
Algorithm : FORTRAN Subroutines for

Approximate Solution of Dense Quadratic

Assignment Problems using GRASP

MAURICIO G.C. RESENDE

AT&T Bell Laboratories

PANOS M. PARDALOS

University of Florida

and

YONG LI

Pennsylvania State University

In the NP-complete quadratic assignment problem (QAP), n facilities are to be assigned to n

sites at minimum cost. The contribution of assigning facility i to site k and facility j to site l to
the total cost is fij · dkl, where fij is the flow between facilites i and j, and dkl is the distance
between sites k and l. Only very small (n ≤ 20) instances of the QAP have been solved exactly,
and heuristics are therefore used to produce approximate solutions. This paper describes a set of
FORTRAN subroutines to find approximate solutions to dense quadratic assignment problems,
having at least one symmetric flow or distance matrix. A greedy randomized adaptive search
procedure (GRASP) is used to produce the solutions. The design and implementation of the
code are described in detail, and extensive computational experiments are reported, illustrating
solution quality as a function of running time.

Categories and Subject Descriptors: G.1.6 [Numerical Analysis]: Optimization—integer

programming; G.2.1 [Discrete Mathematics]: Combinatorics—combinatorial algorithms; G.m
[Mathematics of Computing]: Miscellaneous—FORTRAN

General terms: Algorithms, Performance, FORTRAN

Additional Key Words and Phrases: Combinatorial optimization, quadratic assignment problem,
local search, GRASP, FORTRAN subroutines

Authors’ addresses: M.G.C. Resende, Mathematical Sciences Research Center, AT&T Bell Labo-
ratories, Murray Hill, NJ; P.M. Pardalos, Department of Industrial and Systems Engineering, The
University of Florida, Gainesville, FL; Y. Li, Department of Computer Science, The Pennsylvania
State University, University Park, PA.
Permission to copyright without fee all or part of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given that copying is by permission
of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.



2 · FORTRAN Subroutines for the QAP

1. INTRODUCTION

Given a set N = {1, 2, . . . , n} and n × n matrices F = (fij) and D = (dkl), the
quadratic assignment problem (QAP) can be stated as follows:

min
p∈ΠN

n∑

i=1

n∑

j=1

fijdp(i)p(j),

where ΠN is the set of all permutations of N . One of the major applications of the
QAP is in location theory where the matrix F = (fij) is the flow matrix, i.e. fij

is the flow of materials from facility i to facility j, and D = (dkl) is the distance
matrix, i.e. dkl represents the distance from location k to location l [2, 3, 5]. The
contribution to the total cost of simultaneously assigning facility i to location k

and facility j to location l is fij · dkl. The objective is to find an assignment of all
facilities to all locations (i.e. a permutation p ∈ ΠN ), such that the total cost of
the assignment is minimized. Throughout this paper we often refer to the QAP in
the context of this location problem. For a survey of the QAP, see [7].

Li, Pardalos and Resende [6] describe a greedy randomized adaptive search pro-
cedure (GRASP) for finding approximate solutions of dense quadratic assignment
problems. The algorithm was extensively tested on QAPLIB [1], a standard set
of benchmark quadratic assignment problems, producing best known solutions for
most problems in the suite. In this paper, we describe an optimized version of the
implementation used in [6]. This implementation has a limitation that matrices F

and D must be symmetric. This limitation, in practice, only requires that one of
the two matrices be symmetric, due to the fact that for any QAP with one symmet-
ric matrix, there exists a corresponding QAP where both matrices are symmetric,
possesing the same optimal permutations, with the value of the optimal solution
scaled up by a factor of two. The new QAP is defined by the original symmetric
matrix and the sum of the original unsymmetric matrix and its transpose.

GRASP is an iterative sampling method for combinatorial optimization [4]. A
number of GRASP iterations are carried out, each iteration producing an approxi-
mate solution to the optimization problem. The best solution over all iterations is
returned by the algorithm as the GRASP solution. Each iteration is made up of two
phases: a construction phase and a local search phase. In the construction phase,
a solution is constructed, guided by a greedy function. Due to the randomiza-
tion employed, the solution is not necessarily greedy. In the local search phase, the
neighborhood around the constructed solution is searched for an improved solution.

