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Power Transmission Network Design by Greedy
Randomized Adaptive Path Relinking
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Abstract—This paper presents results obtained by a new meta-
heuristic approach called Greedy Randomized Adaptive Path
Relinking (GRAPR), applied to solve static power transmission
network design problems. This new approach uses generalized
GRASP concepts to explore different trajectories between two
“high-quality” solutions previously found. The results presented
were obtained from two real-world case studies of Brazilian
systems.

Index Terms—GRASP, metaheuristics, path relinking, power
transmission network design problems.

1. INTRODUCTION

HIS PAPER presents results obtained by a new meta-

heuristic approach (Greedy Randomized Adaptive Path
Relinking (GRAPR)—see [2]) applied to solve static power
transmission network design problems. GRAPR consists of a
generalization of GRASP’s mechanisms to manage the trajec-
tory exploration of the Path Relinking approach [12]. GRASP
was formalized by Feo and Resende in [9] and its mecha-
nisms are a greedy randomized construction phase, where a
feasible solution is iteratively built through a greedy random-
ized procedure; and a local search phase, which explores the
neighborhood of the construction phase solution.

The main objective of GRAPR is to improve the exploration
characteristics of the Path Relinking approach, which consists
in the generation of just one path connecting two “high-quality”
solutions. However, a very large number of different paths exist
and several different solutions could be reached exploring these
different trajectories.

The electric power system expansion planning task is a large-
scale optimization problem that must devise a system meeting
load and reliability criterion, minimizing, at the same time, the
investment and operational costs. This is an extremely complex
problem which cannot be solved without some simplifications.
One of these simplifications consists in separating this problem
into its major agents, namely generation, transmission and dis-
tribution. In this work, we are interested in the transmission ex-
pansion planning problem which assumes as known the gener-
ation plan.

Manuscript received January 9. 2004. Paper no. TPWRS-00200-2003.

H. Faria, Jr., is with the Fundagao Centro Tecnoldgico de Juiz de Fora, Brazil
(e-mail: hfjr@ieee.org).

S. Binato is with the PSR Consultoria, Rio de Janeiro, Brazil (e-mail:
silvio@binato.com.br).

M. G. C. Resende is with AT&T Labs, Florham Park, NJ 07932 USA (e-mail:
mgcr@research.att.com).

D. M. Falcao is with COPPE/UFRJ, Rio de Janeiro, Brazil (e-mail:
falcao @coep.uftj.br).

Digital Object Identifier 10.1109/TPWRS.2004.835627

Power transmission network design problems consists in
choosing, from a pre-defined set of candidate circuits, those
that should be built in order to minimize the investment and
operational costs, and to supply the forecasted demand along
a planning horizon. This problem has a dynamic nature, i.e., it
requires the consideration of multiple time periods, determining
a sequence (stage-by-stage) of transmission expansion plans. A
subproblem of the dynamic version is the static problem, which
aims to determine, for just one stage, where new transmission
facilities should be installed, i.e., the timing consideration is
relaxed. A suboptimal solution of the dynamic problem can be
obtained by the solution of a sequence of static problems.

This paper addresses the static version of the transmission
network design problem. Because of its combinatorial nature,
finding an optimal solution is a very hard task. Both, combina-
torial and heuristic techniques can be used, but the use of com-
binatorial techniques is restricted to small instances due to the
complexity of these problems. On the other hand, heuristic ap-
proaches can provide “high-quality” solutions in an acceptable
computational time, even for large-scale problems. In this way,
several metaheuristic methods have already been proposed to
deal with these problems, e.g., Simulated Annealing [11], [13],
GRASP [4], [5], Reactive GRASP [4], Tabu Search [10], [16],
Hybrid Tabu Search [10], [16], Genetic Algorithms [7], [10].

The paper aims to show the effectiveness of GRAPR in
solving power transmission network design problems. We in-
clude results from two real-world, medium-scale, case studies
of Brazilian systems already analyzed in the literature [4].

