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An efficient probabilistic set covering heuristic is presented. The heuristic is evaluated on empiricaily difficult to solve set
covering problems that arise from Steiner triple systems. The optimal solution to only a few of these instances is known. The
heuristic provides these solutions as well as the best known solutions to all other instances attempted.
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1. Introduction

Given n finite sets P,, P,,..., P, we denote
sets I=U(P: 1<j<sn)={1,...,m} and J=
a,...,n). Asubset J* of J is called a cover if U
(P jeJ*)=1 The set covering problem is to
ﬁnd a cover of minimum cardinality. Define the
mXn (0, 1)-matrix 4 such that g,,=1 if and
only if i€ P, An integer programming formula-
tion for the set covering problem is

minimize e,X (1)
subject to Ax>e,,, 2)
x=0,1, (3)

where ¢, is a vector of ones of length k&, and x is
a (0, 1)-vector of length n with x; =1 if and only
if jeJ*. Set covering is a well known NP-com-
" plete problem [8].

Fulkerson, Nemhauser and Trotter [7] describe
a class of computationally difficult set covering
problems that arise in computing the 1-width of
incidence matrices of Steiner triple systems. They
suggest that these are good problems for testing
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new algorithms for integer programming and set
covering. This is because they have far fewer vari-
ables than numerous solved problems in the litera-
ture, yet experience shows that they are hard to
compute and verify. The B-width of a (0, 1)-matrix
A is the minimum number of columns that can be
selected from A4 such that all row sums of the
resulting submatrix of A are at least 8. The inci-
dence matrices A4 that arise from® Steiner triple
systems have precisely 3 ones per row. Further-
more, for every pair of columns j and & there is
exactly one row i for which a;;=a, =1. (i, j,k).
are said to be a triple of A if there exists a.row ¢
such that a,=a,;=q,=1. Hall [10] discusses
this structure in detall and shows a standard tech-
nique for recursively generating Steiner systems
for which n=3% (k=1,2,3,...). 4;is'the 1 X3
matrix of ones. 4,, is obtained from A4, as fol-
lows The columns of A4,, are indexed {(i, j), 1<

<n,1<j<3}. The set {(i, r), (J, 5), (k, 1)} is
a tnple of A,, if and only if one of the following
holds:

e r=s=¢and {i, j, k} is a triple of A,,, or

ei=j=kand{r, s, t}={1,23} or

e {i, j, k} is a triple of 4, and (r, s, t} =

{1, 2, 3}.
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We refer to instances of set covering problems
that arise from Steiner triple systems by their
incidence matrices. Two examples for which n = 3*
are given in [7]: A;s and As.

Fulkerson, Nemhauser and Trotter [7] discuss
computational experience with Ay, 4;s5, 4,; and
A,s. They are able to solve 4, with a cutting plane
code after generating 44 cuts, but this.approach
. fails with the three other problems. Using an
implicit enumeration algorithm similar to the one
described in [9] they are able to solve 4,5 and A,;
but not A,s. Avis [1] reports that 4,5 was solved
in 1979 by H. Ratliff, requiring over two and a
half hours on an Amdahl V7 computer. Avis also
suggests why these problems may be so difficult to
solve by showing that any branch and bound
algorithm that uses a.linear programming relaxa-
tion, and/or elimination by dominance requires
the examination of 2/2n/3 partial solutions, where
n is the number of variables of the integer pro-
gram.

In this paper, we pursue a non-deterministic
method for solving these difficuit set covering
problems. The procedure is based on Chvatal’s
iterative cost to benefit greedy approach [5]. In
accordance with the terminology defined by Hart
and Shogan [11] our method can be classified as
either a percentage-based or cardinality-based
semi-greedy heuristic. In order to improve upon
Chvatal’s heuristic we introduce randomization.
Our intent is similar in nature to the deterministic
work of Balas and Ho [2]. In their paper, several
variations of the greedy cost to benefit objective
are tried, such as taking the ratio of the cost to the
logarithm of the benefit.

Past empirical experience with our probabilistic
method has been very good. Bard and Feo have
incorporated various implementations of this
heuristic into the solution methods of practical
problems involving corporate acquisition of flexi-
ble manufacturing equipment [3], computer aided
process planning [4], and maintenance scheduling
for major airlines [6]. In all these studies the
solutions provided by the probabilistic approach
dominate those gemerated by Chvatal’s method.
Given our heuristic’s success on these real world
set covering problems, it is interesting to note its
performance on a theoretically based problem
deemed in the literature to be very difficult.

