
HYBRIDIZATIONS OF GRASP WITH PATH-RELINKING

PAOLA FESTA AND MAURICIO G.C. RESENDE

Abstract. A greedy randomized adaptive search procedure (GRASP) is a
metaheuristic for combinatorial optimization. GRASP heuristics are multi-
start procedures which apply local search to a set of starting solutions gener-
ated with a randomized greedy algorithm or semi-greedy method. The best
local optimum found over the iterations is returned as the heuristic solution.
Path-relinking is a search intensification procedure that explores paths in the
neighborhood solution space connecting two good-quality solutions. A local
search procedure is applied to the best solution found in the path and the local
optimum found is returned as the solution of path-relinking. The hybridization
of path-relinking and GRASP adds memory mechanisms to GRASP. This pa-
per describes basic concepts of GRASP, path-relinking, and the hybridization
of GRASP with path-relinking.

1. Introduction

A combinatorial optimization problem can be defined by a finite ground set
E = (1, . . . , n), a set of feasible solutions F ⊆ 2E , and an objective function
f : 2E 7→ R. In this paper, we consider optimization problems in their minimization
form, where an optimal solution S∗ ∈ F is sought such that f(S∗) ≤ f(S), for all
S ∈ F . The ground set E, the set of feasible solutions F , and the objective function
f are defined for each specific problem. Many combinatorial optimization problems
are computationally intractable, i.e. they fall into the category of NP-hard problems
[32].

Much progress has been made in the direction of exact methods for combinatorial
optimization, such as branch and bound, branch and cut, and dynamic program-
ming [72, 76]. These methods, however, suffer from the curse of dimensionality,
i.e. they tend to break down as the size of the instance being solved increases.
Likewise, approximation algorithms [74, 75], which provide a guaranteed subopti-
mal solution to hard combinatorial optimization problems, have also experienced
significant progress. Although interesting in theory, approximation algorithms are
often outperformed in practice by more straightforward heuristics with no particu-
lar performance guarantees.

Metaheuristics [33, 36] are general high-level procedures that coordinate simple
heuristics and rules to find good (often optimal) approximate solutions to combina-
torial optimization problems. They include genetic algorithms, simulated anneal-
ing, tabu search, scatter search, ant colonies, variable neighborhood search, GRASP,

Date: October 25, 2011.
Key words and phrases. GRASP, path-relinking, GRASP with path-relinking, metaheuristic,

local search, parallel computing, combinatorial optimization, discrete mathematics.
AT&T Labs Research Technical Report.

1

2 P. FESTA AND M.G.C. RESENDE

and path-relinking. There are many ways to classify metaheuristics. These in-
clude, trajectory-based versus population-based, nature-inspired versus non-nature
inspired, memoryless versus memory-based, etc. Genetic algorithms, for example,
are nature-inspired, population-based, with memory. Tabu search are trajectory-
based with memory. GRASP is trajectory-based.

Hybrid metaheuristics combine one or more algorithmic ideas from different
metaheuristics and sometimes even from outside the traditional field of metaheuris-
tics. The main motivation to hybridize metaheuristics is to make up for the short-
comings of one metaheuristic with special characteristics of the other. In this paper,
we consider the hybridization of two metaheuristics: GRASP and path-relinking.

GRASP, or greedy randomized adaptive search procedures [25, 26, 30, 31, 59], is
a metaheuristic for combinatorial optimization. GRASP heuristics are multistart
procedures which apply local search to a set of starting solutions generated with
a randomized greedy algorithm or semi-greedy method. The best local optimum
found over the iterations is returned as the heuristic solution. Since GRASP it-
erations are independent of one another, GRASP heuristics do not make use of
solutions produced throughout the search, i.e. they do not have any memory mech-
anism.

One way to add memory to GRASP is its hybridization with path-relinking.
Path-relinking [35, 60, 63] is a search intensification procedure that explores paths
in the neighborhood solution space connecting two good-quality solutions. A local
search procedure is applied to the best solution found in the path and the local
optimum found is returned as the solution of path-relinking.

This paper describes basic concept of GRASP, path-relinking, and the hybridiza-
tion of GRASP with path-relinking. In Section 2 we describe the main building
blocks of GRASP. In Section 3 we consider path-relinking and, in Section 4, address
issues related to the hybridization of GRASP with path-relinking and evolutionary
path-relinking. A hybridization of GRASP with path-relinking and Lagrangean re-
laxation is discussed in Section 5. In Section 6 we consider parallel implementation
of GRASP with path-relinking heuristics. Finally, concluding remarks are made in
Section 7.

2. GRASP

Given a feasible solution S ∈ F of a combinatorial optimization problem, a
neighborhood N(S) of S is a subset of F such that each element in N(S) is “close”
to S and can be obtained applying some elementary operation (or move) to S that
changes one or more components of S. Consider the search space graphG = (F,M),
where the node set F is the set of feasible solutions and the edges in the set M
correspond to moves in the neighborhood structure, i.e. (S, S′) ∈M if and only if
S, S′ ∈ F , S ∈ N(S′), and S′ ∈ N(S).

Local search seeks a locally optimum solution in G, i.e. a solution Ŝ ∈ F such
that f(Ŝ) ≤ f(S), for all S ∈ N(Ŝ). It starts from some solution S0 ∈ F . At
any iteration k, it seeks an improving solution Sk+1 ∈ N(Sk) such that f(Sk+1) <
f(Sk). On one hand, if a first-improving strategy is used, any improving solution
Sk+1 can be accepted. On the other hand, when a best-improving strategy is
adopted, the improving solution Sk+1 is the best-valued in the neighborhood, i.e.
f(Sk+1) = min{f(S) : S ∈ N(Sk)}. Local search terminates when a locally
optimum solution is found. The effectiveness of local search depends strongly on

HYBRID GRASP WITH PATH-RELINKING 3

the structure of the solution space graph G = (F,M), the objective function f , and
the starting solution S0 ∈ F .

When designing a local search algorithm, one has the flexibility to design dif-
ferent neighborhoods and to select different starting solutions. Usually there is
less flexibility in selecting an objective function. Some attention is needed in the
design of neighborhoods since the complexity of each iteration k of local search is
O(|N(Sk)|). A neighborhood that is exponentially large will result in a local search
with exponentially large computational complexity. Another cause of exponential
computational complexity in local search is an exponentially small reduction in the
objective function value when moving from a solution to a neighbor.

Since it is possible to select the starting solution S0, a possible strategy is a
multi-start algorithm, where local search is applied to a series of starting solutions
S0
1 , S

0
2 , . . . , S

0
q and the best local optimum found by the procedure is returned.

