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Abstract. This paper addresses the Permutation Flowshop Problem with

minimization of makespan, which is denoted by F |prmu|Cmax . In the permu-
tational scenario, the sequence of jobs has to remain the same in all machines.

The Flowshop Problem (FSP) is known to be NP-hard when more than three

machines are considered. Thus, for medium and large scale instances, high-
quality heuristics are needed to find good solutions in reasonable time. We

propose and analyse parallel hybrid search methods that fully use the compu-

tational power of current multi-core machines. The parallel methods combine
a memetic algorithm (MA) and several iterated greedy algorithms (IG) run-

ning concurrently. Two test scenarios were included, with short and long CPU

times. The tests were conducted on the set of benchmark instances introduced
by Taillard in 1993, commonly used to assess the performance of new methods.

Results indicate that the use of the MA to manage a pool of solutions is highly
effective, allowing the improvement of the best known upper bound for one of

the instances.

1. Introduction

The Flowshop Problem (FSP) is a scheduling problem in which n jobs have to be
processed by m machines. The problem is to find the sequence of jobs for each ma-
chine to minimize the maximum completion time, also known as makespan [1]. This
problem is NP-Hard for m > 3 [2, 3]. Several papers in the literature address this
problem, proposing models, heuristics, and bounds. Dannenbring [4] tested several
heuristics. Nawaz, Enscore, and Ham [5] presented a polynomial time algorithm
(NEH), finding very good results, considering the complexity of their heuristic.
Indeed, NEH is still one of the best polynomial time heuristics for this problem.
Another good constructive approach is the N&M algorithm, propose by Nagano
and Moccelin in 2002 [6]. Taillard [7] presented an improvement in the complexity
of the NEH algorithm, a heuristic based on tabu search, and a useful characteri-
zation of the distribution of the objective function. Taillard [8] proposed a series
of test instances with good quality upper bounds. The running time required by
Taillard’s tabu search heuristic was not given and he focused on solution quality.
The set of instances proposed in that work became a benchmark and is currently
used to assess the performance of new methods for the FSP. Ben-Daya and Al-
Fawzan [9] implemented and tested an improved variant of Taillard’s tabu search,
reporting times and comparing their performance with Ogbu and Smith’s simulated
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annealing algorithm [10]. However, they did not match all of Taillard’s results for
large instances. Stützle [11] presented and tested an Iterated Local Search (ILS)
heuristic obtaining good results.

Ruiz and Maroto [12] compared 25 methods, from very basic ones, such as
Johnson’s algorithm [13], to the more sophisticated ones, such as tabu search
and simulated annealing. The results of their study concluded that NEH was
the best polynomial-time heuristic, while Stützle’s ILS [11] and Reeves’s genetic
algorithm [14] were the best metaheuristic-based heuristics. Ruiz et al. [15] pro-
posed a new memetic algorithm for this problem, obtaining improved results when
compared with the ILS and tabu search. The same authors followed up with an-
other paper in the same direction [16], proposing and testing two genetic algorithms
and obtaining strong results. Agarwal, Collak, and Eryarsoy [17] implemented a
heuristic improvement procedure based on adaptive learning and applied it to the
NEH algorithm, leading to additional improvements. However, for larger instances,
their results were of poor quality and their algorithm was computationally inten-
sive. Then, Rúız and Stützle [18] described a simple method called iterated greedy
algorithm (IG) which produced good results, leading to six new upper bounds for
the set of instances introduced by Taillard in 1993;

In [8, 9, 17] and the vast majority of papers dealing with the FSP, the problem
of interest was a special case called Permutation Flowshop Problem (PFSP) in
which the jobs have identical ordering sequences on all machines. This widespread
approach is particularly useful because the space of possible solutions is considerably
smaller than the non-permutational version of the FSP; and in general, good PFSP
solutions represent good solutions for the non-permutation FSP.

Very few approaches consider a parallel or distributed scenario. More specifically,
a recent publication [19] analyses the use of a computer cluster where each dual-
core machine runs an IG algorithm. One core will be responsible for running the IG
algorithm and the second core will deal with communication. At different stages of
its execution each algorithm will broadcast its best solution.

