
An Interior Point Approach to the Maximum

Independent Set Problem in Dense

Random Graphs∗

Narendra Karmarkar, Mauricio G.C. Resende and K.G. Ramakrishnan

Mathematical Sciences Research Center

AT&T Bell Laboratories

Murray Hill, NJ 07974 - USA

Abstract

We present an interior point approach to the zero-one integer programming feasibility
problem based on the minimization of an appropriate potential function. Given a poly-
tope defined by a set of linear inequalities, this procedure generates a sequence of strict
interior points of this polytope, such that each consecutive point reduces the value of
the potential function. An integer solution (not necessarily feasible) is generated at
each iteration by a rounding scheme. The direction used to determine the new iterate is
computed by solving a nonconvex quadratic program on an ellipsoid. We illustrate the
approach by considering a class of difficult NP-complete problems: finding a maximum
independent set of a dense random graph. Some implementation details are discussed
and preliminary computational results are presented. We solve several large indepen-
dent set problems in graphs having up to 1000 vertices and over 250,000 edges.

Key words: Integer programming, interior point method, maximum independent set,
dense random graphs.

1. Introduction

In this paper we consider the following integer programming problem:

INTEGER PROGRAMMING: Let B ∈ �m×n and b ∈ �n. Find w ∈ �m such that:

BTw ≤ b (1)

* Talk given by M.G.C. Resende at the IX International Conference of the Chilean Computer Science

Society and XV Latin American Conference on Informatics, Santiago, Chile, 11 July 1989.

1

wi = {−1, 1}, i = 1, . . . ,m. (2)

The more common form of integer programming, where variables xi, i = 1, . . . ,m, take on

(0,1) values, can be converted to the above form with the change of variables

xi =
1 + wi

2
, i = 1, . . . ,m.

We propose an interior point approach to solve (1-2), i.e. a heuristic that generates a

sequence of points (w0, w1, . . . , wk, . . .) where for all k = 0, 1, . . .

wk ∈
{
w ∈ �m|BTw < b; −e < w < e

}
,

where eT = (1, . . . , 1). In practice, this sequence often converges to a point from which one

can jump to a (-1,1) integer solution to (1-2). No guarantee can be made as to whether the

heuristic will be successful, but we provide several instances of large maximum independent

set problems in dense random graphs where it succeeds in providing optimal solutions.

To simplify notation, let I denote an m×m identity matrix,

A =
[
B

... I
... − I

]

and

c =




b

1
...

1




and let

I =
{
w ∈ �m | ATw ≤ c and wi = {−1, 1}

}
.

With this notation, INTEGER PROGRAMMING can be restated as: Find w ∈ I.
We make the following assumptions:

Assumption 1.1 I �= ∅.
Assumption 1.2 AT has full rank.

Let

L =
{
w ∈ �m | ATw ≤ c

}

and consider the linear programming relaxation of (1-2), i.e. find w ∈ L. One way of select-

ing (-1,1) integer solutions over fractional solutions in linear programming is to introduce

the quadratic objective function

maximize wTw =
m∑

i=1

w2
i

2

and solve the NP-complete [14] nonconvex quadratic programming problem (QUADRATIC

PROGRAMMING)

maximize wTw (3)

subject to : ATw ≤ c (4)

Note that an upper bound on the objective function (3) is m. The following proposi-

tion establishes the relationship between QUADRATIC PROGRAMMING and INTEGER

PROGRAMMING.

Proposition 1.1 Let w ∈ L. Then w ∈ I ⇐⇒ wTw = m.

Proof: (=⇒) Clearly, if w ∈ I then w ∈ L and wi = {−1, 1}. Hence wTw = m.

(⇐=) By assumption w ∈ L. If wTw = m then wi = {−1, 1}, ∀i = 1, . . . ,m and therefore

w ∈ I. 2

In the remainder of this paper we discuss how to approximate a polytope with an

inscribed ellipsoid and optimize a potential function closely related to the objective function

of QUADRATIC PROGRAMMING. We then present an algorithm in pseudo-code level

for this optimization. Finally we illustrate how this algorithm can be applied to a difficult

combinatorial problem: Finding an independent k-set of a dense random graph.

2. Nonconvex Quadratic Programming

Karmarkar [10] suggested an interior point approach to NP-complete problems. In this

section we provide an algorithm in pseudo-code form detailing that approach. We also

provide details on applying this algorithm to INTEGER PROGRAMMING. We wish to

solve (3-4). Let

w0 ∈ Ls =
{
w ∈ �m | ATw < c

}

be a given initial interior point. The algorithm generates a sequence of interior points of

L. Let wk ∈ Ls be the k-th iterate. Around wk we construct a quadratic approximation

(truncated Taylor series of order 2) of the potential function

ϕ(w) = log
√
m− wTw − 1

n

n∑
k=1

log dk(w)

where

dk(w) = ck − aT
kw, ∀k = 1, . . . , n.

