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Abstract

Given n customers and a set F' of m potential facilities, the p-median problem consists in
finding a subset of F' with p facilities such that the cost of serving all customers is minimized.
This is a well-known NP-complete problem with important applications in location science and
classification (clustering). We present a multistart hybrid heuristic that combines elements of
several traditional metaheuristics to find near-optimal solutions to this problem. Empirical
results on instances from the literature attest the robustness of the algorithm, which performs
at least as well as other methods, and often better in terms of both running time and solution
quality. In all cases the solutions obtained by our method were within 0.1% of the best known
upper bounds.

1 Introduction

The p-median problem is defined as follows. Given a set F' of m potential facilities, a set U of n
users (or customers), a distance function d : U x F' — R, and a constant p < m, determine which
p facilities to open so as to minimize the sum of the distances from each user to its closest open
facility. It is a well-known NP-hard problem [20], with numerous applications in location science [43]
and classification (clustering) [28, 46].

Several algorithms for the p-median problem have been proposed, including exact methods based
on linear programming [3, 4, 9, 38], constructive algorithms [4, 21, 42, 48], dual-based algorithms
[9, 27], and local search procedures [16, 19, 23, 32, 35, 42, 44, 48]. Recently, metaheuristics capable
of obtaining solutions of near-optimal quality have been devised. Tabu search procedures have
been proposed by Vof [47] and Rolland et al. [34]. The latter method was compared by Rosing et
al. [37] with the heuristic concentration method [36], which obtained comparatively superior results.
Hansen and Mladenovi¢ [17] proposed a VNS (variable neighborhood search) for the problem, later
parallelized by Garcia-Lépez et al. [11]. A variation of this method, VNDS (variable neighborhood
decomposition search), was suggested by Hansen et al. [18]. Heuristics based on linear programming
were studied by du Merle et al. [6] and by Senne and Lorena [40, 41].

In this paper, we propose a hybrid heuristic for the p-median problem. In essence, it is a
multistart iterative method, each iteration of which consists of the randomized construction of a
solution, which is then submitted to local search. Traditionally, a multistart algorithm takes the
best solution obtained in all iterations as its final result. Our method enhances this basic approach
with some intensification strategies. We keep a pool with some of the best solutions found in previous
iterations, the so-called elite solutions. In each iteration of our procedure, the solution obtained by
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function HYBRID (seed, mawit, elitesize)
1 randomize (seed);

2 init(elite, elitesize)

3 for i =1 to maxit do

4 S « randomizedBuild();

5 S « localSearch(S);

6 S’ — select(elite, S);

7 if (S’ # NULL) then

8 S’ < pathRelinking(S, S’);
9 add(elite, S');

10 endif

11 add(elite, S);

12 endfor

13 S <« postOptimize(elite);

14  return S;

end HYBRID

Figure 1: Pseudocode for HYBRID.

local search is combined with one elite solution through a process called path-relinking [13, 14, 22].
Furthermore, after all iterations of the multistart phase are completed, we have a second, post-
optimization phase in which elite solutions are combined with each other. Figure 1 summarizes our
method, to which we will refer as HYBRID.

Note that this algorithm combines elements of several “pure” metaheuristics. Like GRASP
(greedy randomized adaptive search procedure), our method is a multistart approach in which each
iteration consists basically of a randomized greedy procedure followed by local search [7, 8, 30]. From
tabu search and scatter search, our method borrows the idea of path-relinking [13, 22]. Moreover,
as Section 5 shows, we augment path-relinking with the concept multiple generations, a key feature
of genetic algorithms [15, 25].

Of course, much remains to be specified to turn the outline in Figure 1 into an actual algorithm.
We study each individual component (constructive algorithm, local search, and intensification) sep-
arately in Sections 3, 4, and 5, respectively. In Section 6, we present the results obtained by the final
version of our method and compare them with those obtained by other methods in the literature.
But first, in Section 2, we discuss important aspects of the experiments we conducted to evaluate
individual components and to produce the final results.

2 Testing

2.1 Instances

We tested our algorithm on five classes of problems: TSP, ORLIB, SL, GR, and RW.

Instances in class TSP are just sets of points on the plane. Originally proposed for the traveling
salesman problem, they are available from the TSPLIB [29]. In the context of the p-median problem,
they were first used by Hansen et al. [17, 18]. Every point is considered both a potential facility
and a customer, and the cost of assigning customer c to facility f is simply the Euclidean distance
between the points representing ¢ and f. Following Hansen et al. [18], we consider three instances
(f11400, pcb3038, and rl5934, with 1400, 3038, and 5934 nodes, respectively), each with several
different values for p (number of facilities to open).

Class ORLIB (short for OR-Library) was introduced by Beasley [3]. Each of the 40 instances
(pmed01, pmed02, ..., pmed40) in the class is a graph with a corresponding value for p. Every node
is a customer and a potential facility, and the cost of assigning a customer to a facility is the length



of the shortest path between the corresponding nodes. The number of nodes in this class varies from
100 to 900, and the value of p from 5 to 200.

The third class we consider is SL, a slight extension to ORLIB proposed by Senne and Lorena [40)].
It contains three new instances, all based on graphs from ORLIB: sI700 uses the same graph as
pmed34, but with p = 233; sI800 is the same as pmed37, with p = 267; and sl900 is pmed40 with
p = 300 [39].

The fourth class studied is GR, introduced by Galvao and ReVelle [10] and first used for the
p-median problem by Senne and Lorena [40]. This class contains two graphs, with 100 and 150
nodes (named gr100 and gr150, respectively). Eight values of p (between 5 and 50) were considered
in each case.

The fifth class we study is RW. Originally proposed by Resende and Werneck [32], it corresponds
to completely random distance matrices. In every case, the number of potential facilities (m) is
equal to the number of customers (n). The distance between each facility and each customer has
an integer value taken uniformly at random from the interval [1,n].}] Four different values of n
were considered: 100, 250, 500, and 1000 (instance names are rw100, rw250, rw500, and rw1000,
respectively). In each case, several values of p were tested.

Costs are integral in all classes except TSP, in which distances are, in theory, real values. We
did not explicitly round nor truncate values, which were kept with double precision throughout the
algorithm.

Results obtained by the final version of our algorithm on all instances are shown in Section 6.
We also conducted experiments with several variants of our method to assess how each individual
component (constructive algorithm, local search, and path-relinking, among others) affects the over-
all performance. In those experiments, however, we used only a restricted set of instances. This
set was chosen with two goals in mind. First, its instances should be hard enough to reveal the
differences between various parameters and components. Some instances, especially in class OR-
LIB, can be solved to optimality by local search alone, thus making it pointless to include them in
comparative tests. Our second goal was to keep the set small enough so as to allow statistically
meaningful experiments (i.e., with several pseudorandom number generator seeds for each instance)
on a relatively small amount of CPU time (no more than a few days per experiment). Given those
goals and our experience from early versions of the algorithm, we defined the restricted set with 10
instances: pmed15 and pmed40, both from class ORLIB; sI700, from class SL; fl1400 (with p = 150
and p = 500) and pcb3038 (with p = 30 and p = 250), from class TSP; gr150 (with p = 25), from
class GR; and rw500 (with p = 25 and p = 75), from class RW.

2.2 Testing Environment

Tests were performed on an SGI Challenge with 28 196-MHz MIPS R10000 processors (with each
execution of the program limited to only one processor), 7.6 GB of memory, and IRIX 5 as the
operating system. The algorithm was coded in C4++ and compiled with the SGI MIPSpro C++
compiler (v.7.30) with flags -03 -0PT:01imit=6586. All running times shown in this paper are
CPU times, measured with the getrusage function. Running times do not include the time spent
reading instances from disk, but they do include the computation of all-pairs shortest paths on
graph instances (classes SL and ORLIB).? The pseudorandom number generator we use is Mersenne
Twister [24].

1n particular, unlike all other classes, the distance from facility i to user ¢ is not zero. Moreover, the distance
between facility ¢+ and user j need not be equal to the distance between facility j and user i.