In this paper, we consider the PFSP and propose a hybrid search method. It uses
a Memetic Algorithm (MA) with an embedded IG algorithm. The MA collaborates
with several independent IG methods, running with parameters that produce a
more thorough search. MA and IGs run independently, in separate threads and
in a collaborative fashion, exchanging solutions along the search. Even though
the IG has already been presented in the literature, this work introduces a novel
collaborative framework, and a specialized MA, with a structured population; an
ad-hoc crossover operator; offspring acceptance policies; and a restart procedure
triggered when populations lose diversity.

The paper is organized as follows. In Section 2 we describe the IG algorithm; its
multi-threaded version; and the memetic algorithm along with all its elements. In
Section 3, we present the computational experiments as well as a discussion about
the results. Finally, in Section 4 we make some concluding remarks.

2. Methods

2.1. IG and Multi-threaded IG (MIG) algorithms. The IG algorithm was
first presented in a scheduling environment in [18]. It starts with a random solution
and for a number of iterations it performs a partial destruction of the sequence,
followed by a greedy reconstruction and a local search. The algorithm will change
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Method IG(InitialSolution)
begin
π = InitialSolution;
π = LocalSearch(π);
πb = π;
while(Termination criterion not satisfied)
π′ = π;
for i = 1 to destructionParam do
π′= remove one job at random from π′ and insert in πR;

endfor
for i = 1 to destructionParam do
π′= GreedyConstruction(π′, πR);

endfor
π′′= LocalSearch(π′);
if (Cmax(π′′) < Cmax(π)) then
π= π′′;
if (Cmax(π) < Cmax(πb)) then
πb= π;

endIf
elseIf (rnd ≤ exp{-Cmax(π′′)− Cmax(π)/Temperature}) then
π= π′′;

endIf
endWhile
return πb;

end

Figure 1. Pseudo-code for the IG algorithm as in [18]. rnd is a
random number distributed uniformly in the interval [0,1].

the current solution and use a Simulated Annealing-like acceptance criterion [20].
The basic configuration of the IG algorithm is shown in Figure 1.

The Multi-threaded IG (MIG) method is an extension of the IG algorithm, de-
veloped to run in a multi-threaded environment. In this case, each thread will run
an independent IG algorithm, which is reset at regular intervals. The termination
criterion is fixed to a number of iterations, IG steps. At the beginning of each new
cycle, the algorithm will work on the overall best solution found so far, considering
all the threads. Finally, the overall best solution is reported by the end of the
processing time, Figure 2 summarizes the approach.

2.2. MA+MIG approach. Memetic Algorithm (MA) [20, 21] is a population-
based search method, which uses evolution-inspired operators to find high-quality
solutions. Our MA implementation has several especially developed elements, such
as structure population, new crossovers, acceptance policies for new individuals,
restart procedures, and finally a local search based on the IG algorithm. The MIG
is a Multi-Threaded IG which runs concurrently with the MA. The two methods
collaborate by exchanging solutions using a migration pool that is populated by
the MA. Next, we present a pseudocode of the MA+MIG algorithm and clarify its
main components.
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Method MIG(nthreads, IG steps)
begin
π = NEH heuristic();
π = LocalSearch(π);
πglobal = π;
/* Starting nthreads threads */
for i=1 to nthreads do
πb = startThreadIG(i, πglobal);
if (πb < πglobal) then πglobal = πb;

endfor
return πglobal;

end

Figure 2. Pseudo-code for the IG algorithm as in [18]. rnd is a
random number distributed uniformly in the interval [0,1].

Method MA+MIG
begin

createThreadMA();
createThreadsIG(numThreads);
/* MA thread concurrent to IG threads */
initializePopulation();
while(cpuTime < limitCPU )

updatePopStructure();
while(populationNotConverged())

newSolution = generateOffspring();
newSolution = mutate(newSolution);
newSolution = localSearchIG(newSolution);
acceptNewSolution(newSolution);
checkPopulationConvergence();

endWhile
migrateIndividualsPoolMA();
restartPopulation();

endWhile

/* IG threads concurrent to MA thread */
initSol = randomSolution()
while(cpuTime < limitCPU )

forEachIGThread thread do
startIG(thread, initSol);
while (numIterations(thread) < limitIter)

