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ABSTRACT. A greedy randomized adaptive search procedure (GRASP) is a randomized
heuristic that has been shown to quickly produce good quality solutions for a wide variety
of combinatorial optimization problems. In this paper, we describe a GRASP for the qua-
dratic assignment problem. We review basic concepts of GRASP: construction and local
search algorithms. The implementation of GRASP for the quadratic assignment problem
is described in detail. Computational experience on a large set of standard test problems
(QAPLIB) is presented.

1. Introduction

Given a set N = {1,2, . . . ,n} and n×n matrices F = ( fi j) and D = (dkl), the quadratic
assignment problem (QAP) can be stated as follows:

min
p∈ΠN

n

∑
i=1

n

∑
j=1

fi jdp(i)p( j),

where ΠN is the set of all permutations of N . One of the major applications of the QAP
is in location theory where the matrix F = ( fi j) is the flow matrix, i.e. fi j is the flow of
materials from facility i to facility j, and D = (dkl) is the distance matrix, i.e. dkl represents
the distance from location k to location l [9, 10, 21]. The cost of simultaneously assigning
facility i to location k and facility j to location l is fi jdkl . The objective is to find an
assignment of all facilities to all locations (i.e. a permutation p ∈ΠN ), such that the total
cost of the assignment is minimized. Throughout this paper we often refer to the QAP in
the context of this location problem.

In addition to its application in facility location problems, the QAP has been found
useful in such applications as scheduling [16], the backboard wiring problem in electronics
[40], and statistical data analysis [17]. Other applications may be found in [15, 22, 28].

The QAP is, computationally, one of the most difficult combinatorial optimization
problems. This problem, of which the traveling salesman problem, graph isomorphism,
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graph partitioning, and the band-width reduction problem are special cases [4, 24], is NP-
hard. Moreover, unless P=NP, there exists no polynomial-time algorithm to find an ε-
approximate solution [34] to the QAP. Furthermore, the quadratic assignment problem is
PLS-Complete with respect to a Kernighan-Lin like neighborhood [29]. Computationally,
problems of size n> 20 are not, to this date, practically solvable to optimality [26, 27, 31,
33]. Because of its complexity, many heuristic methods have been developed to solve the
QAP [3, 38, 39, 41].

In this paper, we present a greedy randomized adaptive search procedure (GRASP) for
the QAP. A GRASP is an iterative process, with each GRASP iteration consisting of two
phases, a construction phase and a local search phase. The best overall solution is kept as
the result.

In the first phase (construction phase), a feasible solution is iteratively constructed,
one element at a time. At each construction iteration, the choice of the next element to be
added is determined by ordering all elements in a candidate list with respect to a greedy
function. This function measures the (myopic) benefit of selecting each element. The
heuristic is adaptive because the benefits associated with every element are updated at each
iteration of the construction phase to reflect the changes brought on by the selection of the
previous element. The probabilistic component of a GRASP is characterized by randomly
choosing one of the best candidates in the list, but usually not the top candidate. This
choice technique allows for different solutions to be obtained at each GRASP iteration,
but does not necessarily compromise the power of the adaptive greedy component of the
method.

As is the case for many deterministic methods, the solutions generated by a GRASP
construction are not guaranteed to be locally optimal with respect to simple neighbor-
hood definitions. Hence, it is almost always beneficial to apply a local search to attempt
to improve each constructed solution. Normally, a local optimization procedure such as
a two-exchange is employed. While such procedures can require exponential time from
an arbitrary starting point, empirically their efficiency significantly improves as the initial
solutions improve. Through the use of customized data structures and careful implemen-
tation, an efficient construction phase can be created which produces good initial solutions
for efficient local search. The result is that often many GRASP solutions are generated in
the same amount of time required for the local optimization procedure to converge from a
single random start. Furthermore, the best of these GRASP solutions is generally signifi-
cantly better than the solution obtained from a random starting point.

Figure 1 illustrates a generic GRASP implementation in pseudo-code. The GRASP
takes as input parameters for setting the candidate list size, maximum number of GRASP
iterations and the seed for the random number generator. After inputting the instance data
(line 1) and initializing data structures (line 2) and the value of the best solution found
(line 3), the GRASP iterations are carried out in lines 4–8. Each GRASP iteration consists
of the construction phase (line 5), the local search phase (line 6) and, if necessary, the
incumbent solution update (line 7).

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. First, adaptive greedy functions are known for many problems. Furthermore,
neighborhood definitions and local search techniques are plentiful. Few parameters need
to be set and tuned (candidate list size and number of GRASP iterations) and therefore
development can focus on implementing efficient data structures to assure quick GRASP
iterations. Finally, GRASP can be trivially implemented on a parallel processor in an
MIMD environment. Each processor can be initialized with its own copy of the procedure,
the instance data, and an independent random number sequence. The GRASP iterations
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procedure grasp(ListSize,MaxIter,RandomSeed)
1 InputInstance();
2 InicializeDataStructures();
3 BestSolutionFound= ∞;
4 do k = 1, . . . , MaxIter→
5 ConstructGreedyRandomizedSolution(ListSize,RandomSeed);
6 LocalSearch(BestSolutionFound);
7 UpdateSolution(BestSolutionFound);
8 od;
9 return(BestSolutionFound)
end grasp;

FIGURE 1. A generic GRASP pseudo-code

are then performed in parallel with only a single global variable required to store the best
solution found over all processors.

GRASP has been applied successfully to several combinatorial optimization problems.
These include set covering problems arising from the incidence matrix of Steiner triple sys-
tems [13], maximum independent set problem [14], corporate acquisition of flexible man-
ufacturing equipment [2], computer aided process planning [1], airline flight scheduling
and maintenance base planning [12], scheduling of parallel machines [23], p-hub location
problems [19], and component grouping [20].

The paper is organized as follows. In Section 2, we describe, in detail, the GRASP
for QAP, including the construction and local search phases. Computational results on
the QAPLIB [5] and QAP test problems with known optimal solutions [26] are given in
Section 3. Concluding remarks are made in Section 4.