This paper is organized as follows: Section II presents the
formulation of the transmission network design problems. Sec-
tion I1I introduces the concepts of GRAPR and discusses its sim-
ilarities and differences with GRASP and Path Relinking. Sec-
tion IV illustrates the results obtained by GRAPR and, finally,
in Section V we discuss some conclusions.

II. STATIC POWER TRANSMISSION NETWORK
DESIGN PROBLEMS

Denoting the set of all nodes by A (size(N) is written as
|V, the set of all existing branches by &, and the set of all can-
didate branches by C, the static long-term power transmission
network design problem, which is a simplified version of the
complete model (see [3]) can be formulated as

minimize z = Z CRITRI (1a)
kleC
subject to : (1b)
Zfl?l"f'z:flil‘l'gk:dk, ke N (lc)
le& LECy
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for =Bk —0) =0, kle€& (1d)
fir = Ty —0) =0, kleC (le)
1A < fh, kle€ (1f)
\fhl < fhww, KleC (1g)
0<gr<gr, keN, (1h)
zp € {0,1}, klecC (1i)

where ¢y is the investment cost to build candidate branch kl. &,
and Cj, represent, respectively, the set of all existing and candi-
date branches directly connected to bus k. Superscript indices
O(1) are references for existing (candidate) network variables,
respectively. Using this notation, 6y, gx, and gy, are, respectively,
the voltage angle, the active power generation, and the genera-
tion limit at node k; 4, fxi, and fy; are, respectively, the branch
susceptance, the power flow, and the power flow capacity of the
branch k.

The objective function corresponds to the investment cost of
new transmission facilities. In this formulation the operation
costs are neglected, otherwise a term Y., .\ ¢ gk, Where cf)
represents the unit cost of generation at bus &k, must be intro-
duced. However, considering operational costs does not affect
substantially the formulation and performance of the proposed
approach. The same observation applies to the inclusion of a
capital recovery factor in the objective function. The consid-
eration of other criteria like reliability, dynamic security, etc.,
leading to a multicriteria formulation is possible but beyond the
scope of this paper.

Constraints (1c) are the power flow balance equations for all
nodes of the network, and constraints (1d) and (1e) are the lin-
earized power flow equations for the existing and candidate net-
work, respectively. The remaining constraints are operational
limits and integrality conditions. Constraints (1i) represent the
integrality conditions over the decision variables x ;. Note that
if the kl candidate branch is not built, i.e., z;; = 0, the corre-
sponding branch flow over this candidate branch is required to
be zero because of constraint (1g). Also, the second Kirchoff
law (le) should not be enforced for this branch. On the other
hand, when x; = 1, i.e., the klth candidate branch is built, the
second Kirchoff law is made valid, the branch flow is limited by
fr: and constraint (1d) must be enforced.

Problem (1a)—(1i), throughout referred as problem (1), is
a mixed nonlinear (0 — 1) programming problem. Solving
it by classical combinatorial optimization approaches (e.g.,
branch-and-bound) is very difficult. One alternative is to em-
ploy heuristic approaches, which can provide good feasible
solutions, but not necessarily the optimal. Examples of heuristic
approaches are greedy methods that select one candidate circuit
to be built at a time, i.e., the vector z is iteratively constructed.
Let the vector & represent this partial solution. If we substitute
x = Z in the problem (1), we will get the following LP problem,

minimize z = Z %, subject to: (2a)
keEN
SN+ fito=die. keN (@2b)
le&y, leCy
= —0)=0, klc& (2¢)
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procedure GRASP(MaxIter, Seed)
1 ReadInput();
2 for k=1,..., MaxIter do
3 I +— RandomConstruction (Seed);
4 I «— LocalSearch(Z);
5 T + UpdateSolution(Z);
6 return x
end GRASP;

Fig. 1. General description of GRASP.

fo = 2@ —0) =0, klecC 2d)
\fal < P Kle€€ (2e)
\fu| < Fhdw, Klec (2)
0<gx <G, keN (29)
0<7r,<dr, keN (2h)

where 7, is the unsupplied load in the kth bus and Z is the
amount of unsupplied load in the network. This operation model
is referred as problem (2) throughout of this paper.

