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Abstract

We present a multistart heuristic for the uncapacitated facility location problem, based on a very successful method
we originally developed for the p-median problem. We show extensive empirical evidence to the effectiveness of our
algorithm in practice. For most benchmarks instances in the literature, we obtain solutions that are either optimal
or a fraction of a percentage point away from it. Even for pathological instances (created with the sole purpose of being
hard to tackle), our algorithm can get very close to optimality if given enough time. It consistently outperforms other

heuristics in the literature.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a set F of potential facilities, each with
a setup cost c(f), and let U be a set of users (or
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customers) that must be served by these facilities.
The cost of serving user u with facility f is given
by the distance d(u, f) between them (often referred
to as service cost or connection cost as well). The
facility location problem consists in determining a
set S C F of facilities to open so as to minimize
the total cost (including setup and service) of cov-
ering all customers:

cost(S) = Z c(f)+ Zminfesd(u,f).
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Note that we assume that each user is allocated
to the closest open facility, and that this is the
uncapacitated version of the problem: there is no
limit to the number of users a facility can serve.
Even with this assumption, the problem is NP-
hard [8].

This is perhaps the most common location
problem, having been widely studied in the litera-
ture, both in theory and in practice.

Exact algorithms for this problem do exist
(some examples are [7,25]), but its NP-hard nature
makes heuristics the natural choice for larger
instances.

Ideally, one would like to find heuristics with
good performance guarantees. Indeed, much pro-
gress has been made in terms of approximation
algorithms for the metric version of this problem
(in which all distances obey the triangle inequal-
ity). In 1997, Shmoys et al. [37] presented the first
polynomial-time algorithm with a constant
approximation factor (roughly 3.16). Several im-
proved algorithms have been developed since then,
with some of the latest [21,22,29] being able to find
solutions within a factor of around 1.5 from the
optimum. Unfortunately, there is not much room
for improvement in this area. Guha and Khuller
[16] have established a lower bound of 1.463 for
the approximation factor, under some widely be-
lieved assumptions.

In practice, however, these algorithms tend to
be much closer to optimality for non-pathological
instances. The best algorithm proposed by Jain
et al. in [21], for example, has a performance guar-
antee of only 1.61, but was always within 2% of
optimality in their experimental evaluation.

Although interesting in theory, approximation
algorithms are often outperformed in practice by
more straightforward heuristics with no particular
performance guarantees. Constructive algorithms
and local search methods for this problem have
been used for decades, starting from the pioneer-
ing work of Kuehn and Hamburger [27]. Since
then, more sophisticated metaheuristics have been
applied, such as simulated annealing [2], genetic
algorithms [26], tabu search [13,31,38,39], and
the so-called “complete local search with memory”
[13]. Dual-based methods, such as Erlenkotter’s
dual ascent [10], Guignard’s Lagragean dual ascent

[17], and Barahona and Chudak’s volume algo-
rithm [3] have also shown promising results.

An experimental comparison of some state-
of-the-art heuristics is presented by Hoefer in [20]
(slightly more detailed results are presented in
[18]). Five algorithms are tested: JMS, an approx-
imation algorithm presented by Jain et al. in
[22]; MYZ, also an approximation algorithm, this
one by Mahdian et al. [29]; swap-based local
search; Michel and Van Hentenryck’s tabu search
[31]; and the volume algorithm [3]. Hoefer’s con-
clusion, based on experimental evidence, is that
tabu search finds the best solutions within rea-
sonable time, and recommends this method for
practitioners.

In this paper, we provide an alternative that can
be even better in practice. It is a hybrid multistart
heuristic akin to the one we developed for the p-
median problem in [36]. A series of minor adapta-
tions is enough to build a very robust algorithm
for the facility location problem, capable of
obtaining near-optimal solutions for a wide variety
of instances of the facility location problem.

The remainder of the paper is organized as fol-
lows. In Section 2, we describe our algorithm and
its constituent parts. Section 3 presents empirical
evidence to the effectiveness of our method, includ-
ing a comparison with Michel and Van Hen-
tenryck’s tabu search. Final remarks are made in
Section 4.

2. The algorithm

In [36], we introduce a new hybrid metaheuristic
and apply it to the p-median problem. Fig. 1 repro-
duces the outline of the algorithm, exactly as pre-
sented there.

The method works in two phases. The first is a
multistart routine with intensification. In each iter-
ation, it builds a randomized solution and applies
local search to it. The resulting solution (S) is com-
bined, through a process called path-relinking, with
some other solution from a pool of elite solutions
(which represents the best solutions found thus
far). This results in a new solution S’. The algo-
rithm then tries to insert both S’ and S into the
pool; whether any of those is actually inserted
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function HYBRID (seed, mawit, elitesize)
1 randomize(seed);

2 init(elite, elitesize);

3 for i =1 to maxit do

4 S «— randomizedBuild();

5 S « localSearch(S5);

6 S’ «— select(elite, S);

7 if (9" #NULL) then

8 S’ + pathRelinking(S,S’);

9 add(elite, S');
10 endif

11 add(elite, S);

12 endfor

13 S < postOptimize(elite);
14  return S;
end HYBRID

Fig. 1. Pseudocode for HYBRID, as given in [36].

depends on its value, among other factors. The
second phase is post-optimization, which com-
bines the solutions in the pool with one another
in a process that hopefully results in even better
solutions.

We call this method HYBRID because it combines
elements of several other metaheuristics, such as
scatter and tabu search (which make heavy use
of path-relinking) and genetic algorithms (from
which we take the notion of generations). A more
detailed analysis of these similarities is presented in
[36].

