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Abstract. Among the sequence selection and comparison problems, the Far
From Most String Problem (FFMSP) is one of the computationally hardest

with applications in several fields, including molecular biology where one is
interested in creating diagnostic probes for bacterial infections or in discovering
potential drug targets.

In this article, several hybrid metaheuristics are described and tested. Ex-
tensive comparative experiments on a large set of randomly generated test
instances indicate that these randomized hybrid techniques are both effective
and efficient.

1. The Far From Most String Problem (FFMSP)

The FFMSP is one of the so called string selection and comparison problems, that
belong to the more general class of problems known as sequences consensus, where
a finite set of sequences is given and one is interested in finding their consensus,
i.e. a new sequence that agrees as much as possible with all the given sequences.
In other words, the objective is to determine a sequence called consensus, because
it represents in some way all the given sequences. For the FFMSP, the objective is
to find a sequence that is far from as many as possible sequences of a given set of
sequences having all the same length.

To formally state the problem, the following notation is needed:

• an alphabet Σ = {c1, c2, . . . , ck} is a finite set of elements, called characters;
• si = (si1, s

i
2, . . . , s

i
m) is a sequence of length m (|si| = m) on Σ (sij ∈ Σ, j =

1, 2, . . . ,m);
• given two sequences si and sl on Σ such that |si| = |sl|, dH(si, sl) denotes
their Hamming distance and is given by

(1) dH(si, sl) =

|si|∑
j=1

Φ(sij , s
l
j),

where sij and slj are the characters in position j in si and sl, respectively,
and Φ : Σ× Σ → {0, 1} is the predicate function such that

Φ(a, b) =

{
0, if a = b;
1, otherwise.
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• given a set of sequences Ω = {s1, s2, . . . , sn} on Σ (si ∈ Σm, i = 1, 2, . . . , n)
dΩH denotes the Hamming distance among the sequences in Ω and it is given
by

(2) 0 ≤ dΩH = min
i,l=1,...,n | i<l

dH(si, sl) ≤ m.

The FFMSP consists in determining a sequence far from as many as possible
sequences in the input set Ω. This can be formalized by saying that given a threshold
t, a string s must be found maximizing the variable x such that

(3) dH(s, si) ≥ t, for si ∈ P ⊆ Ω and |P | = x,

or, equivalently

(4) d
P∪{s}
H ≥ t, for P ⊆ Ω and |P | = x.

Computational intractability of the general sequences consensus problem was
first proved in 1997 by Frances and Litman [11] and in 1999 by Sim and Park
[22]. Among sequences consensus problems, the FFMSP is one of the hardest from
a computational point of view, as proved in 2003 by Lanctot et al. [18], who
demonstrated that for sequences over an alphabet Σ with |Σ| ≥ 3, approximating
the FFMSP within a polynomial factor is NP-hard.

Given theoretical computational hardness results, polynomial time algorithms for
the FFMSP can yield only solutions with no constant guarantee of approximation.
In such cases, to find good quality solutions in reasonable running times and to
overcome the inner intractability of the problem from a computational point of
view, heuristic methods must be devised. The first attempt in this direction was
done in 2005 by Meneses et al. [19], who proposed a heuristic algorithm consisting
of a simple greedy construction followed by an iterative improvement phase. Later,
in 2007 Festa [5] designed a GRASP and very recently in 2012, Mousavi et al. [20]
devised a new function to be used in alternative to the objective function when
evaluating neighbor solutions during the local search phase.

In this paper, we designed, implemented, and tested several pure and hybrid
metaheuristics. The scope of the hybrid metaheuristics designing has been to com-
bine the main characteristics of the pure metaheuristics themselves in the attempt
to take advantage of their best properties in terms of computation time and solution
quality.

The remainder of this article is organized as follows. In Section 2, we propose var-
ious randomized heuristics for finding approximate solutions of the FFMSP, based
on the instantiation of several metaheuristics and their hybrids. Computational
results are reported in Section 3. Concluding remarks and insights about further
improvements of the proposed techniques are given in the last section.