Transmission losses were not modeled explicitly in problem
(1), but they can be included in the operation problem as ad-
ditional loads, which are evaluated as a quadratic function of
power flow, into terminal nodes of each network branch. This
approach to take into account transmission losses requires the
iterative solution of problem (2) until the convergence of branch
losses. The production costs for the Brazilian systems studied in
this work are neglected because of their essentially hydroelec-
tric nature.

Finally, note that Z can be used as a measure of network infea-
sibility for the trial transmission expansion plan (Z). In the case
that 2 = 0 the trial solution Z is a feasible solution of problem
(1), i.e., Z is a feasible transmission expansion plan.

III. GREEDY RANDOMIZED ADAPTIVE PATH RELINKING

GRAPR consists of a generalization of GRASP concepts ap-
plied to the Path Relinking framework to better explore paths
linking two guiding solutions in the search space. For a better
understanding of the new approach, we will first describe the
basic mechanisms of GRASP and the Path Relinking approach.

The GRASP metaheuristic [9] is a multistart iterative ap-
proach, in which each GRASP iteration is composed of two
phases: construction and local search. The best solution found
over all iterations is reported as the final result. A generic pseu-
docode of GRASP is illustrated in Fig. 1, where MaxIter is
the number of GRASP iterations to be performed and Seed is
the initial seed for the pseudorandom number generator.

The basic mechanisms of GRASP are the construction and
local search phases. In the construction phase, a feasible so-
lution is iteratively built by a randomized adaptive greedy al-
gorithm. Thus, the implementation of the GRASP construction
phase requires the selection of a greedy function for the problem
being solved. The local search phase starts from the solution
provided by the construction phase. Using a local search pro-
cedure, the neighborhood of this solution is explored. Improve-
ments found by this phase in the current solution should cause
a restart of the local search phase.
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Path Relinking was originally proposed by Glover [12] as an
intensification strategy to explore trajectories linking two elite
solutions. The idea behind Path Relinking is to mix attributes of
two guiding solutions, exploring the search space between them
with the objective of discovering new, and better, solutions. The
process of introducing arguments in a solution characterizes a
movement in its neighborhood, and an iteration of Path Re-
linking, which consists in making a movement and checking the
feasibility and optimality of the new solution obtained repeating
this process, until the guiding solution is reached.

In the original Path Relinking approach, movements are se-
lected based on a given greedy function, i.e., all possible move-
ments from a solution should be analyzed and the best one, ac-
cording to a greedy function, is selected to be done. Thus, the
Path Relinking approach can be viewed as a greedy procedure
according to the objective of exploring trajectories between two
given solutions.

To improve the exploration characteristic of Path Relinking,
we propose the application of GRASP construction phase con-
cepts to randomize the selection of which movement should be
selected at each iteration of a path construction, introducing a
degree of diversification in the search. Remark that now many
trajectories can be explored linking the two guiding solutions,
but computational time will also be higher. As this new ap-
proach inherits its characteristics from both GRASP and Path
Relinking, we denominate it Greedy Randomized Adaptive Path
Relinking, or just GRAPR.

A. Implementation

First, we discuss how we have implemented Path Relinking
to solve power transmission network design problems. We use,
as guiding solutions, the 7th iterate solution found by a GRASP
approach and an elite solution selected at random from an elite
set £(|€] = EliteSize), and insert a new phase—PathRe-
linking—in the main loop of GRASP, as illustrated in Fig. 2.
In line 7, the current GRASP solution is relinked with an elite
solution, and vice-versain line 8. Further, GRASP+PR approach
needs an additional parameter, the size of elite set, and two new
procedures, one to insert new solutions into the elite set, line 5,
and another to select an elite solution from the elite set, line 6.