2GR is also a graph-based class, but the instances we obtained, kindly provided by E. Senne, were already repre-
sented as distance matrices.
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Constructive Algorithms

The standard greedy algorithm for the p-median problem [4, 48] starts with an empty solution and
adds facilities one at a time, choosing the most profitable in each iteration (the one whose insertion
causes the greatest drop in solution cost). Evidently, this method cannot be used directly in our
algorithm: being completely deterministic, it would yield identical solutions in all iterations. We
considered the following randomized variants in our experiments:

random (random solution): Select p facilities uniformly at random. The selection itself re-
quires O(m) time, and determining which facility should serve each customer requires O(pn)
operations.® Therefore, the overall complexity of the algorithm is O(m + pn).

rpg (random plus greedy): Select a fraction « (an input parameter) of the p facilities at
random, then complete the solution in a greedy fashion. The algorithm takes O((m + apn) +
(1 — a)(pmn)) time in the worst case, which corresponds to O(pmn) if « is not very close to
1. In our tests, a value for @ was chosen uniformly at random in the interval [0;1] in every
multistart iteration.

rgreedy (randomized greedy): Similar to the greedy algorithm, but in each step i, instead of
selecting the best among all m — ¢ + 1 options, choose randomly from the [a(m — i+ 1)] best
options, where 0 < o < 1 is an input parameter. Note that if & — 0, this method degenerates
into the greedy algorithm; if &« — 1, it turns into the random algorithm. In our tests, we
selected o uniformly at random in the interval (0;1] in each iteration of the multistart phase.
This algorithm takes O(pmn) time.

pgreedy (proportional greedy): Yet another variant of the greedy algorithm. In each iteration,
compute, for every candidate facility f;, how much would be saved if f; were added to the
solution. Let s(f;) be this value. Then pick a candidate at random, but in a biased way:
the probability of a given facility f; being selected is proportional to s(f;) — min; s(f;). If all
candidates are equally good (they would all save the same amount), select one uniformly at
random. This method also takes O(pmn) time.

pworst (proportional worst): In this method, the first facility is selected uniformly at random.
Other facilities are added one at a time as follows. Compute, for each customer, the difference
between how much its current assignment costs and how much the best assignment would cost;
then select a customer at random, with probability proportional to this value, and open the
closest facility. Customers for which the current solution is particularly bad have a greater
chance of being selected. This method, also used by Taillard [42], runs in O(mn) time in the
worst case.

sample (sample greedy): This method is similar to the greedy algorithm, but instead of select-
ing the best among all possible options, it only considers ¢ < m possible insertions (chosen
uniformly at random) in each iteration. The most profitable among those is selected. The
running time of the algorithm is O(m + pgn). The idea is to make ¢ small enough so as to
significantly reduce the running time of the algorithm (when compared to the pure greedy one)
and to ensure a fair degree of randomization. In our tests, we used ¢ = [log,(m/p)].

We note that a “pure” multistart heuristic would use random as the constructive algorithm.
Method rgreedy, which selects a random element from a restricted list of candidates, would be the
one used by a standard GRASP. All other methods are meant to be faster variants of rgreedy.

3This can be made faster in some settings, like sparse graphs or points on the Euclidean plane. The results in this
paper, however, do not use any such metric-specific accelerations.



It was not clear at first which of these methods would be most adequate as a building block
of our heuristic. To better analyze this issue, we conducted an experiment on the restricted set of
instances defined in Section 2.1. For every instance in the set and every constructive procedure, we
ran our heuristic 10 times, with 10 different seeds. In every case, the number of iterations was set to
32, with 10 elite solutions, using up:down as the criterion to determine the direction of path-relinking
(this criterion is defined in Section 5.4.2).

To explain the results shown in Table 1, we need some additional definitions. For each instance,
we compute the overall average solution value obtained by all 60 executions of HYBRID (6 different
methods, each with 10 seeds). Then, for each method, we determine the relative percentage deviation
for that instance: how much the average solution value obtained by that method is above (or below)
the overall average in percentage terms. By taking the average of these deviations over all 10
instances, we obtain the average relative percentage deviation (%DEV) for each method; these are
the values shown in column 2 of Table 1. Column 4 was computed in a similar fashion, but considering
running times instead of solution values.

Columns 3 and 5 were computed as follows. For each instance, the methods were sorted ac-
cording to their relative percentage deviations; the best received one point, the second two points,
and so on, until the sixth best method, with six points. When there was a tie, points were divided
equally between the methods involved. For example, if the deviations were —0.03, —0.02, —0.02,
0.01, 0.03, and 0.03, the corresponding methods would receive 1,2.5,2.5,4,5.5, and 5.5 points, re-
spectively. The number of points received by a method according to this process is its rank for
that particular instance. Its normalized rank was obtained by linearly mapping the range of ranks
(1 to 6, in this case) to the interval [—1,1]. In the example above, the normalized ranks would be
—1,-04,-0.4,0.2,0.8, and 0.8. The normalized ranks must add up to zero (by definition). If a
method is always better than all others, its normalized rank will be —1; if always worse, it will be
1. What columns 3 and 5 of Table 1 show are the average normalized ranks of each method, taken
over the set of 10 instances. Column 3 refers to solution quality, and column 5 to running times.

Table 1: HYBRID results with different constructive procedures: Average relative percentage devia-
tions (%DEV) and average normalized ranks (NRANK) for solution qualities and running times (both

referring to the entire HYBRID procedure). Smaller values are better.
METHOD QUALITY TIME
JDEV ~ NRANK | %DEV ~ NRANK
pgreedy | -0.009  0.160 | 39.6  0.920
pworst -0.006  -0.400 -18.7  -0.480
rgreedy 0.020 -0.160 35.8 0.400
random 0.015 0.000 -24.9 -0.840
rpg 0.009 0.620 -12.3 -0.300
sample -0.029 -0.220 -19.5 -0.600

The correlation between these measures is higher when one method is obviously better (or worse)
than other methods. In general, however, having a lower average normalized rank does not imply
having a better average relative percentage deviation, as the table shows.

It is clear that the methods are distinguishable much more by running time than by solution
quality. As the analysis of their worst case complexities suggests, rgreedy and pgreedy are much
slower than the other methods. In fact, they are so much slower that, as shown in the table, they
make the entire HYBRID heuristic take twice as long on average than when using faster methods.
The other method with O(pmn) worst-case performance, rpg, while much faster than rgreedy and
pgreedy in practice, is still slower than other methods without finding better solutions on average.
We therefore tend to favor the three relatively fast methods: pworst, sample, and random. Among
those, sample and pworst seem to lead to solutions of slightly better quality. We chose sample for
the final version of our algorithm, although pworst would probably find very similar results.



This experiment reveals an unusual feature of the p-median problem. In the GRASP framework
(upon which our heuristic is based), the running time of the randomized greedy algorithm is usually
not an issue. The randomized constructive methods should produce solutions that are as good as
possible given the diversity constraints, thus reducing the number of iterations of the generally much
slower local search. In our case, the local search is relatively so fast that investing extra time in
building the solution can actually make the whole algorithm much slower without any significant
gain in terms of solution quality. We could not apply the randomization strategy normally used
in GRASP, represented here by rgreedy. Instead, we had to develop a faster alternative based on
sampling. That is why we call our method a hybrid heuristic instead of GRASP.*

4 Local Search

The standard local search procedure for the p-median problem, originally proposed by Teitz and
Bart [44] and studied or used by several authors [11, 17, 18, 19, 32, 48], is based on swapping
facilities. Given an initial solution S, the procedure determines, for each facility f ¢ S, which
facility g € S (if any) would improve the solution the most if f and g were interchanged (i.e., if f
were opened and g closed). If there is one such improving move, f and g are interchanged. The
procedure continues until no improving interchange can be made, in which case a local minimum
will have been found.

Whitaker [48] proposed an efficient implementation of this method, which he called fast inter-
change. A similar implementation was used by Hansen and Mladenovié¢ [17] and, later, in other
papers [11, 18]. A minor difference between them is the fact that Whitaker adopts a first improve-
ment strategy (the algorithm moves to a neighboring solution as soon as it finds an improving one),
while the others prefer best improvement (all neighbors are checked and the very best is chosen). In
either case, the running time of each iteration is bounded by O(mn).