2. Hybrid metaheuristics

In the last decades, a considerable amount of scientific papers has empirically
shown that suitable combinations of concepts and characteristics from different
metaheuristics can lead to the design of hybrid robust techniques that produce
higher solution quality than the individual metaheuristics themselves, especially
when solving difficult real-world combinatorial optimization problems.
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Following this trend, to find good quality solutions to the FFMSP, we have
considered several types of hybridizations. In particular, we have designed, imple-
mented, and tested the following pure and hybrid multistart iterative heuristics:

⋄ a pure GRASP, inspired by [5];
⋄ a GRASP that uses Path-relinking for intensification;
⋄ a pure VNS;
⋄ a VNS that uses Path-relinking for intensification;
⋄ a GRASP that uses VNS to implement the local search phase; and
⋄ a GRASP that uses VNS to implement the local search phase and Path-
relinking for intensification.

As any multistart iterative heuristic, stopping criteria in all the above listed
techniques could be maximum number of iterations, maximum number of itera-
tions without improvement of the incumbent solution, maximum running time, or
solution quality at least as good as a given target value.

algorithm GRASP(t, m, Σ, ft(·), {Vj(c)}c∈Σ
j∈{1,...,m}, Seed)

1 sbest:=∅; ft(sbest):=−∞;
2 for j = 1 to m→
3 V min

j :=minc∈Σ Vj(c); V
max
j :=maxc∈Σ Vj(c);

4 endfor
5 while stopping criterion not satisfied→
6 [s, {RCLj}mj=1]:=GrRand(m, Σ, {Vj(c)}c∈Σ

j∈{1,...,m}, V
min
j , V max

j , Seed);

7 s:=LocalSearch(t, m, s, ft(·), {RCLj}mj=1);
8 if (ft(s) > ft(sbest)) then
9 sbest:=s;
10 endif
11 endwhile
12 return(sbest);
end GRASP

Figure 1. Pseudo-code of a GRASP for the FFMSP.

2.1. A pure GRASP. Each GRASP iteration consists of a construction phase [3,
4], where a solution is built in a greedy, randomized, and adaptive manner, and a
local search phase which starts at the constructed solution and applies iterative
improvement until a locally optimal solution is found. Repeated applications of
the construction procedure yields diverse starting solutions for the local search and
the best overall local optimal solution is returned as the result. The reader can
refer to [8, 9, 10] for a study of a generic GRASP metaheuristic framework and its
applications.

A complete solution is iteratively constructed in the construction phase, one
element at a time. At each construction iteration, the choice of the next element
to be added is determined by ordering all candidate elements (i.e. those that can
be added to the solution) in a candidate list C with respect to a greedy function
that measures the (myopic) benefit of selecting each element. The probabilistic
component of a GRASP is characterized by randomly choosing one of the best
candidates in the list, but not necessarily the top candidate. The list of best
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function GrRand(m, Σ, {Vj(c)}c∈Σ
j∈{1,...,m}, V

min
j , V max

j , Seed)

1 for j = 1 to m→
2 RCLj :=∅; α:=Random([0, 1], Seed);
3 µ:=V min

j + α · (V max
j − V min

j );
4 for all c ∈ Σ→
5 if (Vj(c) ≤ µ)) then
6 RCLj :=RCLj∪{c};
7 endif
8 endfor
9 sj :=Random(RCLj , Seed);
10 endfor
11 return(s, {RCLj}mj=1);
end GrRand

Figure 2. Pseudo-code of the GRASP construction for the FFMSP.

candidates is called the restricted candidate list (RCL). For the FFMSP, in 2007 [5]
a GRASP has been proposed to find suboptimal solutions for the FFMSP and
Figure 1 depicts its pseudo-code, where ft : Σ

m 7→ N denotes the objective function
to be maximized according to (3) and (4).

Figure 2 reports the pseudo-code of the construction procedure that iteratively
builds a sequence s = (s1, . . . , sm) ∈ Σm, selecting one character at time. The
greedy function is related to the occurrence of each character in a given position.
In fact, as in [5], for each position j ∈ {1, . . . ,m} and for each character c ∈ Σ, we
compute Vj(c) as the number of times c appears in position j in any of the strings
in Ω. The pure greedy choice would consist in selecting the character c with the
lowest greedy function value Vj(c). To define the construction mechanism for the
RCL, let

V min
j = min

c∈Σ
Vj(c), V max

j = max
c∈Σ

Vj(c).