A straightforward way to implement such a multi-start algorithm is to generate
each starting solution at random. A drawback to this approach is the fact that the
quality of randomly-generated solutions is not very good and the number of moves
needed to reach a global optimum is usually large. Not only does this result in
long running times, it also increases the chance that local search will encounter a
sub-optimal local optimum along the way and get trapped there. The number of
local optima with better cost than a randomly generated solution is usually larger
than the number of local optima with better cost than a greedy solution.

A greedy algorithm builds a solution to a combinatorial optimization problem,
one element of the ground set at a time. Given a partial solution, all possible
candidate elements of the ground set (i.e. those elements that can be added to
the partial solution without causing infeasibility) are ranked according to a myopic
benefit associated with their inclusion in the solution and the next element to be
added to the solution is one among the best-valued. Using a greedy algorithm to
generate starting solutions for a multi-start algorithm is not recommended since
the generated solutions would differ very little one from another. However, a good
characteristic of greedy solutions is their quality. Usually, fewer moves are needed
to go from a greedy solution to a locally optimum than what is needed to go to a
local optimum from a randomly generated solution.

A tradeoff between a greedy solution and a random solution is a semi-greedy

or randomized greedy solution [38]. A semi-greedy heuristic is also a constructive
procedure that builds a solution, one element of the ground set at a time. Like a
greedy algorithm, in a semi-greedy algorithm, all possible candidate elements are
ranked according to a myopic benefit associated with their inclusion in the solution.
Instead of selecting one among the best-valued elements as the next one to be added
to the solution, a restricted candidate list (RCL) is built with a set of good-valued
candidates. One element from the RCL is selected at random and is added to the
partial solution.

Hart and Shogan [38] proposed a multi-start procedure that uses a semi-greedy
method but without local search. GRASP is a multi-start procedure which uses a
semi-greedy method to generate starting solutions for local search. Since solutions
produced by the algorithm of Hart and Shogan are not necessarily local optima,
GRASP solutions are almost always better than semi-greedy solutions.

Figure 1 shows pseudo-code for a generic GRASP. GRASP iterations are carried
out in lines 2 to 12. In line 3, the procedure attempts to build a feasible semi-greedy

4 P. FESTA AND M.G.C. RESENDE

begin GRASP
1 f∗ ←∞;
2 while stopping criterion not satisfied do

3 S ← RandomizedGreedy(·);
4 if S is not feasible then

5 S ← Repair(S);
6 end-if

7 S ← LocalSearch(S);
8 if f(S) < f∗ then

9 S∗ ← S;
10 f∗ ← f(S);
11 end-if

12 end-while

13 return S∗;
end

Figure 1. Pseudo-code of a generic GRASP.

begin GreedyRandomized

1 S ← ∅;
2 Initialize set of candidates C;
3 Evaluate the incremental cost of candidates;
4 while C 6= ∅ do
5 Build the RCL;
6 Select s ∈ RCL at random;
7 S ← S ∪ {s};
8 Update C;
9 Reevaluate the incremental costs;
10 end-while

11 return S or indication that S is infeasible;
end

Figure 2. Pseudo-code of the semi-greedy GRASP construction phase.

solution. Since this is not always possible because there is no backtracking in the
greedy algorithm, a repair procedure may have to be applied in line 5 to achieve
feasibility. An example of such a case can be seen in the GRASP for the generalized
quadratic assignment problem of Mateus et al. [46]. A feasible solution S is used as
the starting solution for the local search in line 7. If the local optimum S is better
than the incumbent, then, in lines 9 and 10, it is saved as S∗ and its objective
function value as f∗. In line 13, the best solution found over all GRASP iterations
is returned as the GRASP solution.

2.1. GRASP construction. The GRASP construction phase in line 3 of the
pseudo-code of Figure 1 combines greedy and randomized characteristics. The first
implementations of GRASP made use of the semi-greedy algorithms of Hart and
Shogan [38]. Figure 2 shows pseudo-code for a generic version of the semi-greedy
algorithm of Hart and Shogan.

HYBRID GRASP WITH PATH-RELINKING 5

The semi-greedy construction builds a solution S, one element at a time. In
line 1 of the pseudo-code, solution S is initialized empty. The elements of the
ground set than can be feasibly added to the solution are called candidates. This
set is initialized in line 2 and the costs of adding each candidate element to the
solution is determined in line 3. The solution is built in the loop in lines 4 to 10.
This loop is repeated while there remain candidate elements. When C = ∅, solution
S can be either feasible or not. In the case that S is infeasible, a repair procedure
will need to be called in the main GRASP procedure. Otherwise S is returned in
line 11. In line 5, a restricted candidate list (RCL) is set up from which an element
s is selected at random in line 6. This element is added to the partial solution in
line 7. In line 8 the candidate set C is updated to reflect the inclusion of s in S.
Finally, in line 9 the incremental costs are computed for each element of C.

Hart and Shogan [38] proposed two ways to construct the RCL. The first, called
cardinality based, takes as input a parameter k and places the k elements with best
incremental cost in the RCL. The second scheme is called value based. Let cmin

and cmax denote, respectively, the minimum and maximum incremental cost of the
candidate elements and let α be a real number in the interval [0, 1]. A threshold τ =
cmin +α · (cmax − cmin) is computed and all candidate elements having incremental
cost at most τ are placed in the RCL. Notice that the parameter α controls the
amount of randomness and greediness in the construction process. If α = 0, the
construction is purely greedy. If α = 1, the construction is random. By controlling
the value of α, the algorithm designer can control how much greediness and/or
randomness characterizes the construction which in turn controls the intensification
and diversification of the search.

One way to mix intensification and diversification is to randomly generate a
different α at each GRASP iteration. Prais and Ribeiro [54] proposed a scheme they
call Reactive GRASP in which the parameter α is self-tuned to favor values which
resulted in better quality solutions in previous GRASP iterations. They define
Ψ = {α1, . . . , αm} to be the set of possible values for α. Initially, the probability
of choosing a value αi is pi = 1/m, i = 1, . . . ,m. Furthermore, let f∗ be the
objective function value of the incumbent solution and let Ai be the average value
of all solutions found using α = αi, i = 1, . . . ,m. The selection probabilities
are periodically recomputed by taking pi = qi/

∑m

j=1
qj , with qi = f∗/Ai for i =

1, . . . ,m. The value of qi will be larger for values of α = αi that lead, on average,
to the best solutions. Larger values of qi correspond to more suitable values for the
parameter α. The probabilities associated with these more appropriate values will
then increase when they are reevaluated. This reactive strategy is not limited to
semi-greedy procedures where membership in the RCL depends on relative quality.
It can be extended to the other greedy randomized construction schemes, all of
which need to balance greediness with randomization.

