program

min q(x) =
1
2

xTQx+ cTx(92)

subject to

x∈ P = {x∈ Rn | Ax= b, x≥ 0},(93)

whereQ∈ Rn×n, A∈ Rm×n, c∈ Rn, andb∈ Rm, can be obtained by minimizing the ob-
jective function over the largest ellipsoid inscribed inP . This technique can be applied to
quadratic integer programming, a problem that is NP-hard in the general case. Kamath and
Karmarkar [66] proposed a polynomial time interior point algorithm for computing these
bounds. This is one of the first computational approaches to solve semidefinite program-
ming relaxations. The problem is solved as a minimization of the trace of a matrix subject
to positive definiteness conditions. The algorithm takes no more thanO(nL) iterations
(whereL is the the number of bits required to represent the input). The algorithm does two
matrix inversions per iteration.

Consider the quadratic integer program

min f (x) = xTQx(94)

subject to

x∈ S= {−1,1}n,(95)

whereQ∈ Rn×n is symmetric. Letfmin be the value of the optimal solution of (94–95).
Consider the problem of finding good lower bounds onfmin. To apply an interior point

method to this problem, one needs to embed the discrete setS in a continuous setT ⊇ S.
Clearly, the minimum off (x) overT is a lower bound onfmin.

A commonly used approach is to choose the continuous set to be the box

B = {x∈ Rn | −1≤ xi ≤ 1, i = 1, . . . ,n}.
However, if f (x) is not convex, the problem of minimizingf (x) overB is NP-hard. Con-
sider this difficult case, and therefore assume thatQ has at least one negative eigenvalue.
Since optimizing over a box can be hard, instead enclose the box in an ellipsoidE. Let

U = {w = (w1, . . . ,wn) ∈ Rn | ∑n
i=1wi = 1 andwi > 0, i = 1, . . . ,n,},
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and consider the parameterized ellipsoid

E(w) = {x∈ Rn | xTWx≤ 1},
wherew∈U andW = diag(w).

Clearly, the setS is contained inE(w). If λmin(w) is the minimum eigenvalue of
W−1/2QW−1/2, then

min
xTQx
xTWx

= min
xTW−1/2QW−1/2x

xTx
= λmin(w),

and therefore

xTQx≥ λmin(w) , ∀x∈ E(w).

Hence, the minimum value off (x) overE(w) can be obtained by simply computing the
minimum eigenvalue ofW−1/2QW−1/2. To further improve the bound onfmin requires
thatλmin(w) be maximized over the setU . Therefore, the problem of finding a better lower
bound is transformed into the optimization problem

max µ

subject to

xTQx
xTWx

≥ µ, ∀x∈ Rn\{0} and w∈U.

One can further simplify the problem by definingd = (d1, . . . ,dn)∈ Rn such that∑n
i=1di =

0. LetD = diag(d). If

xT(Q−D)x
xTWx

≥ µ,

then, since∑n
i=1wi = 1 and∑n

i=1di = 0,

xTQx≥ µxTWx+ xTDx = µ,

for x∈ S. Now, definez= µw+ d and letZ = diag(z). For allx∈ S,

xTZx= eTz= µ,

and therefore the problem becomes

max eTz

subject to

xT(Q−Z)x≥ 0.

Let M(z) = Q−Z. Observe that solving the above problem amounts to minimizing the
trace ofM(z) while keepingM(z) positive semidefinite. SinceM(z) is real and symmet-
ric, it hasn real eigenvaluesλi(M(z)), i = 1, . . . ,n. To ensure positive definiteness, the
eigenvalues ofM(z) must be nonnegative. Hence, the above problem is reformulated as

min tr(M(z))

subject to

λi(M(z)) ≥ 0, i = 1, . . . ,n.