Denoting by µ = V min
j + α · (V max

j − V min
j ) the cut-off value (line 3), where α is

a parameter such that 0 ≤ α ≤ 1 (line 2), the RCL is made up by all characters
whose value of the greedy function is less than or equal to µ (line 6). A character
is then randomly selected from the RCL (line 9).

The basic step of the local search described in Figure 3 is slightly different from
the one implemented in [5]. In our GRASP, it consists in investigating all positions
j ∈ {1, . . . ,m} (loop in lines 4–14) and changing the character in position j in the
sequence s to another character in RCLj . Instead, in [5] the position j and the new
character in position j are selected at random. Moreover, the random selection of
the new character in position j involves the set of all characters occurring in that
position in all the given sequences in Ω.

The current solution is replaced by the first improving neighbor (lines 8–11).
The search stops after all possible moves have been evaluated and no improving
neighbor was found, returning a local optimal solution (line 16).

2.2. A pure VNS. Contrary to other metaheuristics based on local search meth-
ods, VNS [16] is based on the exploration of a dynamic neighborhood model. It
explores increasingly distant neighborhoods of the current best found solution.
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function LocalSearch(t, m, s, ft(·), {RCLj}mj=1)
1 max:=ft(s); change:=.TRUE.;
2 while (change)→
3 change:=.FALSE.;
4 for j = 1 to m→
5 temp:=sj ;
6 for all c ∈RCLj→
7 sj :=c;
8 if (ft(s) > max) then
9 max:=ft(s); temp:=c; change:=.TRUE.; break;
10 endif
11 endfor
12 sj :=temp;
13 endfor
14 endwhile
15 return(s);
end LocalSearch

Figure 3. Pseudo-code of the GRASP local search for the FFMSP.

Let Nk, k = 1, . . . , kmax, be a set of pre-defined neighborhood structures and
let Nk(s) be the set of solutions in the kth-order neighborhood of a solution s. In
the first phase, a neighbor s′ ∈ Nk(s) of the current solution is applied. Next, a
solution s′′ is obtained by applying local search to s′. Finally, the current solution
jumps from s to s′′ in case the latter improved the former. Otherwise, the order of
the neighborhood is increased by one and the above steps are repeated until some
stopping condition is satisfied.

algorithm VNS(t, m, Σ, ft(·), kmax, Seed)
1 sbest:=∅; ft(sbest):=−∞;
2 while stopping criterion not satisfied→
3 k:=1; s:=BuildRand(m, Σ, Seed); /* pure randomly */
4 while (k ≤ kmax)→
5 s′:=Random(Nk(s), Seed);
6 s′′:=LocalSearch(t, m, s′, ft(·), {RCLj}mj=1);
7 if (ft(s

′′) > ft(s)) then
8 s:=s′′; k:=1;
9 if (ft(s

′′) > ft(sbest)) then sbest:=s′′;
10 endif
11 else k:=k + 1;
12 endif
13 endwhile
14 endwhile
15 return(sbest);
end VNS

Figure 4. Pseudo-code of a VNS for the FFMSP.
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algorithm Path-relinking(t, m, ft(·), s, E , Seed)
1 ŝ:=Random(E , Seed);
2 f∗ := max{ft(s), ft(ŝ)}; s∗ := argmax{ft(s), ft(ŝ)};
3 s′ := argmin{ft(s), ft(ŝ)}; ŝ:=s∗;
4 ∆(s′, ŝ):={i = 1, . . . ,m | s′i ̸= ŝi};
5 while (∆(s′, ŝ) ̸= ∅) →
6 i∗ := argmax{ft(s′ ⊕ i) | i ∈ ∆(s′, ŝ)};
7 ∆(s′ ⊕ i∗, ŝ) := ∆(s′, ŝ) \ {i∗};
8 s′ := s′ ⊕ i∗;
9 if (ft(s

′) > f∗) then
10 f∗ := ft(s

′); s∗ := s′;
11 endif ;
12 endwhile;
13 return (s∗);
end Path-relinking

Figure 5. Pseudo-code of a Path-relinking for the FFMSP.

In the case of the FFMSP, the kth-order neighborhood is defined by all sequences
that can be derived from the current sequence s by selecting k positions j1, . . . , jk
and changing sj1 , . . . , sjk with a character in RCLj1 , . . . ,RCLjk , respectively. The
same local search strategy used within the pure GRASP algorithm described in
Section 2.1 is used in the VNS heuristic, whose pseudo-code is reported in Figure 4.