Resende and Werneck [32] have recently proposed an alternative implementation, also using best
improvement. Although it has the same worst-case complexity as Whitaker’s, it can be substan-
tially faster in practice. The speedup (of up to three orders of magnitude) results from the use
of information gathered in early iterations of the algorithm to reduce the amount of computation
performed in later stages. This, however, requires a greater amount of memory. While Whitaker’s
implementation requires O(n) memory in the worst case (not considering the distance matrix), the
alternative may use up to O(mn) memory positions.

In any case, we believe that the speedup is well worth the extra memory requirement. This is
especially true for methods that rely heavily on local search procedures. This includes not only
multistart methods such as the one described here, but also VNS [17] and tabu search [34, 47], for
example. Furthermore, one should also remember that while the extra memory is asymptotically
relevant when the distance function is given implicitly (as in the case of Euclidean instances), it is
irrelevant when there is an actual O(mn) distance matrix (as in class RW). Given these considera-
tions, we opted for using in this paper the fastest version proposed by Resende and Werneck [32],
even though it requires ©(mn) memory positions.

Since the implementation is rather intricate, we abstain from describing it here. The reader is
referred to the original paper [32] for details and for an experimental comparison with Whitaker’s
implementation.

5 Intensification

In this section, we discuss the intensification aspects of our heuristic. We maintain a pool of elite
solutions, high-quality solutions found during the execution. Intensification occurs in two different

4 An earlier version of this paper [31] did refer to the algorithm as “GRASP with path-relinking”. We believe that
“hybrid heuristic” is a more accurate characterization.



stages, as Figure 1 shows. First, every multistart iteration contains an intensification step, in
which the newly generated solution is combined with a solution from the pool. Then, in the post-
optimization phase, solutions in the pool are combined among themselves. In both stages, the
strategy used to combine a pair of solutions is the same: path-relinking. Originally proposed for tabu
search and scatter search [13, 14], this procedure was first applied within the GRASP framework by
Laguna and Mart{ [22], and widely applied ever since (Resende and Ribeiro [30] present numerous
examples). Subsection 5.1 briefly describes how path-relinking works. Subsection 5.2 explains the
rules by which the pool is updated and solutions are taken from it. Finally, Subsection 5.3 discusses
the post-optimization phase.

5.1 Path-relinking

Let S; and Sy be two valid solutions, interpreted as sets of (open) facilities. The path-relinking
procedure starts with one of the solutions (say, S1) and gradually transforms it into the other (S2)
by swapping in elements from S5\ S1 and swapping out elements from S; \ S2. The total number of
swaps made is Sz \ S1|, which is equal to |Sy \ S2|; this value is known as the symmetric difference
between S7 and Ss. The choice of which swap to make in each stage is greedy: we always perform
the most profitable (or least costly) move.

As pointed out by Resende and Ribeiro [30], the outcome of the method is usually the best
solution found in the path from S; to Sz. Here we use a slight variant: the outcome is the best
local minimum in the path. A local minimum in this context is a solution that is both succeeded
(immediately) and preceded (either immediately or through a series of same-value solutions) in the
path by strictly worse solutions. If the path has no local minima, one of the original solutions (S
or S3) is returned with equal probability. When there is an improving solution in the path, our
criterion matches the traditional one exactly: it simply returns the best element in the path. It
is different only when the stardard path-relinking is unsuccessful, in which case we try to increase
diversity by selecting a solution other than the extremes of the path.

Note that path-relinking is very similar to the local search procedure described in Section 4, with
two main differences. First, the number of allowed moves is restricted: only elements in S5 \ S can
be inserted, and only those in S; \ S2 can be removed. Second, non-improving moves are allowed.
Fortunately, these differences are subtle enough to be incorporated into the basic implementation of
the local search procedure. In fact, both procedures share much of their code in our implementation.

We further augment the intensification procedure by performing a full local search on the solution
produced by path-relinking. Because this solution is usually very close to a local optimum, this
application tends to be much faster than on a solution generated by the randomized constructive
algorithm. A side effect of applying local search at this point is increased diversity, since we are free
to use facilities that did not belong to any of the original solutions.

We note that this procedure has some similarity with VNS [26]. Starting from a local optimum,
VNS obtains a solution in some extended neighborhood and applies local search to it, hoping to find
a better solution. The main difference is that VNS uses a randomized method to find the neighboring
solution, while we use a second local optimum as a guide. The distance from the new solution to
the original one (actually, to both extremes) is at least two in our case.

5.2 Pool Management

An important aspect of the algorithm is managing the pool of elite solutions. Empirically, we
observed that an application of path-relinking to a pair of solutions is less likely to be successful if
the solutions are very similar. The longer the path between the solutions, the greater the probability
that an entirely different local minimum (as opposed to the original solutions themselves) will be
found. It is therefore reasonable to take into account not only solution quality, but also diversity
when dealing with the pool of elite solutions.



The pool must support two essential operations: insertion of new solutions (represented by the
add function in Figure 1) and selection of a solution for path-relinking (the select function in the
pseudocode). We describe each of these in turn.

5.2.1 Insertion

For a solution S with cost ¢(S) to be added to the pool, two conditions must be met. First, its
symmetric difference from all solutions in the pool whose value is less than ¢(S) must be at least four;
after all, path-relinking between solutions that differ by fewer than four facilities cannot produce
solutions that are better than both original extremes, since they are local optima. Second, if the
pool is full, the solution must be at least as good as the worst elite solution (if the pool is not full,
this is obviously not necessary).

If both conditions are met, the solution is inserted. If the pool is not full and the new solution
is not within distance four of any other elite solution (including worse ones), it is simply added.
Otherwise, it replaces the most similar solution among those of equal or higher value.

5.2.2 Selection

In every iteration of the algorithm, a solution is selected from the pool (Figure 1, line 6) and
combined with S, the solution most recently found. An approach that has been applied to other
problems with some degree of success is to select a solution uniformly at random [30]. However, this
often means selecting a solution that is too similar to S, thus making the procedure unlikely to find
good new solutions. To minimize this problem, we pick solution from the pool with probabilities
proportional to their symmetric difference with respect to S. In Section 5.4.3, we show empirical
evidence that this strategy does pay off.

5.3 Post-optimization

In the process of looking for a good solution, the multistart phase of our heuristic produces not one,
but several different local optima, which are often not much worse than the best solution found. The
post-optimization phase in our algorithm combines these solutions to obtain even better ones. This
phase takes as input the pool of elite solutions, whose construction was described in previous sections.
Every solution in the pool is combined with each other by path-relinking. The solutions generated
by this process are added to a new pool of elite solutions (following the constraints described in
Section 5.2), representing a new generation. The algorithm proceeds until it creates a generation
that does not improve upon previous generations. Recently, similar multi-generation path-relinking
strategies have been used successfully within the GRASP framework [1, 33]. The generic idea of
combining solutions to obtain new ones is not new, however; it is one of the basic features of genetic
algorithms [15, 25].

5.4 Empirical Analysis

In this section, we analyze empirically some aspects of the intensification strategy. First, in Sec-
tion 5.4.1, we show how the execution of path-relinking during the multistart phase (and not only
during post-optimization) helps the algorithm find good solutions faster. Then, in Section 5.4.2,
we examine the question of which direction to choose when performing path-relinking between two
solutions S; or Sy: from S to Sz, from S to Si, or both? Finally, Section 5.4.3 compares different
strategies for selecting solutions from the pool in the multistart phase.



5.4.1 Path-relinking in the Multistart Phase

Our implementation is such that the randomized constructive solution produced in each multistart
iteration depends only on the initial seed, regardless of whether path-relinking is executed or not.
Therefore, if the number of iterations is the same, the addition of path-relinking to the multistart
phase cannot decrease solution quality. It could be the case, however, that the extra time spent on
path-relinking would lead to even better results if used for additional iterations instead.

To test this hypothesis, we took a few representative instances and ran both versions of the
heuristic (with and without path-relinking) for a period 100 times as long as the average time it
takes to execute one iteration (construction followed by local search) without path-relinking. We
then compared the quality of the solutions obtained as the algorithm progressed. The constructive
algorithm used was sample. Results in this test do not include post-optimization. We selected one
instance from each class (fl1400 from TSP, pmed40 from ORLIB, and rw500 from RW), and tested
each with seven values of p, from 10 to roughly one third of the number of facilities (m). The test
was repeated 10 times for each value of p, with 10 different seeds.