Kamath and Karmarkar [66, 67] proposed an interior point approach to solve the above
trace minimization problem, that takes no more thatO(nL) iterations, having two matrix
inversions per iteration. Figure 13 shows a pseudo code for this algorithm.
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procedureqplb (Q,ε,z,opt )
1 z(0) = (λmin(Q)−1)e;
2 v(0) = 0;
3 M(z(0)) = Q−Z(0); k = 0;
4 do tr(M(z(k)))−v(k))≥ ε →
5 ConstructH(k) whereH(k)

i j = (eT
i M(z(k))−1ej)2;

6 f (k)(z) = 2nln(tr(M(z(k)))−v(k))− lndetM(z(k));
7 g(k) = ∇ f (k)(z(k));
8 β = 0.5/

√
g(k)TH(k)−1g(k);

9 SolveH(k)∆z=−βg(k);
10 if g(k)T∆z< 0.5 →
11 Increasev(k) until g(k)T∆z= 0.5;
12 fi;
13 z(k+1) = z(k) + ∆z; k = k+ 1;
14 od;
15 z= z(k);opt = tr(Q)−v(k);
end qplb ;

FIGURE 13. Procedureqplb : Interior point algorithm for computing
lower bounds

To analyze the algorithm, consider the parametric family of potential functions given by

g(z,v) = 2nln(tr(M(z))−v)− lndet(M(z)),

wherev∈ R is a parameter. This algorithm will generate a monotonically increasing se-
quence of parametersv(k) that converges to the optimal valuev∗. The sequencev(k) is
constructed together with the sequencez(k) of interior points, as shown in the pseudo code
in Figure 13. SinceQ−Z∗ is a positive definite matrix,v(0) = 0≤ v∗ is used as the initial
point in the sequence.

Let g(k)
1 (z,v) be the linear approximation ofg(z,v) atz(k). Then

g(k)
1 (z,v) =− 2n

tr(M(z(k))−v
eTz+ ∇ lndet(M(z(k))Tz+C,

whereC is a constant. Kamath and Karmarkar show howg(k)
1 (z,v) can be reduced by a

constant amount at each iteration. They prove that it is possible to computev(k+1) ∈ R and
a pointz(k+1) in a closed ball of radiusα centered atz(k) such thatv(k) ≤ v(k+1) ≤ v∗ and

g(k)
1 (z(k+1),v(k+1))−g(k)

1 (z(k),v(k+1))≤−α.

Using this fact, they show that, ifz(k) is the current interior point andv(k)≤ v∗ is the current
estimate of the optimal value, then

g(z(k+1),v(k+1))−g(z(k),v(k))≤−α +
α2

2(1−α)
,

wherez(k+1) andv(k+1) are the new interior point and new estimate, respectively. This
proves polynomial-time complexity for the algorithm.
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9. SEMIDEFINITE PROGRAMMING RELAXATIONS

There has been a great deal of interest recently in solving semidefinite programming
relaxations of combinatorial optimization problems [5, 6, 40, 144, 145, 152, 54, 53, 57,
112, 123, 111]. The semidefinite relaxations are solved by an interior point approach.
These papers have shown the strength of the relaxations, and some of these papers have
discussed cutting plane and branch and cut approaches using these relaxations. The bounds
obtained from semidefinite relaxations are often better than those obtained using linear
programming relaxations, but they are also usually more expensive to compute.

Semidefinite programming relaxations of some integer programming problems have
proven to be very powerful, and they can often provide better bounds than those given
by linear programming relaxations. There has been interest in semidefinite programming
relaxations since at least the seventies (see Lov´asz [89]). These were regarded as being
purely of theoretical interest until the recent development of interior point methods for
semidefinite programming problems [6, 106, 56, 107, 82, 139]. Interest was increased
further by Goemans and Williamson [40], who showed that the bounds generated by semi-
definite programming relaxations for the maximum cut and satisfiability problems were
considerably better than those that could be obtained from a linear programming relax-
ation, in the worst case, and that the solutions to these relaxations could be exploited to
generate good integer solutions.

For an example of a semidefinite programming relaxation, consider the quadratic integer
programming problem

min f (x) = xTQx

subject to

x∈ S= {−1,1}n,
whereQ∈ Rn×n is symmetric, first discussed in equations (94) and (95) in section 8.

We let trace(M) denote the trace of a square matrix. By exploiting the fact that trace(AB)=trace(BA),
we can rewrite the productxTQx:

xTQx= trace(xTQx) = trace(QxxT)

This lets us reformulate the quadratic program as

min trace(QX)
subject to X = xxT

Xii = 1 i = 1, . . . ,n.