Of course, Fig. 1 presents only the outline of an
algorithm. Many details are left to be specified,
including which problem it is supposed to solve.
Although originally proposed for the p-median
problem, there is no specific mention to it in the
code, and in fact the same framework could be ap-
plied to other problems. In this paper, our choice
is facility location.

Recall that the p-median problem is very similar
to facility location: the only difference is that, in-
stead of assigning setup costs to facilities, the p-
median problem must specify p, the exact number
of facilities that must be opened. With minor
adaptations, we can reuse several of the compo-
nents used in [36], such as the constructive algo-
rithm, local search, and path-relinking.

The adaptation of the p-median heuristic shown
in this paper is as straightforward as possible.
Although some problem-specific tuning could lead
to better results, the potential difference is unlikely
to be worth the effort. We therefore settle for sim-
ple, easy-to-code variations of the original
method.

2.1. Constructive heuristic

In each iteration 7, we first define the number of
facilities p; that will be open. This number is [1m/2]
in the first iteration; for i > 1, we pick the average
number of facilities in the solutions found (after
local search) in the first i — 1 iterations. Now that
we have p;, we execute the sample procedure ex-
actly as described in [36]. It adds facilities one by
one. In each step, the algorithm chooses
[log,(m/p,)] facilities uniformly at random and se-
lects the one among those that reduces the total
service cost the most.

2.2. Local search

The local search used in [36] is based on swap-
ping facilities. Given a solution S, we look for
two facilities, f, € S and f; ¢ S, which, if swapped,
lead to a better solution. A property of this meth-
od is that it keeps the number of open facilities
constant. This is required for the p-median prob-
lem, but not for facility location, so in this paper
we also allow “pure” insertions and deletions (in
addition to swaps). All possible insertions, dele-
tions, and swaps are considered, and the best
among those is performed. The local search stops
when no improving move exists, in which case
the current solution is a local minimum (or local
optimum). This local search is known as flip +
swap [23].

The actual implementation of the local search is
essentially the same used in [36] (and described in
detail in [34,35]) for the p-median problem. We
briefly recall the main ideas here. Let profit (f..f,)
be the amount by which the solution value is
reduced if f; is the facility inserted and f, the one
removed. The algorithm computes the profit asso-
ciated to every pair (f;,f,) (with f; ¢ S and f,. € S).
If the maximum profit is positive, we perform the
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corresponding swap and repeat; otherwise, we
stop. The computation is divided into three
components:

o save(f;): decrease in solution value due to the
insertion of f; (with no associated removal);

e Joss(f,): increase in solution value due to the
removal of f, (with no associated insertion);

o extra(f;,f,): a positive correction term that
accounts for the fact that the insertion of f;
and the removal of f, may not be independent
(a user previously assigned to f, may be reas-
signed to f;); the definition of extra is such that
the following relation holds:

profit(fi, f,) = save(f;) — loss(f,) + extra(f;, ;).

Instead of computing these values from scratch
in each iteration, our implementation just updates
them from one iteration of the local search to an-
other. To achieve this goal, save and loss are repre-
sented as arrays; extra, being the only term that
depends on both f; and f,, is represented as a
matrix.

It can be shown [35] that extra(f;,f,) is nonzero
only when f; and f, are “close”” to each other.” One
only has to worry explicitly about the nonzero
terms; all others are determined implicitly. This
observation is crucial for a fast implementation
of the local search procedure, since it allows extra
to be represented as a sparse matrix. In instances
from the literature, this implementation has been
shown [35] to be up to three orders of magnitude
faster than previous methods (even though its
worst-case complexity, O(mn), is the same) for
the p-median problem.

As mentioned in [34], this algorithm can be
adapted to the facility location problem in a very
natural way. First, we must take setup costs into
account, which can be accomplished simply by
subtracting them from save and loss. Second, we
must consider that single insertions or deletions
are now valid moves (and not only swaps). But this
comes for free: save and loss already represent the
profits obtained with insertions and deletions,

2 More precisely, when there is at least one user for which f; is
closer than the second closest facility in the original solution.

respectively. These are the only differences between
the algorithms.

2.3. Path-relinking

Path-relinking is an intensification procedure
originally devised for scatter search and tabu
search [14,15,28], but often used with other meth-
ods, such as GRASP [32,33]. In this paper, we ap-
ply the variant described in [36]. It takes two
solutions as input, S| and S,. The algorithm starts
from S; and gradually transforms it into S,. The
operations that change the solution in each step
are the same used in the local search: insertions,
deletions, and swaps. In this case, however, only
facilities in S,\S| can be inserted, and only those
in S;\S> can be removed. In each step, the most
profitable (or least costly) move—considering all
three kinds—is performed. The procedure returns
the best local optimum on the path from S; to
S,. If no local optimum exists, one of the extremes
is chosen with equal probability.

2.4. Elite solutions

The add operation in Fig. 1 must decide
whether a new solution should be inserted into
the pool or not. The criteria we use here are similar
to those proposed in [36]. They are based on the
notion of symmetric difference between two solu-
tions S, and S,, defined as |S,\S;| + |S;,\S(,|.3 A
new solution will be inserted into the pool only
if its symmetric difference to each cheaper solu-
tion already there is at least four. Moreover, if
the pool is full, the new solution must also cost less
than the most expensive element in the pool; in
that case, the new solution replaces the one
(among those of equal or greater cost) it is most
similar to.