Figure 2 refers fl1400 with p = 500. The graph shows how solution quality improves over time.
Both quality and time are normalized. Times are given in multiples of the average time it takes to
perform one multistart iteration without path-relinking (this average is taken over all iterations of
all 10 runs).® Solution quality is given as a fraction of the average solution value found by the first
iteration (again, without path-relinking).

1.000 T T T T

without path-relinking
with path-relinking -------
0.999

0.998

0.997 |

0.996 N

relative quality

0.995 -\ E

T i

0.993 - ST . R

0.992 L L I L
2

relative time

Figure 2: Instance fl1400, p = 500: Quality of the best solution found as a fraction of the average
value of the first solution. Times are given as multiples of the average time required to perform one
multistart iteration. Smaller values are better.

Figures 3, 4 and 5 refer to the same experiment. Each curve in those graphs represents an
instance with a particular value of p. Times are normalized as before. The quality ratio, shown
in the vertical axis, is the ratio between the average solution qualities obtained with and without
path-relinking. Values smaller than 1.000 favor path-relinking.

5Note that the first time value shown in the graph is 2; at time 1, not all ratios are defined because in some cases
the first iteration takes more than average time to execute.
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Figure 3: Instance fl1400 (class TSP): Ratios between partial solutions found with and without path-
relinking. Times are normalized with respect to the average time it takes to execute one multistart
iteration. Values smaller than 1.000 favor the use of path-relinking.
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Figure 4: Instance pmed40 (class ORLIB): Ratios between partial solutions found with and without
path-relinking. Times are normalized with respect to the average time it takes to execute one
multistart iteration. Values smaller than 1.000 favor the use of path-relinking.
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Figure 5: Instance rw500 (class RW): Ratios between partial solutions found with and without path-
relinking. Times are normalized with respect to the average time it takes to execute one multistart
iteration. Values smaller than 1.000 favor the use of path-relinking.

These results confirm what should be expected. If very few iterations are performed, path-
relinking is not particularly helpful; solutions of comparable quality (or even better) can be found
using a “pure” multistart approach (construction followed by local search). However, if more time
is to be spent, using path-relinking is a good strategy, consistently leading to solutions of superior
quality within the same time frame. This is especially true for harder instances, those in which
p is large. Instance rw500 seems to be an exception; as p becomes greater than 75, the problem
apparently becomes easier.

5.4.2 Direction

An important aspect of path-relinking is the direction in which it is performed. Given two solutions
S1 and Sa, we must decide whether to go from S; to Sz, from S; to Sp, or both. We tested the
following criteria:

e random: Direction picked uniformly at random.

e up: From the best to the worst solution among the two; this has the potential advantage of
exploring more carefully the most promising vicinity.

e down: From the worst to the best solution; by exploring more carefully the vicinity of the
worst solution, it can find good solutions that are relatively far from the best known solutions,
thus favoring diversity.

e new: Start from the newly generated solution, not from the one already in the pool (this
strategy applies only to the multistart phase of the algorithm, not to the post-optimization
stage). Again, the goal is to obtain greater solution diversity.
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e none: Do not perform path-relinking during the multistart phase (this strategy cannot be
applied in the post-optimization stage).

e both: Perform path-relinking in both directions and return the best result. This method is
guaranteed to find the best solution in each case, but it takes roughly twice as much time as
the other methods.

We tested all valid combinations of these methods on the 10 instances of the restricted set defined
in Section 2.1, each with 10 different seeds. We ran our algorithm with 32 iterations and 10 elite
solutions, using sample as the constructive method. Tables 2, 3, and 4 show the results obtained
in the experiment. (The definitions of average relative percentage deviation and normalized relative
rank, used in these tables, are given in Section 3.)

Table 2: Solution quality of HYBRID with different path-relinking strategies: Average relative
percentage deviations. Each value represents how much the average solution value found by each
method is above (or below) the average found by all methods. Smaller values are better.

MULTISTART POST-OPTIMIZATION METHOD

METHOD both down  random up
none 0.056 0.056 0.033 0.024
both 0.005 0.009 -0.030  -0.007
down -0.010 0.007 -0.009  -0.012
random 0.001 0.004 -0.002 0.001
new -0.008 0.004 -0.007  -0.011
up -0.029  -0.032 -0.019  -0.022

Table 3: Solution quality of HYBRID with different path-relinking strategies: Average normalized
ranks. Smaller values are better.

MULTISTART POST-OPTIMIZATION METHOD

METHOD both down  random up
none -0.017  0.565 0.448  0.465
both -0.117  -0.143 -0.270 0.174
down -0.357  0.270 -0.265  0.004
random -0.183 0.209 -0.100 0.161
new -0.387  -0.030 -0.135  0.078
up -0.283  -0.209 -0.061  0.183

Table 4: HYBRID running times with different path-relinking strategies: Average relative percent
deviation with respect to the average.

MULTISTART POST-OPTIMIZATION METHOD

METHOD both  down random up
none 33.3  -12.2 -7.3 -6.9
both 27.8 -2.3 -0.5 -2.3
down 22.7 -9.4 -7.8 -9.4
random 20.1  -12.0 -9.7 -109
new 20.3 -8.7 -8.0 -11.1
up 23.1 -9.3 -10.0 -9.6

Note that some strategies can be discarded for being too slow without any clear improvement in
solution quality. That is the case of those that use strategy both in the post-optimization phase (and
also during the first stage of the algorithm, although the extra time in this case is far less relevant).
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Furthermore, using path-relinking during the multistart stage is clearly important; even though it
is still possible to obtain above-average solutions eventually if none is used in that phase, this only
happens if both is the strategy used in post-optimization — which results in much longer running
times.

Among the remaining strategies, Tables 2 and 3 show no clearly dominant one. Several combi-
nations of new, up, down, and random seem like reasonable choices. Five have better-than-average
quality according to both measures used: up:down, down:random, random:random, new:random, and
up:random (in our notation, the first method refers to the multistart phase of the algorithm, the sec-
ond to the post-optimization stage). We decided to use up:down in the final version of our algorithm,
since this was the method with the best average relative percentage deviation and a good average
rank. This method has the interesting feature of favoring quality when dealing with lower-quality
solutions (during the multistart phase), and diversity when the overall solution quality is higher
(during the post-optimization phase).

5.4.3 Selection Strategy

We have shown that applying path-relinking during the first stage of the algorithm helps finding
good solutions faster. Here, we analyze the criterion used to choose the elite solution to be combined
with S, the solution obtained after local search. Recall that the usual method is to select the solution
uniformly at random, and that we propose picking solutions with probabilities proportional to their
symmetric difference with respect to S. We call these strategies uniform and biased, respectively.

When performing path-relinking between a pair of solutions, our goal is to obtain a third solution
of lower cost. We consider the combination successful when this happens. The ultimate goal of the
selection scheme is to find, among the elite solutions, one that leads to a successful combination.
Better selection schemes will find one such solution with higher probability.

To determine which method is better according to this criterion, we performed the following
experiment on each of the 10 instances in the restricted set defined in Section 2.1. First, run the
multistart heuristic (without path-relinking) until a pool of 110 solutions is filled. Then, take the
top 10 solutions (call them F1, Es, ..., E1g) obtained and create a new pool. Denote the remaining
100 solutions by S, S9,...,S100. Perform path-relinking between each of these 100 solutions and
each solution in the pool, and decide based on the results which selection method (biased or uniform)
would have a greater probability of success if we had to select one of the 10 instances.

To compute the probability of success of each method, we need some definitions. Let s(i, ) be
1 if the path-relinking between S; and Ej; is successful, and 0 otherwise; also, let A(7, j) be the
symmetric difference between S; and E;. For a given solution S;, the probability of success for
uniform, if it were applied, would be

10 '
On the other hand, the probability of success of biased would be

Y24 [s(i, 5) - A, )]
i1 A )

For each of the 10 instances, the procedure described above was executed 10 times, with 10 seeds,
always using sample as the constructive algorithm and up as the path-relinking direction. Therefore,
for each instance, 1,000 selections were simulated (100 for each random seed).