2. A GRASP for QAP

As outlined in Section 1, a GRASP possesses four basic components: a greedy func-
tion, an adaptive search strategy, a probabilistic selection procedure, and a local search
technique. These components are linked together into an iterative method that constructs
a feasible solution one element at a time and then feeds the solution to the local search
procedure. When applied to the QAP, the permutations are formed in two phases: (i) the
first 2 assignments, and (ii) the remaining n− 2 assignments. The first two assignments
are first made simultaneously in the first construction iteration, while the remaining n− 2
are made one assignment per construction iteration. The greedy function chosen in this
implementation orders admissible assignments with respect to cost. For the initial two
assignments, the greedy choice is the pair of assignments with the minimum cost of in-
teraction. The greedy function implemented in this GRASP assigns facilities with high
interflow to nearby locations. The final n−2 assignments use as the greedy choice the as-
signment that has minimum cost interaction with respect to the already-made assignments.
The term admissible initially refers to all couples of facility-location pairs and for the re-
maining n− 2 assignments to facility-location pairs that have not yet been assigned. The
local search implemented in this GRASP is a two-exchange heuristic. We next describe
the GRASP components in detail.

2.1. Stage 1 of Construction Phase. In Stage 1 of the construction phase, we select
the pair of facilities and their matching locations, corresponding to the first 2 assignments
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of the constructed solution. One approach for making a greedy choice would be to sort all
O(n4) fi jdkl entries and select the couple of assignments having the smallest cost. Instead,
we compromise in order to speed up the initialization process.

Let 0< β< 1 be a given candidate restriction parameter and bxc be the largest integer
smaller or equal to x. We sort the n2− n distance entries in D, keeping the bβ(n2− n)c
smallest, i.e.

di1 j1 ≤ di2 j2 ≤ ·· · ≤ dibβ(n2−n)c jbβ(n2−n)c

and sort the n2−n flow entries in F , keeping the bβ(n2−n)c largest, i.e.

fk1l1 ≥ fk2l2 ≥ ·· · ≥ fkbβ(n2−n)clbβ(n2−n)c
.

Then, the costs of interaction

di1 j1 fk1l1 ,di2 j2 fk2l2 , . . . ,dibβ(n2−n)c jbβ(n2−n)c fkbβ(n2−n)clbβ(n2−n)c

are sorted in increasing order, keeping the smallest bαβ(n2− n)c elements, where α (0 <
α< 1) is the second candidate restriction parameter.

Note that the above ordering of the cost elements needs to be done only once, in the
initialization phase of the GRASP. Since the data is static throughout the GRASP iterations,
the order of the cost elements remains unchanged. This can be done efficiently with a heap
sort.

In the GRASP iterations, the greedy function selects the couple of assignments having
the smallest di j fkl from the bαβ(n2− n)c possible pairs. The candidate restriction limits
our choice to those couples of assignment pairs having the bαβ(n2− n)c smallest di j fkl
terms. The random component selects a couple of assignment pairs from the candidate list,
at random.

Since the bαβ(n2−n)c cost elements are presorted, Stage 1 of the construction phase
can be computed in constant time. All that is needed is to generate a random integer in the
interval [1,bαβ(n2−n)c] and access the indices of the facilities and locations correspond-
ing to the cost with the ranking given by the random number.

2.2. Stage 2 of Construction Phase. In Stage 2 of the construction phase of this
GRASP, facilities are assigned to locations, one facility to one location at a time. Let

Γ = {( j1, l1),( j2, l2), . . . ,( jr, lr)}
be the set of already-made assignments. Stage 2 starts with |Γ| = 2, since in Stage 1 two
pairs of assignments are made. Let

Cik = ∑
( j,l)∈Γ

fi jdkl

be the cost of assigning facility i to location k with respect to the already-made assignments.
The greedy function implemented in this GRASP is one that assigns a facility to a

location that minimizes the total cost with respect to assignments already made, i.e. we
select from the facility-location pairs not already assigned, the one that has the minimum
Cik cost.

Let there be, at a given GRASP iteration, m unassigned facility-location pairs and let α
be the same candidate restriction parameter defined earlier. The candidate restriction used
here limits our choice to the bαmc facility-location pairs having the smallest Cik values.
The random component of this GRASP selects at random from the candidate list a facility-
location pair. The adaptive component is captured by updating the set Γ of already assigned
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procedure stage2(α,( j1, l1),( j2, l2))
1 Γ = {( j1, l1),( j2, l2)};
2 do assignments = 3, . . . ,n→
3 m = 0;
4 do i = 1, . . . ,n→
5 do k = 1, . . . ,n→
6 if (i,k) 6∈ Γ→
7 Cik = ∑( j,l)∈Γ fi jdkl ;
8 inheap(Cik);
9 m = m + 1;
10 fi;
11 od;
12 od;
13 s = random[1,bαmc];
14 do v = 1, . . . ,s→
15 Cik = outheap();
16 od;
17 Γ = Γ∪{i,k)};
18 od;
19 return
end stage2;

FIGURE 2. Pseudo-code of Stage 2 of GRASP construction phase

pairs, i.e.

Γ = Γ∪{(i,k)}.
In this fashion the greedy function changes at each GRASP iteration.

Figure 2 describes Stage 2 of the GRASP construction phase in pseudo-code. The
procedure takes as input the initial two assignments, made in Stage 1 and the candidate list
restriction parameter α. This procedure makes use of two heap operators: inheap inserts
an element into the heap, updating the heap, and outheap deletes the top (smallest) element
from the heap, and updates the heap. The set of assignments Γ initially consists of the two
Stage 1 assignments (line 1). In lines 2–18 the remaining assignments are made. For each
assignment, the candidate counter m is set in line 3 and in lines 4–12 the assignment costs
of the unassigned pairs are computed and inserted in the heap structure for sorting. In
line 13 a random number s is generated in the interval [1,bαmc] and in lines 14–16, the
assignment pair having the s-th smallest cost is retrieved from the heap. Line 17 updates
the solution set. We have omitted some trivial implementation details that make the above
pseudo-code more efficient in order to make a cleared description of Stage 2.