To become an elite solution, solution Z must be either better
than the best member of £, or better than the worst member of £
and sufficiently different from all other elite solutions (how dif-
ferent it must be is a user parameter). Initially this set is empty
and the cost of the worst elite member is arbitrarily set to in-
finity, and is kept set to infinity until the first E1liteSize elite
transmission expansion plans are included in the elite set.

A function that must be devised when implementing a Path
Relinking procedure is one that builds a structure of all move-
ments that, when applied to the initial solution, will lead to
the guiding solution. This function (Diff), line 3 of Fig. 3,
compares solutions #° and 27 returning two vectors A® (and
AT") containing the index of all candidate circuits that should be
added to (or removed from) #° to reach the solution 37

The second key point of any Path Relinking implementation
is the movement selection, which is done in lines 6 and 10. In
line 6, a candidate circuit belonging to the set of circuits that
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procedure GRASP+PR(MaxIter, Seed,EliteSize)

ReadInput ();
for k=1,..., MaxIter do

1

2

3 I «+— RandomConstruction (Seed);
4 T + LocalSearch (Z);

5 £ «— UpdateEliteSet (%);

6 E; < SelectSolution(€);

7 AR «— PathRelinking(z,&;,T);

8 §:<— PathRelinking (&, &, &%) ;

9 T «— UpdateSolution (m) ;
10 return x
end GRASP+PR;

Fig. 2. GRASP with Path Relinking pseudocode.

procedure PathRelinking(:E T &%)
1 Zmin = min (cost(i ), cost(:c ) cost (% ))
R.

i,mzn :% ;

>
mu

2 =17

3 (A%, A") — Diff(2°,27);

4 while | A°UA" [> 2 do

5 if A" = () return ™"

6  kl =argmaxijear {cij};

7 Tk =0, A" =A"\kl;

8 Solve program (2);

9  while 2> 0 and A® # () do
10 kl = arg max;jeae {hi; };
11 jflcl = 1, A? = Aa\k)l;

12 Solve program (2);

13 if 2=10 and cost(%) < Zmin
14 Zmin = €08t (L); Tmin = &}

15 return £™""
end PathRelinking;

Fig. 3. Path Relinking pseudocode.

must be removed from the initial solution £, A", is selected
to be removed. The index used to rank these movements is the
investment cost, such that the removal of the most expensive
candidate circuit in A" is the greedy movement done in lines 6
and 7. Following the candidate circuit removal, the infeasibility
of the resulting network must be checked (line 8). If the network
remains feasible, i.e., Z = 0, the working solution, or a trial
transmission expansion plan, z, is candidate to be the result of
the PathRelinking procedure in lines 13 and 14.

If 2z > 0, indicating an infeasible network, candidate cir-
cuits must be added. In order to select which addition movement
should be done in line 10, we use an index based on the sen-
sitivity of the operation problem (2) with respect to the branch
susceptance, i.e., (02/0v). It was shown in [8] that one can esti-
mate this sensitivity index by 7, = (7l —7 ) (6, —6,), VKl € C,
where 7¢ is the Lagrange multiplier (dual variables) of con-
straint (2b) in problem (2). Usually, this index is negative in-
dicating the marginal benefit of adding a new branch to the net-
work. To take into account the investment costs, we define the
greedy function hy; as the feasibility sensitivity 7}, divided by
the cost of each candidate branch, i.e.,

T
hwy = ——=, VkleC. 3)
Ckl
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The greedy addition movement in the PathRelinking
procedure is the selection and addition of the candidate branch
in A® with the highest hy,; value, as indicated in lines 10 and
11 of Fig. 3. Following the addition movement, the infeasibility
of the resulting network must be recomputed (line 8) and, if the
network remains infeasible a new addition movement should
be done. Otherwise, if Z = 0, the new working solution z is
again candidate to be the solution of the PathRelinking,
lines 13 and 14.