In addition to the semi-greedy construction scheme, other alternative greedy
randomized construction criteria have been proposed. Three such alternatives are
the random plus greedy, the sampled greedy [61], and the construction by cost per-

turbation [15] schemes.
In random plus greedy, the first p components of the constructed solution are

selected at random, one at a time. The remaining components are then added to
the solution in a greedy fashion. In this scheme, parameter p controls the amount of

6 P. FESTA AND M.G.C. RESENDE

randomness and/or greediness in the solution. Small values of p result in a greedy-
like construction while large values of p correspond to a random-like construction.

Sampled greedy also makes use of a parameter p to control the amount of greed-
iness and/or randomness in the construction process. At each step of sampled
greedy construction process the procedure builds a RCL by sampling min{p, |C|}
elements of the candidate set C. The incremental cost associated with adding each
element of the RCL into the solution is evaluated. An element with the best-valued
incremental cost is added to the partial solution. The balance between greediness
and randomness is controlled by the value of parameter p. Small values of p lead
to solutions constructed in a more random fashion while large values of p lead to
solutions constructed in a more greedy fashion.

Construction by cost perturbation makes use of the problem data to balance
the amount of randomness and greediness in the construction process. Some con-
struction algorithm, such as, for example, an approximation algorithm, is applied
to the problem where the data is randomly perturbed. The constructed solution
is then evaluated using the original data. This way, by controlling the amount of
perturbation, the construction will result in either a more random construction or
a more greedy one.

2.2. Other local search strategies. In addition to the first-improvement and
best-improvement local search scheme described earlier in Section 2, other hybrid
schemes have been proposed. These involve the replacement of the above mentioned
local search schemes with more sophisticated local improvement methods, such as
variable neighborhood descent [7, 23, 44, 67, 68], variable neighborhood search
[15, 29], tabu search [16, 19, 40, 73], simulated annealing [18, 42], iterated local
search [69], and very large scale neighborhood search [34].

2.3. Stopping criteria. As any multi-start procedure, GRASP iterates until some
stopping criterion is satisfied. Such criteria could be maximum number of iterations,
maximum number of iterations without improvement of the incumbent solution,
maximum running time, or solution quality at least as good as a given target
value. With the exception of the last criterion, all other rules suffer from the same
drawback, i.e. they cannot provide any information regarding the quality of the
solution returned.

Stochastic-based stopping rules for GRASP and similar stochastic local search
algorithms have been proposed, e.g. [9, 13, 21, 39, 49], but computational studies
with these proposals are lacking.

Ribeiro et al. [66] study the distribution of solution values obtained by two
GRASP procedures. For both procedures, the authors show that these solution
values fit a normal distribution. With this observation they propose a probabilistic
stopping rule for GRASP.

Let f1, f2, . . . , fk be a sample formed by the first k solution values generated by
GRASP. Furthermore, let µk and σk be, respectively, the estimated mean and the
standard deviation of the sample. Define X to be the random variable representing
the value of the local minimum found at each iteration. We assume that X ∼
N(µk, σk), i.e. X is normally distributed with mean µk and standard deviation σk.
Let fk

X(·) and F k
X(·) be, respectively, the probability density and the cumulative

probability distribution function of X . If UBk is the smallest solution value over
the first k GRASP iterations, the probability of finding a solution at least as good

HYBRID GRASP WITH PATH-RELINKING 7

begin GRASP(β)
1 f∗ ←∞; k ← 0;
2 repeat

3 S ← RandomizedGreedy(·);
4 if S is not feasible then

5 S ← Repair(S);
6 end-if

7 S ← LocalSearch(S);
8 if f(S) < f∗ then

9 S∗ ← S;
10 f∗ ← f(S);
11 end-if

12 k ← k + 1;
13 fk ← f(S);

14 UBk ← f(S∗);
15 Update µk and σk of f1, . . . , fk;

16 Compute F k
X(UBk) =

∫
UB

k

−∞
fx
N(τ)dτ ;

17 until F k
X(UBk) < β

18 return S∗;
end

Figure 3. Pseudo-code of a generic GRASP with a probabilistic
stopping rule.

UBk in the next iteration can be estimated as F k
X(UBk) =

∫
UB

k

−∞
fx
N(τ)dτ . This

probability is always reevaluated when the incumbent solution improves. It is
reevaluated periodically even if no change in the value of the incumbent is observed.
For a given threshold value β, the Ribeiro et al. probabilistic stopping rule is to
stop the GRASP iterations whenever F k

X(UBk) ≤ β. The pseudo-code in Figure 3
shows a GRASP with the probabilistic stopping rule.

3. Path-relinking

From Section 2 recall the search space graph G = (F,M), where the node set F
is the set of feasible solutions and the edges in the set M correspond to moves in the
neighborhood structure, i.e. (S, S′) ∈ M if and only if S, S′ ∈ F , S ∈ N(S′), and
S′ ∈ N(S). Given two solutions S, T ∈ F , the path-relinking operator [35] explores
a path P(S, T) in G connecting S and T with the objective of finding solutions
S∗ ∈ P(S, T) for which f(S∗) < min{f(S), f(T)}. If both S and T are good-
quality solutions, then one can think of path-relinking as a search intensification
procedure, which explores regions of the solution space spanned by both S and T .

Suppose path-relinking is to be done between two solutions S ∈ F and T ∈ F .
Let S be called the initial solution and T the guiding solution. One or more paths
connecting these solutions in G can be explored. Local search can be applied to
the best solution in each of these paths since there is no guarantee as to the local
optimality of the best solution in the path.

Let S′ ∈ F be some solution in P(S, T). During path-relinking not all solutions
in N(S′) are allowed to follow S′ on the path P(S, T). Path-relinking restricts the

8 P. FESTA AND M.G.C. RESENDE

begin PathRelinking(S, T)
1 f∗ ← min{f(S), f(T)};
2 S∗ ← argmin{f(S), f(T)};
3 S′ ← S;
4 while |∆(S′, T)| > 1 do

5 Sδ = argmin{f(Ŝ) | Ŝ ∈ NT (S
′)};

6 if f(Sδ) < f∗ then

7 S∗ ← Sδ;
8 f∗ ← f(Sδ);
9 end-if

10 S′ ← Sδ;
11 end-while

12 S∗ ← LocalSearch(S∗);
13 return S∗;
end

Figure 4. Pseudo-code of a greedy path-relinking operator.

choice to those solutions in N(S′) that share more attributes, or elements, with T
than S′ does. We denote by NT (S

′) this restricted neighborhood which consists of
all neighbors of S′ obtained by introducing into S′ attributes of T not present in
S′. To select the solution that follows S′ on P(S, T), the most common choice is
the greedy choice, i.e. the best-valued solution in NT (S