2.5. Intensification

After each iteration, the solution S obtained
by the local search procedure is combined (with

3 This definition is slightly different from the one we used for
the p-median problem, since now different solutions need not
have the same number of facilities.
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path-relinking) with a solution S’ obtained from
the pool, as shown in line 8 of Fig. 1. Solution
S’ is chosen at random, with probability propor-
tional to its symmetric difference to S. Path-relink-
ing is always performed from the best to the worst
solution among the two.

2.6. Post-optimization

Once the multistart phase is over, all elite solu-
tions are combined with one another, also with
path-relinking (within each pair, path-relinking is
performed from the worst to the best solution).
The solutions thus produced are used to create a
new pool of elite solutions (subject to the same
rules as in the original pool), to which we refer
as a new generation. If the best solution in the
new generation is strictly better than the best pre-
viously found, we repeat the procedure. This pro-
cess continues until a generation that does not
improve upon the previous one is created. The best
solution found across all generations is returned as
the final result of the algorithm.

2.7. Parameters

As the outline in Fig. 1 shows, the procedure
takes only two input parameters (other than the
random seed): the number of iterations in the mul-
tistart phase and the size of the pool of elite solu-
tions. In [36], we set those values to 32 and 10,
respectively. In the spirit of keeping changes to a
minimum, we use the same values here for the
“standard version” of our algorithm.

Whenever we need versions of our algorithm
with shorter or longer running times (to ensure a
fair comparison with other methods), we change
both parameters. Recall that the running time of
the multistart phase of the algorithm depends lin-
early on the number of iterations, whereas the
post-optimization phase depends quadratically
(roughly) on the number of elite solutions (because
all solutions are combined among themselves).
Therefore, if we want to multiply the average run-
ning time of the algorithm by some factor x, we
just multiply the number of multistart iterations
by x and the number of elite solutions by /x
(rounding appropriately).

We observe that running time and solution qual-
ity are determined by several design choices, and
not only the number of iterations and of elite solu-
tions. Consider the intensification strategies, for
instance. To reduce the running time of the algo-
rithm, we could decide not to run the post-optimi-
zation phase, or not to run path-relinking during
the multistart phase (or not at all). Or, to increase
solution quality, we could consider performing
path-relinking between two solutions S; and S5 in
both ways (from S; to S, and from S, to Sy) and
picking the best. We could also try other construc-
tive heuristics. These and other variants of the algo-
rithm are studied in the context of the p-median
problem in [36]. The variant reported here achieved
the best balance overall between running time and
solution quality. The most important aspects of the
algorithm are the fast implementation of the local
search and the use of path-relinking. Other aspects,
such as the constructive heuristic, the methods for
maintaining the pool of elite solutions, and the pre-
cise criteria for adding and removing solutions
from it played relatively minor roles.

3. Empirical results
3.1. Experimental setup

The algorithm was implemented in C++ and
compiled with the SGI MIPSPro C++ compiler
(v. 7.30) with flags -03 -OPT:01imit = 65886.
The program was run on an SGI Challenge with
28 196-MHz MIPS R10000 processors, but each
execution was limited to a single processor. All
times reported are CPU times measured by the
getrusage function with a precision of 1/60 sec-
ond. The random number generator we used was
Matsumoto and Nishimura’s Mersenne Twister
[30]. The source code for the algorithm is available
from the authors upon request.

The algorithm was tested on all classes from the
UflLib [20] at the time of writing and on class
GHOSH, described in [13]. In every case, the num-
ber of users is the same as the number of potential
facilities. The reader is referred to [19] and [13] for
detailed descriptions of each class. A brief over-
view is presented below:
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e BK: Generated based on the description pro-
vided by Bilde and Krarup [6]. There are 220
instances in total, with 30 to 100 users. Connec-
tion costs are always picked uniformly at ran-
dom from [0, 1000]. Setup costs are always at
least 1000, but the exact range depends on the
subclass (there are 22 of those, with 10 instances
each).

FPP: Class introduced by Kochetov and Iva-
nenko [23,24]. Each instance corresponds to a
finite projective plane of order k, with
n=k*>+ k+ 1 points and n lines. In the UFL
instance, the distance between i and j is an inte-
ger between 0 and 4 if point j is on line i, and
infinity otherwise; at most n + 1 values are
finite. Setup costs are 3000. There are two sub-
classes, each with 40 instances: FPP11 (with
k=11 and n = 133) and FPP17 (with k =17
and n = 307). Although optimal solutions in
this class can be found in polynomial time, the
instances are hard for algorithms based on the
flip + swap local search, since each instance
has a large number of strong local optima and
the distance between them is at least 2k [23].
GAP: Also designed by Kochetov and Ivanenko
[23,24], these instances have large duality gaps,
usually greater than 20%. They are hard espe-
cially for dual-based methods. Setup costs are
always 3000. The service cost associated with
each facility is infinity for most customers,
and between 0 and 5 for the remaining few
(the end result resembles a set covering
instance). There are three subclasses (GAPA,
GAPB, and GAPC), each with 30 instances.
Each customer in GAPA is covered by 10 facil-
ities (i.e., the service cost for all others is infin-
ity); each facility in GAPC covers exactly 10
customers; subclass GAPC (the hardest) com-
bines both constraints: each customer is covered
by 10 facilities, and each facility covers 10 cus-
tomers. On all cases, assignments are made at
random.