2.3. Local Search. For a given problem, a local search algorithm works in an it-
erative fashion by successively replacing the current solution by a better solution in the
neighborhood of the current solution. It terminates when there is no better solution found
in the neighborhood with respect to some cost function.

In this subsection, we discuss, with respect to the QAP, issues related to local search
algorithms, neighborhood structures, techniques for searching the neighborhood of a solu-
tion, and related complexity issues.
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procedure local(P,N(P),s)
1 do s is not locally optimal→
2 Find a better solution t ∈ N(s);
3 Let s = t;
4 od;
5 return(s as local optimal for P)
end local;

FIGURE 3. Layout of Local Search

The neighborhood structure N for a problem P relates a solution s of the problem
to a subset of solutions N(s). A solution s is said to be locally optimal if there is no
better solution in N(s). Given a neighborhood structure N, a local search algorithm has the
general form as stated in Figure 3.

The key to success for a local search algorithm consists of the suitable choice of a
neighborhood structure, efficient neighborhood search techniques, and the starting solu-
tion. The GRASP construction phase plays an important role with respect to this last point,
since it produces good starting solutions for local search. Next, the common neighborhood
structures used in local search algorithms are discussed and a new neighborhood structure
for the QAP is presented. Neighborhood design principles and neighborhood searching
techniques are discussed.

Given two permutations p and q, the difference between p and q is defined to be
δ(p,q) = {i | p(i) 6= q(i)}, and the distance between p and q is defined to be d(p,q) =
|δ(p,q)|. To design a good neighborhood structure, one should be guided the following
three principles: (a) reasonable neighborhood size; (b) large variance in neighborhood;
and (c) high connectivity in neighborhood.

Principle (a) implies that one should limit the size of a neighborhood so that searching
the neighborhood can be done efficiently. Define a diameter of a set of permutations S to
be

D(S) = max
p,q∈S

d(p,q).

Principle (b) requires that the diameter of a neighborhood be large. Principle (c) implies
that given two permutations in a neighborhood, there should be a sequence of permutations
in the neighborhood such that the difference between each pair of consecutive permutations
is small. For a given problem P with the solution space represented by S(P), the degree of
connectivity of a neighborhood structure N is defined to be

CN = 1/K,

where
K = min

r∈S(P)
min

p,q∈N(r)
max

p0=p,pk=q
min

i=1,...,k−1
d(pi, pi+1).

The constant K can be interpreted as follows. First, for each pair of permutations {p,q}
in the neighborhood N(r) of the same permutation r, there corresponds a smallest distance
between consecutive permutations in a path in the neighborhood N(r) between p and q.
Taking the maximum among all such paths and then taking the minimum among all pos-
sible permutations in the set of solution space S(P), one obtains K. Principle (c) requires
that a good neighborhood have a high degree of connectivity. This principle rules out the
use of random neighborhoods, for which the degree of connectivity is low.
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procedure kexhange(k,Nk(p),p)
1 do p is not locally optimal in Nk(p)→
2 Find a better solution q ∈ Nk(p);
3 Let p = q;
4 od;
5 return(p as local optimal permutation)
end kexchange;

FIGURE 4. k-Exchange Neighborhood Local Search for the QAP

2.3.1. Local Search Algorithms for the QAP. In this subsection, algorithms for the
QAP corresponding to the 3 types of neighborhood structures are presented. In a GRASP,
a local search algorithm starts with an initial permutation produced by the construction
phase and works in a iterative fashion. At each iteration of the local search, a better so-
lution in the neighborhood of the current solution is pursued and the current solution is
replaced by an improved solution, if one is found. The most commonly used neighborhood
structure for the QAP is the so-called k-exchange neighborhood structure. The k-exchange
neighborhood for a permutation p ∈ΠN is defined to be

Nk(p) = {q | d(p,q)≤ k}, where 2≤ k ≤ n.

The k-exchange neighborhood is also used for many other combinational optimization
problems, such as the traveling salesman problem (TSP), the graph partitioning prob-
lem (GP) and the maximum clique problem (MCP). Pseudo-code for the k-exchange local
search is shown in Figure 4.

Let p be the starting permutation of a local search algorithm and p∗ the optimal per-
mutation of the QAP and let k be the distance between p and p∗. If k is small, then a local
search algorithm enumerating all permutations in N(p,k) will yield the optimal solution.
Among all possible values of k, the most popular is k = 2. This local search is used in
the computational experiments of Section 3. When the value of k is large, searching the
neighborhood can be too expensive. Since the TSP, GP, and MCP are special cases of
the QAP, it is not surprising that the 2-exchange neighborhood structure for the QAP is a
generalization of the 2-exchange neighborhood structures for the TSP, GP, and MCP.

The relationship between the GP and the QAP also gives rise to the adaptation of
the λ-exchange neighborhood structure for the GP to the QAP. First, define the set of all
possible pairwise exchanges as follows

E = {(i, j) | i 6= j, i, j = 1, ...,n}.

For a given permutation p, denote by N2(p,E ′) the set of permutations in N2(p) obtained
by performing pairwise exchanges in a subset of pairwise exchanges E ′.