Let D = diag(d1(w), . . . , dn(w)), e = (1, . . . , 1), f0 = m − wTw and C be a constant.

The quadratic approximation of ϕ(w) around wk is given by

Q(w) =
1
2
(w −wk)TH(w − wk) + hT (w − wk) + C (5)

3

where the Hessian

H = − 2
f0
I − 4

f2
0

wwT +
1
n
AD−2AT (6)

and the gradient

h = − 1
f0
w +

1
n
AD−1e. (7)

Minimizing (5) subject to ATw ≤ c is NP-complete. However, if the polytope is substituted

by an inscribed ellipsoid, the resulting approximate problem is easy. Ye [17] has proposed

a polynomial time algorithm for nonconvex quadratic programming on an ellipsoid that

differs from the approach to be presented here. Our approach is similar to the classical

Levenberg-Marquardt methods, [11], [12], first suggested in the context of nonlinear least

squares.

The following proposition describes a suitable inscribed ellipsoid.

Proposition 2.1 Consider the polytope defined as

L =
{
w ∈ �m|ATw ≤ c

}

and let wk ∈ Ls = int(L) be an interior point of L. Consider the ellipsoid

E(r) =
{
w ∈ �m|(w − wk)TAD−2AT (w − wk) ≤ r2

}
.

Then for r ≤ 1, E(r) ⊂ L, i.e. E(r) is an inscribed ellipsoid in L.

Proof: It is sufficient to prove case when r = 1, since E(r) ⊂ E(1), for 0 ≤ r < 1. Assume

y ∈ E(1). Then
(y − wk)TAD−2AT (y − wk) ≤ 1

and consequently

D−1AT (y − wk) ≤ 1.

Denoting the i-th row of AT by aT
i· , we have

1
ci − aT

i·w
k
aT

i· (y − wk) ≤ 1, ∀i = 1, . . . , n

aT
i· (y − wk) ≤ ci − aT

i·w
k, ∀i = 1, . . . , n

aT
i·y ≤ ci, ∀i = 1, . . . , n.

Therefore AT y ≤ c. Consequently y ∈ L. 2

Substituting the polytope by the appropriate ellipsoid and letting ∆w ≡ w−wk results

in the following optimization problem

minimize
1
2
(∆w)TH∆w + hT∆w (8)

4

subject to : (∆w)TAD−2AT (∆w) ≤ r2. (9)

The optimal solution to (8-9), ∆w∗, is a descent direction of Q(w) from wk. For a given

radius r > 0, the value of the original potential function ϕ(w) may increase by moving in

the direction ∆w∗, because of the higher order terms ignored in the approximation. It can

be easily verified, however, that if the radius is decreased sufficiently, the potential function

will improve by moving in the new ∆w∗ direction. In practice, we shall say a local minimum

has been found if the radius must be reduced below a tolerance ε to achieve a reduction in

the value of the potential function.

The following theorem, proved in [10] characterizes the optimal solution of (8-9). In

place of the ellipsoid {
x ∈ �m | xTAD−2ATx ≤ r2

}

the theorem considers the sphere
{
x ∈ �m | xTx ≤ r2

}
(10)

without loss of generality since AD−2AT is, by assumption, positive definite and can be

converted to (10) by means of a nonsingular linear transformation of the space.

Theorem 2.2 Consider the following problem:

minimize
1
2
xTHx+ hTx (11)

subject to : xTx ≤ r2 (12)

where H ∈ �m×m is symmetric and indefinite, x, h ∈ �m and 0 < r ∈ �. Let u1, . . . , um

denote a full set of orthonormal eigenvectors spanning �m and let λ1, . . . , λm be the cor-

responding eigenvalues ordered so that λ1 ≤ λ2 ≤ · · · ≤ λm−1 ≤ λm. Denote 0 > λmin =

min{λ1, . . . , λm} and umin the corresponding eigenvector. To describe the solution to (11-

12) we shall consider two cases:

Case 1: Assume
∑k

i=1(h
Tui)2 > 0. Let the scalar λ ∈ (−∞, λmin) and consider the para-

metric family of vectors

x(λ) = −
m∑

i=1

(hTui)ui

λi − λ
.

For any r > 0, denote by λ(r) the unique solution of the equation (x(λ))T x(λ) = r2 in λ.

Then x(λ(r)) is the unique optimal solution of (11-12).

Case 2: Assume hTui = 0,∀i = 1, . . . , k. Let the scalar λ ∈ (−∞, λmin) and consider the

parametric family of vectors

x(λ) = −
m∑

i=k+1

(hTui)ui

λi − λ
.

5

Let

rmax = ‖x(λmin)‖2.