In this GRASP for QAP, the construction phase has two stages. In stage 1, two
assignments are produced, i.e. facility i is assigned to site k and facility j is assigned
to site l. The idea is to assign facilities with high interaction, i.e. having high fij

values, to nearby sites, i.e. sites with low dkl values. To do this, the procedure sorts
inter-site distances in increasing order and inter-facility flows in decreasing order.
Let dk1,l1 ≤ dk2,l2 ≤ · · · ≤ dkp,lp and fi1,j1 ≥ fi2,j2 ≥ · · · ≥ fip,jp

be the sorted
values, where p = n2 − n. The products dk1,l1 · fi1,j1 , dk2,l2 · fi2,j2 , . . . , dkp,lp · fip,jp

are then sorted in increasing order. Among the smallest dkl · fij products, one,
corresponding to the pair of stage 1 assignments, is selected at random. Sorting
all of the p = n2 − n distances and flows is inefficient and offers little benefit.
Instead, only the best nβ = βp values are sorted, where β is a parameter such that
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0 < β ≤ 1. Among these nβ pairs of assignments, a pair is selected at random from
the set of αnβ assignments having the smallest dkl · fij products, where α is such
that 0 < α ≤ 1.

In stage 2 of the construction phase, the remaining n−2 facility-site assignments
are made sequentially. The idea is to favor assignments that have small interaction
cost with the set of previously-made assignments. Let Γ be the set of q assignments
at a given point in the construction phase, i.e. Γ = {(i1, k1), (i2, k2), . . . , (iq, kq)}.
The cost of assigning facility j to site l, with respect to the already-made assign-
ments, is defined to be

cjl =
∑

(i,k)∈Γ

fijdkl.

All costs of unassigned facility-site pairs (j, l) are sorted in increasing order. Of the
pairs having the least α · |Γ| costs, one is selected at random and is added to the
set Γ. The procedure is repeated until n− 1 assignments are made. The remaining
facility is then assigned to the remaining site.

In the local search phase of this GRASP, a 2-exchange neighborhood search is con-
ducted on the constructed solution. There, all possible 2-swaps of facility-locations
are considered. If a swap improves the cost of the assignment, it is accepted. The
procedure continues until no swap improves the solution value.

The paper is organized as follows. In Section 2 we describe the design and
implementation of the set of FORTRAN subroutines distributed with the package.
Usage is described in Section 3. Computational testing is presented in Section 4
and concluding remarks are made in Section 5.

2. DESIGN AND IMPLEMENTATION

We followed the following design guidelines in the implementation of the set of
subroutines. The code is written in ANSI standard FORTRAN 77 and is intended to
run without modification on UNIX platforms (it should run on other environments
without modification). There are no common blocks in the code and all arrays
and variables are passed by parameter. The optimizer is a self-contained set of
subroutines. Input and output, as well as array declarations and parameter settings,
are done independently, outside of the optimizer module.

The distribution consists of three files: Makefile, driver.f, and gqapd.f. The
Makefile is used to produce an executable gqapd in a UNIX environment. The
file driver.f defines all of the arrays and parameters to be used by the GRASP
subroutine gqapd, inputs the problem, calls the GRASP, and outputs the solution.
The file gqapd.f is the core of the package, with the subroutines that make up the
optimizer.

The following modules make up the package:

– Makefile: A makefile to compile and link the supplied driver with the subroutine
package producing the executable gqapd.

– program driver: An example of a driver for the optimizer. The driver includes
a subroutine to input QAPLIB instances (subroutine readp) and a subroutine
to output the GRASP solution (subroutine outsol).
Functions and/or subroutines called: readp, gqapd, and outsol.
See Usage Notes.
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– subroutine gqapd: Main subroutine to control the GRASP iterations.
Functions and/or subroutines called: srtcst, stage1, stage2, and local.
See Usage Notes.