The λ-exchange neighborhood structure, denoted by Nλ, is defined as a union of a
collection of subsets of 2-exchange neighborhoods. At each local search step, the current
permutation is denoted as p0 and the set E0 = E. At step k of a search step, permutations
p1, ..., pk have already been constructed. Let the best solution (tie is broken arbitrarily) in
N2(pk,Ek) be denoted pk+1. Now, construct the set Ek+1 from Ek as follows:

Ek+1 = Ek−{(i, j) | i or j ∈
k[

l=0

δ(pl , pl+1), i, j = 1, ...,n}. (1)
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procedure LambdaExchange(n,p)
1 Loop = true;
2 do Loop == true→
3 p0 = p; E0 = E; Done = false;
4 do Done == false and Ek 6= /0→
5 Find best solution pk+1 ∈ N2(pk,Ek);
6 Ek+1 = Ek−{(i, j) | i or j ∈Sk

l=0 δ(pl , pl+1), i, j = 1, ...,n};
7 if f (pk+1)≥ f (p0)→ Done = true fi;
8 k = k + 1;
9 od;
10 p = argmin{ f (p1), . . . , f (pk)};
11 if f (p) == f (p0)→ Loop = false fi;
12 od;
13 return(the local optimal p)
end LambdaExchange;

FIGURE 5. λ-Exchange Neighborhood Local Search

The process is continued until either f (pk)> f (p0) or Ek = /0. Then

Nλ(p0) =
k[

i=0

N2(pi,Ei).

The algorithm is stated in Figure 5.
Following the design principles of neighborhood structures, we propose a new neigh-

borhood structure with the objective of providing better solutions than those obtained by
the λ-exchange neighborhood. The new neighborhood structure, denoted by N∗, can also
be defined as a union of a collection of subsets of 2-exchange neighborhoods. At each local
search step, the permutation is denoted as p0 and the set E0 = E. At step k, permutations
p1, ..., pk have already been constructed. Let the best solution (tie is broken arbitrarily) in
N2(pk,Ek) be denoted pk+1. As before, construct the set Ek+1 from Ek, this time according
to

Ek+1 = Ek−{(i, j) | i and j ∈
k[

l=0

δ(pl , pl+1), i, j = 1, ...,n}. (2)

The process is continued until either f (pk)> f (p0) or Ek = /0. Then

N∗(p0) =
k[

i=0

N2(pi,Ei).

The new local search algorithm corresponding to the N∗ neighborhood structure is given
in Figure 6.

Table 1 can be used to evaluate the neighborhood structures discussed earlier. The
sizes of Nλ and N∗ are approximate. Only the leading terms of the size are given. The
exact formulae for the size of the neighborhood structures are given in Subsection 2.3.2.

An examination of Table 1 shows that N∗ is slightly greater than Nλ. This is a dis-
advantage when one is more concerned about computational time. However, in general,
N∗ admits better solutions, as indicated by the computational results in [25]. For Nk with
k small (k ≤ 4), the neighborhood size is comparable with those of Nλ and N∗; however,
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procedure NStarNeighborhood(n,p)
1 Loop = true;
2 do Loop == true→
3 p0 = p; E0 = E; Done = false;
4 do Done == false and Ek 6= /0→
5 Find best solution pk+1 ∈ N2(pk,Ek);
6 Ek+1 = Ek−{(i, j) | i and j ∈Sk

l=0 δ(pl , pl+1), i, j = 1, ...,n};
7 if f (pk+1)≥ f (p0)→ Done = true fi;
8 k = k + 1;
9 od;
10 p = argmin{ f (p1), . . . , f (pk)};
11 if f (p) == f (p0)→ Loop = false fi;
12 od;
13 return(the local optimal p)
end NStarNeighborhood;

FIGURE 6. N∗ Neighborhood Local Search

TABLE 1. Theoretical Evaluation of Neighborhood Structures

Nk Nλ N∗

Diameter min{2k,n} n n

Size Cn
k n3/24 n4/8

Connectivity 1/2 1/2 1/2

the diameter is smaller. For Nk with k large (k > 4), the neighborhood size is considerably
larger than those of Nλ and N∗, while the diameter is comparable in size. Consequently, in
general, Nk is not as good as Nλ and N∗.

2.3.2. Searching the Neighborhoods. The search for a better solution in a neighbor-
hood N(p) for a given solution s can be done in two ways: (i) complete enumeration,
where one searches all the solutions in the neighborhood to find the best solution; (ii)
first decrement, where one enumerates the solutions in the neighborhood and stop once a
better solution is found. In both cases, the worst case time complexity of searching the
neighborhood is equal to the size of the neighborhood. The size of the Nk neighborhood
is Cn

k = n!
k!(n−k)! . The size Sλ of the Nλ neighborhood (assuming that n = 2k for some k) is
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given by:

Sλ = Cn
2 +Cn−2

2 + ...+C2
2

=
k

∑
i=1

2i(2i−1)

2

=
k

∑
i=1

(2i2− i)

=
1
24

n3 +
5
8

n2 +
7
12

n

= O(n3).

The size S∗ of the new neighborhood N∗ is given by:

S∗ = 1 + 2 + ...+Cn
2

=
1
2

Cn
2(Cn

2 −1)

=
1
2

n(n−1)

2
(

n(n−1)

2
−1)

=
1
8

(n4−2n3−n2 + 2n)

= O(n4).

Hence, searching the neighborhood Nk can be quite expensive when k is large while search-
ing neighborhoods Nλ and N∗ is more affordable.

2.3.3. Complexity Issues. Although local search algorithms work quite well in prac-
tice for many combinational optimization problems, they may require exponential time
in worst case instances. In order to characterize the complexity of such local search al-
gorithms, a new complexity class, the Polynomial-time Local Search (PLS) class, was
introduced and studied in [18].

Let I(P) denote the set of instances of the problem P with an associated cost function
C. For an instance x ∈ I(P), there exists a set of feasible solutions F(x). For each feasible
solution s ∈ F(x), there exists a set of neighboring solutions N(s,x).

Problem P is said to be in PLS if, given an input x and a set of feasible solutions F(x),
the following three polynomial-time algorithms exist:

1. On input x ∈ I, compute an initial feasible solution s0 ∈ F(x).
2. On input x ∈ I and s ∈ F(x) compute the corresponding cost C(s,x).
3. On input x ∈ I and s ∈ F(x), either determine that s is locally optimal or find a

better solution in N(s,x), with respect to the cost function.
A problem P∈ PLS is PLS-reducible to another problem Q∈ PLS, if there are polynomial-

time computable functions f1 and f2, such that f1 maps an instance x of P to an instance
f1(x) of Q and for any locally optimal solution s for f1(x), f2(s,x) produces a locally opti-
mal solution for x. A problem P ∈ PLS is PLS-complete, if every other problem in PLS is
PLS-reducible to P.