If r < rmax then for any 0 < r < rmax, denote by λ(r) the unique solution of the equation

(x(λ))Tx(λ) = r2 in λ. Then x(λ(r)) is the unique optimal solution of (11-12).

If r ≥ rmax, then let α1, α2, . . . , αk be any real scalars such that

k∑
i=1

α2
i = r2 − r2max.

Then

x =
k∑
i

αiui −
m∑

i=k+1

(hTui)ui

(λi − λmin)

is an optimal solution of (11-12). Since the choice of αi’s was arbitrary, this solution is not

unique.

For the purpose of this paper, the key result of Theorem 2.2 is the existence of a unique

optimal solution to (11-12) if r < rmax. The proof of Theorem 2.2 relies on a lemma that

is used to develop the algorithm that is described in this paper.

Lemma 2.3 Let the length of x(λ) be

l (x(λ)) ≡ ‖x(λ)‖2
2 = (x(λ))T x(λ).

Part 1: Assume
∑k

i=1(h
Tui)2 > 0. Consider the parametric family of vectors

x(λ) = −
m∑

i=1

(hTui)ui

λi − λ
,

for λ ∈ (−∞, λmin). Then l (x(λ)) is monotonically increasing in λ in the interval λ ∈
(−∞, λmin).

Part 2: Assume hTui = 0,∀i = 1, . . . , k and consider the parametric family of vectors

x(λ) = −
m∑

i=k+1

(hTui)ui

λi − λ
,

for λ ∈ (−∞, λmin). Furthermore, assume

r < ‖x(λmin)‖2.

Then l (x(λ)) is monotonically increasing in λ in the interval λ ∈ (−∞, λmin).

6

Proof: (Part 1) Since

x(λ) = −
m∑

i=1

(hTui)ui

λi − λ
,

then

l (x(λ)) = −
m∑

i=1

(hTui)2

(λi − λ)2
.

In the range λ ∈ (−∞, λmin) each of the terms 1/(λi − λ)2 (i = 1, . . . ,m) is a strictly

monotonically increasing function of λ, each of the numerators (hTui)2 (i = 1, . . . ,m)

is nonnegative and at least one of the numerators is strictly positive. Hence l (x(λ)) is

monotonically increasing in λ. 2

(Part 2) As in Part 1, since

x(λ) = −
m∑

i=k+1

(hTui)ui

λi − λ
,

then

l (x(λ)) = −
m∑

i=k+1

(hTui)2

(λi − λ)2
.

In the range λ ∈ (−∞, λmin) each of the terms 1/(λi − λ)2 (i = k + 1, . . . ,m) is a strictly

monotonically increasing function of λ. Since r > 0, then ‖x(λmin)‖2 > 0 and therefore

∃ i > k such that hTui �= 0. Hence |hTui| > 0 and consequently l (x(λ)) is monotonically

increasing in λ. 2

Theorem 2.2 suggests an approach to solve the nonconvex quadratic programming prob-

lem (3-4). At each iteration a quadratic approximation of the potential function ϕ(w)

around the iterate wk is optimized on an ellipsoid centered at wk and that inscribes the

polytope. Either a descent direction ∆w∗ of ϕ(w) is produced by this optimization or wk is

said to be a local minimum. A new iterate wk+1 is computed such that ϕ(wk+1) < ϕ(wk) by

moving from wk in the direction ∆w∗. At each iteration the current iterate wk is rounded

off to the nearest (-1,1) vertex: w̃k = (±1, . . . ,±1). If w̃k is such that AT w̃k ≤ c then

w̃k is a global optimal solution of QUADRATIC PROGRAMMING. If a local minimum is

found, several strategies can be considered. In one approach, the problem can be modified

(by adding a cut, for example) and the algorithm is applied to the new problem. Another

strategy is to use the information generated by the local minimum to solve a smaller prob-

lem. These local minimum strategies are problem specific. In this paper we shall describe

an approach that we have used when solving independent k-set problems.

7

3. The Algorithm

In this section we describe an algorithm to solve INTEGER PROGRAMMING based on

nonconvex quadratic programming. As discussed previously, the algorithm considers the

optimization problem

minimize
1
2
(∆w)TH∆w + hT∆w (13)

subject to : (∆w)TAD−2AT∆w ≤ r2 ≤ 1 (14)

to produce a descent direction ∆w∗ for the potential function ϕ(w). A solution ∆w∗ ∈ �m

to (13-14) is optimal if and only if there exists µ ≥ 0 such that:

∆w∗
(
H + µAD−2AT

)
= −h (15)

µ
(
(∆w∗)TAD−2AT∆w∗ − r2

)
= 0 (16)

H + µAD−2AT is positive definite. (17)