Instead of always making greedy movements, which could
jeopardize the power of Path Relinking, GRAPR selects move-
ments at random from the list of movements A" or A“. In the
first case (removal movement), the candidate circuit to be re-
moved is randomly selected from the restricted candidate list
(RCL")

RCL" ={kl€ A"|c—a"(c—c)<ecu <} (4

where o € [0,1] is a parameter, ¢ = max;jear{c;;} and
¢ = min;jear{c;j}. Weseta” = 1.

In the second case (addition movement), the movement se-
lection is made based on the greedy function hy;, VkI € A°.
Defining & = maxyeaa(hg) and b = mingeaa (hy), the
restricted candidate list of addition movements (RCL*) can be
computed by

RCL® = {kl € A*|h — a*(h—h) < hiy <h}  (5)

where a® is also set to 1.

Using standard GRASP concepts, the movement selection is
always made at random. However, it was shown in [4] that the
use of a linear bias function, instead of a random function, pro-
duces better results for a GRASP for this type of problem, since
it bias the search toward the best candidate branches. In our
GRAPR algorithm, we also implemented a linear bias function
defined as bias(k) = (1/k), k € RCL, where |RCL| is the size of
the RCL. Let rank(k!) and bias(rank(kl)) denote, respectively,
the rank and the value of the linear bias function for the can-
didate branch (kl). The probability of selecting this candidate
branch from the RCL is

B bias(rank(kl))
2 (ij)erc bias(rank(ij))

Py (6)

Introducing these modifications in the Path Relinking pseu-
docode, illustrated in Fig. 3, we obtain the GRAPR procedure,
illustrated in Fig. 4.

IV. COMPUTATIONAL RESULTS

The GRASP for transmission network expansion planning
was implemented using C and Fortran programming languages,
and the results reported were obtained on a PC-Pentium III,
500 MHz with 192 Mbytes of memory.

Two power transmission expansion case studies will be
presented to illustrate our approach. The first case study cor-
responds to a two-high voltage level network of the reduced
southern Brazilian system. It has been discussed in many ref-
erences, including [4], [6], [15]. The second case study refers
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procedure GRAPR (bias, afcs, oﬁ'T, 27

1 Zmin = min (cost(29), cost(27), cost(27));

i:min — ‘%R,
2 ¢=3%
3 (A% AT) —Diff(2°,27);
4 while | A“UA" |> 2 do
5 if A” = () return £™";
6 Build RCL" according to (4);
7 kIl = RandSelection(bias,RCL");
8 -f?kl = 0, AT = Ar\kl;
9 Solve program (2);
10 while 2 >0 and A® # 0 do
11 Build RCL?* according to (5);
12 kl = RandSelection(bias,RCL?);
13 Tre=1, A% =A%kl
14 Solve program (2);
15 if 2=0 and cost(Z) < Zmin
16 Zmin = COSt(L); Tmin = &3
17 return £,
end GRAPR,;

Fig. 4. GRAPR pseudocode.

to the reduced southeastern Brazilian system, which has been
studied in [4].

Path Relinking and GRAPR were implemented besides a
GRASP approach with an elite set of solutions. Guiding solu-
tions were the GRASP iterate solution and an elite solution,
which is selected at random from an elite set. To assess the ef-
fect of Path Relinking and GRAPR within a GRASP approach,
four case studies were formulated: traditional GRASP, GRASP
with Path Relinking and GRASP with GRAPR. In this last
case, two instances were used, 10 and 50 iterations of GRAPR.
Each case was processed 10 times, with linear and random bias
function and five different initial random seeds. The number
of GRASP iterations was 500, the size of the elite set was 20,
the GRASP « parameter was adjusted by a reactive approach
using § = 1, cardinality of set A = 10 and k-block value
50. Neighborhood structure in the GRASP local search was
1-exchange. Additional details of GRASP parameters, as well
as the reactive approach used to self-adjust « can be obtained
in [4].