The results are summarized in Table 5. For each instance, we show the percentage of cases in
which one method has greater probability of success than the other (when the probabilities are equal,
we consider the experiment a tie).

Note that in all cases biased has superior performance, sometimes by a significant margin. In
two cases the probability of a tie was almost 100%; this is due to the fact that path-relinking almost

U; =

bi =
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Table 5: Comparison between the uniform and biased selection schemes. Values represent percentage
of cases in which one method has greater probability of leading to a successful relink than the other.

INSTANCE SELECTION METHOD
NAME p | uniform TIE  biased
fI1400 150 38.7 10.8 50.5
11400 500 0.0 99.9 0.1
grl50 25 34.9 5.6 59.5
pcb3038 30 45.2 5.4 49.4
pcb3038 250 0.2 985 1.3
pmed15 100 14.5 4.5 81.0
pmed40 90 14.2 5.2 80.6
rw500 25 39.8 103 49.9
rw500 75 32.0 11.3 56.7
sl700 233 6.4 56.2 37.4

always works for those particular instances — any selection scheme would be successful. In situations
where there were “wrong” alternatives, biased was better at avoiding them.

6 Final Results

This section presents detailed results obtained by the final version of our algorithm, built based
on the experiments reported in previous sections. It uses sample as the randomized constructive
heuristic (see Section 3); path-relinking is executed in both stages of the algorithm (Section 5.4.1):
from the best to the worst solution during the multistart phase, and from the worst to the best
during post-optimization (Section 5.4.2); and solutions are selected from the pool in a biased way
during the multistart phase (Section 5.4.3). The results reported here refer to runs with 32 multistart
iterations and 10 elite solutions — of course, these numbers can be changed to make the algorithm
faster (if they are reduced) or to obtain better solutions (if they are increased).

We tested our algorithm on all instances mentioned in Section 2.1. We ran it nine times on
each instance, with different seeds. Tables 6 to 12 present the results. The last three columns
refer to the full version of our method, whereas the three that immediately precede them refer to
the multistart phase only. In each case, we present three different values: first, the median value
obtained (which always corresponds to some valid solution to the problem); second, the average
percentage error (%ERR), which indicates how much the average value obtained by our method is
above the best solution known (in percentage terms); third, the average running time in seconds.
All three measures consider the nine runs of the algorithm.

For reference, the tables also contain the lowest (to the best of our knowledge) upper bounds on
solution values available in the literature at the time of writing for each of the instances tested. The
optimum values are known for all instances in three classes: ORLIB [3], SL [40], and GR [40]. For
class TSP, we list the best upper bounds in the literature, as well as references to the papers that
first presented the bounds shown (they are presented in the SOURCE column in Tables 6, 7, and 8).
The bounds do not necessarily correspond to solutions found by the main heuristics described in
those papers — in some cases, they were found by other, more time-consuming methods. For several
instances, in at least one of the nine runs our procedure was able to improve the best bound known.
When that was the case, the improved bound is presented, and the SOURCE column contains a dash
(—). These values should not be considered the “final results” of our method when compared to
others, since they refer to especially successful runs; the truly representative results are the medians
and averages listed in the tables. Because class RW was introduced only recently [32], no good upper
bounds were available. Therefore, the BEST column in Table 12 presents the best solution found by
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the nine runs of our algorithm in each case.

Table 6: Final results for fl1400, an Euclidean instance from class TSP with 1400 nodes: median
values, average percentage errors, and running times in seconds. Best results reported by Hansen
and Mladenovi¢ (1997) and by Hansen et al. [18] are denoted by HMP97 and HMPO1, respectively.
All other best values were found by HYBRID itself.

BEST KNOWN SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID

p VALUE SOURCE MED Y%ERR TIME MED Y%ERR TIME
10 | 101249.47 HMPO1 | 101249.55  0.000 117.1 | 101249.55  0.000 118.5
20 57857.55 HMPO1 57857.94  0.001 76.8 57857.94  0.001 83.5
30 44013.48 — 44013.48  0.003 76.0 44013.48  0.000 106.2
40 35002.52 — 35002.60  0.007 68.6 35002.60  0.003 101.3
50 29089.78 HMPO1 29090.23  0.002 58.8 29090.23  0.002 73.9
60 25161.12 — 25166.91  0.028 57.0 25164.02  0.012 91.5
70 22125.53 HMPO1 22126.03  0.006 50.6 22126.03  0.002 70.2
80 19872.72 — 19878.45  0.046 49.8 19876.57  0.018 78.1
90 17987.94 HMPO1 18006.83  0.091 48.7 17988.60  0.013 74.2
100 16551.20 HM97 16567.01  0.099 47.3 16559.82  0.051 82.4
150 12026.47 — 12059.12  0.264 48.7 12036.00  0.068  132.5
200 9359.15 — 9367.98  0.098 49.4 9360.67  0.017 101.3
250 7741.51 — 7754.50  0.165 54.5 7746.31 0.057 130.3
300 6620.92 — 6637.81  0.258 57.8 6623.98  0.041 167.1
350 5720.91 — 5749.51  0.489 59.6 5727.17  0.097 177.6
400 5006.83 — 5033.96  0.571 64.1 5010.22  0.087 157.5
450 4474.96 — 4485.16  0.226 68.3 4476.68  0.059  170.7
500 4047.90 — 4059.16  0.265 71.9 4049.56  0.044  210.9

The tables show that our method found solutions within at most 0.1% of the previous best known
solutions in all cases. The only exception is class RW, for which there were greater deviations.
Although in these cases they were computed with respect to solutions found by HYBRID itself, this
does suggest that our method obtains better results in absolute terms on instances with well-defined
metrics (graphs and Euclidean instances), than on random instances (such as class RW).

6.1 Other Methods

We now analyze how our algorithm behaves in comparison with other methods in the literature.
We refer to our method (including the post-optimization phase) as HYBRID. For reference, we
also present the results obtained only by the multistart phase of the algorithm, called HYB-SS (for
“hybrid, single-stage”). The results presented in this section are averages taken from the %ERR and
TIME columns from Tables 6 to 12.

Other methods considered in the comparison are:

e VNS: Variable Neighborhood Search, by Hansen and Mladenovié [17]. Results for this method
are available for the ORLIB class (all 40 instances were tested, with running times given for
only 22 of them), for fl1400 (all 18 values of p), and pcb3038 (with only 10 values of p:
50,100,150, . ..,500). The values shown here were computed from those reported in Tables 1,
2, and 3 of Hansen and Mladenovié¢ [17].

e VNDS: Variable Neighborhood Decomposition Search, by Hansen et al. [18].
available for all ORLIB and TSP instances.®

Results are

6The authors also tested instances from Rolland et al. [34]; unfortunately, we were unable to obtain these instances
at the time of writing.
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Table 7: Final results for pcb3038, an Euclidean instance from class TSP with 3038 nodes: median
values, average percentage errors, and running times in seconds. Best results reported by Hansen et
al. [18] and by Taillard [42] are denoted by HMPO1 and Tai03, respectively. All other best values
were found by HYBRID itself.