The GP with 2-exchange neighborhood is PLS-complete [29, 35]. Since the GP is a
special case of the QAP, the following theorem holds:

THEOREM 1. The local search problems for the QAP with the k-exchange neighbor-
hood structure, λ-exchange neighborhood structure, and the N∗ neighborhood structure
are PLS-complete.
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TABLE 2. GRASP runs on problem class BUR

Problem Best value GRASP GRASP CPU time
Name found iterations local total
bur26a 5426670 388 28.44 44.07
bur26b 3817852 81 5.67 8.90
bur26c 5426795 357 26.50 40.88
bur26d 3821225 158 11.20 17.79
bur26e 5386879 2179 164.80 755.98
bur26f 3782044 87 6.25 9.83
bur26g 10117172 1894 142.39 218.28
bur26h 7098658 283 21.03 32.44

TABLE 3. Permutations found by GRASP on problem class BUR

Problem
Name Permutation of best assignment
bur26a 13,8,17,5,12,9,4,15,11,20,1,7,6,16,2,23,21,10,19,18,14,25,26,

24,22,3
bur26b 12,25,17,5,13,7,4,15,11,20,1,16,26,6,3,24,22,10,19,18,14,9,8,

23,21,2
bur26c 17,2,1,15,19,21,24,12,10,8,6,3,4,18,9,5,25,13,11,14,16,20,23,

22,7,26
bur26d 18,4,2,23,19,21,24,7,10,25,22,11,1,17,9,5,26,13,12,14,8,20,15,

3,16,6
bur26e 9,23,15,1,19,20,4,16,18,21,25,13,2,3,10,5,8,12,14,11,17,24,26,

22,7,6
bur26f 9,21,22,24,19,2,3,25,18,8,26,14,1,15,10,5,4,11,13,12,17,23,6,

20,16,7
bur26g 9,1,24,12,19,20,11,8,17,25,2,15,5,23,16,21,26,14,18,13,10,3,4,

6,7,22
bur26h 9,2,22,11,19,5,13,8,17,6,1,4,3,15,16,20,26,14,18,12,10,21,23,

25,7,24

3. Experimental Results

In this section, we report experimental results describing the testing of a FORTRAN
implementation of the GRASP described in this paper on a wide range of test problems,
including most instances from the suite of QAP test problem QAPLIB [5] and a new class
of test problems with known optimal solutions [26]. The objective of this experiment is
to show the effectiveness of a simple GRASP code in obtaining good-quality solutions
quickly.

The FORTRAN code implementation has 537 lines of code, including input/output
and debugging statements and was written and debugged in a few hours. We used the
portable random number generator rand of Schrage [36] with the initial seed 270001 to
generate the random integer to select a candidate from the restricted candidate list.

The experiment was conducted on a single processor of a Silicon Graphics Challenge
computer (100 MHz MIPS R4400 processor), using the SGI FORTRAN compiler f77 with
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TABLE 4. GRASP runs on problem class CHR

Problem Best value GRASP GRASP CPU time
Name found iterations local total
chr12a 9552 39 0.15 0.26
chr12b 9742 12 0.06 0.09
chr12c 11156 321 1.56 2.16
chr15a 9896 13475 128.11 197.76
chr15b 7990 1118 10.54 16.32
chr15c 9504 6484 60.76 93.79
chr18a 11098 2479 42.09 67.86
chr18b 1534 58 0.93 1.56
chr20a 2192 94307 2328.91 3785.86
chr20b 2370 61232 1442.65 2388.01
chr20c 14142 1461 30.55 53.18
chr22a 6190 37724 1336.41 2175.09
chr22b 6282 238 8.46 13.81
chr25a 3972 15565 845.62 1412.09

TABLE 5. Permutations found by GRASP on problem class CHR

Problem
Name Permutation of best assignment
chr12a 5,4,6,12,2,10,1,11,7,9,8,3
chr12b 3,8,6,7,1,10,2,12,9,4,5,11
chr12c 3,11,4,6,2,8,1,7,9,5,10,12
chr15a 14,8,13,9,1,10,11,3,15,2,6,5,4,7,12
chr15b 4,6,12,1,7,9,11,15,5,13,14,8,2,10,3
chr15c 6,2,10,9,3,8,4,5,12,15,14,13,1,7,11
chr18a 9,18,1,4,8,3,12,11,15,7,10,6,2,14,17,16,13,5
chr18b 3,5,7,1,18,9,2,16,11,4,14,13,6,12,15,8,10,17
chr20a 11,15,1,8,16,12,3,14,5,9,10,6,19,17,13,18,20,4,7,2
chr20b 8,14,4,18,13,3,2,9,10,11,12,1,16,5,20,7,15,17,19,6
chr20c 18,4,7,8,14,2,11,19,3,5,6,1,12,15,9,13,16,10,17,20
chr22a 6,2,15,16,11,13,7,4,19,21,14,22,10,20,1,5,9,8,18,17,

3,12
chr22b 4,6,11,10,17,2,9,1,18,8,13,19,14,16,3,21,7,22,20,15,

12,5
chr25a 6,11,4,18,3,12,14,20,13,10,8,22,17,23,24,7,21,5,16,9,

19,2,25,15,1

TABLE 6. GRASP run on problem class ELS

Problem Best value GRASP GRASP CPU time
Name found iterations local total

els19.out 17212548 105 2.63 3.99
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TABLE 7. Permutation found by GRASP on problem class ELS

Problem
Name Permutation of best assignment
els19 17,18,19,11,12,9,3,14,1,2,10,13,7,5,15,16,8,4,6