The constraint thatX = xxT is equivalent to saying thatX must have rank equal to one.
This is a hard constraint to enforce, so it is relaxed to the constraint thatX is positive semi-
definite, writtenX � 0. This gives the following semidefinite programming relaxation:

min trace(QX)
subject to Xii = 1 i = 1, . . . ,n

X � 0.

Once we have a good relaxation, we can then (in principle) use a branch and bound (or
branch and cut) method to solve the problem to optimality. Helmberg et al. [53] showed
that the semidefinite programming relaxations of general constrained 0−1 quadratic pro-
gramming problems could be strengthened by using valid inequalities of the cut-polytope.
There are a large number of such inequalities, and in [54], a branch and cut approach using
semidefinite relaxations is used to solve quadratic{−1,1} problems with dense cost ma-
trices. They branch using the criterion that two variables either take the same value or they
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take opposite values. This splits the current SDP relaxation into two SDP subproblems,
each corresponding to quadratic{−1,1} problems of dimension one less. They are able to
solve problems with up to about 100 variables in a reasonable amount of time.

Helmberg et al. [57] contains a nice discussion of different families of constraints for
semidefinite relaxations of the quadratic knapsack problem. They derive semidefinite con-
straints from both the objective function and from the knapsack constraint. Many of the
semidefinite constraints derived from the objective function are manipulations of the lin-
ear constraints for the Boolean quadric polytope. Similarly, they derive semidefinite con-
straints from known facets of the knapsack polytope. They attempt to determine the relative
importance of different families of constraints.

The bottleneck with the branch and cut approach is the time required to solve each
relaxation, and in particular to calculate the interior point directions. One way to reduce
this time is to fix variables at -1 or 1, in much the same way that variables with large
reduced costs can be fixed when we use a branch and cut algorithm that solves linear
programming relaxations at each node. Helmberg [52] has proposed a method to determine
whether a variable can be fixed when solving an SDP relaxation. This method examines
the dual to the SDP relaxation. If it appears that a variable should be fixed at 1, say, then
the effect of adding an explicit constraint that the variable should take the value−1 is
examined. The change in the dual value that would result is then bounded; if this change
is large enough then the variable can be fixed at 1.

The papers [54, 53, 57, 18] all contain semidefinite relaxations of quadratic program-
ming problems with at most one constraint. By contrast, Wolkowicz and Zhao [144, 145]
and Zhao et al. [152] have looked at semidefinite relaxations of more complicated integer
programming problems. This required the development of some techniques that appear to
be widely applicable. For these problems, the primal semidefinite programming relaxation
does not have an interior feasible point, that is, there is no positive definite matrix that
satisfies all the constraints. This implies that the dual problem will have an unbounded
optimal face, so the problem is computationally intractable for an interior point method.
To overcome this difficulty, the authors recast the problem in a lower dimensional space,
where the barycenter of the known integer solutions corresponds to an interior point. In
particular, ifX is the matrix of variables for the original semidefinite formulation, a con-
stant matrixV is determined so that the problem can be recast in terms of a matrixZ of
variables, withX = VZVT andZ is of smaller dimension thanX. To ensure that the new
problem corresponds to the original problem, agangster operatoris used, which forces
some components ofVZVT to be zero. With this reformulation, an interior point method
can be used successfully to solve the semidefinite relaxations. An extension of the gangster
operator may make it possible to use these relaxations in a branch and cut approach.

Another interesting aspect of [145] is the development of an alternative, slightly weaker,
semidefinite relaxation that allows the exploitation of some sparsity in the original matrix
for the set covering problem. The resulting relaxation contains both semidefinite con-
straints and linear constraints. This may make the semidefinite approach viable for prob-
lems of this type which are far larger than those previously tackled with semidefinite pro-
gramming approaches. Whether this approach can be extended to other problems is an
interesting question.