– subroutine srtcst: Subroutine that sorts the costs fij ·dkl in increasing order.
Functions and/or subroutines called: insrtq and removq.

– subroutine stage1: Subroutine implementing stage 1 of the GRASP construc-
tion phase. Builds two assignments for the construction phase (assigns facility i

to site k and facility j to site l).
Functions and/or subroutines called: randp.

– subroutine stage2: Subroutine implementing stage 2 of the GRASP construc-
tion phase. Builds a randomized greedy permutation starting from the assign-
ments made in subroutine stage1. Returns permutation and objective function
value.
Functions and/or subroutines called: insrtq, randp, and removq.

– subroutine savsol: Saves incumbent solution.
Functions and/or subroutines called: None.

– subroutine local: Local 2-exchange on permutation array produced in stage 2
of GRASP construction phase. Returns possibly improved permutation and ob-
jective function value.
Functions and/or subroutines called: mkbseq, evalij, and swapij.

– subroutine mkbseq: Given two permutation arrays a and b, applies the same
transformation to both, making b = {1, 2, . . . , n}.
Functions and/or subroutines called: None.

– subroutine insrtq: Inserts an element {v, iv} into a queue {q, iq}.
Functions and/or subroutines called: upheap.

– subroutine upheap: Updates heap to proper order.
Functions and/or subroutines called: None.

– subroutine removq: Removes smallest element {v, iv} from a priority queue
{q, iq}.
Functions and/or subroutines called: dnheap.

– subroutine dnheap: Updates heap to proper order.
Functions and/or subroutines called: None.

– real function randp: Portable pseudo-random number generator [8]. Gener-
ates an integer number in the range [0, 231 − 1].
Functions and/or subroutines called: None.

– subroutine evalij: Computes the gain in the objective function obtained by
switching the locations of facilities i and j (i < j).
Functions and/or subroutines called: None.

– subroutine swapij: Swaps components i and j of an integer array.
Functions and/or subroutines called: None.

Subroutine gqapd takes as input the input data (n, f, d), GRASP parameters
(number of iterations (maxitr), α, β, target value (look4), random number seed
(seed), and a number of auxiliary arrays, and returns the best permutation found
(opta), its cost (bestv), and number of GRASP iterations taken (iter). Before the
GRASP iterations are executed, the value of the best solution found is initialized
to a large value and the stage 1 costs fij · dkl are sorted in subroutine srtcst.
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The do loop 1010 iterates the GRASP. In each GRASP iteration, the initial two
assignments are made in subroutine stage1. The construction phase is concluded
with n − 2 assignments in subroutine stage2, and the local search around the
neighborhood of the constructed solution is carried out in subroutine local. If
the best solution of the iteration (objv) is better than the incumbent (bestv), the
incumbent is updated in subroutine savsol. If the target solution (look4) is found,
that solution is returned by the GRASP.

Since stage 1 of the construction phase uses the same sorted assignment costs
during each GRASP iteration, the costs are sorted once, outside the main GRASP
loop, in subroutine srtcst. The subroutine uses heap sort to partially sort the flow
values, distance values, and assignment costs. The do loops 1010 and 1020 insert
off-diagonal distance and flow values into their respective priority heaps. Parameter
nβ is computed and in do loop 1030 the smallest distance value and largest flow
values are removed from the heaps, the assignment cost is computed and inserted
into its priority heap. The do loop is repeated nβ times. The do loop 1040 puts
into array cost the nβ smallest assignment costs by sequentially removing from
the assignment cost priority heap the smallest cost element. Information needed to
retrieve the assignments corresponding to each cost is put in the array fdind.

Subroutine stage1 implements stage 1 of the GRASP construction phase. The
permutation arrays a and b are initialized, the index (nselct) of the assignment
pair is chosen at random, and the assignment indices i, j, k, l are recovered from
the data structure. Just prior to do loop 1020, the first assignment is put in the
permutation arrays and in do loops 1020 and 1030 the second assignment is put in
the arrays.