TABLE 8. GRASP runs on problem class ESC

Problem Best value GRASP GRASP CPU time
Name found iterations local total
esc08a 2 1 0.00 0.00
esc08b 8 1 0.00 0.00
esc08c 32 2 0.00 0.00
esc08d 6 1 0.00 0.00
esc08e 0 0 0.00 0.00
esc08f 18 2 0.00 0.00
esc16a 68 1 0.01 0.02
esc16b 292 1 0.01 0.02
esc16c 160 2 0.01 0.03
esc16d 16 1 0.01 0.02
esc16e 28 12 0.10 0.17
esc16f 0 0 0.00 0.00
esc16g 26 1 0.01 0.02
esc16h 996 1 0.01 0.02
esc16i 14 1 0.01 0.02
esc16j 8 1 0.01 0.02
esc32a 130 22339 2256.88 4780.14
esc32b 168 94 10.08 18.91
esc32c 642 2 0.18 0.37
esc32d 200 22 1.84 3.92
esc32e 2 1 0.06 0.16
esc32f 2 1 0.06 0.16
esc32g 6 1 0.06 0.16
esc32h 438 28 2.66 5.26
esc64a 116 1 0.96 2.44
esc128 64 21 139.79 580.21

the compiler flags -O2 -Olimit 800. CPU times in seconds were computed by calling
the system routine etime(). Reported CPU times exclude problem input time.

GRASP requires few parameters to be set. The performance of most heuristics de-
pends on parameter setting. Since we would like to make our results as reproducible
as possible, we limit our runs in this experiment to a single set of parameter settings.
Throughout the experiment we used the following parameters:

• α = 0.5
• β = 0.1
• maxiter = 100,000.

By using the same parameter setting we also illustrate the robustness of this approach.
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TABLE 9. Permutations found by GRASP on problem class ESC

Problem
Name Permutation of best assignment
esc08a 1,2,8,5,7,6,3,4
esc08b 4,3,8,2,6,1,7,5
esc08c 2,6,8,5,4,7,1,3
esc08d 3,7,5,6,1,4,2,8
esc08e 7,8,4,1,2,6,3,5
esc08f 8,5,7,6,1,2,3,4
esc16a 9,3,12,11,10,2,5,16,8,14,6,13,1,4,7,15
esc16b 5,8,13,12,11,3,14,1,4,7,10,15,6,2,9,16
esc16c 12,14,13,16,2,3,4,5,11,1,9,15,10,7,6,8
esc16d 14,12,6,15,8,13,5,3,11,9,7,2,10,16,4,1
esc16e 3,16,1,4,15,13,6,9,14,11,7,2,10,12,8,5
esc16f 14,16,15,12,13,3,2,4,11,8,10,6,1,9,7,5
esc16g 6,1,5,9,4,11,2,16,7,15,13,12,8,10,3,14
esc16h 7,6,14,13,9,10,15,12,4,8,16,3,11,5,1,2
esc16i 6,7,1,14,5,13,16,10,3,8,2,9,4,11,12,15
esc16j 13,11,1,14,6,4,10,16,7,15,8,9,5,2,12,3
esc32a 5,2,4,3,9,14,18,15,6,1,32,26,11,13,19,17,29,31,23,16,28,

30,21,8,7,22,10,12,20,25,24,27
esc32b 24,22,23,21,18,12,17,11,25,26,20,19,29,28,6,5,15,9,13,7,

16,10,14,8,31,30,3,1,27,32,4,2
esc32c 14,6,23,22,16,13,28,21,17,18,27,24,10,19,2,31,5,8,32,30,

11,12,25,4,9,20,26,3,15,7,29,1
esc32d 18,17,7,8,1,10,5,14,19,28,22,27,4,13,3,12,16,6,9,15,11,24,

2,21,23,20,29,30,32,25,31,26
esc32e 7,13,8,12,9,32,17,20,19,30,21,3,16,10,6,18,5,14,2,1,31,24,

23,27,11,29,4,28,15,22,25,26
esc32f 7,13,8,12,9,32,17,20,19,30,21,3,16,10,6,18,5,14,2,1,31,24,

23,27,11,29,4,28,15,22,25,26
esc32g 4,18,19,32,3,30,28,14,26,11,31,29,16,10,12,1,5,7,21,17,2,24,

25,27,22,13,8,9,15,23,6,20
esc32h 13,14,7,3,22,18,5,31,30,25,24,8,28,27,20,12,17,16,4,15,6,10,

23,2,26,1,19,9,29,32,21,11
esc64a 4,9,20,33,62,24,27,35,10,15,44,14,46,11,31,22,50,7,47,21,36,

5,49,16,8,37,6,19,17,57,41,58,40,42,25,30,51,43,39,3,59,54,2,
26,55,12,45,52,38,32,23,28,29,64,48,34,18,13,61,60,63,56,53,1

esc128 80,75,66,79,71,73,77,69,20,6,49,25,115,81,122,119,85,
91,32,28,48,87,9,5,123,126,16,26,47,94,120,92,43,2,11,
72,12,27,128,46,62,57,21,86,30,58,98,10,125,78,116,45,
84,70,41,54,106,99,38,18,52,34,7,105,36,110,35,63,31,
90,33,111,55,60,96,23,83,117,8,82,67,29,114,97,51,108,
76,113,101,124,14,65,53,88,107,59,40,44,127,37,42,24,
112,104,64,74,15,17,95,19,50,13,4,102,103,39,56,68,109,
118,100,121,1,93,3,61,89,22
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TABLE 10. GRASP runs on problem class KRA

Problem Best value GRASP GRASP CPU time
Name found iterations local total
kra30a 88900 16786 1738.07 2919.50
kra30b 91420 51537 5364.87 8988.54

TABLE 11. Permutations found by GRASP on problem class KRA

Problem
Name Permutation of best assignment
kra30a 26,24,19,16,20,23,6,10,11,2,22,18,7,14,15,21,25,29,12,9,5,17,1,