′).
Let ∆(S′, T) be the set of attributes present in T but not in S′. Introducing in

S′ any element δ ∈ ∆(S′, T) leads to a solution Sδ ∈ NT (S
′) that can be reached

by traversing edge (S′, Sδ) ∈ M . Figure 4 shows a pseudo-code for a basic greedy
path-relinking operator. This operator scans a path from the initial solution S to
the guiding solution T . In the first two lines, the best solution S∗ and its value
f∗ are initialized and in line 3 the current solution S′ is initialized to the initial
solution S. The loop from line 4 to line 11 is repeated while there are attributes
in the guiding solution that are not present in the current solution S′. Among all
solutions in the restricted neighborhood NT (S

′) of S′, a best-valued solution Sδ

is selected in line 5. If this solution is the best seen so far, it and its value are
recorded in lines 7 and 8. The current solution S′ is updated in line 10 to Sδ.
After examining the entire path from S to T , local search is applied to the best
solution in line 12 and the resulting local optimum is returned as the solution of
path-relinking in line 13.

3.1. Flavors of path-relinking. The scheme shown in the pseudo-code of Figure 4
can be implemented as different variants of path-relinking, including forward, back-
ward, back and forward, mixed, and greedy randomized. In forward path-relinking,
the starting solution S′ is such that S′ = argmax{f(S), f(T)}. Conversely, in back-

ward path-relinking, the starting solution S′ is such that S′ = argmin{f(S), f(T)}.
When carrying out path-relinking, the neighborhood of the initial solution is ex-
plored more thoroughly than that of the guiding solution. Since the quality of the
initial solution in backward path-relinking is better than that of the initial solution
in forward path-relinking, backward path-relinking usually performs better than
forward path-relinking. Better yet is back and forward path-relinking, where a

HYBRID GRASP WITH PATH-RELINKING 9

begin MixedPathRelinking(S, T)
1 f∗ ← min{f(S), f(T)};
2 S∗ ← argmin{f(S), f(T)};
3 S′ ← S;
4 while |∆(S′, T)| > 1 do

5 Sδ = argmin{f(Ŝ) | Ŝ ∈ NT (S
′)};

6 if f(Sδ) < f∗ then

7 S∗ ← Sδ;
8 f∗ ← f(Sδ);
9 end-if

10 T ′ ← Sδ;
11 S′ ← T ;
12 T ← T ′;
13 end-while

14 S∗ ← LocalSearch(S∗);
15 return S∗;
end

Figure 5. Pseudo-code of mixed path-relinking operator.

backward path-relinking is applied first and then a forward path-relinking follows.
Back and forward path-relinking finds, by definition, solutions that are at least as
good as either backward or forward path-relinking, but at the expense of taking
about twice as long as either.

In contrast to back and forward path-relinking, a less expensive way to explore
the neighborhoods of the initial and guiding solutions is with mixed path-relinking

[35, 65]. In mixed path-relinking, the roles of initial and guiding solutions are
exchanged after each move. This way, two paths are generated, one emanating from
the initial solution and the other from the guiding solution. The paths eventually
meet at some solution about half way between the two input solutions. A pseudo-
code for mixed path-relinking is shown in Figure 5.

If ties are broken deterministically in greedy path-relinking, the procedure will
always generate the same path when applied to a given input pair {S, T }. Since
the number of paths connecting the input pair grows exponentially with |∆(S, T)|,
exploring a single path can be limiting. Greedy randomized adaptive path-relinking
[12, 24] uses a semi-greedy move selection strategy that enables exploration of
different paths when applied to the same input pair. Instead of making the greedy
move choice as in line 5 of the pseudo-code in Figure 4, greedy randomized adaptive
path-relinking builds a restricted candidate list of moves, one of which is selected
at random to lead to the next solution along the path.

Good-quality solutions tend to be located near other good-quality solutions.
Consequently good solutions found by path-relinking are usually found near S or
T . Resende et al. [56] showed this was the case for the max-min diversity problem
(see Figure 6). In truncated path-relinking, only a partial path is explored. The
search is limited to solutions where only a small portion of the attributes of the
guiding solution are introduced and consequently the running time to apply path-
relinking is reduced.

10 P. FESTA AND M.G.C. RESENDE

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

A
ve

ra
ge

 n
um

be
r

of
 b

es
t s

ol
ut

io
ns

Percentage of path length

Figure 6. Average number of best solution found at different
depths of the path from the initial solution to the guiding solu-
tion on instances of the max-min diversity problem [56].

Mateus et al. [46] observed that path-relinking can fail when NT (S
′) = ∅ in

line 5 of the pseudo-code of Figure 4. In such a case a repair procedure is applied
to S′ in an attempt to move from S′ to some solution S′′ such that NT (S

′′) 6= ∅.

3.2. Path-relinking and elite sets. An elite set or pool E of solutions is a fixed-
size set of good-quality and diverse solutions. The quality of a solution S is with
respect to its objective function value f(S) while the diversity between two solutions
S and T is with respect to ∆(S, T). When initially populating E , a candidate
solution S is inserted into E if it differs from all other solutions already in E , i.e. if
|∆(S, T)| 6= 0, for all T ∈ E .

If a solution S is inserted into E when it is already full, it must replace some
solution T ∈ E . A candidate solution S is inserted into E if one of the following
two conditions is satisfied:

(1) f(S) < f(T) for all T ∈ E ;
(2) Condition (1) does not hold but f(S) < f(T) for some T ∈ E and |∆(S, T)| >

ǫ for all T ∈ E , where ǫ is an input parameter used to control the diversity
of the elite solutions.

Once a solution S is accepted to enter the elite set, it must replace a solution T ∈ E .
T should be such that its replacement by S in E results in an elite set with smaller
average objective function value and minimizes the impact on diversity of E . A
strategy [61] that achieves this goal is to select, among all solutions T ∈ E that
have worse objective function value than S, the one that is most similar to S, i.e.
select

T = argminT ′∈E{|∆(S, T ′)| such that f(T ′) > f(S)}.

One way to combine path-relinking and elite sets is through evolutionary path-
relinking [61]. Given an initial elite set, evolutionary path-relinking evolves the
elite set applying the path-relinking operator among pair of elite set solutions. Two
variants of evolutionary path-relinking have been proposed. The first, proposed in
Resende and Werneck [61], works with a series of elite sets. At step k, pairs of
solutions in Ek are relinked one pair at a time. The resulting solution of each path-
relinking operation is a candidate for inclusion in elite set Ek+1. The acceptance
and replacement selection rules described above are used to determine if a candidate

HYBRID GRASP WITH PATH-RELINKING 11

is accepted by Ek+1 and to determine which elite solution in Ek+1 it will replace.
The procedure stops when the best solution in elite set Ek+1 has the same objective
function value as the best solution in elite set Ek. The second scheme, proposed
by Resende et al. [56] works with a single elite set E . While there remain pairs of
solutions in E that have not yet been relinked, the path-relinking operator is applied
to the pair and the resulting solution is a candidate to enter E . The acceptance
and replacement selection rules are applied as described above.