BEST KNOWN SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID

D VALUE  SOURCE MED  %ERR TIME MED  %ERR TIME
10 | 1213082.03 — 1213082.03  0.000  1115.8 | 1213082.03  0.000  1806.3
20 840844.53 — 840844.53  0.004 647.9 840844.53  0.003 943.4
30 677306.76 — 678108.52  0.111 426.7 677436.66  0.038 847.0
40 571887.75 — 572012.44  0.054 312.6 571887.75  0.004 492.6
50 507582.13 — 507754.72  0.050 251.7 507663.80  0.013 472.4
60 460771.87 — 461194.61  0.102 218.2 460797.55  0.024 481.4
70 426068.24 — 426933.75  0.198 201.3 426153.31 0.020 470.9
80 397529.25 — 398405.57  0.234 188.5 397585.89  0.018 555.9
90 373248.08 — 374152.75  0.259 182.3 373488.82  0.061 380.8
100 352628.35 — 353576.86  0.289 174.0 352755.13  0.033 448.1

150 281193.96 Tai03 282044.70  0.297 163.3 281316.82  0.041 402.5
200 238373.26 — 238984.42  0.267 162.0 238428.35  0.030 406.9
250 209241.25 Tai03 209699.36  0.204 171.8 209326.83  0.041 407.5
300 187712.12 — 188168.32  0.223 184.4 187763.64  0.029 395.8
350 170973.34 Tai03 171443.87  0.266 200.0 171048.03  0.035 412.0
400 157030.46 Tai03 157414.79  0.251 203.4 157073.20  0.029 436.3
450 145384.18 — 145694.26  0.212 216.3 145419.81 0.023 462.3
500 135467.85 Tai03 135797.08  0.257 231.1 135507.73  0.030 478.5
550 126863.30 — 127207.83  0.267 243.8 126889.89  0.025 514.0
600 119107.99 HMPO1 119428.60  0.266 258.3 119135.62  0.026 595.8
650 112063.73 — 112456.15  0.339 271.0 112074.74  0.013 619.0

700 105854.40 — 106248.00  0.360 284.0 105889.22  0.034 637.3
750 100362.55 HMPO1 100713.79  0.337 296.4 100391.53  0.034 649.3
800 95411.78 — 95723.00  0.317 286.6 95432.66  0.023 677.8
850 91003.62 — 91268.56  0.298 296.1 91033.10  0.030 689.3
900 86984.10 — 87259.78  0.302 306.4 87022.59  0.037 730.4
950 83278.78 — 83509.58  0.265 314.3 83299.22  0.023 780.5
1000 79858.79 — 80018.33  0.193 321.7 79869.98  0.013 806.2
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Table 8: Final results for instance rl5934, an Euclidean instance from class TSP with 5934 nodes:
median values, average percentage errors, and running times in seconds. Best results reported by
Hansen et al. [18] are denoted by HMPO1. All other best values were found by HYBRID itself.

BEST KNOWN SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID
p VALUE SOURCE MED Y%ERR TIME MED Y%ERR TIME
10 | 9794951.00 HMPO1 | 9794973.65  0.000 5971.1 | 9794973.65  0.000 8687.1
20 | 6718848.19 — 6719116.39  0.007  3296.8 | 6719026.03  0.003 4779.6
30 | 5374936.14 — 5379979.09  0.131  2049.8 | 5376040.45  0.017 4515.1
40 | 4550364.60 — 4550843.75  0.022  1470.4 | 4550518.95  0.004 2499.3
50 | 4032379.97 — 4033758.13  0.059  1195.3 | 4032675.94  0.014 2280.6
60 | 3642397.88 — 3646198.03  0.089 996.1 | 3642949.30  0.022  2244.0
70 | 3343712.45 — 3348834.92  0.164 872.5 | 3344888.24  0.039 2138.3
80 | 3094824.49 — 3099917.93  0.150 778.8 | 3095442.55  0.033 1792.4
90 | 2893362.39 — 2898721.66  0.169 708.8 | 2894954.78  0.050  1844.2
100 | 2725180.81 — 2730313.90  0.180 671.2 | 2725580.72  0.015 1892.6
150 | 2147881.53 — 2151985.53  0.182 560.2 | 2148749.47  0.035 1209.2
200 | 1808179.07 — 1812249.63  0.209 526.6 | 1808658.73  0.029  1253.0
250 | 1569941.34 — 1573800.83  0.229 526.2 | 1570445.77  0.037 1203.8
300 | 1394115.39 — 1397064.23  0.229 550.1 | 1394361.41 0.022  1042.7
350 | 1256844.04 — 1259733.85  0.226 575.6 | 1257098.17  0.027 1246.4
400 | 1145669.38 HMPO1 | 1148386.49  0.224 583.8 | 1145961.13  0.033 1157.6
450 | 1053363.64 — 1055756.67  0.226 619.2 | 1053729.79  0.040 1236.9
500 973995.18 — 975940.78  0.197 641.7 974242.08  0.027  1236.7
600 848283.85 — 849765.46  0.174 703.7 848499.21 0.021  1439.4
700 752068.38 HMPO1 753522.21  0.189 767.3 752263.82  0.028  1566.6
800 676795.78 — 678300.99  0.205 782.1 676956.64  0.027  1574.9
900 613367.44 HMPO1 614506.49  0.183 834.5 613498.64  0.024 1722.0
1000 558802.38 HMPO1 559797.83  0.178 877.7 558943.93  0.024 1705.3
1100 511813.19 HMPO1 512793.56  0.203 931.4 511928.86  0.026  1893.4
1200 470295.38 HMPO1 471486.76  0.249 988.1 470411.12  0.023  2082.0
1300 433597.44 HMPO1 434688.75  0.258 1033.4 433678.02  0.020 2147.8
1400 401853.00 HMPO1 402796.80  0.232 1072.4 401934.24  0.020 2288.7
1500 374014.57 — 374803.24  0.207  1029.7 374056.40  0.012  2230.3
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Table 9: Final results obtained for class ORLIB, graph-based instances introduced by Beasley [3]:

median values, average percentage errors, and running times in seconds.

INSTANCE SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID
NAME n p OPT MED Y%ERR TIME MED Y%ERR TIME
pmed01l 100 5 5819 5819  0.000 0.5 5819  0.000 0.5
pmed02 100 10 4093 4093  0.000 0.4 4093  0.000 0.5
pmed03 100 10 4250 4250  0.000 0.4 4250  0.000 0.5
pmed04 100 20 3034 3034 0.000 0.4 3034 0.000 0.5
pmed05 100 33 1355 1355  0.000 0.4 1355  0.000 0.5
pmed06 200 5 7824 7824 0.000 1.8 7824 0.000 1.8
pmed07 200 10 5631 5631 0.000 1.4 5631 0.000 1.4
pmed08 200 20 4445 4445  0.000 1.2 4445  0.000 1.2
pmed09 200 40 2734 2734 0.000 1.2 2734 0.000 1.5
pmed10 200 67 1255 1255  0.000 1.3 1255  0.000 1.6
pmedll 300 5 7696 7696  0.000 3.5 7696  0.000 3.5
pmedl12 300 10 6634 6634  0.000 2.9 6634  0.000 2.9
pmed13 300 30 4374 4374 0.000 2.4 4374 0.000 2.5
pmedl4 300 60 2968 2968  0.000 2.9 2968  0.000 3.5
pmedl5 300 100 1729 1729  0.013 3.3 1729  0.006 4.3
pmedl6 400 5 8162 8162  0.000 8.1 8162  0.000 8.2
pmedl7 400 10 6999 6999  0.000 6.1 6999  0.000 6.3
pmedl18 400 40 4809 4809  0.005 5.5 4809  0.005 6.7
pmed19 400 80 2845 2845  0.000 6.3 2845  0.000 7.5
pmed20 400 133 1789 1789  0.000 7.1 1789  0.000 8.6
pmed21l 500 5 9138 9138  0.000 12.2 9138  0.000 12.2
pmed22 500 10 8579 8579  0.000 10.7 8579  0.000 11.3
pmed23 500 50 4619 4619  0.000 9.4 4619  0.000 11.0
pmed24 500 100 2961 2961 0.000 11.4 2961 0.000 13.1
pmed25 500 167 1828 1828  0.006 13.4 1828  0.000 16.2
pmed26 600 5 9917 9917  0.000 20.5 9917  0.000 20.5
pmed27 600 10 8307 8307  0.000 16.4 8307  0.000 16.4
pmed28 600 60 4498 4498  0.005 14.6 4498  0.000 17.4
pmed29 600 120 3033 3033 0.000 18.0 3033  0.000 21.0
pmed30 600 200 1989 1989  0.028 21.1 1989  0.000 26.9
pmed31l 700 5 10086 | 10086  0.000 28.8 | 10086  0.000 28.8
pmed32 700 10 9297 9297  0.000 22.8 9297  0.000 22.9
pmed33 700 70 4700 4700  0.000 20.6 4700  0.000 23.7
pmed34 700 140 3013 3013 0.011 25.8 3013 0.000 30.8
pmed35 800 5 10400 | 10400  0.000 36.7 | 10400  0.000 36.7
pmed36 800 10 9934 9934  0.000 317 9934  0.000 34.4
pmed37 800 80 5057 5057  0.000 28.8 5057  0.000 32.4
pmed38 900 5 11060 | 11060  0.000 52.9 | 11060  0.000 52.9
pmed39 900 10 9423 9423  0.000 36.5 9423  0.000 36.5
pmed40 900 90 5128 5129  0.020 36.6 5128  0.011 43.4

Table 10: Final results for class SL, graph-based instances introduced by Senne and Lorena [40]:

median values, average percentage errors, and running times in seconds.