With the change of variables γ = 1/(µ + 1/n) and substituting (6) and (7) into (15) we

obtain an expression for ∆w∗ satisfying (15):

∆w∗ = −
(
AD−2AT − 4γ

f2
0

wkwkT − 2γ
f0
I

)−1

γ

(
− 1
f0
wk +

1
n
AD−1e

)
(18)

Note that r does not appear in (18). However, (18) is not defined for all values of r. Theorem

2.2 guarantees that if the radius r of the ellipsoid (14) is kept within a certain bound, then

there exists an interval 0 ≤ γ ≤ γmax such that

AD−2AT − 4γ
f2
0

wkwkT − 2γ
f0
I

is nonsingular. The following proposition establishes that for γ small enough ∆w∗ is a

descent direction of ϕ(w), i.e. hT∆w∗ < 0.

Proposition 3.1 There exists γ > 0 such that the direction ∆w∗, given in (18), is a descent

direction of ϕ(w).

Proof:

∆w∗ = −
(
AD−2AT − 4γ

f2
0

wkwkT − 2γ
f0
I

)−1

γ

(
− 1
f0
wk +

1
n
AD−1e

)

= −
[
AD−2AT

{
I − γ(AD−2AT)−1

(
− 4
f2
0

wkwkT − 2
f0
I

)}]−1

×

γ

(
− 1
f0
wk +

1
n
AD−1e

)

8

= −γ
[
I + γ(AD−2AT)−1

(
4
f2
0

wkwkT
+

2
f0
I

)]−1

(AD−2AT)−1 ×
(
− 1
f0
wk +

1
n
AD−1e

)

= γ

[
I + γ(AD−2AT)−1

(
4
f2
0

wkwkT
+

2
f0
I

)]−1

(AD−2AT)−1(−h)

Let γ = ε > 0 and consider lim
ε→0+

hT∆w∗. We have

lim
ε→0+

∆w∗ = ε (AD−2AT)−1(−h)

and therefore

lim
ε→0+

hT∆w∗ = −ε hT (AD−2AT)−1h.

Since, by assumption, ε > 0 and hT (AD−2AT)−1h > 0 then

lim
ε→0+

hT∆w∗ < 0. 2

We now propose an algorithm to find a solution of (13-14) satisfying condition (15-

17) and show how to incorporate this algorithm into an algorithm to solve INTEGER

PROGRAMMING. Each iteration of this algorithm is comprised of two tasks. To simplify

notation, let

Hc = AD−2AT

Ho = − 4
f2
0

wkwkT − 2
f0
I

Given the current iterate wk we first seek a value of γ such that

M = Hc + γHo

is nonsingular. This can be done by binary search, as we will see shortly. Once such a

parameter γ is found, the linear system

M∆w∗ = γh (19)

is solved for ∆w∗ ≡ ∆w∗(γ). Lemma 2.3 guarantees that the length l(∆w∗(γ)) is a mono-

tonically increasing function of γ in the interval 0 ≤ γ ≤ γmax.

Optimality condition (16) implies that r =
√
l(∆w∗(γ)) if µ > 0. Small lengths result

in small changes in the potential function, since r is small and the optimal solution lies on

the surface of the ellipsoid. A length that is too large may not correspond to an optimal

solution of (13-14), since this may require r > 1. We maintain an interval (l, l) that we

9

call the acceptable length region and accept a length l(∆w∗(γ)) if l ≤ l(∆w∗(γ)) ≤ l. If

l(∆w∗(γ)) < l, γ is increased and (19) is resolved with the new M matrix and h vector.

On the other hand, if l(∆w∗(γ)) > l, γ is reduced and (19) is resolved. Once an acceptable

length is produced the new iterate wk+1 is computed by moving in direction ∆w∗(γ) from

wk with a step size α < 1,

wk+1 = wk + α∆w∗(γ).

Pseudo code 3.1 details procedure ip, the integer programming algorithm that makes of

procedure descent direction to optimize (13-14) producing the descent direction.

procedure ip(A, c, γ0, l0, l0)

1 k := 0; γ := γ0; l := l0; l := l0; K := 0;

2 wk := get start point(A, c);

3 w̃k := round off(wk);

4 do AT w̃k �< c→
5 ∆w∗ := descent direction(γ,wk, l, l);

6 do ϕ(wk + α∆w∗) ≥ ϕ(wk) and l > ε→
7 l := l/lr;

8 ∆w∗ := descent direction(γ,wk, l, l)

9 od;

10 if ϕ(wk + α∆w∗) < ϕ(wk) →
11 wk+1 := wk + α∆w∗;

12 w̃k+1 := round off(wk+1);

13 k := k + 1

14 fi;

15 if l ≤ ε→
16 A := new matrix(A); c := new rhs(c);

17 k := 0; γ := γ0; l := l0; l := l0; K := K + 1;