Some work on attempting to exploit sparsity in the general setting has been performed
by Fujisawa et al. [38], and by Helmberg et al. [56] in their MATLAB implementation.
Zhao et al. [152, 151] propose using a preconditioned conjugate gradient method to calcu-
late the directions for the quadratic assignment problem (QAP) within a primal-infeasible
dual-feasible variant of the method proposed in [56]. In the setting of solving a QAP, the
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semidefinite relaxation is used to obtain a lower bound on the optimal value; this bound is
provided by the dual solution. Thus, only dual feasibility is needed to get a lower bound,
and so primal feasibility is not as important, and it is possible to solve the Newton sys-
tem of equations only approximately while still maintaining dual feasibility. It should be
possible to extend this approach to other problems.

Zhao et al. [152] also developed another relaxation for the QAP which contains a large
number of constraints. This second relaxation is stronger than the relaxation that uses the
gangster operator, but because of the number of constraints, they could only use it in a
cutting plane algorithm. Due to memory limitations, the gangster approach provided a
better lower bound than the other relaxation for larger problems.

One way to solve sparse problems using semidefinite programming techniques is to
look at the dual problem. Benson et al. [16] and Helmberg and Rendl [55] have both re-
cently proposed methods that obtain very good bounds and sometimes optimal solutions
for sparse combinatorial optimization problems by looking at the dual problem or relax-
ations of the dual.

There are several freely available implementations of SDP methods. Many of these
codes are written in MATLAB. One of the major costs in an iteration of an SDP algorithm
is constructing the Newton system of equations, with a series offor loops. MATLAB does
not appear to handle this well, because of the slowness of its interpreted loops: in compiled
C code, each iteration of these loops takes half a dozen machine language instructions,
while in the interpreted code, each pass through one of these loops takes 100 or more
instructions. For details of a freely available C implementation, see [17].

10. CONCLUDING REMARKS

Optimization is of central importance in both the natural sciences, such as physics,
chemistry and biology, as well as artificial or man-made sciences, such as computer science
and operations research. Nature inherently seeks optimal solutions. For instance, crys-
talline structure is the minimum energy state for a set of atoms, and light travels through
the shortest path. The behavior of nature can often be explained on the basis of varia-
tional principles. Laws of nature then simply become optimality conditions. Concepts
from continuous mathematics have always played a central role in the description of these
optimality conditions and in analysis of the structure of their solutions. On the other hand,
in artificial sciences, the problems are stated using the language of discrete mathematics or
logic, and a simple-minded search for their solution confines one to a discrete solution set.

With the advent of interior point methods, the picture is changing, because these meth-
ods do not confine their working to a discrete solution set, but instead view combinatorial
objects as limiting cases of continuous objects and exploit the topological and geometric
properties of the continuous space. As a result, the number of efficiently solvable com-
binatorial problems is expanding. Also, the interior-point methods have revealed that the
mathematical structure relevant to optimization in the natural and artificial sciences have
a great deal in common. Recent conferences on global optimization (e.g. [35, 36]) are at-
tracting researchers from diverse fields, ranging from computer science to molecular biol-
ogy, thus merging the development paths of natural and artificial sciences. The phenomena
of multiple solutions to combinatorial problems is intimately related to multiple configu-
rations a complex molecule can assume. Thus, understanding the structure of solution sets
of nonlinear problems is a common challenge faced by both natural and artificial sciences,
to explain natural phenomena in the former case and to create more efficient interior-point
algorithms in the latter case.
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In the last decade we have witnessed computational breakthroughs in the approximate
solution of large scale combinatorial optimization problems. Many of these breakthroughs
are due to the development of interior point algorithms and implementations. Starting
with linear programming in 1984 [72], these developments have spanned a wide range of
problems, including network flows, graph problems, and integer programming. There is a
continuing activity with new papers and codes being announced almost on daily basis. The
interested reader can consult the following web sites:

1. http://www.mcs.anl.gov:80/home/otc/InteriorPoint
is an archive of technical reports and papers on interior-point methods, maintained
by S.J. Wright at Argonne National Laboratory.

2. http://www.zib.de/helmberg/semidef.html
contains a special home page for semidefinite programming organized by C. Helm-
berg, at Berlin Center for Scientific Computing, Konrad Zuse Zentrum fur Informa-
tionstechnik, Berlin.

3. ftp://orion.uwaterloo.ca/pub/henry/reports/psd.bib.gz
contains a bib file with papers related to SDP.
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