8,13,28,30,3,4,27
kra30b 23,22,25,19,20,26,5,8,9,2,21,18,6,12,16,24,27,30,13,7,4,17,1,11,

14,29,15,3,10,28

TABLE 12. GRASP runs on problem class NUG

Problem Best value GRASP GRASP CPU time
Name found iterations local total
nug05 52 1 0.00 0.00
nug06 86 1 0.00 0.00
nug07 148 1 0.00 0.00
nug08 214 4 0.00 0.01
nug12 578 100 0.47 0.64
nug15 1150 20 0.17 0.27
nug20 2570 736 19.39 30.12
nug30 6124 79861 8889.22 14406.48

TABLE 13. Permutations found by GRASP on problem class NUG

Problem
Name Permutation of best assignment
nug05 4,3,5,2,1
nug06 3,2,1,6,5,4
nug07 1,2,5,3,4,7,6
nug08 6,5,1,7,8,4,3,2
nug12 5,1,9,8,4,3,11,7,10,2,6,12
nug15 11,12,7,6,4,3,9,14,15,1,10,5,13,8,2
nug20 19,7,4,6,17,20,18,14,5,3,9,8,15,2,12,10,16,1,11,13
nug30 14,29,4,12,25,27,16,15,22,21,9,26,28,5,1,10,13,2,17,

6,30,8,7,20,18,19,3,24,23,11

We tested the GRASP implementation on most of the problem classes in QAPLIB:
BUR [6], CHR [8], ELS [10], ESC [11], KRA [22], NUG [30], ROU [32], SCR [37], SKO
[39], and STE [40]. The only class left out was CAR [7] which has QAP instances with
a nonzero linear part and cannot be handled by our current GRASP implementation. We
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TABLE 14. GRASP runs on problem class ROU

Problem Best value GRASP GRASP CPU time
Name found iterations local total
rou10 174220 34 0.06 0.12
rou12 235528 307 1.48 2.02
rou15 354210 4 0.05 0.06
rou20 725522 31246 853.36 1308.09

TABLE 15. Permutations found by GRASP on problem class ROU

Problem
Name Permutation of best assignment
rou10 9,4,1,10,8,5,6,3,7,2
rou12 8,5,7,11,2,1,10,6,4,12,3,9
rou15 10,8,6,13,5,2,9,3,11,12,15,1,4,14,7
rou20 1,3,16,12,10,20,11,13,9,5,7,17,19,4,15,6,18,14,2,8

TABLE 16. GRASP runs on problem class SCR

Problem Best value GRASP GRASP CPU time
Name found iterations local total
scr10 26992 6 0.00 0.02
scr12 31410 28 0.15 0.20
scr15 51140 30 0.34 0.48
scr20 110030 325 9.64 14.47

TABLE 17. Permutations found by GRASP on problem class SCR

Problem
Name Permutation of best assignment
scr10 6,4,3,9,7,2,10,1,8,5
scr12 11,12,5,8,1,10,2,7,9,3,4,6
scr15 5,8,7,6,12,10,2,4,15,14,3,9,11,13,1
scr20 20,8,7,5,18,4,2,6,12,19,10,3,17,9,14,15,16,11,13,1

also tested the GRASP on two new classes of QAP test problems, with known optimal
solutions, generated with the generator described in [26]: LIPAA and LIPAB.

For each problem class we report the value of the best assignment found, GRASP
iterations and total and local search CPU time to find the first occurrence of the best as-
signment, and the permutation of the first best solution found.

Tables 2–3 summarize results for problem class BUR. In all cases the GRASP found
solutions having better objective value than those reported in the literature. Tables 4–5
show computational results for class CHR. In all, but four instances, the GRASP produced
optimal permutations. Tables 6–7 show results for the single ELS instance, where the
GRASP produced an optimal permutation in less than four seconds. Testing of problem
class ESC is summarized in Tables 8-9. Most of those instances were solved in fractions
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TABLE 18. GRASP runs on problem class STE

Problem Best value GRASP GRASP CPU time
Name found iterations local total
ste36a 9588 29836 6351.89 10590.64
ste36b 15852 9640 2228.62 3600.14
ste36c 8254628 408 92.57 150.65

TABLE 19. Permutations found by GRASP on problem class STE

Problem
Name Permutation of best assignment
ste36a 16,18,35,25,34,33,15,26,27,17,32,23,24,5,6,7,9,8,4,14,21,30,22,

28,29,20,31,13,12,11,10,3,1,2,19,36
ste36b 31,10,2,12,3,4,22,11,29,21,5,14,13,15,30,28,19,20,24,23,7,8,16,

9,17,18,6,32,33,34,35,25,27,26,36,1
ste36c 31,10,2,12,3,4,22,11,30,21,5,14,13,15,32,29,19,20,25,23,17,18,16,

9,8,7,6,24,33,34,35,26,27,36,1,28

TABLE 20. GRASP runs on problem class LIPAA

Problem Optimal Best value GRASP GRASP CPU time
Name value found iterations local total

lipa10a 473 473 4 0.01 0.01
lipa20a 3683 3683 35 0.86 2.18
lipa30a 13178 13178 703 71.11 119.58
lipa40a 31538 31538 97667 27062.88 47390.47
lipa50a 62093 62655 67360 41600.45 80382.47
lipa60a 107218 108118 84179 93574.86 189669.64
lipa70a 169755 171021 67093 128319.19 266824.13
lipa80a 253195 254907 77868 236454.84 505766.13
lipa90a 360630 362847 31640 152307.84 328593.53

of a second in one GRASP iteration. One instance, esc32a, appears to be much harder than
the others. In all cases, GRASP produced the best known solution and for problem esc128,
a solution of cost 64 was found (in [5] a best known value of 84 is reported). Tables 10–11
give results for problem class KRA. For those two instances, GRASP produced best known
solutions, requiring over two hours of CPU time for kra30b. Results for the classical
problem set NUG are given in Tables 12–13. The GRASP found best known solutions
for all of the instances. In most cases we found optimal permutations that were different
from those reported in [5]. Tables 14–15 show results for problem class ROU, where the
GRASP produced best known solutions for all four instances. Testing on problem class
SCR is summarized in Tables 16–17. GRASP produced optimal permutations for all four
instances. Tables 18–19 summarize test results for the three STE instances. In only one
of the three instances, did the GRASP produce the best known solution (ste36b). For the
ste36c instance, GRASP found a solution within 0.2% of the best known solution in less
than 151 CPU seconds.
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TABLE 21. Permutations found by GRASP on problem class LIPAA