18 wk := get start point(A, c);

19 w̃k := round off(wk)

20 fi

21 od

end ip;

Pseudo-Code 3.1 - The ip Algorithm

10

Procedure ip takes as input the A matrix, the c right hand side vector, an initial guess

γ0 of parameter γ and initial lower and upper bounds on the acceptable length, l0 and l0,

respectively. In the first line of ip the minor iteration counter (k), lower and upper bounds

on the acceptable length region (l, l) and major iteration counter (K) are initialized. In

line 2, get start point returns a strict interior point of the polytope under consideration,

i.e. wk ∈ Ls. In many situations this is a trivial task. In others, a phase I interior point

linear programming algorithm may be required. In line 3, the array wk is rounded off to

the nearest ±1 vertex by procedure round off and the result is placed in array w̃k.

The algorithm iterates in the loop between lines 4 and 21, terminating only when a

feasible (-1,1) integer solution w̃k is found. The algorithm can be easily modified to also

terminate if a local minimum is found by deleting lines 15-20 and changing the termination

criterion in line 4 to include the negation of the condition in line 15. At each iteration, a

descent direction of the potential function ϕ(w) is produced in lines 5 through 9. In line 5

the optimization (13-14) is realized. Because of higher order terms the direction returned by

descent directionmay not be a descent direction for ϕ(w). Loop 6-9 is repeated, reducing

the upper bound of the acceptable length region l by lr, until an improving direction for the

potential function is produced or the largest acceptable length falls below a given tolerance

ε. These two cases are treated in lines 10-14 and 15-20, respectively.

In the case that the direction produced is a descent for ϕ(w), a new point wk+1 is defined

(in line 11) by moving from the current iterate wk in the direction ∆w∗ by a step length

α < 1. In line 12 this new point is rounded off and set to w̃k+1.

If in loop 6-9 the largest acceptable length has fallen below ε we say the algorithm has

converged to a local (not global) minimum. A new problem is defined in line 16 and the

algorithm is restarted in lines 17-19. We later discuss how to define a new problem, in the

context of independent k-set of dense random graphs.

Pseudo-code 3.2 details procedure descent direction, where (13-14) is optimized.

11

procedure descent direction(γ,wk, l, l)

1 l := ∞; LDkey := false; γkey := false; γ
key

:= false;

2 do l > l or (l < l and LDkey = false) →
3 M := Hc + γHo;

4 do M is singular →
5 γ := γ/γr; LDkey := true;

6 M := Hc + γHo; b := γh

7 od;

8 ∆w∗ :=M−1b; l := (∆w∗)TAD−2AT∆w∗;

9 if l < l and LDkey = false →
10 γ := γ; γ

key
:= true;

11 if γkey = true → γ :=
√
γγ fi;

12 if γkey = false → γ := γ · γr fi

13 fi;

14 if l > l →
15 γ := γ; γkey := true;

16 if γ
key

= true → γ :=
√
γγ fi;

17 if γ
key

= false → γ := γ/γr fi

18 fi

19 od;

20 do l < l and LDkey = true → l := l/lr od;

21 return(∆w∗)

end descent direction;

Pseudo-Code 3.2 - The descent direction Algorithm

12

As input, procedure descent direction is given a guess for parameter γ, the current

iterate wk around which the inscribing ellipsoid is to be constructed and the current ac-

ceptable length region defined by l and l. The value of γ passed to descent direction

at minor iteration k of ip is the value returned by descent direction at minor iteration

k − 1. It returns a descent direction ∆w∗ of the quadratic approximation of the potential

function Q(w) from wk, the next guess for parameter γ and the current lower bound of the

acceptable length region, l.

In line 1 the length l is set to a large number and several logical keys are initialized:

LDkey is true if a linear dependency in the rows of M is found during the solution of the

linear system (19) and is false otherwise; γkey (γ
key

) is true if an upper (lower) bound for

an acceptable γ has been found and false otherwise.

The nonconvex quadratic optimization on the ellipsoid is carried out in the loop going

from line 2 to 19. The loop is repeated until either a length l is found such that l ≤ l ≤ l

or l ≤ l due to a linear dependency found during the solution of (19) (i.e. LDkey = true).

Lines 3 to 8 produce a descent direction which may not necessarily have an acceptable

length. In line 3 the matrix M is formed. The linear system (19) is tentatively solved in

line 4. The solution procedure may not be successful (i.e. M may be singular). This implies

that the parameter γ is too large. If this occurs, the parameter γ is reduced in line 5 of

loop 4-7, which is repeated until a nonsingular matrix M is produced.