Subroutine stage2 implements stage 2 of the GRASP construction phase. The
do loop 1020 makes assignments 3, 4, . . . , n−1. The cost, with respect to previously-
assigned pairs, of each possible assignment is computed in loops 1030, 1040, and
1050. The cost is inserted in its priority heap for sorting. After all cost have been
computed, the index (nselct) of the randomly selected assignment is determined
and the assignment is retrieved from the heap in do loop 1070. Permutation arrays
a and b are updated with the latest assignment in do loops 1073 and 1074 and
at the end of do loop 1020. The cost of the last assignment is added to the total
assignment cost in do loop 2050.

Subroutine local implements the 2-exchange of the GRASP local search phase.
The local search is carried out on permutation array a, so a rearrangement is done
in subroutine mkbseq to make permutation array b = {1, 2, . . . , n}. In do loops 1020
and 1030, for all pairs i, j such that j > i, subroutine evalij evaluates the gain
xgain of swapping i and j in permutation array a. If a positive gain is attained, the
swap is carried out in subroutine swapij and the cost of the assignment (objv) is
updated. The procedure ends when no further improvement is possible by swapping
elements in the permutation array.

Subroutine savsol saves permutation a in array opta and the cost of the assign-
ment (objv) in scalar bestv.

In subroutine insrtq, a pair of elements (v and iv) is inserted into a priority
heap of pairs (q and iq), ordered by the values in q. The size of the heaps (sizeq) is
updated. Subroutine upheap updates the heaps, to take into account the additional
elements.
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Given two arrays of elements q and iq, such that, except for the first element, q
is sorted as a heap, subroutine upheap orders the arrays identically, such that array
q becomes completely sorted as a heap.

In subroutine removq, a pair of elements (v and iv) is removed from a priority
heap of pairs (q and iq), ordered by the values in q. The size of the heaps (sizeq)
is updated. Subroutine dnheap updates the heaps, to take into account the removal
of the elements.

Given two arrays of elements q and iq, sorted as a heap, except for the first
element, which has been removed, subroutine dnheap orders the arrays identically,
such that array q becomes a priority heap.

Subroutine randp is the portable random number generator of Schrage [8]. Given
a seed ix ∈ [0, 231 − 1], it returns by parameter a new seed in the same range and
by value a real number in the interval [0,1].

Subroutine evalij evaluates the assignment cost gain attained by swapping in-
dices i and j in an assignment permutation array a. Index j is assumed to be
greater than i. The do loop 1010 computes the interaction with facilities having
index less than i. The do loop 2010 computes the interaction with facilities having
index greater than i but less than j. The do loop 3010 computes the interaction
with facilities having index greater than j.

Subroutine mkbseq applies identical transformations to arrays a and b to make
b = {1, 2, . . . , n}.

Subroutine swapij swaps elements of array x indexed by i and j.

3. USAGE

The subroutines in file gqapd.f carry out the approximate optimization of the
QAP. The user interface with them is subroutine gqapd. It must be called from a
driver program. Subroutine gqapd takes as parameters the following:

– variables needed for input:
– n: dimension of QAP (integer*4)
– nmax: maximum dimension of QAP (integer*4)
– maxitr: maximum number of GRASP iterations (integer*4)
– alpha: GRASP construction phase parameter α (real)
– beta: GRASP construction phase parameter β (real)
– look4: GRASP returns permutation if solution with cost less than or equal

to look4 is found (look4 = −1 causes GRASP to take maxitr iterations)
(integer*4)

– seed: seed for random number generator ∈ [0, 231 − 1] (integer*4)
– integer*4 arrays needed for input:

– f: flow matrix (represented as row-by-row array of dimension nmax*nmax)
– d: distance matrix (represented as row-by-row array of dimension nmax*nmax)

– integer*4 arrays needed for work:
– a: dimension nmax

– b: dimension nmax

– optb: dimension nmax

– srtf: dimension nmax*nmax

– srtif: dimension nmax*nmax
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12