GHOSH: Class created by Ghosh in [13], follow-
ing the guidelines set up by Korkel in [25].
There are 90 instances in total, with n = m on
all cases. They are divided into two groups of
45 instances, one symmetric and the other asym-
metric. Each group contains three values of n:

250, 500, and 750.* Connection costs are inte-
gers taken uniformly at random from [1000,
2000]. For each value of n there are three sub-
classes, each with five instances; they differ in
the range of values from which setup costs are
drawn: it can be [100,200] (range A), [1000,
2000] (B) or [10000,20000] (C). Each subclass
is named after its parameters: GS250B, for
example, is symmetric, has 250 nodes, and ser-
vice costs ranging from 1000 to 2000.

e GR: Graph-based instances by Galvao and

Raggi [11]. There are 50 instances in total, 10
for each value of n (50, 70, 100, 150, and 200).
Connection costs are given by the correspond-
ing shortest paths in the underlying graph.
(Instances are actually given as distance matri-
ces, so there is no overhead associated with
computing shortest paths.)

e M*: This class was created with the generator

introduced by Kratica et al. in [26]. These
instances have several near-optimal solutions,
which according the authors makes them close
to ““real-life’” applications. There are 22 instances
in this class, with » ranging from 100 to 2000.

e MED: Originally proposed for the p-median

problem by Ahn et al. in [1], these instances
were later used in the context of uncapacitated
facility location by Barahona and Chudak [3].
Each instance is a set of n points picked uni-
formly at random in the unit square. A point
represents both a user and a potential facility,
and connection costs are determined by the cor-
responding Euclidean distances. All values are
rounded up to 4 significant digits and made
integer [20]. Six values of n were used: 500,
1000, 1500, 2000, 2500, and 3000. In each case,
three different setup costs were tested: /n/10,

V/1/100, and 1//1000.

e ORLIB: These instances are part of Beasley’s

OR-Library [4]. Originally proposed as
instances for the capacitated version of the
facility location problem in [5], they can be used
in the uncapacitated setting as well (one just has
to ignore the capacities).

4 These are actually the three largest values tested in [13];
some smaller instances are tested there as well.
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All instances were downloaded from the UfILib
website [19], with the exception of those in class
GHOSH, created with a generator kindly provided
by D. Ghosh [12]. Five of these eight classes were
used in Hoefer’s comparative analysis [18,20]: BK,
GR, M*, MED, and ORLIB.

3.2. Results

3.2.1. Quality Assessment

As already mentioned, the “standard” version
of our algorithm has 32 multistart iterations and
10 elite solutions. It was run 10 times on each in-
stance available, with 10 different random seeds
(1-10).

Although more complete data will be presented
later in this section, we start with a broad overview
of the results we obtained. Table 1 shows the aver-
age deviation (in percentage terms) obtained by
our algorithm with respect to the best known
bounds. All optima are known for BK, GR, and
ORLIB. We used the best upper bounds shown in
[19] at the time of writing for FPP, GAP, MED
and M* (upper bounds that are not proved opti-
mal were obtained by various algorithms, includ-
ing tabu search and local search). For GHOSH,
we used the bounds shown in [13]; some were ob-
tained by tabu search, others by complete local
search with memory. Table 1 also shows the mean
running times obtained by our algorithm.

To avoid giving too much weight to larger in-
stances, we used geometric means for times.

In terms of solution quality, our algorithm does
exceedingly well for all five classes tested in [18]. It

Table 1

Average deviation with respect to the best known upper bounds
and mean running times of HYBRID (with 32 iterations and 10
elite solutions) for each class

Class Deviation (%) Time (seconds)
BK 0.002 0.28
FPP 33.375 7.66
GAP 5.953 1.64
GHOSH —0.039 34.31
GR 0.000 0.32
M* 0.000 7.86
MED —0.391 369.67
ORLIB 0.000 0.17

matched the best known bounds (usually the opti-
mum) on every single run of GR, M*, and ORLIB.
The algorithm did have a few unlucky runs on
class BK, but the average error was still only
0.002%. On MED, the solutions it found were on
average 0.4% better than the best upper bounds
shown in [18].

Our method also handles very well the only
class not in the UflLib, GHOSH. It found solutions
at least as good as the best in [13]. This is especially
relevant considering that we are actually compar-
ing our results with the best among two algorithms
in each case (tabu search and complete local search
with memory).

The two remaining classes, GAP and FPP, were
created with the intent of being hard. At least for
our algorithm, they definitely are: on average,
solutions were within 28% and 6% from optimal-
ity, respectively. This is several orders of magni-
tude worse than the results obtained for other
classes. However, as Subsection 3.2.2 will show,
the algorithm can obtain solutions of much better
quality if given more time.

Detailed results. For completeness, Tables 28
show the detailed results obtained HYBRID on each
of the eight classes of instances. They refer to the
exact same runs used to create Table 1.

Tables 2 and 3 show the results for M* and OR-
LIB, respectively. For each instance, we show the
best known bounds (which were matched by our
algorithm on all runs on both classes) and the
average running time.

Results for class MED are shown in Table 4.
For each instance, we present the best known low-
er and upper bounds, as given in Table 12 of [18].
Lower bounds were found by the volume algo-
rithm [3], and upper bounds by either local search
or tabu search [31], depending on the instance. The
average solution value obtained by HYBRID in each
case is shown in Table 4 in absolute and percent-
age terms (in the latter case, when compared with
both lower and upper bounds).