Once a nonsingular M matrix is available, a descent direction ∆w∗ is computed in line

8 along with its corresponding length l. Three cases can occur: (i) - the length is too small

even though no linear dependency was detected in the factorization; (ii) - the length is too

large; or (iii) - the length is acceptable. Case (iii) is the termination condition for the main

loop 2-19. In lines 9-13 the first case is considered. The value of γ is a lower bound on an

acceptable value of γ and is recorded in line 10 and the corresponding logical key is set. If

an upper bound γ for an acceptable value of γ has been found the new estimate for γ is set

to the geometric mean of γ and γ in line 11. Otherwise γ is increased by a fixed factor in

line 12.

Similar to the treatment of case (i), case (ii) is handled in lines 14-18. The value of γ is

an upper bound on an acceptable value of γ and is recorded in line 15 and the corresponding

logical key is set. If a lower bound γ for an acceptable value of γ has been found the new

estimate for γ is set to the geometric mean of γ and γ in line 16. Otherwise γ is decreased

by a fixed factor in line 17.

In line 20, the lower bound l may have to be adjusted if l < l and LDkey = true.

Finally, the search direction ∆w∗ is returned in line 21.

13

4. Computational Results

A variant of procedure ip has been implemented and tested on independent k-set problems

in dense random graphs. In this section we present these computational results. These

results are preliminary, since further implementation is ongoing. We have selected this class

of problems because it is easy to generate hard instances using some results from the theory

of random graphs [4].

Consider a graph G = (V,E) with vertex set V and edge set E and its complement,

Ḡ = (V, Ē), where Ē = {(i, j) �∈ E; i, j ∈ V, i �= j}. An independent set of vertices (or

vertex packing or stable set) is a vertex set whose elements are pairwise nonadjacent, i.e. a

subset S ⊂ V is independent if ∀ i, j such that i, j ∈ S, (i, j) �∈ E. We call an independent

k-set of vertices an independent set made up of k vertices. A clique is a maximal complete

subgraph of G. A k-clique is a clique with vertex set of size k. A vertex cover is a subset

S ⊂ V such that all edges of G have at least one endpoint in S. In a k-vertex cover

|S| = k. It is well known that S is a maximum independent set of G if and only if S is

a maximum clique of Ḡ if and only if V \ S is a minimum vertex cover of Ḡ. Finding a

maximum independent set, a maximum clique or a minimum vertex cover of a graph are

equivalent and are known to be NP-complete [7]. Practical applications of these models

are abundant, e.g. information retrieval, signal transmission analysis, classification theory,

economics, scheduling, experimental design and computer vision (See [1], [2], [3], [5], [6],

[15], [9] and [16] for details).

A simple integer programming formulation for vertex packing is given next. Let S ⊂ V

be an independent k-set of the graph G = (V,E) and define

wj =




1 if vertex j ∈ S

−1 otherwise

A (-1,1) integer programming formulation is: Find w ∈ �|V | such that

−
∑
j∈V

wj ≤ |V | − 2 · k

wi + wj ≤ 0, ∀(i, j) ∈ E

wj = {−1, 1} ∀j ∈ V

Before we describe the computational experiment, we need to describe some implemen-

tation details, e.g. describe how the initial solution is generated, how rounding off is carried

out, how the linear system is solved, how local minima are treated and what parameter

settings are used. We use as the initial solution

wj = −|V | − 2 · k
|V |+ 1

, ∀j ∈ V.

14

One simple way to round off the components is as follows:

w̃j =




1 if wj > 0

−1 if wj ≤ 0
(20)

This scheme will always round off to an integer solution that corresponds to an independent

set. However, components that are slightly negative are assigned value -1 with this proce-

dure, even if they could be be assigned a +1 and thus increase the size of the independent

set found. In our implementation, at each iteration the vertices of the graph are considered

in decreasing order of w and are placed into the k-set if this is feasible. This will always

produce a k-set of size at least as large as the one produced by scheme (20).

One approach for dealing with local minima is the following. Consider all pairs of vertices

in K (in decreasing order of w) and for each pair fix those vertices in the independent set.

If the two vertices and all vertices adjacent to them are removed from the graph, the

resulting graph is very small. By enumeration, a maximum independent set of the reduced

graph is readily available. For enumeration we use the semi-exhaustive greedy independent

set algorithm [8] implemented by D.S. Johnson with parameter settings to do exhaustive

enumeration.

At each call of procedure descent direction a linear system M∆w∗ = b must be

solved at least once (lines 4-8). We use the conjugate gradient algorithm with precondi-

tioning to solve these linear systems. At the first iteration of ip a full factorization of M is

carried out and those factors are used as preconditioners for that and subsequent iterations.

The conjugate gradient algorithm terminates when the residue ‖M∆w∗ − b‖2 < 10−10 or

when 20 conjugate gradient iterations are completed. A refactorization is called for when

either the conjugate gradient algorithm required 20 iterations or when |1 − cos θ| > 10−6,

where θ is the angle between b̂ = M∆w∗, produced by the conjugate gradient algorithm,

and the right hand side b.