A. The Reduced Southern Brazilian Network

The reduced southern Brazilian network has 46 nodes (2 of
them are new generation units and must be connected to the
network, nodes 28, and 31), 62 existing branches and 17 new
rights of way (corridors). The number of candidate circuits is
237 (3 x (62 + 17)). Fig. 5 gives an idea of the topology of
this power system and illustrates existing circuits (solid lines).
Main load buses are indicated by circles in the figure, while the
main generators are located in buses 14, 16, 17, and 19; and
new generation units must be connected to the main network in
buses 28 and 31. If we formulated this problem as problem (1),
it would have 237 binary variables, 437 linear variables, and 345
constraints, excluding bounds on variables.

The optimal solution for this case study was first published,
as a best known upper bound in [14], but proved to be the op-
timal solution in [6]. Its investment cost is of US$154.26 mil-
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Fig. 5. The reduced southern Brazilian system.

TABLE 1
BEST KNOWN SOLUTION FOR THE REDUCED SOUTHERN BRAZILIAN SYSTEM
Fr To #Ad || Fr To #Ad || Fr To #Ad
26 29 3 5 6 2 28 30 1
42 43 2 19 25 1 20 21 1
24 25 2 46 6 1 31 32 1
29 30 2
TABLE 1II

SOLUTION VALUES FOR ALL GRASP CASES FOR THE
REDUCED SOUTHERN BRAZILIAN SYSTEM

linear bias random bias
avg. best variance avg. best || variance
GRASP 154 154 0.0 158 154 11.12
GRASP+PR 154 154 0.0 156 154 8.97
GRASP+GRAPR-10 154 154 0.0 157 154 13.9
GRASP+GRAPR-50 154 154 0.0 156 154 11.29

lion, which corresponds to the addition of 16 candidate circuits.
Table I and Fig. 5 present, respectively, the list of candidate cir-
cuits added and the resulting network where all 16 additions
are represented by dashed lines. Investment costs obtained in
all runs of this case study are summarized in Table II.

Remark that in all cases the optimal solution was obtained.
Analyzing the average values we can see that the usage of a
linear bias function produces better results than those obtained
using random bias function. Mixing GRASP with either Path
Relinking or GRAPR also produced improvements in the av-
erage values. The proposed method constructing either 10 or 50

33
34 LEGEND
= 500kV
T 230kV
" Load bus
(ﬂ- Generation bus
35
43
X
38 a2\ ¢
= 1
i
\
=
41 40 45
272) 36 37 39

paths found the optimal solution earlier in the search than the
other methods analyzed when using linear bias function.

The average CPU time required to process all cases of
GRASP was about 8.5 min when linear bias function was
applied, and 11.5 min when using a random bias function.
GRASP + PR causes a little increase of CPU time. In the first
case it was about 10.7 min and in the second around 14.0 min.
GRASP + GRAPR, considering 10 path-constructions at each
GRASP iteration, consumes around 16.7 min and 20.0 min
using linear and random bias function respectively. Finally,
GRAPR building 50 paths each GRASP iteration requires much
more time than in the prior case study, 20.0 min were required
in the case of linear bias function and 23.0 min in the case of
random bias function. The differences of CPU time observed
regarding linear and random bias functions are due to the more
efficient construction phase used in the former approach.

B. The Reduced Southeastern Brazilian Network

The reduced Southeastern Brazilian network has 79 nodes
and 155 existing branches. Fig. 6 shows the network, illustrating
existing circuits by solid lines and main consuming buses by cir-
cles. The main generation units are located in buses 21, 27, 203,
211, and 251; and new generation units must be integrated to the
main network at buses 244 and 253. Formulating this problem
as problem (1), it would have 429 (3 x 143) binary variables,
821 linear variables and 663 constraints, excluding bounds on
variables. This problem instance is much more difficult to solve,
not only because the number of candidate circuits is higher but
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Fig. 6. The reduced southeastern Brazilian power network.