4. GRASP with path-relinking and evolutionary path-relinking

Laguna and Mart́ı [41] proposed the first hybridization of GRASP with path-
relinking. In their implementation, the elite set is made up of only three solutions.
Each GRASP solution (local minimum obtained by the local search procedure) is
relinked with a randomly chosen elite set solution. If the solution resulting from
the path-relinking operator is better than the best elite solution, it replaces the
worst elite solution.

Since 1999, much work has been done to improve the hybridization of GRASP
with path-relinking [58, 59]. The pseudo-code in Figure 7 is a template for im-
plementation of GRASP with path-relinking heuristics. The iterations of GRASP
with path-relinking are carried out in lines 2 to 17. Lines 3 to 7 comprise the two
phases of GRASP, producing a locally optimal solution S. In the case that the elite
set E is not yet full, then in lines 9 to 11 S is added to E if it is different from all
elite set solutions. In the case that the elite set is full, an elite solution T is selected
in line 13 and path-relinking is applied to the pair S, T in line 14, and finally, in
line 15, the elite set E is updated, i.e. solution S is considered for inclusion in E
and if accepted, it will replace some existing solution in E . In line 18, the GRASP
with path-relinking procedure returns the best-quality solution S∗ among all elite
solutions.

GRASP with path-relinking maintains a elite set of diverse good-quality solutions
found during the search. Periodically evolutionary path-relinking can be applied
to the elite set with the objective of improving the quality of some of the elite set
solutions. The pseudo-code in Figure 8 shows how to modify GRASP with path-
relinking in order to obtain GRASP with evolutionary path-relinking. If a criterion
for evolutionary path-relinking is triggered (line 3) then evolutionary path-relinking
is applied to the current elite set in line 4. This criterion is usually a number of
iterations since the last call to evolutionary path-relinking. Since the same pair of
elite solutions may be relinked several times (in different calls to evolutionary path-
relinking), evolutionary path-relinking is usually implemented in the inner loop
(line 4) using the greedy randomized adaptive path-relinking operator. That way
if a pair is relinked more than once, a different solution can result from the path-
relinking operator. Finally, at the conclusion of the GRASP iterations, evolutionary
path-relinking is applied a final time in line 20 to possibly improve the elite set and
allow the algorithm to output a potentially better solution S∗ in line 21.

In a paper on GRASP with path-relinking for the three-index assignment prob-
lem, Aiex et al. [2] applied path-relinking between all pairs of the elite set as
search intensification and as post-processing. Resende and Werneck [61, 62] ap-
plied evolutionary path-relinking in a post-processing phase in GRASP with path-
relinking heuristics for the p-median and uncapacitated facility location problems.
Andrade and Resende [2] applied evolutionary path-relinking between the two best

12 P. FESTA AND M.G.C. RESENDE

begin GRASP+PR
1 E ← ∅;
2 while stopping criterion not satisfied do

3 S ← RandomizedGreedy(·);
4 if S is not feasible then

5 S ← Repair(S);
6 end-if

7 S ← LocalSearch(S);
8 if E is not full then
9 if ∆(S, T) 6= 0, for all T ∈ E then

10 E ← E ∪ {S};
11 end-if

12 else

13 Select T ∈ E ;
14 S ← PathRelinking(S, T);
15 E ← UpdateElite(E , S);
16 end-if

17 end-while

18 return S∗ = argmin{f(S) | S ∈ E};
end

Figure 7. Pseudo-code of a GRASP with path-relinking.

elite solutions and all other elite solutions as a search intensification in a GRASP
with path-relinking for a network migration problem. Resende et al. [56] showed
through experimental results that a GRASP with evolutionary path-relinking for
a max-min diversity problem could outperform heuristics based on pure GRASP
with path-relinking, simulated annealing, and tabu search.

5. Hybrid GRASP Lagrangean heuristic

Pessoa et al. [51, 52] proposed LAGRASP, a hybrid heuristic combining GRASP
with path-relinking and subgradient optimization to solve the set k-covering prob-
lem. Their algorithm extends the Lagrangean heuristic for set covering of Beasley
[11] to the case of set k-covering. In addition, instead of following Beasley and
using a simple greedy heuristic as the primal heuristic, Pessoa et al. use a GRASP
with path-relinking heuristic in which Lagrangean reduced costs are used in place
of the original costs.

The comparison of LAGRASP with pure GRASP with path-relinking showed
that LAGRASP was able to find much better quality solutions than the pure
GRASP with path-relinking. Furthermore, the comparison of different variants of
LAGRASP showed that, by properly tuning its parameters, it is possible to obtain
a good trade-off between solution quality and running time. Extensive experiments
on 135 instances showed that LAGRASP can take advantage of randomization to
make better use of dual information provided by subgradient optimization than
Beasley’s algorithm. As a consequence, LAGRASP is able to discover better so-
lutions and to escape from locally optimal solutions after the stabilization of the

HYBRID GRASP WITH PATH-RELINKING 13

begin GRASP+evPR
1 E ← ∅;
2 while stopping criterion not satisfied do

3 if evPR criterion triggered then

4 E ← evPathRelinking(E);
5 S ← RandomizedGreedy(·);
6 if S is not feasible then

7 S ← Repair(S);
8 end-if

9 S ← LocalSearch(S);
10 if E is not full then
11 if ∆(S, T) 6= 0, for all T ∈ E then

12 E ← E ∪ {S};
13 end-if

14 else

15 Select T ∈ E ;
16 S ← PathRelinking(S, T);
17 E ← UpdateElite(E , S);
18 end-if

19 end-while

20 E ← evPathRelinking(E);
21 return S∗ = argmin{f(S) | S ∈ E};
end

Figure 8. Pseudo-code of a GRASP with evolutionary path-relinking.

lower bounds, whereas the greedy Lagrangean heuristic of Beasley [11] fails to find
new improving solutions.

6. Parallel GRASP with path-relinking

Multiple-walk independent-thread parallel implementations distribute the GRASP
with path-relinking iterations over the processors. Each thread performs imax/p it-
erations, where imax is the total number of iterations and p is the number of proces-
sors. As opposed to pure GRASP, were linear speedup is usually observed, multiple-
walk independent-thread parallel implementations of GRASP with path-relinking
have had mixed results. For example, Aiex et al. [2] showed linear speedups for the
3-index assignment problem whereas for the job-shop scheduling problem, Aiex et
al. [1] showed sublinear speedups.