The other parameters were set as follows: In line 1 of ip γ0 = 32, l0 = 0.5 and l0 = 1.0.

In line 6 of ip ε = 10−4. In line 11 of ip α = 0.5. In lines 5, 12 and 17 of descent direction

γr =
√
2. In line 20 of descent direction lr = .25.

Most of the code was written in fortran with some code in c. We ran our experiment

on a vax
∗ 8700 running Ultrix∗. fortran code was compiled with the f77 compiler

and c code was compiled with the cc compiler. The compiler optimization flag -O was

set. For the largest instances memory requirements exceeded 240 Mbytes. This memory

requirement will be reduced considerably with the version of the linear system solver under

development.

* vax and Ultrix are trademarks of the Digital Equipment Corporation.

15

We have generated 187 dense random graphs to test our implementation of ip. We used

p = 0.5 for all instances. We generated 100 graphs with 100 vertices, 50 graphs with 200

vertices, 25 graphs with 300 vertices, 10 graphs with 500 vertices and 2 graphs with 1000

vertices. Random graphs with vertex set V and where edges from the complete graph on

|V | vertices are placed in the edge set E independently with probability p, have maximum

independent sets with cardinalities that are distributed in a highly concentrated manner,

i.e. almost all of the graphs have maximum independent sets of the same size [4]. The

expected number Ek = E(Xk) of independent sets of size k is given by

Ek =


 |V |

k


 p


 k

2



. (21)

The variance σ2(Xk) of independent sets of size k is

σ2(Xk) =


 |V |

k


 k∑

r=0


 k

r





 |V | − k

k − r


 (1− p)

k(k−1)−


 r

2




−E(Xk)2. (22)

An upper bound Uk on Prob(Xk = 0) is given by

Uk = σ2(Xk)/E(Xk)2. (23)

Using (21-23), one can generate graphs of size, for example, |V | = 1000 and p = 0.5 such

that with high probability there exists an independent k-set of size 15 and there exists no

independent k-set of size 16. Tables 4.1-4.5 give Ek and Uk for the graphs generated in this

experiment.

k Ek Uk

7 7.63 × 103 1.38 × 10−1

8 6.93 × 102 3.46 × 10−1

9 2.77 × 101 1.21× 100

10 4.92× 10−1 1.28× 101

11 3.93× 10−3 6.58× 102

Table 4.1 – |V | = 100 and p = 0.5

k Ek Uk

9 1.71 × 104 1.05 × 10−1

10 6.38 × 102 2.36 × 10−1

11 1.08 × 101 1.10 × 100

12 8.28 × 10−2 3.73 × 101

13 2.92 × 10−4 6.17 × 103

Table 4.2 – |V | = 200 and p = 0.5

16

k Ek Uk

10 3.97 × 104 9.99 × 10−2

11 1.02 × 103 9.99 × 10−1

12 1.20 × 101 9.99 × 10−1

13 6.51× 10−2 9.99× 101

14 1.63× 10−4 9.99× 103

Table 4.3 – |V | = 300 and p = 0.5

k Ek Uk

12 6.05 × 103 5.45 × 10−2

13 5.54 × 101 1.74 × 10−1

14 2.35 × 10−1 9.93 × 100

15 4.65 × 10−4 3.34 × 103

16 4.31 × 10−7 2.94 × 106

Table 4.4 – |V | = 500 and p = 0.5

k Ek Uk

14 4.23 × 103 2.29 × 10−2

15 1.70 × 101 1.78 × 10−1

16 3.19 × 10−2 5.07× 101

17 2.81 × 10−5 4.58× 104

Table 4.5 – |V | = 1000 and p = 0.5

Instances of size |V | = 100, 200, 300 and 500 were run on the enumeration algorithm

enum and ip was asked to find a set as good as the one found by enum. The enumeration

algorithm required over 20 hours of cpu for each |V | = 500 instance. We attempted to

run enum on a 1000 vertex instance but gave up, after one week of real time produced no

solution of size 15. We asked ip to look for solutions of size 15 on all |V | = 1000 instances.

Table 4.6 summarizes the results of our runs. The table shows several algorithm statis-

tics, averaged over all problems tested. These statistics are given by problem size classes

and include number of ip iterations, number of refactorization calls, refactorization time,

number of conjugate gradient calls, number of conjugate gradient iterations, conjugate gra-

dient time, number of enumeration calls and size of enumeration graph. The ip itrs, refact

calls and refact secs statistics for problem class of size |V | = 1000 is shown to be lower than

what in it is, since problem 2 of that class was stopped at iteration 100, well before reaching

a local minimum.