On average, HYBRID found solutions that are at
least 0.15% better than previous bounds, and
sometimes the gains were upwards of 0.5%. In fact,
our results were in all cases much closer to the low-
er bound than to previous upper bounds. Average
solution values are at most 0.191% away from
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Table 2
Results for M* instances

Name n Value Time (seconds)
mol 100 1305.95 0.988
mo2 100 1432.36 1.030
mo3 100 1516.77 0.960
mo4 100 1442.24 0.892
mo5 100 1408.77 0.815
mpl 200 2686.48 3.695
mp2 200 2904.86 4.125
mp3 200 2623.71 3.500
mp4 200 2938.75 3.887
mp5 200 2932.33 4.169
mql 300 4091.01 8.919
mq2 300 4028.33 7.802
mq3 300 427543 9.508
mq4 300 4235.15 9.834
mq5 300 4080.74 10.813
mrl 500 2608.15 27.221
mr2 500 2654.74 27.646
mr3 500 2788.25 26.417
mré 500 2756.04 27.595
mr5 500 2505.05 26.989
msl 1000 5283.76 113.395
mtl 2000 10069.80 701.167

Average solution values for HYBRID and mean running times
(with 32 iterations and 10 elite solutions). All runs matched the
best bounds shown in [18].

Table 3
Results for ORLIB instances

Name n Optimum Time (seconds)
capl01 50 796 648.44 0.055
capl02 50 854704.20 0.056
capl03 50 893782.11 0.072
capl04 50 928941.75 0.077
capl3l 50 793439.56 0.105
capl32 50 851495.32 0.097
capl33 50 893076.71 0.131
capl34 50 928941.75 0.140
cap71 50 932615.75 0.034
cap72 50 977799.40 0.039
cap73 50 1010641.45 0.053
cap74 50 1034976.97 0.049
capa 1000 17156 454.48 7.380
capb 1000 12979071.58 6.245
capc 1000 11505594.33 6.148

Average running times for HYBRID with 32 iterations and 10 elite
solutions. The optimum solution value was found on all runs.

optimality, possibly less (depending on how good
the lower bounds are).

Since classes BK and GR have more instances
(220 and 50, respectively), we aggregate them into
subclasses. Each subclass contains 10 instances
built with the exact same parameters (such as num-
ber of elements and cost distribution), just with
different random seeds. Table 5 presents the results
for BK: for each subclass, we present the average
error obtained by the algorithm and the average
running time. Table 6 refers to class GR and pre-
sents the average running times only, since the
optimal solution was found in every single run.

Table 7 shows the results for class GHOSH,
which is divided into five-instance subclasses.
The table shows the best bounds found in [13],
by either tabu search or complete local search
with memory (we picked the best in each case).
For reference, we also show the running times re-
ported in [13], but the reader should bear in mind
that they were found on a machine with a different
processor (an Intel Mobile Celeron running at
650 MHz).

The last three columns in the table report the
results obtained by HYBRID: the solution value,
the average deviation with respect to the upper
bounds, and the running time (all three values
are averages taken over the 50 runs in each
subclass).

Finally, average solution qualities and running
times are shown for each subclass of FPP and
GAP in Table 8.

3.2.2. Comparative analysis

We have seen that our algorithm obtains solu-
tions of remarkable quality for most classes of in-
stances tested. On their own, however, these results
do not mean much. Any reasonably scalable algo-
rithm should be able to find good solutions if given
enough time.

With that in mind, we compare the results ob-
tained by our algorithm with those obtained by

> From [9], we can infer that this processor and the one we use
have similar speeds, or at least within the same order of
magnitude. The machine in [9] that is most similar to Ghosh’s is
a Celeron running at 433 MHz, capable of 160 Mflop/s.
According to the same list, the speed of our processor is
114 Mflop/s (based on an entry for an SGI Origin 2000 at
195 MHz).
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Table 4
Results for MED instances

Name Lower Upper Average Avg’L Avg’U Time (seconds)
med0500-10 798399 800479 798 577.0 0.022 —0.238 33.2
med0500-100 326754 328 540 326805.4 0.016 —0.528 32.9
med0500-1000 99099 99325 99169.0 0.071 —0.157 23.6
med1000-10 1432737 1439285 14341854 0.101 —0.354 173.9
med1000-100 607 591 609 578 607 880.4 0.048 —0.278 148.8
med1000-1000 220479 221736 220560.9 0.037 —0.530 141.7
med1500-10 1997302 2005877 2001121.7 0.191 —0.237 347.8
med1500-100 866231 870182 866493.2 0.030 —0.424 378.7
med1500-1000 334859 336263 334973.2 0.034 —0.384 387.2
med2000-10 2556794 2570231 2558120.8 0.052 —0.471 717.5
med2000-100 1122455 1128392 1122861.9 0.036 —0.490 650.8
med2000-1000 437553 439597 437690.7 0.031 —0.434 760.0
med2500-10 3095135 3114458 3100224.7 0.164 —0.457 1419.5
med2500-100 1346924 1352322 1347577.6 0.049 —0.351 1128.2
med2500-1000 534147 536 546 534426.6 0.052 —0.395 1309.4
med3000-10 3567125 3586599 3570818.8 0.104 —0.440 1621.1
med3000-100 1600 551 1611186 1602 530.9 0.124 —0.537 1977.6
med3000-1000 643265 645 680 643541.8 0.043 —0.331 2081.4

Columns 2 and 3 show the best known lower and upper bounds, as given in Tables 11 and 12 of [18]. The next three columns show the
quality obtained by HYBRID: first the average solution value, then the average percentage deviation from the lower and upper bounds,
respectively. The last column shows the average running times of our method.