In this section, we focus on multiple-walk cooperative-thread schemes for im-
plementing GRASP with path-relinking in parallel. In multiple-walk cooperative-
thread schemes superlinear speedups have been observed (see, e.g. [1, 2, 3]). Two
basic mechanisms have be used to implement multiple-walk cooperative-thread
GRASP with path-relinking heuristics.

In distributed strategies [1, 3], each thread maintains its own pool of elite solu-
tions. Each iteration of each thread consists initially of a GRASP construction,
followed by local search. Then, the local optimum is combined with a randomly

14 P. FESTA AND M.G.C. RESENDE

selected element of the thread’s pool using path-relinking. The output of path-
relinking is then tested for insertion into the pool. If accepted, the solution is sent
to the other threads, where it is tested for insertion into the other pools. Collabora-
tion takes place at this point. Though there may be some communication overhead
in the early iterations, this tends to ease up as pool insertions become less frequent.

The second mechanism is the one used in centralized strategies [45, 64, 65], in
which a single pool of elite solution is used. As before, each GRASP iteration
performed at each thread starts by the construction and local search phases. Next,
an elite solution is requested and received from the centralized pool. Once path-
relinking is performed, the solution obtained as the output is sent to the pool and
tested for insertion. Collaboration takes place when elite solutions are sent from
the pool to other processors different from the one that originally computed it.

In both the distributed and the centralized strategies each processor has a copy
of the sequential algorithm and a copy of the data. One processor acts as the
master, reading and distributing the problem data, generating the seeds which will
be used by the pseudo-random number generators at each processor, distributing
the iterations, and collecting the best solution found by each processor. In the
case of a distributed strategy, each processor has its own pool of elite solutions
and all available processors perform GRASP iterations. In the case of a centralized
strategy, one processor does not perform GRASP iterations and is used exclusively
to store the pool and to handle all operations involving communication requests
between the pool and the slaves.

7. Concluding remarks

This paper reviewed the hybridization of greedy randomized adaptive search pro-
cedures (GRASP) and path-relinking. As originally proposed in Feo and Resende
[25, 26], GRASP does not make use of any memory structures. The hybridization of
path-relinking with GRASP, proposed in Laguna and Mart́ı [41], introduced mem-
ory structures in GRASP. Though path-relinking adds extra work to each iteration
of GRASP (maintenance of the elite set and the path-relinking operation itself), the
total number of iterations required to find a solution of a given quality more than
compensates for this additional work, resulting in a higher probability that a target
solution will be found in a given amount of search time. Figure 9 shows runtime
distributions (time to target plots [4]) comparing implementations of pure GRASP
and GRASP with path-relinking on four instances of distinct problem types: three
index assignment [2], maximum satisfiability [27], bandwidth packing [57], and qua-
dratic assignment [48]. The four plots are typical in the comparison of GRASP and
GRASP with path-relinking in that:

• For a fixed running time, the probability that GRASP with path-relinking
finds a solution at least as good as the target value is greater than the
probability that pure GRASP will;
• For a fixed probability, the running time for GRASP with path-relinking to
find a solution at least as good as the target value with that probability is
smaller than the running time need for pure GRASP to find such a solution
with the same probability.

Hybridization with path-relinking is now the standard approach to implementing
GRASP.

HYBRID GRASP WITH PATH-RELINKING 15

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

3 index assignment: Balas & Statzman 26.1

GRASP
GRASP+PR

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 50 100 150 200 250 300 350

cu
m

ul
at

iv
e

pr
ob

ab
ib

lit
y

time to target solution value (seconds)

MAX-SAT: jnh212

GRASP
GRASP+PR

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 100 200 300 400 500 600

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

Bandwidth packing: ATT

GRASP
GRASP+PR

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1000 2000 3000 4000 5000 6000 7000 8000

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution value (seconds)

QAP: ste36b

GRASP
GRASP+PR

Figure 9. Time to target plots comparing running times of pure
GRASP and GRASP with path-relinking on four instances of dis-
tinct problem types: three index assignment [2], maximum satis-
fiability [27], bandwidth packing [57], and quadratic assignment
[48].

16 P. FESTA AND M.G.C. RESENDE

We conclude this paper with a list of applications of GRASP with path-relinking
(which we do not intend to be exhaustive):

• Graph drawing [41];
• Job-shop scheduling [1], PBX migration scheduling [6], broadcast schedul-
ing [17], network migration scheduling [7], machine scheduling [37], flowshop
scheduling [70];
• Two-path network design [64], rural road network design [71], capacitated
minimum spanning tree [73];
• Bandwidth packing [57], matrix bandwidth minimization [53], antiband-
width [22];
• Quadratic assignment [48], generalized quadratic assignment [46], three-
index assignment [2], SONET ring assignment [10];
• Max-SAT [28], max-cut [29];
• p-median [61], uncapacitated facility location [62], health care facility loca-
tion [50], capacitated clustering [20];
• Capacitated arc routing with time windows [55], traveling salesman problem
[43];
• Production-distribution planning [14], assembly line sequencing [5], capac-
itated lot sizing [47];
• Maximum diversity [8], max-min diversity [56].

References

[1] R.M. Aiex, S. Binato, and M.G.C. Resende. Parallel GRASP with path-relinking for job shop
scheduling. Parallel Computing, 29:393–430, 2003.

[2] R.M. Aiex, P.M. Pardalos, M.G.C. Resende, and G. Toraldo. GRASP with path-relinking for
three-index assignment. INFORMS J. on Computing, 17:224–247, 2005.

[3] R.M. Aiex and M.G.C. Resende. Parallel strategies for GRASP with path-relinking. In
T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as real problem
solvers, pages 301–331. Springer, 2005.

[4] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. TTTPLOTS: A perl program to create time-
to-target plots. Optimization Letters, 1:355–366, 2007.

[5] S. Alpay. GRASP with path relinking for a multiple objective sequencing problem for a
mixed-model assembly line. International J. of Production Research, 47:6001–6017, 2009.

[6] D.V. Andrade and M.G.C. Resende. A GRASP for PBX telephone migration scheduling. In
Proceedings of The Eighth INFORMS Telecommunications Conference, 2006.

[7] D.V. Andrade and M.G.C. Resende. GRASP with path-relinking for network migration sched-
uling. In Proceedings of the International Network Optimization Conference, 2007.

[8] M.R.Q. Andrade, P.M.F. Andrade, S.L. Martins, and A. Plastino. GRASP with path-
relinking for the maximum diversity problem. In 4th International Workshop on Experimental
and Efficient Algorithms, volume 3503 of Lecture Notes in Computer Science, pages 558–569,
2005.