17

size of G |V | = 100 |V | = 200 |V | = 300 |V | = 500 |V | = 1000

ip itrs 169.8 208.4 246.0 438.8 340.5

refact calls 3.1 2.8 3.0 3.5 2.5

refact secs 1.6 27.6 49.1 209.1 1761.6

cg calls 216.3 266.5 294.6 491.6 387.5

cg itrs 13.3 15.4 13.7 14.5 12.8

cg secs 1.1 11.0 9.7 24.3 87.1

enum calls 4.2 11.5 16.0 4.5 16.5

size enum graph 32.4 60.9 90.4 153.1 272.8

Table 4.6 – Computational Results (Averages)

We make the following observations regarding the computational experiment:

• The algorithm found the solution it was seeking in 86.1% of the cases. The breakdown

per problem class is

|V | problems successes %

100 100 94 94.0

200 50 38 76.0

300 25 17 68.0

500 10 10 100.0

1000 2 2 100.0

Table 4.7 – Algorithm effectiveness

• Procedure ip converged to a local minimum in most problems and in those cases

required a local search to find the global minimum. It converged to a global minimum

in 9 problems of size |V | = 100 and 2 of size |V | = 200.

• In all the cases where the algorithm failed, the solution it found was never off by more

than 1 from the value sought.

• As indicated by the success of enumeration as a backend to ip, there is a substantial

intersection between k-set defined by the rounded solution found by ip and the k-set

corresponding to a global minimum.

• The conjugate gradient algorithm with preconditioning works surprisingly well. Refac-

torizations were rare and the number of conjugate gradient iterations averaged in the

teens for all problem classes. By using time balancing, i.e. monitoring the duration

18

of the conjugate gradient procedure and factorizing when conjugate gradient time

reaches a given threshold, we should be able to keep the average number of conjugate

gradient iterations below 5 and still reduce total cpu time.

5. Concluding Remarks

This paper described preliminary results of ongoing research. More computational experi-

ence is called for. Our future work will include implementation of improved data structures,

a rank-1 update scheme for the factorization and specialized variants for different problem

classes. We plan to test the procedure on other NP-complete problems, such as graph

partitioning, graph coloring, the traveling salesman problem, inductive inference and lin-

ear ordering. This approach has been shown to work well for small global VLSI routing

problems [13]. With the improved data structures we plan to evaluate its applicability to

real-world VLSI routing.

References

[1] G. Avondo-Bodeno. Economic applications of the theory of graphs. Gordon & Breach

Science Publishers, 1962.

[2] Egon Balas and Chang Sung Yu. Finding a maximum clique in an arbitrary graph.

SIAM Journal of Computing, 15:1054–1068, 1986.

[3] C. Berge. The theory of graphs and its applications. Methuen, 1962.

[4] Béla Bollobás. Random Graphs. Academic Press, 1985.

[5] V. Degot and J.M. Hualde. De l’utilisation de la notion de clique en matière de typologie

des populations. R.A.I.R.O., 1, 1975.

[6] N. Deo. Graph theory with applications to engineering and computer science. Prentice-

Hall, 1974.

[7] Michael R. Garey and David S. Johnson. Computers and intractability - A guide to

the theory of NP-completeness. W.H. Freeman and Company, 1979.

[8] A. Johri and D.W. Matula. Probabilistic bounds and heuristic algorithms for coloring

large random graphs. unpublished manuscipt, 1982.

[9] L.E. Trotter Jr. Solution characteristics and algorithms for the vertex packing problem.

Technical Report 168, Dept. of Operations Research, Cornell University, Ithaca, NY,

1973.

19

[10] N. Karmarkar. An interior-point approach to NP-complete problems – extended ab-

stract. In Mathematical developments arising from linear programming algorithms.

Summer Research Conference sponsored jointly by AMS, IMS and SIAM. Bowdoin

College, Brunswick, Maine, June 1988.

[11] K. Levenberg. A method for the solution of certain problems in least squares. Quart.

Appl. Math., 2:164–168, 1944.

[12] D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.

SIAM J. Appl. Math., 11:431–441, 1963.

[13] R. Pai, N. Karmarkar, and S.S.S.P. Rao. A global router based on Karmarkar’s interior

point method. Technical report, Indian Institute of Technology, Bombay, April 1988.

[14] S. Sahni. Computationally related problems. SIAM Journal of Computing, 3:262–279,

1974.

[15] C.E. Shannon. The zero-error capacity of a noisy channel. I.R.E. Transactions, 3,

1956.

[16] J. Turner and W.H. Kautz. A survey of progress in graph theory in the Soviet Union.

SIAM, 12, 1970.

[17] Yinyu Ye. On the interior algorithms for nonconvex quadratic programming. Technical

report, Integrated Systems Inc., Santa Clara, CA, 1988.

20