2.3. Path-relinking. Path-relinking is a heuristic proposed in 1996 by Glover [12]
as an intensification strategy exploring trajectories connecting elite solutions ob-
tained by tabu search or scatter search [13, 14, 15].

Starting from one or more elite solutions, paths in the solution space leading
towards other guiding elite solutions are generated and explored in the search for
better solutions. This is accomplished by selecting moves that introduce attributes
contained in the guiding solutions. At each iteration, all moves that incorporate
attributes of the guiding solution are analyzed and the move that best improves (or
least deteriorates) the initial solution is chosen.

Figure 5 illustrates the pseudo-code of the Path-relinking for the FFMSP. It is
applied to a pair of sequences (s, ŝ), where s is a given input solution and ŝ is a
solution (sufficiently different from s – see Section 3) selected at random (line 1)
from an elite set E of solutions that has a fixed size that does not exceed MaxElite.
Their common elements are kept constant, and the space of solutions spanned by
these elements is searched with the objective of finding a better solution. This
search is done by exploring a path in the solution space linking the worst solution
s′ between s and ŝ to the best one (line 3). s′ is called the initial solution and ŝ
the guiding solution.

The procedure then computes (line 4) the symmetric difference ∆(s′, ŝ) between
the two solutions as the set of components for which the two solutions differ:

∆(s′, ŝ) := {i = 1, . . . ,m | s′i ̸= ŝi}.
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Note that, |∆(s′, ŝ)| = dH(s′, ŝ) and ∆(s′, ŝ) represents the set of moves needed to
reach ŝ from s′, where a move applied to the initial solution s′ consists in selecting
a position i ∈ ∆(s′, ŝ) and replacing s′i with ŝi.

Path-relinking generates a path of solutions s′1, s
′
2, . . . , s

′
|∆(s′,ŝ)| linking s′ and

ŝ. The best solution s∗ in this path is returned by the algorithm (line 13).
The path of solutions is computed in the loop in lines 5 through 12. This

is achieved by advancing one solution at a time in a greedy manner. At each
iteration, the procedure examines all moves i ∈ ∆(s′, ŝ) from the current solution
s′ and selects the one which results in the highest cost solution (line 6), i.e. the
one which maximizes ft(s

′ ⊕ i), where s′ ⊕ i is the solution resulting from applying
move i to solution s′. The best move i∗ is made, producing solution s′⊕ i∗ (line 8).
The set of available moves is updated (line 7). If necessary, the best solution s∗ is
updated (lines 9–11 ). Clearly, the algorithm stops as soon as ∆(s′, ŝ) = ∅.

2.4. Hybrid GRASP with Path-relinking. Since GRASP iterations are inde-
pendent of one another, it does not make use of solutions produced throughout the
search. One way to add memory to GRASP is its hybridization with Path-relinking.
In 1999 the first proposal of such a hybrid method was published by Laguna and
Mart́ı [17]. It was followed by several extensions, improvements, and successful
applications [2, 6, 7].

Into the pure GRASP algorithm described in Section 2.1 we have integrated
Path-relinking applied at each GRASP iteration to pairs (s, ŝ) of solutions, where s
is the locally optimal solution obtained by GRASP local search and ŝ is randomly
chosen from a pool with a limited number MaxElite of high quality solutions found
along the search. The pseudo-code for the proposed GRASP with Path-relinking
hybrid algorithm is shown in Figure 6.

The pool of elite solutions is originally empty (line 1). The best solution s found
along the relinking trajectory is considered as a candidate to be inserted into this
pool. If the pool is not full (|E| ≤ MaxElite), the candidate is simply inserted.
Otherwise, if the pool is full, the procedure AddToElite evaluates its insertion into
E . In more detail, if s is better than the best elite solution, then s replaces the
worst elite solution. If the candidate is better than the worst elite solution, but not
better than the best, it replaces the worst if it is sufficiently different (see Section 3)
from all elite solutions.

2.5. Hybrid GRASP with VNS. As underlined in Subsection 2.2, until a stop-
ping criterion is met, at each iteration VNS chooses a neighbor sequence s from the
neighborhood of the current solution at random. In our hybrid GRASP with VNS,
VNS is applied as local search and its starting solution is the sequence s output of
the GRASP construction procedure.