Table 5 Table 6

Results for BK instances Results for GR instances

Subclass n Avg’eerr Time (seconds) n Time (seconds)

B 100 0.0000 0.310 50 0.098

C 100 0.0160 0.450 70 0.163

D01 80 0.0001 0.223 100 0.308

D02 80 0.0000 0.211 150 0.602

D03 80 0.0000 0.199 200 1.123

D04 80 0.0000 0.170 Average running times of HYBRID (with 32 iterations and 10 elite

D05 80 0.0000 0.162 . . .
solutions) as a function of n (each subclass contains 10

D06 80 0.0000 0.186 instances). Every execution found the optimal solution

D07 80 0.0000 0.174 Eveny P :

D08 80 0.0000 0.166

D09 80 0.0000 0.175

D10 80 0.0000 0.166 Michel and Van Hentenryck’s tabu search algo-

Eg; igg 8'8888 g';‘;g rithm [31], which achieved the best experimental

£03 100 0.0188 0.512 results among the algorithms test.ed in [18]. We

E04 100 0.0000 0.464 refer to this method as TABuU. Starting from a ran-

E05 100 0.0000 0.376 dom solution, in each iteration it executes a flip

E06 100 0.0000 0.408 operation, i.e., it opens or closes an individual

Eg; igg 8'3888 8'2}2 facility. This defines a neighborhood that is more

£09 100 0.0000 0.352 restricted than the one we use, which also allows

E10 100 0.0000 0.353 swaps. While the best neighbor can be found con-

Average percent errors with respect to the optima and average
running times of HYBRID (with 32 iterations and 10 elite
solutions).

siderably faster, the local search tends to reach
local optima sooner. To escape them, the method
uses a tabu list, which forbids facilities recently in-
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Table 7

Results for GHOSH instances

Instance Upper bound [13] Hybrid

Name n Value Time (seconds) Value Deviation (%) Time (seconds)
GA250A 250 257978.4 18.3 257922.1 —0.022 5.7
GA250B 250 276184.2 6.5 276053.6 —0.047 8.2
GA250C 250 3330584 17.3 332897.2 —0.048 7.4
GA500A 500 511251.6 18.1 5111474 —0.020 40.3
GA500B 500 538144.0 6.4 537868.2 —0.051 52.2
GA500C 500 621881.8 24.7 621475.2 —0.065 57.4
GAT750A 750 763 840.4 213.3 763741.0 —0.013 117.5
GA750B 750 796 754.2 71.4 796 393.5 —0.045 127.1
GA750C 750 900 349.8 146.5 900 198.6 —0.017 136.5
GS250A 250 257832.6 207.1 257807.9 —0.010 5.3
GS250B 250 276185.2 79.2 276035.2 —0.054 8.0
GS250C 250 333671.6 134.6 333671.6 0.000 8.3
GS500A 500 511383.6 824.3 511203.0 —0.035 43.5
GS500B 500 538480.4 409.4 537919.1 —0.104 52.6
GS500C 500 621107.2 347.4 621059.2 —0.008 50.8
GS750A 750 763831.2 843.2 763713.9 —0.015 112.6
GS750B 750 796 919.0 396.0 796 593.7 —0.041 126.3
GS750C 750 901 158.4 499.7 900 183.8 —0.108 130.3

The upper bounds are the best reported by Ghosh in [13], with the corresponding running times (obtained on a different machine, an
Intel Mobile Celeron running at 650 MHz). The results for HYBRID (with 32 iterations and 10 elite solutions) are shown in the last three

columns.

Table 8

Results for FPP and GAP instances

Subclass n Error (%) Time (seconds)
GAPA 100 5.14 1.41

GAPB 100 5.98 1.81

GAPC 100 6.74 1.89

FPP11 133 8.48 2.58

FPP17 307 58.27 25.18

Average percent errors (relative to the best upper bounds in
[18]) and average running times for each subclass.

serted or removed from being flipped. The algo-
rithm stops after executing 500 consecutive itera-
tions without an improvement in the objective
function.

We downloaded the source code for an imple-
mentation of TABU from the UflLib. To ensure that
running times are comparable, we compiled it with
the same parameters used for HYBRID and ran the
program on the same machine. Since TABU has a
randomized component (the initial solution), we
ran it 10 times for each instance in the class, with
different seeds for the random number generator
(the seeds were 1-10).

As suggested in [31], the algorithm was run with
500 non-improving consecutive iterations as the
stopping criterion. However, with this number of
iterations TABU is much faster than the standard
version of HYBRID (with 32 iterations and 10 elite
solutions). For a fair comparison, we also ran a
faster version of our method, with only 8 iterations
and 5 elite solutions. The results obtained by this
variant of HYBRID and by TABU are summarized
in Table 9. For each class, the average solution
quality (as the percentage deviation with respect
to the upper bound in [18]) and the mean running
times are shown.

Note that both algorithms have similar running
times, much lower than those presented in Table 1.
Even so, both algorithms find solutions very close
to the optimal (or best known) on five classes: BK,
GHOSH, GR, M* and ORLIB. Although in all
cases HYBRID found slightly better solutions, both
methods performed rather well: on average, TABU
was always within 0.1% of the best previously
known bounds, and HYBRID was within 0.03%.
Our algorithm was actually able to improve the
bounds for GHOSH (presented on [13]), whereas
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Table 9

Average deviation with respect to the best known upper bounds
and mean running times in each class for HYBRID (with 8
iterations and 5 elite solutions) and TABU (with 500 non-
improving iterations as the stop criterion)

Class HYBRID TABU

Avg%dev  Time AvgY%dev  Time

(seconds) (seconds)
BK 0.028 0.087 0.071 0.155
FPP 69.367 1.741 95.711 0.650
GAP 9.573 0.348 15.901 0.259
GHOSH  —0.032 8.816 0.002 4.570
GR 0.000 0.090 0.100 0.160
M* 0.004 2.196 0.011 1.750
MED —0.364 92.387 0.073 92.854
ORLIB 0.000 0.048 0.028 0.160

TABU could only match them (albeit in slightly less
time than HYBRID).