0 1 2 3 1 2 3 4 2 3 4 5

1 0 1 2 2 1 2 3 3 2 3 4

2 1 0 1 3 2 1 2 4 3 2 3

3 2 1 0 4 3 2 1 5 4 3 2

1 2 3 4 0 1 2 3 1 2 3 4

2 1 2 3 1 0 1 2 2 1 2 3

3 2 1 2 2 1 0 1 3 2 1 2

4 3 2 1 3 2 1 0 4 3 2 1

2 3 4 5 1 2 3 4 0 1 2 3

3 2 3 4 2 1 2 3 1 0 1 2

4 3 2 3 3 2 1 2 2 1 0 1

5 4 3 2 4 3 2 1 3 2 1 0

0 5 2 4 1 0 0 6 2 1 1 1

5 0 3 0 2 2 2 0 4 5 0 0

2 3 0 0 0 0 0 5 5 2 2 2

4 0 0 0 5 2 2 10 0 0 5 5

1 2 0 5 0 10 0 0 0 5 1 1

0 2 0 2 10 0 5 1 1 5 4 0

0 2 0 2 0 5 0 10 5 2 3 3

6 0 5 10 0 1 10 0 0 0 5 0

2 4 5 0 0 1 5 0 0 0 10 10

1 5 2 0 5 5 2 0 0 0 5 0

1 0 2 5 1 4 3 5 10 5 0 2

1 0 2 5 1 0 3 0 10 0 2 0

Fig. 1. NUG12 QAPLIB instance

– srtd: dimension nmax*nmax

– srtid: dimension nmax*nmax

– srtc: dimension nmax*nmax

– srtic: dimension nmax*nmax

– indexd: dimension nmax*nmax

– indexf: dimension nmax*nmax

– cost: dimension nmax*nmax

– fdind: dimension nmax*nmax

– integer*4 array needed for output:
– perm: permutation vector of best solution found (dimension nmax)

– integer*4 variables needed for output:
– bestv: cost of best assignment found
– iter: number of GRASP iterations taken

The sample driver program for gqapd included in the distribuition, is set for
problems of dimension n ≤ 256. All variables and arrays needed by subroutine
gqapd are defined. Variable iseed0, used by the driver, is also defined. Subroutines
readp and outsol are examples of code that can be used for input and output,
respectively.

As an example, consider the QAP instance NUG12 with QAPLIB input file shown
in Figure 1. Running the driver program on that input data produces the output
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----------------------------------------------------------

G R A S P for Q A P---------------------------------------

input-----------------------------------------------------

dimension of qap : 12

construction phase parameter alpha : 0.2500000

construction phase parameter beta : 0.5000000

maximum number of grasp iterations : 100

look4 : -1

initial seed : 270001

output----------------------------------------------------

grasp iterations : 100

cost of best permutation found : 578

best permutation found : 3 9 7 12 1

: 11 8 4 2 10

: 6 5

----------------------------------------------------------

Fig. 2. Sample output of driver for QAP instance NUG12

shown in Figure 2.

4. COMPUTATIONAL RESULTS

In this section, we summarize the battery of runs carried out to test the algorithm.
The experiments were carried out on a Silicon Graphics Challenge computer (150
MHz MIPS R4400 processor), with enough main memory so that swapping was
never necessary. The code was compiled with the f77 compiler using flags -O2

-Olimit 800. User times are reported, reflecting subroutine gqapd only (input
and output times are not included) and are timed with the system subroutine
etime. The code is tested on the suite of QAP test problems QAPLIB [1]. The
GRASP was run on the 95 instances in the library of dimension n ≥ 8 that are
pure quadratic assignment problems, and have at least one symmetric distance or
flow matrix. For each instance, eight settings for number of iterations were run
(16, 32, 64, 128, 256, 512, 1024, and 2048). For each iteration setting, five runs
were made with different random number generator seeds (1, 2, 3, 4, and 5). A
total of 3,800 runs were made. The other parameters of the GRASP were set fixed
throughout the experiment (α = .25, β = .5, look4 = −1). Tables I–III list the
instances considered, with the best known solution, and the minimum, average,
and maximum solutions found by the GRASP, over the five replications, for 32 and
2048 iteration runs.