2.6. Hybrid VNS with Path-relinking. As is the case for GRASP, VNS de-
scribed in Section 2.2 also can be hybridized with Path-relinking, as intensification
phase. At each VNS iteration Path-relinking is applied to pairs (s, ŝ) of solutions,
where s is the locally optimal solution obtained by VNS and ŝ is randomly chosen
from the MaxElite high quality solutions found along the search.

2.7. Hybrid GRASP with VNS and Path-relinking. This hybrid procedure
is simply obtained by replacing the local search phase of the GRASP procedure
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algorithm GRASP+PR(t, m, Σ, ft(·), {Vj(c)}c∈Σ
j∈{1,...,m}, Seed, MaxElite)

1 sbest:=∅; ft(sbest):=−∞; E := ∅; iter:=0;
2 for j = 1 to m→
3 V min

j :=minc∈Σ Vj(c); V
max
j :=maxc∈Σ Vj(c);

4 endfor
5 while stopping criterion not satisfied→
6 iter:=iter + 1;
7 [s, {RCLj}mj=1]:=GrRand(m, Σ, {Vj(c)}c∈Σ

j∈{1,...,m}, V
min
j , V max

j , Seed);

8 s:=LocalSearch(t, m, s, ft(·), {RCLj}mj=1);
9 if (iter ≤ MaxElite) then
10 E := E ∪ {s};
11 if (ft(s) > ft(sbest)) then sbest:=s;
13 endif
14 else
10 s:=Path-relinking(t, m, ft(·), s, E , Seed);
15 AddToElite(E , s);
11 if (ft(s) > ft(sbest)) then sbest:=s;
13 endif
13 endif
11 endwhile
12 return(sbest);
end GRASP+PR

Figure 6. Pseudo-code of a hybrid GRASP with Path-relinking
for the FFMSP.

with VNS and applying at the end of each major iteration Path-relinking as inten-
sification procedure.

3. Experimental results

In this section, we present numerical results on computational experiments with
the heuristics proposed in this article. We describe first the computer environment
and the problem instances. Then, we describe implementation details and the used
combination of values for the parameters of the heuristics. Finally, we report on
the experimental evaluation of the different algorithms.

Our codes have been written in the C language, compilated with “cc (GCC)
4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-16ubuntu2)”, and ran on an “Intel Core
i7 Quad core @ 2.67 GHz RAM 6GB” with Linux (Ubuntu 11.10 ) operating system.

Problem instances were generated at random. In the set of test instances, the
sequence length m ranges from 300 to 800, the number n of sequences in Ω ranges
from 100 to 200, and threshold t varies from 75%m to 85%m. For each problem
size, the algorithms were run for 100 random instances and average solution value
was computed. The results obtained are summarized in Table 1, where for each
problem type, in the first column the instance size (m, n, and t) is reported. The
remaining columns report the average objective function values (z) obtained by
each algorithm and the corresponding average running times (in seconds). We
make the following observations:
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Table 1. Average objective function values obtained by each al-
gorithm and the corresponding average running times (in seconds).