if (incumbentFound)
migrateIndividualToPoolMIG(thread);

endIf
endWhile
initSol = migrateIndividualFromPool();

endFor
endWhile

end

Figure 3. Pseudo-code for the MA+MIG approach.
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2.2.1. MA+MIG pseudocode. The pseudocode of the MA+MIG algorithm is shown
in Figure 3. Initially, a thread is created for the MA, concurrently with mul-
tiple IG threads to be used by the Multi-threaded IG (MIG). The MA thread
will run a memetic algorithm and the IG-related threads will run dedicated IG
methods. In the pseudocode, those steps are represented by the functions cre-
ateThreadMA and createThreadsIG. At this point, the pseudocode is divided
into two concurrent parts: one for the MA and another for the MIG; both of which
use CPU time as stop criterion. In the MA thread, at first, the population is initial-
ized (initializePopulation) and its structure is updated (updatePopStructure).
This structure is important to accelerate the evolution process towards better qual-
ity solutions.

After that, the MA enters the main loop, in which the population will evolve.
While the population has not converged (according to some criteria), new solutions
will be generated (generateOffspring), mutated (mutate), and go through a lo-
cal search procedure (localSearchIG). After that, the resulting solution might be
accepted or not, depending on an acceptance criterion (acceptNewSolution). Fi-
nally, population convergence is checked (checkPopulationConvergence). Pop-
ulation convergence triggers the migration of individuals to the migration pool
(migrateIndividualsPoolMA), followed by a restart procedure (restart-
Population) that randomizes part of it, and the process starts again.

Concurrently to the MA thread, we have the MIG running. For the IG-related
threads, the IG algorithm is started with a random solution and runs for a given
number of iterations. Every time a new incumbent solution is found, it is sent
to the migration pool (migrateIndividualToPoolMIG). Once the limit of IG
iterations was reached, the method restarts using one of the solutions currently
present in the migration pool (migrateIndividualFromPool). The idea behind
the migration pool is to provide the IG with high-quality but diverse solutions, and
to communicate incumbent solutions between different IG threads. Next, we will
describe each of the steps of the MA+MIG algorithm, as well as some of its most
important features.

2.2.2. Procedures createThreadMA and createThreadsIG. These procedures cre-
ate and initialize the MA thread that will run the memetic algorithm; and the IG
threads, respectively. In our experiments, given k threads, thread 0 receives the
MA, and the other k − 1 threads are used by the MIG.

2.2.3. Procedures initializePopulation and updatePopStructure. These proce-
dures initialize the MA populations and maintain the population structure, respec-
tively. As mentioned before, the populations have a special structure that follows a
ternary tree. The main characteristic of this structure is that the objective function
of a solution in a given node will be better than the solutions in all other nodes be-
low it. That makes solutions with better objective function values be placed at the
upper nodes, whereas worse solutions are placed at the bottom nodes. Moreover,
the best solution in the population will always be located at the root node. An or-
dering procedure (updatePopStructure) is necessary to maintain this structure
when a new population is created, and every time an existing solution is replaced
by a new one. This structure will influence how parents are selected for crossover
and offspring is created. This, coupled with a special offspring acceptance criterion,
creates an evolutionary pressure towards better solutions.
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This structure has been compared to non-structured populations and to other
types of structured populations in previous works, related to several combinato-
rial optimization problems [22][23]. It has consistently outperformed those other
types of populations and provided a good trade-off between population size and
convergence rate.

The initialization (initializePopulation) uses the NEH algorithm (from Nawaz,
Enscore, and Ham [5]) to create solutions which are then improved by the IG
method running for 10 iterations. This procedure is used to populate the top four
nodes of the ternary tree, i.e. root node plus the three nodes in the intermediate
layer. The nine nodes in the bottom layer are initialized with random solutions
(see Figure 4). This procedure aims at creating a balanced initial population with
some high quality solutions (top layers) and some low quality, random ones (bottom
layer).