TABLE III
BEST-KNOWN SOLUTION FOR THE REDUCED
SOUTHEASTERN BRAZILIAN SYSTEM

Fr To #Ad Fr To #Ad Fr To #Ad
224 227 2 210 41 2 255 259 2
220 242 2 226 242 2 220 250 1
234 237 1 221 224 1 245 253 1
245 239 1 244 245 1 226 259 1
211 246 | 226 227 | 250 251 1
207 206 1 207 209 1 249 250 1
216 215 1

also because it is necessary to select candidate circuits among
five different voltage levels (750, 500, 440, 330, and 230 kV).

The optimal solution for this case study has an investment
cost of US$422 million obtained with the construction of 24
candidate circuits. This solution was first published (as an upper
bound) in [4] but proved optimal in [1]. Table III and Fig. 6
present, respectively, the list of candidate circuits added and the
resulting network where dashed lines represent the candidate
circuit additions needed. Investment costs obtained in all runs
of this case study are summarized in Table IV.

It can be seen that the optimal solution was found only one
time, using a GRASP + GRAPR approach with 50 path gen-
erations and linear bias function. Regarding to the bias func-
tions, the remarks are the same of the prior case study, i.e.,
construction phase using linear bias function produces better
results than using a random bias function. Analyzing average
solution values, we can see that linking GRASP and elite so-
lutions building just one path (Path Relinking) or several paths
(GRAPR) improved the results.

Concerning CPU time, about 25 min were required on av-
erage to process all 5 case studies of GRASP with linear bias

] 232
=Ry /0
N ."
P62 200
61 SP area

TABLE IV
SOLUTION VALUES FOR ALL GRASP CASES FOR THE
REDUCED SOUTHEASTERN BRAZILIAN SYSTEM

linear bias random bias
avg. best || variance avg. best || variance
GRASP 431.8 || 424 124.2 454.0 || 443 65.5
GRASP+PR 429.0 || 424 68 446.4 || 430 144.8
GRASP+GRAPR-10 || 427.6 || 424 10.8 447.6 || 443 67.7
GRASP+GRAPR-50 || 423.6 || 422 0.8 445.8 || 443 9.2

function and 39 min to process the random bias function case
studies. When GRASP and Path Relinking were used, the av-
erage CPU time increases to around 26 min and 40 min, re-
spectively. Building 10 paths with GRAPR at each iteration of
GRASP requires about 34 min in the first case and 53 min in the
second. Finally, building 50 paths in the GRASP + GRAPR ap-
proach consumes, on average, 37 min of CPU time with a linear
bias function and 56 min with a random bias function.

With a modest increase of 12 min of CPU time, on average,
to process all five case studies, in comparison to a pure GRASP
algorithm with linear bias function, the GRASP+ GRAPR algo-
rithm with linear bias function was able to obtain the optimum
solution and cause a reduction of the total investment cost of
about US$2 million.

Although statistics on the variance of results in successive
runs is shown, we can not assess the robustness of the algorithm
due to the small sample used in the studies.

V. CONCLUSION

GRAPR is a new metaheuristic approach to solve combina-
torial optimization problems. It consists of a generalization of
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GRASP concepts in order to improve the exploration character-
istics of the Path Relinking approach. Instead of building just
one path between two guiding solutions (Path Relinking ap-
proach), GRAPR randomizes the selection of movements, gen-
erating several paths. Hence, the search space is better explored.

In this work, we have presented results obtained by GRAPR
in solving two different case studies of real-world static power
transmission network design problems with Brazilian network
systems. In both cases, the application of GRAPR was a suc-
cess. For the reduced southern Brazilian system, improvements
made were not significant but GRAPR achieved the optimal so-
lution. For the reduced southeastern Brazilian system, GRAPR
improved the solution provided either by GRASP or GRASP
with Path Relinking.

Based on the results shown, we can conclude that GRAPR can
be applied to solve real-world instances of static power trans-
mission network design problems. Future work will be done
with the objective of reducing the CPU time required by the
GRAPR approach. Besides that, we will check if GRAPR can
replace the GRASP local search phase, which is the most time
consuming phase in a GRASP procedure.
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