In Section 2, we describe the probabilistic heur-
istic and discuss its relation to the deterministic
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method fo Chvatal [5]. We define efficient- data
structures and derive worst case time and storage
requirements for our procedure. In Section 3, we -
describe the computational experiment. We con-
clude the paper with an intuitive discussion of
why the probabilistic approach works well.

2. The heuristic

Chvatal 5] describes a greedy heuristic for the
set covering problem and establishes a tight bound
on its worst-case behaviour. Chvatal’s method is
shown in Pseudo-Code 1. It takes as input the n
discrete sets P,,..., P, defined earlier and returns
a cover J*. In line 1 of the pseudo-code the cover
is initially set empty. The loop in lines 2-6 is
repeated until all n sets P,..., P, are empty, ie.
until a cover is constructed. In line 3 the subscript
k maximizing { | Py |,-.., | P,|} is selected, where
| P| denotes the cardinality of set P. This sub-
script is added to J* in line 4, and in line 5, P, is
subtracted from sets P;,..., P,.

The heuristic presented in this paper (Pseudo-
Code 2) is a non-deterministic variation of
Chvatal’s greedy approach. Our method departs
from Chvatal’s in line 3 of Pseudo-Code 1, where
the index k is chosen. Instead of selecting the
index k corresponding to the set P, with the
maximum cardinality, we select at random from
the sets that have cardinality at least a X
max{ | P;|: 1<j<n}, where 0 < a < 1. Further-
more, we remove any superfluous elements from
the partial cover J°U {k}. Chvatal’s method is
executed once, whereas the probabilistic version is
repeated N times in the loop going from line 2 to
14. Our heuristic takes as input sets Py, ..., P,, the
parameter a and the number of repetitions N, and
returns a cover J*. In line 1 of the pseudo-code,
T, the cardinality of the best cover found so far is

Pseudo-Code 1
Chvatal’s greedy heuristic

procedure GREEDY (n, Py,..., P, J*)
1 Set J*:=4#;

2 do while P, ##,Vj=1,...,n >

3 k=argmax{ | P;l:1<j<n};

4 J*=J*U{k};

S do j=1,...,n—> P;==PF;— P, od;
6 od;

end GREEDY;
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Pseudo-Code 2 '
Probabilistic heuristic

procedure PROBABILISTIC (n, Py,..., P, a, N, J*)
1 Set I'=n;

2doi=1,...,N—>

3 doj=1,....n>P"=P od;

4 Set JO=4; :

5 dowhile =4, Vj=1,..,n—

6 T=max({|P°|:1<j<n});

7 ?=(j:|Pj°|>'aXI—',1<j<n};
8 Select k at random from 2,

9 JO=J%U{k); .
10 do j=1,...,n—PP== PP+ P; od;
11 Remove superfluous j from JO;
12 od;

13 |J <I=T=|J°; J*=J"fi;
14 od;

end PROBABILISTIC;

initialized to n. In line 3, working sets Py, ..., P?
are initialized and in line 4 the cover for repetition
i, J°, is initialized empty. In the while loop going
from line 5 to 11, the i-th cover is constructed. In
line 6 the maximum cardinality, 1—“, of working sets
P?,..., P? is computed. 2, in line 7, is the set of
indices corresponding to the sets whose inclusion
in cover J° will cover at least a X I" elements of
set J={1,...,m}. In line 8 index k is selected at
random from the set & of candidate indices, and
this index is added to J° in line 9. In line 10 sets
P?,..., P? are updated by set P{ and in line 11
any superfluous element is removed from the par-
tial cover. Finally, in line 13, if a better cover is
found in iteration i, this cover, J*, is recorded.
Chvatal’s greedy heuristic is a special case of this
probabilistic procedure, where a =1.0and N =1.