2.2.4. Procedure generateOffspring and the crossover operator. The generate-
Offspring procedure creates new individuals by iteratively selecting parents and
applying crossovers. The Optimal 1-Point Crossover is an extension of the 1-point
crossover which returns the optimal child that can be created for a given pair of
parents. In the traditional 1-point crossover, a parent is chosen, and a random
position of the its sequence is selected. Then all jobs between the first position and
the position selected are copied to the child solution. The rest of its chromosome
is completed by sequentially copying the jobs from the second parent, in the same
order as they appear, into the child – jobs that are already present are ignored,
as duplicates are not allowed. In the optimal version of this crossover used in this
work, both parents are tested as the parent to have its initial jobs copied into the
child. In addition, instead of selecting only one position at random, all positions are
tested and the solution returned is that with the best makespan. The pseudocode
for the optimal 1-point crossover is shown next in Figure 5:
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Figure 4. Population structure used in the memetic algorithm.
The structure follows a ternary tree with 13 nodes. Higher nodes
will contain higher quality individuals; bottom nodes will contain
lower quality individuals (this structure is enforced by the proce-
dure updatePopStructure). Initialization used the NEH algori
followed by 10 iterations of the IG, for the top four individuals in
the tree. The bottom layer individuals are all random.
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Method Optimal1PointCrossover(parentA, parentB)
begin

minimumMakespan = M ; % M is an upper bound for the makespan
for cutPosition = 1 to numJobs % checks all positions of ParentA’s chromosome

child = copy(1, cutPosition, parentA);
child = completeChromosome(cutPosition+1, numJobs, parentB);
if (makespan(child) < minimumMakespan) then

{minimumMakespan = makespan(child); bestChild = child ;}
endFor
for cutPosition = 1 to numJobs % checks all positions of ParentB’s chromosome

child = copy(1, cutPosition, parentB);
child = completeChromosome(cutPosition+1, numJobs, parentA);
if (makespan(child) < minimumMakespan) then

{minimumMakespan = makespan(child); bestChild = child ;}
endFor
return bestChild ;

end

Figure 5. Pseudo-code for the optimal 1-point crossover.

This procedure has an impact in the way that parents are selected for recom-
bination. Since it returns the 1-point crossover optimal child for a given pair of
parents, it becomes worthless to select the same pair of parents more than once, as
the solution returned will always be the same. That opens the opportunity to create
a more intelligent parent selection procedure. The selection of parents is as follows:
parentA is selected from the first two levels of the tree and parentB is chosen from
one of the children nodes of parentA. Every time a pair of parents is chosen, that
pair is prohibited from being selected again until at least one of them has changed.
Otherwise, they would return exactly the same child. This prohibition has an im-
pact on the pairs of solutions available for recombination at each iteration, and can
be used as an indirect measure of population diversity. This topic will be addressed
again when we discuss the procedure checkPopulationConvergence.

2.2.5. Procedure mutate. The child returned by the crossover procedure goes through
a mutation process with a certain probability. Different mutation rates were tested,
but the best results were obtained with 10%, i.e. 10% of the solutions selected will
have a mutation operator applied onto it. The mutation operator is based on the
inversion of sequences of jobs. Two positions in the chromosome are chosen at
random, and sequence of jobs inside the interval is inverted.

2.2.6. Procedure localSearchIG. The local search receives the solution after the
mutation phase and then applies the IG algorithm for a number of iterations. After
several tests, we opted for a very quick search, with only 10 iterations. Crossover
and mutation operators are the main responsible for searching the solutions space.
The IG is used simply to perform a very localized search which might help in the
convergence of the algorithm.

2.2.7. Procedure acceptNewSolution. Once the new solution has gone through
local search, the MA verifies it it satisfies the acceptance criteria to be inserted in
the population. Several acceptance criteria were tested, with different impacts on
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the MA performance. Next, we list some of the strategies tested and comment on
the results:

(1) Accept newSolution if its makespan is better than at least one of its par-
ents. This strategy forces a strong evolutionary pressure and leads to high
quality solutions very quickly. However, it constrains the diversity of the
population, inducing premature convergence.

(2) Accept newSolution if its makespan is better or equal to at least one of its
parents. This strategy also forces a strong evolutionary pressure, but if the
new solution has the same makespan of one of its parents, two possibilities
arise. First, the new solution might be a copy of its parents, which does not
help the search process at all. Second, the new solution is different from the
parent, even though they have the same makespan. That is a very common
situation in the PFSP – the occurrence of several different solutions, with
the same makespan. Accepting such individual adds new information to
the population and still keeps evolutionary pressure.