Of the 3,800 runs, the algorithm produced the best known solution in 1,759 runs,
was within 0.5% of the best known solution in 1,898 runs, and was within 1% in
2,443 runs. Figure 3 illustrates the quality of the solutions produced, as a function
of problem dimension and number of GRASP iterations. Runs finding a solution
within 0.1% of the best known are not shown in the figure. Those are illustrated in
Figure 4. That figure shows the 1,759, 139, and 545 runs for which the algorithm
matched the best known solution (bks), was between 0 and .5% of the bks, and was
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32 iterations 2048 iterations
name bks min avg max min avg max

chr12a 9552 9552 9902 10214 9552 9552 9552

chr12b 9742 9742 9814 10102 9742 9742 9742
chr12c 11156 11566 12033 12516 11156 11156 11156
chr15a 9896 10064 10594 10836 9896 9904 9936
chr15b 7990 8990 9287 9784 7990 7990 7990
chr15c 9504 10610 11908 13534 9504 9957 10446
esc08a 2 2 2 2 2 2 2
esc08b 8 8 8 8 8 8 8
esc08c 32 32 32 32 32 32 32
esc08d 6 6 6 6 6 6 6
esc08e 2 2 2 2 2 2 2
esc08f 18 18 18 18 18 18 18
esc16a 68 68 68 68 68 68 68
esc16b 292 292 292 292 292 292 292
esc16c 160 160 160 160 160 160 160
esc16d 16 16 16 16 16 16 16
esc16e 28 28 28 28 28 28 28
esc16f 0 0 0 0 0 0 0
esc16g 26 26 26 26 26 26 26
esc16h 996 996 996 996 996 996 996
esc16i 14 14 14 14 14 14 14
esc16j 8 8 8 8 8 8 8
lipa10a 473 473 473 473 473 473 473
lipa10b 2008 2008 2008 2008 2008 2008 2008
nug08 214 214 214 214 214 214 214
nug12 578 578 584 590 578 578 578
nug15 1150 1150 1157 1164 1150 1150 1150
rou10 174220 174220 174220 174220 174220 174220 174220
rou12 235528 235528 237935 240124 235528 235528 235528
rou15 354210 354210 361850 366930 354210 354210 354210
scr10 26992 26992 26992 26992 26992 26992 26992
scr12 31410 31410 31410 31410 31410 31410 31410

Table I. Summary of runs: best known solution (bks), minimum, average, and maximum GRASP
solutions for 32 and 2048 iteration runs (problems of size n ≤ 16)
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32 iterations 2048 iterations
name bks min avg max min avg max

chr18a 11098 13864 14356 14884 11098 11594 12404
chr18b 1534 1534 1594 1670 1534 1534 1534
chr20a 2192 2498 2594 2660 2224 2333 2406
chr20b 2298 2566 2718 2868 2462 2482 2516
chr20c 14142 14810 16805 18806 14142 14142 14142
chr22a 6156 6344 6458 6606 6320 6344 6368
chr22b 6194 6472 6564 6650 6300 6365 6410
chr25a 3796 4372 4618 4922 3884 4211 4344
els19 17212548 17212548 17714800 17937024 17212548 17212548 17212548
esc32a 130 144 146 150 134 134 136
esc32b 168 168 184 192 168 168 168
esc32c 642 642 642 642 642 642 642
esc32d 200 200 200 204 200 200 200
esc32e 2 2 2 2 2 2 2
esc32f 2 2 2 2 2 2 2
esc32g 6 6 6 6 6 6 6
esc32h 438 438 439 442 438 438 438
kra30a 88900 91700 92064 92470 88900 89924 90700
kra30b 91420 92220 92916 93940 91580 91686 91910
lipa20a 3683 3683 3720 3766 3683 3683 3683
lipa20b 27076 27076 27076 27076 27076 27076 27076
lipa30a 13178 13389 13399 13414 13178 13241 13343
lipa30b 151426 151426 156148 175037 151426 151426 151426
nug20 2570 2580 2598 2612 2570 2570 2570
nug30 6124 6162 6210 6248 6136 6152 6166
rou20 725522 735980 741357 745046 725662 728140 730290
scr20 110030 110968 112816 114426 110030 110036 110058
ste36a 9526 9830 9914 10018 9596 9661 9682

ste36b 15852 16160 16917 17414 15852 16049 16160
ste36c 8239110 8484420 8544170 8672034 8291830 8311120 8355466