GRASP GRASP+PR GRASP+VNS+PR VNS VNS+PR

n,m, t z Time z Time z Time z Time z Time

100, 300, 0.75 100 1.37 100 1.41 100 1.71 94.47 72.45 100 7.44

100, 300, 0.80 67.86 1.67 76.17 3.21 76.68 33.28 19.98 71.02 48.58 77.43

100, 300, 0.85 3.56 1.72 10.17 4.17 12.23 31.36 1.12 37.65 3.53 44.19

100, 600, 0.75 100 1.56 100 1.89 100 1.11 91.78 278.94 100 31.91

100, 600, 0.80 65.35 2.31 78.83 11.77 80.47 122.65 8.51 264.66 20.72 295.49

100, 600, 0.85 1.21 1.28 3.58 11.07 4.36 91.87 0.04 152.64 0.91 186.71

100, 800, 0.75 100 1.84 100 1.34 100 2.48 87.36 549.60 100 63.00

100, 800, 0.80 67.76 1.42 80.37 21.10 82.30 251.26 4.41 450.63 10.94 527.76

100, 800, 0.85 0.30 2.98 0.97 31.45 2.51 148.98 0.66 273.98 0.63 329.48

200, 300, 0.75 197.78 1.22 200 1.85 200 3.70 180.08 135.61 200 47.91

200, 300, 0.80 76.50 1.39 93.70 6.52 94.45 65.44 36.71 150.51 66.81 160.37

200, 300, 0.85 2.83 1.59 9.26 8.59 11.12 68.20 2.16 86.60 4.62 104.13

200, 600, 0.75 200 1.94 200 1.61 200 3.39 178.11 545.50 200 75.43

200, 600, 0.80 62.80 1.63 83.91 24.91 86.17 274.93 11.93 588.35 33.41 625.66

200, 600, 0.85 0.98 1.79 1.51 31.22 2.38 174.73 0.71 305.29 0.96 369.29

200, 800, 0.75 200 1.04 200 1.33 200 1.61 175.06 947.80 200 193.30

200, 800, 0.80 44.66 1.75 71.28 43.63 72.44 519.59 6.37 987.35 17.12 1102.47

200, 800, 0.85 0.86 1.55 1.93 59.20 3.71 311.81 0.15 544.21 0.49 659.02

� the stopping criterion for all algorithms was MaxIterations = 500 or the
obtainment of an incumbent solution with objective function value z = n
(i.e., an optimal solution);

� the maximum order kmax in the dynamic neighborhood model used in VNS
and in the hybrid VNS with Path-relinking and the hybrid GRASP with
VNS and Path-relinking was set to 30;

� the maximum number MaxElite of elite solutions in the hybrid heuristics
invoking Path-relinking as intensification procedure was set to 10;

� in Path-relinking, for inclusion of the candidate solution s in the elite set
E when s is better than the worst elite set solution but not better than the
best, s is inserted (replacing the worst solution) if it sufficiently different
from all elite solutions, i.e. if |∆(s, ϵ)| ≥ m

2 , for all ϵ ∈ E ;
� on all instances, the hybrid GRASP with VNS and Path-relinking found a

better quality solution as compared to the competitor heuristics;
� the hybrid GRASP with Path-relinking found best results for 7 out of the

18 instances; hybrid VNS with Path-relinking found best results for 6 in-
stances, while the pure GRASP and the pure VNS found the best solution
for only 5 and 0 instances, respectively;

� at the expense of increased running times, the integration of Path-relinking
in the pure metaheuristics was beneficial in terms of solution quality;

� looking at the objective function values achieved by GRASP with Path-
relinking and GRASP with VNS and Path-relinking, at the expense of
increased running times, the use of VNS in the local search phase of GRASP
was beneficial.

Given the random component of each proposed algorithm and since their running
times per iteration vary substantially, we have performed two further experiments.
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Table 2. Average objective function values obtained by each al-
gorithm after 90 seconds of computation.

n,m, t GRASP GRASP+PR GRASP+VNS+PR VNS VNS+PR

100, 300, 0.75 100 100 100 94 100
100, 300, 0.8 71.07 79.61 78.12 23.43 49.54
100, 300, 0.85 6.41 13.18 11.86 1.02 3.27
100, 600, 0.75 100 100 100 91.79 100
100, 600, 0.8 70.24 80.13 78.05 6.38 11.29
100, 600, 0.85 2.73 4.98 4.48 0.03 0.12
100, 800, 0.75 100 100 100 85.18 100
100, 800, 0.8 70.07 82.64 79.45 3.71 8.42
100, 800, 0.85 1.17 1.84 1.65 0 0.03
200, 300, 0.75 199.81 200 200 179.34 200
200, 300, 0.8 81.75 100 95.11 34.71 61.67
200, 300, 0.85 4.82 11.90 11.03 2.32 3.70
200, 600, 0.75 200 200 200 172.41 200
200, 600, 0.8 66.23 88.49 80.31 10.25 19.10
200, 600, 0.85 1.03 2.42 1.73 0.09 0.97
200, 800, 0.75 200 200 200 164.01 194.45
200, 800, 0.8 49.87 73.08 62.36 4.23 8.17
200, 800, 0.85 0.08 0.21 0.17 0.06 0.85

First, on the same set of randomly generated problem instances and by using
the same values of the parameters for the algorithms, we have run them for a
given fixed amount of time, set to 90 seconds. For each problem type, Table 2
reports the average objective function values (z) obtained by each algorithm. It
is still evident that the integration of Path-relinking in the pure metaheuristics
is beneficial in terms of solution quality. Moreover, in a given fixed amount of
computation time the number of iterations performed by the hybrid GRASP with
Path-relinking is higher than that performed by the hybrid GRASP with VNS and
Path-relinking. This implies that GRASP with VNS and PR performs a smaller
number of samplings of the solution space with the conclusion that in this scenario,
the hybrid GRASP with PR found better quality solutions.