(3) Accept newSolution if (i)/(ii) is satisfied and the new solution differs from
both parents by at least x% of the jobs. This strategy forces a diversity
checking whenever a new solution is to be added to the population no
matter its quality.

Each strategy has its pros and cons, and that was very clear in our tests. The
acceptance criteria chosen to be used in the memetic algorithm was (ii). Tests
have shown that there are several solutions with different sequences of jobs and the
same makespan. Especially when the search is close to the upper bound for a given
instance, the number of distinct local optimum solutions with the same makespan
becomes an issue, and ignoring this fact clearly reduces the exploratory ability of
the method. A final observation is that when a new solution is accepted into the
population, it always replaces the worst parent, i.e. the parent with the largest
makespan.

2.2.8. Procedure checkPopulationConvergence. Population convergence needs
to be checked constantly, otherwise the MA might waste CPU time performing
crossovers, mutations and local searches over solutions that are virtually the same.
In our implementation, the acceptance of new solutions into the population was
used as a proxy for convergence measure.

For the Optimal 1-point crossover, the same pair of parents will always yield the
same child every time the function is called; thus the crossover just needs to be
called once. In the beginning, all pairs of selectable positions in the population tree
are marked as selectable. Then, every time two solutions are selected to be par-
ents in a crossover, the corresponding pair of positions is marked as not-selectable.
Pairs of positions will become selectable again only when one of the solutions has
changed, either by a new child being accepted and replacing the parent, or by the
updatePopStructure procedure to maintain the consistency of the ternary tree.
The migration of solutions and restart are triggered when all pairs of positions in
the ternary tree are marked as not-selectable. That indicates that all possible pairs
of parents have already been examined and produced their optimal children. To
continue to execute crossovers would simply produce the same children repeatedly,
thus wasting CPU time.
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Figure 6. (a) MA+MIG algorithm. In the figure, there are eight
threads; one running the MA and seven running IGs. In the cen-
tre we have the migration pool, which is used to communicate
high quality individuals between the different threads. (b) Popu-
lation restart applied after migration. The best individual and the
individual received via migration are not changed. All other indi-
viduals in the population go through a special mutation procedure
to add diversity to the population before the search process con-
tinues.

2.2.9. Procedures migrateIndividualsPoolMA and restartPopulation. Migra-
tion of individuals from the MA population into the migration pool is represented by
the procedure migrateIndividualsPoolMA. As mentioned before, when the MA
population converges, it fills the migration pool with its best solutions. Insertions
occur from best to worst individual and replaces all migration pool individuals. At
the same time, the best solution found so far (either present in the migration pool,
or in one of the IG threads) is copied into the MA population (i.e. if the MIG has
found a new incumbent, it will be communicated to the MA in this step). Also
important to mention, the migration pool has a fixed size (either 9 or 18 solutions),
which we established during the parameter calibration experiments.

After migration, the population goes through a restart procedure, which aims
at introducing diversity into the individuals. In Figure 6b we show how the restart
occurs. The best individual of the population and the best solution found so far,
which is now also part of the population, are not changed. All other individuals
go through a mutation procedure. Mutation executes numJobs/2 random swaps
in the sequence of jobs. The resulting sequences in those individuals will resemble
random sequences, even though small sub-sequences might still be remain intact.
Finally, the population goes through an ordering procedure to keep the structure.

2.2.10. Procedure migrateIndividualFromPool. This procedure takes a random
element from the migration pool and makes it the initial solution for the IG thread
that has just reached the limit of iterations. Also, the procedure verifies if any
solution in the pool has been copied more than X times, which triggers its removal
from the pool.

Next, we present the computational results, which are divided into two parts.
First, the tests performed to calibrate the algorithm, and then the tests on the
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benchmark instances, which are compared to the current best results available in
the literature.

3. Computational Results

Comprehensive tests with different configurations of the MA+MIG and MIG
algorithms were executed to analyse their individual performances. The tests were
conducted on all instances with 20 machines introduced in Taillard (1993), i.e.
50x20, 100x20, 200x20 and 500x20; 10 instances in each category. The parameters
tested and the specific values were:

• Size of migration pool : 9, 18;
• Size of MA population: 13, 40, 121 individuals;
• Number of IG steps: 5, 50, 500, 5000; (Notice that these values refer to the

IG-related threads only - the IG embedded in the MA uses IG steps = 10,
as described before.)