[9] V. Bartkutė, G. Felinskas, and L. Sakalauskas. Optimality testing in stochastic and heuristic
algorithms. Technological and economic development of economy, 12(1):4–10, 2006.

[10] L.O. Bastos, L.S. Ochi, and E.M. Macambira. GRASP with path-relinking for the SONET
ring assignment problem. In International Conference on Hybrid Intelligent Systems, pages
239–244, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[11] J.E. Beasley. A Lagrangian heuristic for set-covering problems. Naval Research Logistics,
37:151–164, 1990.

[12] S. Binato, H. Faria Jr., and M.G.C. Resende. Greedy randomized adaptive path relinking.

In J.P. Sousa, editor, Proceedings of the IV Metaheuristics International Conference, pages
393–397, 2001.

[13] C.G.E. Boender and A.H.G. Rinnooy Kan. Bayesian stopping rules for multistart global
optimization methods. Mathematical Programming, 37:59–80, 1987.

HYBRID GRASP WITH PATH-RELINKING 17

[14] M. Boudia, M.A.O. Louly, and C. Prins. A reactive GRASP and path relinking for a combined
production-distribution problem. Computers and Operations Research, 34:3402–3419, 2007.

[15] S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations for the
prize-collecting Steiner tree problem in graphs. Networks, 38:50–58, 2001.

[16] R. Colomé and D. Serra. Consumer choice in competitive location models: Formulations and
heuristics. Papers in Regional Science, 80:439–464, 2001.

[17] C.W. Commander, S.I. Butenko, P.M. Pardalos, and C.A.S. Oliveira. Reactive GRASP with
path relinking for the broadcast scheduling problem. In Proceedings of the 40th Annual In-
ternational Telemetry Conference, pages 792–800, 2004.

[18] M.G.B. de la Peña. Heuristics and metaheuristics approaches used to solve the rural post-
man problem: A comparative case study. In Proceedings of the Fourth International ICSC
Symposium on Engineering of Intelligent Systems (EIS 2004), 2004. http://www.x-cd.com/
eis04/22.pdf.

[19] H. Delmaire, J.A. Dı́az, E. Fernández, and M. Ortega. Reactive GRASP and tabu search
based heuristics for the single source capacitated plant location problem. INFOR, 37:194–
225, 1999.

[20] Y. Deng and J.F. Bard. A reactive GRASP with path relinking for capacitated clustering. J.
of Heuristics, 17:119–152, 2011.

[21] C.C.Y. Dorea. Stopping rules for a random optimization method. SIAM J. on Control and

Optimization, 28:841, 1990.
[22] A. Duarte, R. Mart́ı, M.G.C. Resende, and R.M.A. Silva. GRASP with path relinking heuris-

tics for the antibandwidth problem. Networks, 58:171–189, 2011.
[23] C.C. Ribeiro e D.S. Vianna. A GRASP/VND heuristic for the phylogeny problem using a

new neighborhood structure. International Transactions in Operational Research, 12:325–
338, 2005.

[24] H. Faria Jr., S. Binato, M.G.C. Resende, and D.J. Falcão. Transmission network design by a
greedy randomized adaptive path relinking approach. IEEE Transactions on Power Systems,
20:43–49, 2005.

[25] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters, 8:67–71, 1989.

[26] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. J. of Global
Optimization, 6:109–133, 1995.

[27] P. Festa, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. GRASP with path-relinking for
the weighted MAXSAT problem. ACM J. of Experimental Algorithmics, 11:1–16, 2006.

[28] P. Festa, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. GRASP with path relinking for
the weighted MAXSAT problem. J. of Experimental Algorithmics, 11(2.4), 2007.

[29] P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Randomized heuristics for the
MAX-CUT problem. Optimization Methods and Software, 7:1033–1058, 2002.

[30] P. Festa and M.G.C. Resende. An annotated bibliography of GRASP, Part I: Algorithms.
International Transactions in Operational Research, 16:1–24, 2009.

[31] P. Festa and M.G.C. Resende. An annotated bibliography of GRASP, Part II: Applications.
International Transactions in Operational Research, 16:131–172, 2009.

[32] M.R. Garey and D.S. Johnson. Computers and intractability - A guide to the theory of NP-
completeness. W.H. Freeman and Company, 1979.

[33] M. Gendreau and J.-Y. Potvin, editors. Handbook of Metaheuristics, volume 146 of Interna-
tional Series in Operations Research & Management Science. Springer, 2nd edition, 2010.

[34] Y. Geng, Y. Li, and A. Lim. A very large-scale neighborhood search approach to capacitated
warehouse routing problem. In 17th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 05), pages 58–65, 2005.

[35] F. Glover. Tabu search and adaptive memory programming – Advances, applications and
challenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, Interfaces in Computer
Science and Operations Research, pages 1–75. Kluwer Academic Publishers, 1996.

[36] F. Glover and G. Kochenberger, editors. Handbook of Metaheuristics. Kluwer Academic Pub-
lishers, 2003.

[37] S.R. Gupta and J.S. Smith. Algorithms for single machine total tardiness scheduling with
sequence dependent setups. European J. of Operational Research, 175:722–739, 2006.

[38] J.P. Hart and A.W. Shogan. Semi-greedy heuristics: An empirical study. Operations Research
Letters, 6:107–114, 1987.

18 P. FESTA AND M.G.C. RESENDE

[39] W.E. Hart. Sequential stopping rules for random optimization methods with applications to
multistart local search. SIAM J. on Optimization, pages 270–290, 1998.

[40] M. Laguna and J.L. González-Velarde. A search heuristic for just-in-time scheduling in parallel
machines. J. of Intelligent Manufacturing, 2:253–260, 1991.

[41] M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line crossing mini-
mization. INFORMS J. on Computing, 11:44–52, 1999.

[42] X. Liu, P.M. Pardalos, S. Rajasekaran, and M.G.C. Resende. A GRASP for frequency assign-
ment in mobile radio networks. In B.R. Badrinath, F. Hsu, P.M. Pardalos, and S. Rajasejaran,
editors, Mobile Networks and Computing, volume 52 of DIMACS Series on Discrete Mathe-
matics and Theoretical Computer Science, pages 195–201. American Mathematical Society,
2000.

[43] Y. Marinakis, A. Migdalas, and P.M. Pardalos. Multiple phase neighborhood search – GRASP
based on Lagrangean relaxation, random backtracking Lin–Kernighan and path relinking for
the TSP. J. of Combinatorial Optimization, 17:134–156, 2009.