Although there are some minor differences be-
tween the algorithms for these five classes, it is
not clear which is best. Both usually find the opti-
mal values in comparable times. In a sense, these
instances are just too easy for either method. We
need to look at the remaining classes to draw
any meaningful conclusion.

Consider class MED. Both algorithms run for
essentially the same time on average. TABU almost
matches the best bounds presented in [18]. This
was expected, since most of those bounds were ob-
tained by TABU itself (a few were established by
local search). However, HYBRID does much better:
on average, the solutions it finds are 0.364% below
the reference upper bounds.

Even greater differences were observed for GAP
and FPP: these instances are meant to be hard, and
indeed they are for both algorithms. On average,
the solutions HYBRID found for GAP instances were
almost 10% off optimality; TaBU did even worse,
with an average error of 16%. The hardest class
is FPP: the average deviation from optimality
was almost 70% for our algorithm, and more than
95% for TaBu. Even though HYBRID does slightly
better than TABU on both classes, the results it pro-
vides are hardly satisfactory for a method that is
supposed to find near-optimal solutions.

Note, however, that the mean time spent on
each instance is around one second, which is not
much. Being implementations of metaheuristics,

both algorithms should behave much better if
given more time. To test if this is indeed the
case, we performed longer runs of each method.

We tested two different versions of tabu search.
In the first variant (TABU), we vary the number of
iterations in the stopping criterion: 500 (the origi-
nal value), 1000, 2000, 4000, 8000, 16000, 32000,
and 64 000. The second variant, TABUMS, is a mul-
tistart version of the algorithm. After it reaches
500 non-improving iterations, it starts again from
a new (random) solution. The best solution overall
is picked as the final result. We tested this method
with 1 to 128 restarts, corresponding to 500 to
64000 final non-improving iterations overall.

We also tested three different versions of our
algorithm. The first is the standard version de-
picted in Fig. 1, nyBrip. It has two input parame-
ters (number of iterations and number of elite
solutions), so we varied both at the same time.
We tested the following pairs: 4:3, 8:5, 16:7,
32:10 (the original parameters), 64:14, 128:20,
256:28, 512:40, 1024:57, and 2048:80. Note that
to move from one pair to the next we multiply
the number of iterations by 2 and the number of
elite solutions by v/2, as mentioned in Section 2.

The second version is MULTISTART + PR, which
is similar to HYBRID but does not execute post-opti-
mization; however, it does execute path-relinking
between multistart iterations, as in the original
HYBRID. The best solution found after all iterations
are completed is picked as the result. We ran this
algorithm with the same set of parameters (num-
ber of iterations and elite solutions) as HYBRID.

The third version we tested (MULTISTART) does
not execute path-relinking at any stage: in each
iteration, it finds a greedy randomized solution
and executes local search on it. The best solution
found over all iterations is picked as the result.
We also ran it with the same set of parameters as
HYBRID, but note that this variant has no use for
the set of elite solutions.

The purpose of MULTISTART and MULTISTART +
PR is to assess the importance of path-relinking
to the overall quality of the algorithm.

The results are summarized in Tables 10 (for
our algorithm) and 11 (for tabu search). For each
method and choice of parameters, we present the
average percentage error and the geometric mean
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Table 10
Results on hard classes

65

Class Iterations Elite MULTISTART MULTISTART + PR HYBRID
Error (%) Time Error (%) Time Error (%) Time
FPP 4 3 90.60 0.19 86.05 0.39 82.79 0.58
8 5 83.17 0.31 76.76 0.72 69.37 1.63
16 7 73.44 0.56 64.19 1.39 53.17 341
32 10 62.10 1.04 50.80 2.76 33.37 7.11
64 14 51.38 2.01 38.00 5.47 15.84 13.61
128 20 41.67 3.94 22.23 10.86 4.29 25.15
256 28 33.69 7.80 9.30 21.68 0.02 47.51
512 40 25.23 15.50 0.56 43.72 0.01 91.50
1024 57 14.31 30.89 0.01 88.16 0.00 173.78
2048 80 4.98 61.72 0.00 177.87 0.00 330.88
GAP 4 3 16.39 0.05 14.11 0.10 12.93 0.14
8 5 13.59 0.09 11.46 0.19 9.57 0.35
16 7 11.64 0.17 9.36 0.37 7.47 0.77
32 10 9.73 0.32 7.62 0.73 5.95 1.63
64 14 8.14 0.63 6.21 1.45 4.69 3.27
128 20 7.14 1.26 5.06 2.92 3.83 6.47
256 28 5.95 2.50 3.75 5.90 2.73 12.52
512 40 5.00 4.99 2.65 11.92 1.67 24.75
1024 57 3.81 9.96 1.79 23.62 1.17 48.62
2048 80 2.77 19.89 1.17 46.57 0.82 92.09

Average percentage errors and mean running times (in seconds). HYBRID refers to the full algorithm, MULTISTART + PR refers to the
algorithm without post-optimization (but with path-relinking between multistart iterations), and MULTISTART refers to the version with

no path-relinking at all.

of the running times (in seconds). The same infor-
mation is represented graphically on Figs. 2 (for
GAP) and 3 (FPP). Each graph represents the aver-
age solution quality as a function of time. They
were built directly from Tables 10 and 11: each
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Fig. 2. GAP class. Average percent deviation obtained by
HYBRID and TABU (and their variants) for several sets of
parameters. Data taken from Tables 10 and 11.

line in a table became a point in the correspon-
ding graph, and the points were then linearly

interpolated.