In Table 1, we show the results for the three overall best configurations in our
tests, and compare them with the current upper bounds for each of the instances.
In addition, we present the best makespan values for each of the instances, found
by any of the three configurations. The column labelled ’Upper bound’ shows the
current upper bound for each instance, found in Taillard’s webpage. The next
three columns show the algorithms where (a) is the MA+MIG running with 5000
IG steps, population of 40 individuals and migration pool with 9 solutions; (b)
is the MA+MIG running with 5000 IG steps, population of 121 individuals and
migration pool with 18 solutions; and (c) is the MIG algorithm running with 5000
IG steps. Figures represent the average deviation from the upper bound and the
corresponding standard deviation (between brackets) considering 5 runs with dif-
ferent seeds. The column ’Overall best’ shows the best solution found by any of
the three configurations. Between brackets we present the deviation of that value
with respect to the lower bound, followed by which algorithms found that solution
(indicated by (a), (b) or (c)).

All algorithms used in this study were implemented using the Intel C Compiler
10.1 with OpenMP and general optimization flags (-fast -O3). The machine had
Dual Xeon E5405 (Quad core) 2.0GHz, 6Mb cache; 32Gb RAM. The operational
system was Linux 64-bit. The code was written in standard C99. The random
number generator is based on Mersenne Twister implementation.

The results in Table 1 indicate that for instances with 50 and 100 jobs, the
two MA+MIG configurations and the MIG have similar results, with the three
algorithms obtaining the best averages for nearly 1/3 of the instances. However,
when the number of jobs grow beyond 200, there is a clear decline of the MIG
algorithm, with the MA+MIG consistently obtaining the best averages, with a
slight advantage for the configuration (a), which has less individuals and a smaller
migration pool.

In terms of the best solutions found, the MIG is very consistent in reaching the
best for instances with 50 and 100 jobs. Then, for 200 and 500 jobs, MA+MIG
configuration (a) dominates the results, even though MIG continues to find a good
proportion of best results. Our conclusion is that when the search space is smaller
(50 and 100 jobs), the MIG can generate enough diversity to explore it thoroughly,
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Table 1. Results for the three best configurations of the algo-
rithms described in this work (configurations (a), (b) and (c));
plus the best results found for each of the instances. The columns
referent to the three configurations present the average deviation
from the current upper bounds, followed by the standard devia-
tion (between brackets), calculated over 5 runs with different seeds.
The column labelled “Overall best” presents the makespan of the
best solutions found; and between brackets, it shows the respec-
tive deviation from the upper bound, followed by which algorithms
reached that solution. Best averages for each instance are indicated
in boldface. Configurations: (a) uses IG steps = 5000, pop = 40
and pool= 9; (b) uses IG steps = 5000, pop = 121 and pool= 18
and (c) uses IG steps = 5000.

Instance Upper MA + MIG algorithm MIG algorithm Overall best
Jobs × Machines index bound (a) (b) (c)

1 3847∗ 0.59 (0.12) 0.65 (0.13) 0.58 (0.08) 3862(0.39|a)
2 3704 0.24 (0.10) 0.27 (0.08) 0.23 (0.06) 3708(0.10|a,b,c)
3 3640 0.70 (0.22) 0.77 (0.15) 0.64 (0.17) 3654(0.38|c)
4 3719 0.66 (0.20) 0.67 (0.20) 0.69 (0.20) 3732(0.35|c)

50× 20 5 3610 0.49 (0.14) 0.51 (0.10) 0.48 (0.06) 3624(0.39|c)
6 3679 0.49 (0.20) 0.58 (0.17) 0.59 (0.15) 3690(0.30|c)
7 3704 0.54 (0.14) 0.60 (0.08) 0.64 (0.07) 3708(0.46|a)
8 3691 0.81 (0.25) 0.72 (0.28) 0.79 (0.32) 3703(0.32|c)
9 3741 0.53 (0.11) 0.52 (0.19) 0.56 (0.15) 3753(0.32|c)
10 3756 0.32 (0.03) 0.32 (0.04) 0.36 (0.11) 3767(0.29|a,b,c)