The computationally burdensome operations in
our method involve: (1) ranking the set of uncho-
sen elements; (2) updating the benefits of the
remaining elements after one is selected; and (3)
removing superfluous elements. To efficiently im-
plement these operations, we employ a triple
pointer data structure. These pointers keep track
of the rank of the candidates, identify what ele-
ments belong to each set, and denote what sets
contain each element. Within an iteration of the
while loop, the ranking and updating procedures
require O(n) time. Note that it is not beneficial to
use a heap data structure for these operations
because each column of 4 possesses 3(n — 1) en-
" tries. Removing a maximum number of super-
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fluous elements from a partial cover (line 11) is, in
itself, a set covering problem. That is, find the
smallest cardinality subset of the selected set of -
elements that covers the currently satisfied set of
constraints. We employ a simplified version of
Chvatal’s heuristic in conjunction with the data
structures mentioned. This operation requires O(n)
time. )

Since there can be up to n elements in a cover
and, thus, n iterations of the while loop, our
method requires O(n?) time. Note that the num-
ber of nonzero elements in the matrix A is O(n?).
Therefore, our heuristic’s running time per con-
structed cover is linear with respect to the input
size of the problem. The space requirement of our
method is O(n?).

3. Computational experience

The computational experiment tested the prob-
abilistic heuristic on six set covering problems:
Ag, Ays, Ay, Ags, Ag and Ay,

Problems Ay, A5, A,; and A5 are taken from
[7] and problems Ag, and A,,; were generated by
Ramakrishnan [13] using the recursive method of
Hall [10]. Of these problems, optimal solutions are
known only for the first four.

The algorithm was implemented in FORTRAN
and the tests were carried out on an IBM 3090
running VM/SP CMS. The FORTVS compiler
was used to compile the code using options
OPT(3), NOSYM and NOSDUMP. All times are
measured with the utility routine DATETM.

Table 1 identifies the test problems, the sizes of
the best known covers, and the results obtained by
both Chvatal’s greedy heuristic and our prob-
abilistic method. For each problem our code was

Table 1
Problem set and test results

Problem Integer program Best  Size of cover Size of cover

variables/ known Chvatal’s probabilistic
constraints cover heuristic heuristic

Ag 9/12 5% 5 5

As 15/35 9% 9 9

Ay 27/116 182 19 18

Auss 45/330 30?2 31 30

Agy 81,1080 61 64 61

Az 243 /9801 204 208 204

# Optimal cover.
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Table 2

Test results (probabilistic heuristic)

Problem a Size of Iteration Time to find
cover cover cover (secs)
found found

Ag 05 5 1 0.0003

0.6 5 1 0.0003
0.7 5 1 10.0003
08 5 1 0.0003
09 5 1 0.0003
Ays 0.5 9 1 0.0006
0.6 9 1 0.0006
0.7 9 1 0.0006
038 9 1 0.0006
0.9 9 1 0.0005
Ay 0.5 18 2 0.0037
0.6 18 1 0.0018
0.7 18 2. 0.0034
0.8 18 3 0.0050
09 18 1 0.0017
Ass 0.5 30 - 908 4734
0.6 30 250 1.264
0.7 30 573 2.750
0.8 30 3096 13.81
09 30 26517 1212
Az 05 61 385 7.668
0.6 61 1801 3422
0.7 61 179 3.208
08 61 274 4.529
0.9 61 3043 51.82
Aags 0.5 205 769 251.6
0.6 204 148 46.37
0.7 204 3824 1091.0
0.8 204 1173 281.3
0.9 205 657 145.6

run five times, varying «. Table 2 summarizes
these results, providing the size of the cover found,
the iteration in which it was identified and the
total time required.

4. Conclusion

For the first three Steiner triple instances our
method immediately constructs the optimal solu-
tions. Tt is interesting to note that for the third
instance, A,,, Chvatal’s heuristic yields a sub-op-
timal cover of size 19. As predicted by the litera-
ture problem A, is considerably more difficult.
For various values of a, we obtain an optimal
cover of size 30 in less than 5 seconds of CPU
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time. The optimél solutions to the last two in-

stances are currently unknown. A cover of size 61

has been obtained for Ag, by a novel interior point
approach for zero—one integer programming [12].
However, A,,, is conjectured to be beyond today’s
methods. At present our probabilistic heuristic
provides the best known covers for both these

problems. .

In conclusion, consider the following intuitive
explanation- of our method’s performance.
Chvatal’s heuristic is analogous to an iterative
steepest descent method. However, it possesses
two drawbacks in practice. First, it does not
guarantee a minimal solution. A constructed cover
may possess superfluous elements. Second, this
heuristic is deterministic, producing only a single
cover. In comparison, our approach always yields
minimal solutions and attempts to break free of
local optima through randomization. Qur method
incorporates the power of Chvatal’s greedy ap-
proach by searching many good neighborhoods
for their best solutions.
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