INSTANCE SINGLE-STAGE HYBRID | DOUBLE-STAGE HYBRID
NAME n p OPT | MED %ERR TIME | MED %ERR  TIME
sl700 700 233 1847 | 1848  0.060  30.2 | 1847  0.000 39.5
sI800 800 267 2026 | 2027  0.033  41.8 | 2026  0.000 53.2
sl900 900 300 2106 | 2107  0.037  54.1 | 2106  0.011 68.2
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Table 11: Final results for class GR, graph-based instances introduced by Galvao and ReVelle [10]:
median values, average percentage errors, and running times in seconds.

INSTANCE SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID
NAME P OPT MED %ERR TIME MED %ERR TIME
grl00 5 5703 5703 0.000 0.5 5703 0.000 0.5

10 4426 4426  0.105 0.6 4426  0.070 1.0
15 3893 3893  0.000 0.5 3893  0.000 0.8
20 3565 3565  0.009 0.4 3565  0.000 0.7
25 3291 3291 0.003 0.4 3291 0.000 0.7
30 3032 3032 0.000 0.4 3032 0.000 0.6
40 2542 2542 0.000 0.4 2542 0.000 0.6
50 2083 2083  0.011 0.4 2083  0.005 0.6
grl50 5 10839 | 10839  0.000 1.3 | 10839  0.000 1.3
10 8729 8729  0.033 1.1 8729  0.017 2.0
15 7390 7390  0.036 1.0 7390  0.011 1.7
20 6454 6462  0.167 0.9 6462  0.083 1.5
25 5875 5887  0.246 0.9 5875  0.100 1.7
30 5495 5502  0.135 0.8 5495  0.010 1.5
40 4907 4907  0.011 0.8 4907  0.002 1.2
50 4374 4375  0.025 0.8 4375  0.015 1.2

Table 12: Final results for class RW, random instances introduced by Resende and Werneck [32]:
median values, average percentage errors, and running times in seconds.

INSTANCE SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID

NAME P BEST MED  %ERR  TIME MED %ERR  TIME
rw100 10 530 530  0.042 0.7 530  0.000 1.3
20 277 277 0.000 0.5 277 0.000 0.7

30 213 213 0.000 0.4 213 0.000 0.5

40 187 187 0.000 0.3 187  0.000 0.5

50 172 172 0.000 0.3 172 0.000 0.4

rw250 10 3691 3691  0.084 6.1 3691 0.063 10.4
25 1364 1370  0.587 3.3 1364  0.204 5.8

50 713 718  0.701 2.1 713 0.109 3.9

75 523 523  0.064 1.9 523  0.000 2.6

100 444 444 0.000 1.8 444 0.000 2.2

125 411 411 0.000 1.5 411 0.000 2.0

rw500 10 16108 | 16259  0.813 33.1 | 16108  0.068 76.9
25 5681 5749  0.974 20.8 5683  0.241 46.9

50 2628 2657  1.120 14.1 2635  0.364 27.7

75 1757 1767  0.746 11.6 1757  0.177 20.5

100 1380 1388  0.515 11.5 1382  0.105 20.4

150 1024 1026 0.174 11.1 1024  0.011 15.4

200 893 893  0.025 11.8 893  0.000 14.4

250 833 833  0.000 9.6 833  0.000 11.6

rw1000 10 67811 | 68202  0.642 153.6 | 68136  0.466 256.3
25 24896 | 25192 1.375 111.1 | 24964  0.451 293.5

50 11306 | 11486 1.501 77.7 | 11360  0.602  169.1

75 7161 7302 1.930 60.2 7207  0.576  160.1

100 5223 5297  1.500 55.5 5259  0.598  109.8

200 2706 2727 0.756 57.5 2710 0.164 100.4

300 2018 2021 0.099 55.2 2018  0.022 71.5

400 1734 1734  0.013 61.8 1734 0.000 73.5

500 1614 1614  0.000 47.9 1614 0.000 55.9
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e LOPT: Local Optimization method, proposed by Taillard [42]. The method works by heuris-
tically solving locally defined subproblems and integrating them into a solution to the main
problem. The author provides detailed results (in Table 7) only for instance pcb3038, with
nine values of p, all multiples of 50 between 100 to 500.

e DEC: Decomposition Procedure, also studied by Taillard [42] and based on the decomposition
of the original problem. Results are provided for the same nine instances as LOPT.

e LSH: Lagrangean-Surrogate Heuristic, described by Senne and Lorena [40]. Their paper con-
tains results for six ORLIB instances (pmed05, pmed10, pmed15, pmed20, pmed25, pmed30), for
nine values of p for pcb3038 (the same nine used with LOPT), and for all instances in classes
SL and GR. Our comparison uses values taken from Tables 1, 2, and 3 in the paper.

e CGLS: Column Generation with Lagrangean/Surrogate Relaxation, studied by Senne and
Lorena [41]. Results are available for 15 ORLIB instances (pmed01, pmed05, pmed06, pmed07,
pmed10, pmedll, pmedl2, pmedl3, pmedl5, pmedl6, pmedl7, pmedl18, pmed20, pmed25, and
pmed30), for all three SL instances, and for five values of p on instance pcb3038 (300, 350, 400,
450, and 500). We consider here the results found by method CG(t), taken from Tables 1, 2,
and 4 in the paper.

Table 13 presents, for each of the methods studied, the average percentage deviation with respect
to the best solutions known, as given by Tables 6 to 11 above. Values for HYBRID and HYB-SS were
computed from the %ERR columns in those tables. Each instance in class TSP is shown separately to
allow a more precise analysis of the algorithms. Values in slanted font indicate that not all instances
in the set were considered in the paper describing the method. A dash (—) is shown when no result
for the class is available. Class RW is not included in this comparison, since the only results available
are those obtained by our method.

Table 13: Average percentage deviations of each method with respect to the best solution known.
Values in slanted font indicate that not all instances in the set were tested by the method. Smaller
values are better.

SERIES HYBRID HYB-SS CGLS DEC LOPT LSH VNDS VNS
GR 0.020 0.049 — — — 0.727 —
SL 0.004 0.043 0.691 — —  0.332 —
ORLIB 0.001 0.002 0.101 — — 0.000 0.116  0.007
fl1400 0.032 0.145 — — — — 0.071  0.191
pcb3038 0.026 0.222 0.043 4.120 0.712 2.316 0.117  0.354
rl5934 0.024 0.170 — — — — 0.142 —

The table shows that HYBRID is the only one whose average results are within 0.04% of the best
values known for all classes. Furthermore, it obtained the best results on average in five out of six
sets of instances. The only exception is class ORLIB: LSH found the optima of the six instances on
which it was tested, whereas our method remained within 0.001% of optimality on all 40 instances
(if we consider the median value obtained by HYBRID on each instance, instead of the average, it
does find all 40 optima).

In any case, the difference between HYBRID and other methods is often very small. Several
methods are virtually as good as ours in one or another class: that is the case of VNDS for all three
TSP instances; of VNS and LSH for ORLIB instances; and of CGLS for pcb3038. This reveals the
greatest strength of our method: robustness. It was able to obtain competitive results for all classes
of instances. No other method among those tested has shown such degree of consistency.

Of course, we also have to consider the running times of the methods involved. Since we do not
have access to all the algorithms compared, we present the running times reported by their authors.
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However, because different machines were used in each case, a direct comparison is impossible. For
reference, Table 14 presents rough estimates of the relative speed of the machines involved. It shows
the number of megaflops per second as reported by Dongarra [5]. These values refer to the number
of floating-point operations — not terribly relevant for most algorithms compared, but they at least
give an idea of the relative performance of the machines. Whenever the exact model reported in
a paper (shown in the second column of Table 14) was not in Dongarra’s list, we show results
for a similar machine with the same processor (third column in the table). We note that “Sun
SparcStation 10”. the computer model mentioned by Hansen and Mladenovié¢ [17] and Taillard [42],
and “Sun Ultra 30”7, mentioned by Senne and Lorena [40, 41], do not uniquely define the processor
speed. In these cases, we present a range of values.