1 6202 0.82 (0.19) 0.82 (0.18) 0.84 (0.11) 6246(0.71|c)
2 6183 0.91 (0.14) 0.85 (0.24) 0.80 (0.22) 6207(0.39|c)
3 6271 0.48 (0.13) 0.51 (0.20) 0.49 (0.11) 6294(0.37|a,b,c)
4 6269 0.48 (0.14) 0.49 (0.15) 0.54 (0.00) 6303(0.54|a,b,c)

100× 20 5 6314 0.51 (0.14) 0.52 (0.21) 0.45 (0.15) 6330(0.25|c)
6 6364 0.71 (0.26) 0.70 (0.31) 0.48 (0.11) 6385(0.33|c)
7 6268 0.68 (0.16) 0.70 (0.16) 0.71 (0.12) 6304(0.57|a,b,c)
8 6401 0.81 (0.15) 0.81 (0.28) 0.83 (0.12) 6444(0.67|a,c)
9 6275 0.76 (0.17) 0.85 (0.22) 0.66 (0.17) 6304(0.46|c)
10 6434 0.62 (0.18) 0.55 (0.24) 0.65 (0.06) 6465(0.48|a,b)

1 11181 0.87 (0.20) 0.93 (0.29) 1.00 (0.15) 11254(0.65|a)
2 11203 1.11 (0.26) 1.15 (0.24) 1.25 (0.12) 11318(1.03|a)
3 11281 1.20 (0.14) 1.23 (0.15) 1.28 (0.11) 11407(1.12|a,b,c)
4 11275 0.74 (0.20) 0.74 (0.20) 0.83 (0.07) 11359(0.75|a,b,c)

200× 20 5 11259 0.50 (0.15) 0.51 (0.15) 0.57 (0.07) 11310(0.45|a,b,c)
6 11176 0.87 (0.15) 0.95 (0.26) 0.92 (0.11) 11262(0.77|a,c)
7 11360 0.78 (0.08) 0.77 (0.09) 0.80 (0.01) 11451(0.80|a,b,c)
8 11334 0.77 (0.09) 0.70 (0.11) 0.76 (0.09) 11402(0.60|b,c)
9 11192 0.90 (0.24) 0.93 (0.21) 1.04 (0.18) 11276(0.75|c)
10 11288 1.04 (0.21) 0.99 (0.24) 1.12 (0.06) 11404(1.03|b,c)

1 26059 0.45 (0.09) 0.48 (0.04) 0.49 (0.04) 26175(0.44|a,b,c)
2 26520 0.72 (0.14) 0.76 (0.07) 0.79 (0.04) 26714(0.73|a,b,c)
3 26371 0.43 (0.06) 0.45 (0.03) 0.46 (0.03) 26481(0.42|a)
4 26456 0.35 (0.04) 0.35 (0.04) 0.36 (0.02) 26549(0.35|a,b,c)

500× 20 5 26334 0.26 (0.05) 0.26 (0.05) 0.27 (0.04) 26390(0.21|a,b,c)
6 26477 0.42 (0.07) 0.43 (0.07) 0.46 (0.03) 26584(0.40|c)
7 26389 0.27 (0.07) 0.26 (0.08) 0.30 (0.03) 26461(0.27|a,b,c)
8 26560 0.37 (0.08) 0.40 (0.08) 0.39 (0.07) 26640(0.30|a,c)
9 26005 0.64 (0.16) 0.69 (0.14) 0.83 (0.13) 26144(0.53|a)
10 26457 0.47 (0.07) 0.47 (0.07) 0.50 (0.03) 26572(0.43|a,b,c)

∗ The MA+MIG algorithm found a solution with makespan equal to 3846.
This finding will be discussed next in Section 3.1.

matching the performance of the MA+MIG. However, when the search space in-
creases too much (200 and 500 jobs), the exploratory characteristics of the MA
start to show up, and the method consistently obtains better results than the MIG.
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Table 2. Comparison between Vallada and Ruiz (2009) [19]
method Cooperative Iterated Greedy (CIG), and the MA+MIG
(a)(b) and MIG (c). Results are averaged for each size of instance.