[44] S.L. Martins, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Greedy randomized adaptive
search procedures for the Steiner problem in graphs. In P.M. Pardalos, S. Rajasejaran, and
J. Rolim, editors, Randomization Methods in Algorithmic Design, volume 43 of DIMACS
Series on Discrete Mathematics and Theoretical Computer Science, pages 133–145. American
Mathematical Society, 1999.

[45] S.L. Martins, C.C. Ribeiro, and I. Rosseti. Applications and parallel implementations of
metaheuristics in network design and routing. Lecture Notes in Computer Science, 3285:205–
213, 2004.

[46] G.R. Mateus, M.G.C. Resende, and R.M.A. Silva. GRASP with path-relinking for the gen-
eralized quadratic assignment problem. J. of Heuristics, 17:527–565, 2011.

[47] M.C.V. Nascimento, M.G.C. Resende, and F.M.B. Toledo. GRASP with path-relinking for
the multi-plant capacitated plot sizing problem. European J. of Operational Research, 2008.
To appear.

[48] C.A. Oliveira, P.M. Pardalos, and M.G.C. Resende. GRASP with path-relinking for the
quadratic assignment problem. In C.C. Ribeiro and S.L. Martins, editors, Proceedings of III
Workshop on Efficient and Experimental Algorithms, volume 3059, pages 356–368. Springer,
2004.

[49] C. Orsenigo and C. Vercellis. Bayesian stopping rules for greedy randomized procedures. J.
of Global Optimization, 36(3):365–377, 2006.

[50] J.A. Pacheco and S. Casado. Solving two location models with few facilities by using a hybrid
heuristic: A real health resources case. Computers and Operations Research, 32:3075–3091,
2005.

[51] L.S. Pessoa, M.G.C. Resende, and C.C. Ribeiro. A hybrid Lagrangean heuristic with GRASP
and path-relinking for set k-covering. Technical report, AT&T Labs Research, Shannon Lab-
oratory, Florham Park, NJ 07932, 2010.

[52] L.S. Pessoa, M.G.C. Resende, and C.C. Ribeiro. Experiments with LAGRASP heuristic for
set k-covering. Optimization Letters, 5:407–419, 2011.

[53] E. Pinana, I. Plana, V. Campos, and R. Mart́ı. GRASP and path relinking for the matrix
bandwidth minimization. European J. of Operational Research, 153:200–210, 2004.

[54] M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decomposition
problem in TDMA traffic assignment. INFORMS J. on Computing, 12:164–176, 2000.

[55] M. Reghioui, C. Prins, and Nacima Labadi. GRASP with path relinking for the capacitated
arc routing problem with time windows. In M. Giacobini et al., editor, Applications of Evo-
lutinary Computing, volume 4448 of Lecture Notes in Computer Science, pages 722–731.
Springer, 2007.

[56] M.G.C. Resende, R. Mart́ı, M. Gallego, and A. Duarte. GRASP and path relinking for the
max-min diversity problem. Computers and Operations Research, 37:498–508, 2010.

[57] M.G.C. Resende and C.C. Ribeiro. A GRASP with path-relinking for private virtual circuit
routing. Networks, 41:104–114, 2003.

[58] M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances and appli-
cations. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as Real
Problem Solvers, pages 29–63. Springer, 2005.

[59] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures: Advances
and applications. In M. Gendreau and J.-Y. Potvin, editors, Handbook of Metaheuristics,

HYBRID GRASP WITH PATH-RELINKING 19

volume 146 of International Series in Operations Research & Management Science, pages
281–317. Springer, 2nd edition, 2010.

[60] M.G.C. Resende, C.C. Ribeiro, F. Glover, and R. Mart́ı. Scatter search and path-relinking:
Fundamentals, advances, and applications. In M. Gendreau and J.-Y. Potvin, editors, Hand-
book of Metaheuristics, volume 146 of International Series in Operations Research & Man-
agement Science, pages 87–107. Springer, 2nd edition, 2010.

[61] M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem. J. of
Heuristics, 10:59–88, 2004.

[62] M.G.C. Resende and R.F. Werneck. A hybrid multistart heuristic for the uncapacitated fa-
cility location problem. European J. of Operational Research, 174:54–68, 2006.

[63] C.C. Ribeiro and M.G.C. Resende. Path-relinking intensification methods for stochastic local
search algorithms. J. of Heuristics, 2011. To appear.

[64] C.C. Ribeiro and I. Rosseti. A parallel GRASP for the 2-path network design problem. Lecture
Notes in Computer Science, 2004:922–926, 2002.

[65] C.C. Ribeiro and I. Rosseti. Efficient parallel cooperative implementations of GRASP heuris-
tics. Parallel Computing, 33:21–35, 2007.

[66] C.C. Ribeiro, I. Rosseti, and R.C. Souza. Effective probabilistic stopping rules for randomized
metaheuristics: GRASP implementations. Lecture Notes in Computer Science, 6683:146–160,
2011.

[67] C.C. Ribeiro and M.C. Souza. Variable neighborhood search for the degree constrained min-
imum spanning tree problem. Discrete Applied Mathematics, 118:43–54, 2002.

[68] C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with perturbations for the
Steiner problem in graphs. INFORMS J. on Computing, 14:228–246, 2002.

[69] C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament problem. Eu-
ropean J. of Operational Research, 179:775–787, 2007.

[70] D.P. Ronconi and L.R.S. Henriques. Some heuristic algorithms for total tardiness minimiza-
tion in a flowshop with blocking. Omega, 37:272–281, 2009.

[71] M. Scaparra and R. Church. A GRASP and path relinking heuristic for rural road network
development. J. of Heuristics, 11:89–108, 2005.

[72] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Ltd., West
Sussex, U.K., 1996.

[73] M.C. Souza, C. Duhamel, and C.C. Ribeiro. A GRASP heuristic for the capacitated minimum
spanning tree problem using a memory-based local search strategy. In M.G.C. Resende and
J.P. de Sousa, editors, Metaheuristics: Computer Decision-Making, pages 627–658. Kluwer
Academic Publisher, 2004.

[74] V.V. Vazirani. Approximation algorithms. Springer, Berlin, Germany, 2001.
[75] D.P. Williamson and D.B. Shmoys. The design of approximation algorithms. Cambridge

University Press, New York, NY, USA, 2011.
[76] L.A. Wolsey and G.L. Nemhauser. Integer and combinatorial optimization. John Wiley &

Sons, Inc., New York, NY, USA, 1999.

(P. Festa) Department of Mathematics and Applications, University of Napoli Fed-

erico II, 80126 Napoli, Italy

E-mail address, P. Festa: paola.festa@unina.it

(M.G.C. Resende) Algorithms and Optimization Research Department, AT&T Labs

Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.

E-mail address, M.G.C. Resende: mgcr@research.att.com