As further investigation, given the random component of each proposed algo-
rithm and the great variety in their running times per iteration, we plot in Fig-
ures 7–8 the empirical distributions of the random variable time-to-target-solution-
value considering the following four random instances:

(1) n = 100, m = 300, t = 240, and target value ẑ = 0.70× n (Figure 7(a));
(2) n = 100, m = 300, t = 252, and target value ẑ = 0.12× n (Figure 7(b));
(3) n = 200, m = 300, t = 240, and target value ẑ = 0.40× n (Figure 8(a));
(4) n = 300, m = 300, t = 240, and target value ẑ = 0.28× n (Figure 8(b)).

We performed 100 independent runs of each heuristic using 100 different random
number generator seeds and recorded the time taken to find a solution at least
as good as the target value ẑ. As in [1], to plot the empirical distribution we

associate with the ith sorted running time (ti) a probability pi =
i−1/2
100 , and plot

the points zi = (ti, pi), for i = 1, . . . , 100. About these further experiments, looking
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at Figures 7 and 8, we observe that the relative position of the curves implies that,
given any fixed amount of running time, the hybrid GRASP with Path-relinking
has a higher probability than all competitors of finding a solution whose objective
function value is at least as good as the target objective function value.
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Figure 7. Time to target distributions comparing GRASP,
GRASP+PR, and GRASP+VNS+PR.

4. Concluding remarks and future work

Given the computational intractability of one of the consensus problems known as
the Far From Most String Problem, we have designed several hybrid metaheuristics
that guarantee good quality solutions within realistic and acceptable amount of
time. The algorithms were tested on several random instances and the results show
that the hybrid GRASP with VNS and Path-relinking always finds much better
quality solutions compared with the other competitor algorithms, but clearly with
higher running times as compared to the pure GRASP and the hybrid GRASP
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Figure 8. Time to target distributions comparing GRASP,
GRASP+PR, and GRASP+VNS+PR.

with Path-relinking. In the following, we summarize our observations about our
computational experience.

• The processing time for the pure GRASP was the smallest but the objective
function values found by the algorithm were worse than those found by its
hybridizations;

• Best objective function values found by GRASP and its hybrids were when
the construction phase was more greedy than random.

• Overall, the hybrid GRASP with VNS and path-relinking found the best
solutions, followed by GRASP with Path-relinking and the pure GRASP;

• Overall, the objective function values found by the pure VNS were the
worst. This bad behavior is not surprising, given the totally random crite-
rion adopted in the VNS construction.

• The integration of Path-relinking as intensification procedure in the pure
metaheuristics was beneficial in terms of solution quality.
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• We plot in Figures 7–8 the empirical distributions of the random variable
time-to-target-solution-value considering four different random instances.
Our conclusion after this further investigation is that, given any fixed
amount of computing time, GRASP with Path-relinking has a higher prob-
ability than all competitors of finding a target solution.

As future work, we plan to better investigate the practical behavior of the pro-
posed algorithms, by introducing the recently published tool designed by Ribeiro et
al. [21] for characterizing stochastic algorithms running times under the assumption
that the running times of the algorithms follow exponential (or shifted exponential)
distributions, as it is the case of our hybrid heuristics.

We plan also to validate the numerical results on computational experiments
with the heuristics proposed in this article, by applying them on a larger dataset of
instances, both randomly generated and taken from real–world applications of the
problem.

Furthermore, it would be also interesting to design some variants of the ap-
proaches proposed in this paper. Three natural extensions would be 1) to perform
at the end of computation a post-optimization phase, for example by invoking Path-
relinking among pairs of elite solutions; 2) to implement alternative linking strate-
gies in Path-relinking, such as backward, mixed, and randomized Path-relinking;
3) to integrate in the local search of the algorithms the new function devised by
Mousavi et al. [20] and to be used in alternative to the objective function when
evaluating neighbor solutions.
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