Jobs times Cooperative IG (CIG) MA + MIG algorithm MIG algorithm
Machines p = 4 p = 6 p = 8 (a) (b) (c)

50 × 20 0.71 0.59 0.54 0.54 0.56 0.56
100 × 20 0.76 0.74 0.63 0.68 0.68 0.65
200 × 20 0.93 0.84 0.81 0.88 0.89 0.96
500 × 20 0.43 0.42 0.38 0.44 0.46 0.49

3.1. New upper bound for 50x20 instance #1. In one of the runs of the
MA+MIG algorithm, with the configuration IG steps = 5000; pop = 40; pool =
9; the method managed to obtain a solution with makespan equal to 3846, which
improves the current best makespan of 3847. The sequence of the jobs is as follows
(jobs are numbered from 0 to 49): 19 30 38 26 42 14 43 10 7 44 34 36 5 16 33 27 6
13 41 32 39 23 4 28 9 1 17 46 47 20 45 0 15 48 11 22 21 35 31 37 18 8 25 24 12 40
29 3 49 2. This was a surprising result that further demonstrates the capabilities
of the MA+MIG algorithm.

3.2. Comparison with Cooperative Iterated Greedy (CIG) – Vallada and
Ruiz (2009) [19]. The intent of this study was to show alternate ways of ex-
ploring the full power of multi-core machines. However, we believe it is worth to
compare the results with the work of Vallada and Ruiz (2009), which uses dis-
tributed processing. In Table 2, we compare our results from Table 1 with those
from the Cooperative Iterated Greedy (CIG) method, introduced in Vallada and
Ruiz (2009) [19]. The CIG is similar to the MIG used in this work, but it has a
fundamental architectural difference. The CIG uses the concept of islands; each
island corresponding to a computer with a dual-core processor. For instance, the
CIG configuration of p = 4 contains four islands and 8 threads in total. Moreover,
in each island/processor, one core is responsible for the running the IG algorithm,
whereas the other is responsible for the communication.

In our implementation of the MIG, when 8 threads are used, we actually have
8 IG algorithms running concurrently, but each thread’s is responsible for its com-
munication. Because of that, MIG threads typically incur in significant amounts
of waiting time, whereas communication in CIG is much faster. Comparing the
two algorithms thready-by-thread might be misleading in this case. In Table 2, we
chose to include the results for the CIG with p = 4 (8 threads); p = 6 (12 threads)
and p = 8 (16 threads). Note that, on the other hand, our tests with MA+MIG
and MIG use 8 threads only. We leave to the reader draw their own conclusions in
terms of performance, reiterating that it is not a main aspect of this study.

4. Conclusion

This study presented new parallel hybrid search methods for the permutation
flow shop problem. The methods are based on the use of Memetic Algorithms
(MA) and the Iterated Greedy Algorithm (IG) in a multi-threaded environment
(eight threads in total). The configurations tested use either one thread for the
MA and seven for the IG (MA+MIG algorithm), or all eight threads dedicated to
the IG (MIG algorithm). Different values for parameters controlling migration of
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individuals between MA and IG; size of the MA population; and the number of
IG steps were also tested. Results indicate that two of the MA+MIG configura-
tions had a superior performance compared to the MIG alone, especially for larger
instances (200 and 500 jobs). For 50 and 100 jobs, the performance was similar
between all methods. During our tests, we managed to find a new upper bound
for instance 50x20 #1, reducing the makespan from 3847 to 3846. The sequence
obtained is presented as well.

Further on, we compared the results from our methods with those from Vallada
and Ruiz (2009) [19], which is the most recent study on multi-threading techniques
applied to the PFSP problem found in the literature. That comparison was un-
dermined by the architectural difference between the approaches, but it seems that
our methods had a similar performance to the best one in Valladas’ study (the
Cooperative IG - or CIG). If you consider Vallada’s CIG with eight threads (p = 4
islands), our approach (which also has eight threads) performed consistently better.
If you consider the CIG with 16 threads (p = 8 islands), our methods’ performance
is still comparable for the 50x20 instances, but they lose to the CIG for the larger
instances by around 10%.
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