Problem
Name Permutation of best assignment

lipa10a 4,3,10,1,6,9,8,5,2,7
lipa20a 4,19,13,9,5,12,3,18,6,7,15,8,17,14,16,10,2,20,1,11
lipa30a 28,30,26,16,11,10,22,18,1,29,9,8,2,25,23,27,4,17,19,

13,21,3,6,24,5,15,14,12,7,20
lipa40a 10,8,24,25,15,2,1,18,31,28,26,40,29,3,36,9,32,34,5,19,

7,17,14,12,37,22,4,16,23,13,33,21,35,38,20,27,6,30,39,11
lipa50a 32,34,11,33,7,2,25,31,29,49,50,40,26,30,47,28,17,5,10,

16,38,21,6,39,20,18,46,1,27,12,36,45,14,23,24,44,8,9,4,
41,22,43,37,3,13,42,48,19,15,35

lipa60a 21,1,8,6,49,44,13,43,32,53,58,54,45,60,16,4,14,5,37,51,
50,35,56,30,18,59,15,25,48,33,2,34,12,36,24,41,19,52,3,38,
40,22,46,7,23,17,39,31,57,9,10,20,28,11,42,27,47,29,26,55

lipa70a 65,21,68,12,7,44,17,61,27,70,14,55,67,31,43,25,32,48,22,58,
52,57,29,63,11,28,66,6,24,35,45,62,50,30,34,2,40,42,13,9,19,
49,47,56,53,10,1,59,64,46,69,26,36,16,39,18,41,5,38,23,20,8,
15,3,51,4,54,60,37,33

lipa80a 66,14,50,27,43,42,36,78,18,68,26,69,56,16,65,64,79,53,72,35,
5,11,13,54,51,32,31,22,47,76,67,38,44,1,10,45,63,6,30,4,8,41,
7,59,80,20,37,62,29,15,34,3,23,28,74,17,40,61,33,52,48,25,57,
70,73,55,21,39,12,75,58,77,24,49,9,46,19,60,2,71

lipa90a 53,27,35,26,2,86,82,67,88,89,69,12,24,40,5,75,8,3,19,29,47,80,
15,70,11,84,16,20,31,28,58,66,71,32,25,56,61,1,14,33,65,83,59,
6,43,76,30,55,37,48,9,4,23,13,74,7,68,63,62,45,85,18,77,46,54,
60,39,72,50,21,38,41,22,17,44,34,64,78,73,52,79,51,87,36,90,49,
10,57,81,42

TABLE 22. GRASP runs on problem class LIPAB

Problem Optimal Best value GRASP GRASP CPU time
Name value found iterations local total

lipa10b 2008 2008 1 0.00 0.00
lipa20b 27076 27076 16 0.47 0.71
lipa30b 151426 151426 27 3.19 5.03
lipa40b 476581 476581 43 14.12 23.09
lipa50b 1210244 1210244 212 154.64 258.62
lipa60b 2520135 2520135 384 505.04 886.46
lipa70b 4603200 4603200 81 191.66 338.82
lipa80b 7763962 7763962 592 2179.96 4003.01
lipa90b 12490441 12490441 4462 25023.39 47141.35

Tables 20–21 show results for the first new problem class LIPAA, and tables 22–
23 show results for the other new problem class LIPAB. In addition to the information
provided in the tables for the other problem classes, tables 20 and 22 also display the known
optimal value for each instance. On problem class LIPAA, the GRASP found an optimal
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TABLE 23. Permutations found by GRASP on problem class LIPAB

Problem
Name Permutation of best assignment

lipa10b 1,2,3,4,5,6,7,8,9,10
lipa20b 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
lipa30b 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,

21,22,23,24,25,26,27,28,29,30
lipa40b 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,

22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40
lipa50b 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,

23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50

lipa60b 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60

lipa70b 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70

lipa80b 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,
23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,
61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80

lipa90b 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,
24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,
44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,
64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,
84,85,86,87,88,89,90

solution for all instances up to dimension n = 40. For the instances having dimension
n≥ 50, the GRASP found, in at most 100,000 iterations, solutions within 1% of the known
optimal value. On all instances, up to dimension n = 90, in problem class LIPAB, the
GRASP found optimal solutions, taking a little over 13 CPU hours on the largest instance.

For all problem classes, the local search time accounted for less than half of the total
CPU time, suggesting that a more ellaborate local search, such as the 3-exchange described
in Subsection 2.3, can be used in the GRASP. In addition, GRASP may obtain better so-
lutions if given more GRASP iterations. In this study, we limited the number of iterations
to 100,000. For the few instances where GRASP did not produce a best known solution, a
solution within a small percentage of the best known solution was found quickly.

4. Concluding remarks

In this paper, we discussed aspects of a GRASP implementation for solving the QAP.
The algorithm was tested on a broad range of test problems and produced good-quality
solutions in a reasonable amount of CPU time. Best known solutions were produced for
almost all of the instances tested. In a few cases, the permutations found were better than
those previously reported in the literature.
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The algorithm can be easily implemented on a parallel computer since different GRASP
iterations can be assigned to each processor. A single global variable (value of best solu-
tion found) is shared by the processors. It is expected that a parallel implementation should
improve the computational results given in this paper as was observed in [14].

GRASP can be also adapted to solve special cases of QAP, like the traveling salesman
problem, graph isomorphism, graph partitioning, and the band-width reduction problem.
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