Table 14: Machines in which the various algorihms were tested.

METHOD MACHINE USED SIMILAR [5] MFLOP/S
CGLS Sun Ultra 30  Sun UltraSparc II 250/300 MHz 114-172
DEC Sun SparcStation 10  Sun Sparcl0 or Sun Sparcl0/52 10-23
HYBRID | SGI Challenge (196 MHz) SGI Origin 2000 195 MHz 114
HYB-SS SGI Challenge (196 MHz) SGI Origin 2000 195 MHz 114
LOPT Sun SparcStation 10  Sun Sparcl0 or Sun Sparcl10/52 10-23
LS Sun Ultra 30  Sun UltraSparc II 250/300 MHz 114-172
VNDS Sun Ultra I (143 MHz) Sun Ultra 1 mod. 140 63
VNS Sun SparcStation 10 Sun Sparcl0 or Sun Sparcl0/52 1023

For each instance in which a method was tested, we compute the ratio between the time it
required and the running time of HYBRID. Table 15 presents the geometric means of these ratios
taken over the instances in each set (once again, only instances tested by the relevant method are
considered). We believe this makes more sense than the usual arithmetic mean in this case: if a
method is twice as fast as another for 50% of the instances and half as fast for the other 50%,
intuitively the methods should be considered equivalent. The geometric mean reflects that, whereas
the arithmetic mean does not.

Table 15: Mean ratios between the running times obtained by methods in the literature and those
obtained by HYBRID (on different machines, see Table 14). Smaller values are better. Values in
slanted font indicate that there are instances in the set for which times are not available.

SERIES HYBRID HYB-SS CGLS DEC LOPT LSH VNDS VNS
GR 1.00 0.65 — — — 1.11 — —
SL 1.00 0.78 0.51 — —  24.20 — —
ORLIB 1.00 0.90 55.98 — — 4.13 0.46 5.47
fl1400 1.00 0.55 — — — — 0.58 19.01
pcb3038 1.00 0.46 9.55 0.21 0.35 1.67 2.60  30.94
rl5934 1.00 0.48 — — — — 2.93 —

One important observation regarding the values presented should be made: for VNS and VNDS,
the times taken into consideration are times in which the best solution was found (as in the papers
that describe these methods [17, 18)); for all other algorithms (including ours), the total running time
is considered. The values reported for our algorithm also include the time necessary to precompute
all pairwise vertex distances in graph-based classes (ORLIB and SL).

Values greater than 1.00 in the table favor our method, whereas values smaller than 1.00 favor
others. One cannot not take these results too literally, since they were obtained on different machines
(as seen in Table 14). Small differences in running time should not be used to draw any conclusion
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regarding the relative effectiveness of the algorithms; in particular, running times within the same
order of magnitude should be regarded as indistinguishable.

Based on rough estimates of the relative running times, the only methods that appear to be
significantly faster than ours are DEC and LOPT, at least for the instances tested. Even though
these methods (especially LOPT) can obtain solutions of reasonable quality, they are not as close
to optimality as those obtained by slower methods such as ours or CGLS. Clearly, there is a trade-
off between time and quality that has to be taken into account. Another particularly fast method
is VNDS, which obtains solutions that are slightly worse on average than those obtained by our
method, but does so in less time.

As a final note, we observe that the single-stage version of our algorithm (HYB-SS) is competitive
with other methods in the graph-based classes, but lags significantly behind for Euclidean instances
(though in these cases it takes roughly half the time of the full HYBRID procedure). This shows
that the post-optimization phase plays a crucial role in the robustness of HYBRID.

7 Concluding Remarks

This paper presented a hybrid heuristic for the p-median problem that combines elements of several
“pure” metaheuristics. It resembles GRASP in the sense that it is a multistart method in which a
solution is built by a randomized constructive method and submitted to local search in each iteration.
As an intensification strategy, we use path-relinking, a method originally devised for tabu search and
scatter search. Solutions obtained by path-relinking, if far enough from the original extremes, are
also subject to local search, which has some similarity with VNS. In the post-optimization phase, our
algorithm uses the concept of multiple generations, a characteristic of genetic algorithms. We have
shown that a careful combination of these elements results in a remarkably robust algorithm, capable
of handling a wide variety of instances and competitive with the best heuristics in the literature.

We stress the fact that all results shown in Section 6 were obtained by the final version of our
algorithm, with the same input parameters in all cases. The goal of the experiments shown in
Sections 3, 4, and 5, in which various components and parameters were analyzed separately, was
precisely to identify parameters that are robust enough to handle different kinds of instances, with
no need for extra class-specific tuning. The tests were presented as a means to justify the decisions
we made, and are not meant to be repeated by the end user. Although some gains could be obtained
by additional tuning, we believe they would be very minor, and not worth the effort. The only two
parameters whose change would significantly alter the behavior of the algorithm are the number of
iterations and of elite solutions (these parameters were set to 32 and 10, respectively, in Section 6).
The effect in both cases is predictable: an increase in any of these parameters would very likely
result in better solutions at the expense of higher running times. Given these considerations, we
believe our heuristic is a valuable candidate to be a general-purpose solver for the p-median problem.
As such, the program is available from the authors upon request, or it can be directly downloaded
from http://www.research.att.com/ “mgcr/popstar/.

We do not claim, of course, that our method is the best in every circumstance. Other methods
described in the literature can produce results of remarkably good quality, often at the expense of
somewhat higher running times. VNS [17] is especially successful for graph instances; VNDS [18]
is particularly strong for Euclidean instances, and is often significantly faster than our method
(especially when the number of facilities to open is very small); and CGLS [41], which can obtain
very good results for Euclidean instances, has the additional advantage of providing good lower
bounds. LOPT [42] is significantly faster than our method for TSP instances, while still obtaining
reasonably good solutions. After the preliminary version of our paper appeared [31], at least two
algorithms worthy of notice have been published. Garcia-Lépez et al. [12] suggest a parallel scatter
search heuristic that obtains excellent results on instance fI1400 (even improving some of the upper
bounds shown in Table 6), but with much higher running times. Avella et al. [2] developed a branch-
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and-cut-and-price algorithm for the p-median problem that can solve large instances to optimality.
Failing to do that, at the very least it can provide very good approximations. This method is very
competitive in terms of both solution quality and runnning times. The reader is referred to their
paper for a direct comparison with HYBRID.

The goal of our method is to produce close-to-optimal solutions. Therefore, it should be said
that it does not handle well really large instances. If the input is a graph with millions of vertices,
simply computing all-pairs shortest paths would be prohibitively slow. For that purpose, one would
probably be better off relying on methods based on sampling techniques like the one proposed by
Thorup [45]. Their aim is to find solutions that are “good”, not near-optimal, in a reasonable (quasi-
linear) amount of time. However, if one is interested in solving instances large enough to preclude
the application of exact algorithms, but not so large so as to make anything worse than quasi-linear
prohibitive, our method has proven to be a very worthy alternative.

An interesting research topic would be to combine elements in this paper with those of alternative
heuristics for the p-median problem. For example, the fast implementation of the local search
procedure could be used within VNS, LSH, or CGLS. The combination of elite solutions through
path-relinking could be used with any method that generates a population of solutions, such as VNS,
VNDS, or tabu search. LOPT and DEC, which are significantly faster than our method, could be
used instead of the randomized constructive algorithm in the multistart phase of our algorithm.

Some of the ideas proposed here may even have applications beyond the p-median and related lo-
cation problems. In particular, we believe the modifications we proposed to standard path-relinking
are worthy of deeper investigation. Our algorithm benefited from strategies that improve diversity:
selecting solutions from the pool in a biased way, returning a local minimum in the path if no improv-
ing solution is found, and applying local search to the solution returned. These strategies, combined
with multi-generation path-relinking, can be easily incorporated into traditional metaheuristics with
wide application, such as GRASP, tabu search, and VNS.
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