For these series, TABUMS seems to be a better
choice than tABU. The difference is particularly
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Fig. 3. FPP class. Average percentage deviation obtained by
HYBRID and TABU (and their variants) for several sets of

parameters. Data taken from Tables 10 and 11.
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Table 11
TABU results for hard classes
Class Iterations TABU TABUMS
Error (%) Time (seconds) Error (%) Time (seconds)
FPP 500 95.62 0.63 95.62 0.63
1000 94.70 1.07 91.69 1.22
2000 91.03 2.04 87.93 243
4000 86.81 3.82 82.41 4.84
8000 83.67 7.26 75.04 9.68
16 000 79.32 14.21 66.02 19.47
32000 75.16 27.45 57.75 38.98
64000 71.15 52.08 50.77 77.92
GAP 500 15.98 0.26 15.98 0.26
1000 13.70 0.48 13.21 0.52
2000 11.66 0.94 11.26 1.04
4000 10.62 1.67 9.66 2.03
8000 8.94 324 8.07 4.04
16 000 7.72 6.19 7.03 8.10
32000 7.02 11.75 6.00 16.21
64000 6.35 22.43 5.06 32.46

Two variants are analyzed: TABU starts from a random solution and executes a ““pure” tabu search from there; TABUMS runs tabu with
until it executes 500 consecutive non-improving iterations, then repeats the procedure from a new random solution. For each method,

we show the average percentage error obtained and the mean running times (in seconds).

noticeable for the FPP instances, where local opti-
ma are very far apart. By restarting the tabu search
from random solutions at regular intervals,
TABUMS is able to explore the search space more
effectively than TaBU, which relies only on tabu lists
to escape local optima. Our method executes even
more starts and has the additional advantage of
using a more powerful local search. This helps ex-
plain why all three variants (HYBRID, MULTISTART +
PR and MULTISTART) obtained significantly better re-
sults than tabu search, as the pictures show.

Take class GAP. Within 0.25 second, HYBRID
can obtain solutions that are more than 10% off
optimality (on average); in 20 seconds, the error
is down to 2%. The behavior of MULTISTART + PR
is almost identical. MULTISTART is slightly better
than both in the beginning, but worse for longer
runs, which indicates that path-relinking is impor-
tant to ensure the robustness of the algorithm. All
three variants, however, are better than TABU and
TABUMS, whose errors ranged from approximately
16% (in 0.3 second) to around 6% (in 20 seconds).

Even more remarkable differences in perfor-
mance are observed on class FPP. If given less
than one second, all algorithms perform poorly:

HYBRID and MULTI-START + PR find solutions that
are almost 80% away from optimality on aver-
age; TABU and TABUMS are even worse, with 90%;
MULTISTART is the best overall, with 70%. However,
once longer runs are allowed, HYBRID and (to a les-
ser degree) MULTISTART + PR improve at a much
faster rate than the other methods. Within 50 sec-
onds, HYBRID already finds near-optimal solutions
on all cases (the average error is below 0.02%),
whereas solutions found by TABUMS are still more
than 50% off optimality on average (TABU is even
worse, at 70%). Although MULTISTART does signifi-
cantly better than tabu-based algorithm, it is still
at least 5% away from optimality; once again, this
shows how important path-relinking is to ensure
solution quality.

We stress that such large differences in solution
quality are not likely to be observed on “real-
world” instances. Classes FPP and GAP are by
no means typical, since they were designed with
the specific purpose of being hard to solve. For
all other classes tested, which have no adversarial
structure, the performance of TABU was much clo-
ser to that of HyBRID. This, however, does not
mean the results for FPP and GAP are irrelevant.
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Practical instances are unlikely to be as hard as
those, but nothing guarantees that they will be as
well-behaved as the other classes presented here.
Since HYBRID is more robust than TABU in extreme
cases, it is more likely to be faster in moderately
difficult ones.

As a final observation, we note that when this
paper was undergoing minor revisions before pub-
lication, a referee pointed us to the work of Sun
[38,39], still unpublished. The author proposes an-
other tabu search for the uncapacitated facility
location problem, also based on inserting and
removing individual facilities (no swaps are per-
formed directly). It solves all ORLIB instances to
optimality, as in our case. In the GHOSH series,
the solutions it finds are on average slightly better
than ours, although there are instances for which
HYBRID finds the best solutions. On these two clas-
ses (the only ones from the literature tested by the
author), the algorithm seems to be at least as effec-
tive as ours. We refer the reader to [39] for a more
detailed analysis.

4. Concluding remarks

We have studied a simple adaptation to the
facility location problem of Resende and Wer-
neck’s multistart heuristic for the p-median prob-
lem [36]. The resulting algorithm has been shown
to be highly effective in practice, finding near-opti-
mal or optimal solutions of a large and heteroge-
neous set of instances from the literature. In
terms of solution quality, the results -either
matched or surpassed those obtained by some of
the best algorithms in the literature on every single
class, which shows how robust our method is. The
combination of fast local search and path-relink-
ing within a multistart heuristic has proved once
again to be a very effective means of finding
near-optimal solutions for an NP-hard problem.
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