Table II. Summary of runs: best known solution (bks), minimum, average, and maximum
GRASP solutions for 32 and 2048 iteration runs (problems of size n, 18 ≤ n ≤ 36)
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32 iterations 2048 iterations
name bks min avg max min avg max

esc128 64 64 64 64 64 64 64
esc64a 116 116 116 116 116 116 116
lipa40a 31538 31933 31949 31961 31884 31902 31911
lipa40b 476581 476581 493113 559240 476581 476581 476581
lipa50a 62093 62767 62790 62815 62704 62727 62747
lipa50b 1210244 1210244 1339350 1427509 1210244 1210244 1210244
lipa60a 107218 108211 108243 108262 108077 108148 108192
lipa60b 2520135 2520135 2902810 3000633 2520135 2520135 2520135
lipa70a 169755 171158 171185 171209 171047 171079 171102
lipa70b 4603200 5516027 5519179 5522184 4603200 4603200 4603200
lipa80a 253195 255066 255123 255176 254861 254941 254976
lipa80b 7783962 9363469 9379260 9398222 7763962 8715730 9360517
lipa90a 360630 363159 363204 363226 362917 362972 363028
lipa90b 12490441 15121756 15136900 15156071 12490441 12490441 12490441
sko100a 152002 153152 153767 154262 152926 153015 153140
sko100b 153890 155202 155666 156198 154688 154846 155056
sko100c 147862 148918 149482 149968 148484 148799 149034
sko100d 149576 151232 151422 151642 150676 150826 151002
sko100e 149150 150872 151189 151374 150118 150400 150638
sko100f 149036 150508 150899 151074 150118 150277 150410
sko42 15812 15934 16015 16126 15888 15902 15932
sko49 23386 23578 23724 23856 23458 23505 23558
sko56 34458 34904 35001 35112 34636 34692 34730
sko64 48498 49048 49114 49266 48790 48852 48944
sko72 60402 66906 67242 67438 66696 66814 66922
sko81 82277 91728 91944 92160 91548 91672 91746
sko90 115534 116954 117152 117306 116106 116314 116508
tho150 8134056 8222654 8247390 8257334 8193460 8202570 8208702

tho40 240516 243512 244750 246722 242000 242459 242948
wil100 273044 274630 274752 274918 273964 274106 274262

Table III. Summary of runs: best known solution (bks), minimum, average, and maximum
GRASP solutions for 32 and 2048 iteration runs (problems of size n, 40 ≤ n ≤ 150)
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Fig. 3. Percentage over best known solution (bks) as a function of problem dimension and GRASP
iterations (instances with solutions less than 0.1% of bks are not shown)

between .5% and 1% of the bks, respectively. The complete set of data, showing
how solution quality is a function of GRASP iterations, is plotted in Figure 5. In
that figure, the average percentage over the best known solution, as well as the 95%
confidence interval are indicated by the solid lines.

Running times, for all 32, 128, 512, and 2048 iteration runs, are shown in Figure 6.
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within 0.1% of bks not shown)



FORTRAN Subroutines for the QAP · 15

0.01

0.1

1

10

100

1000

10000

100000

10 100

time
(secs)

dimension

2048 grasp itrs ×

××××××××××××××××

××××××××××××××××××××××××××××××××××

×

×××××××××××××××××××××××××

×××××

×××××××××××××××××××××

×××××

×××××××××××××××××××××××
×××××××××××××××××

××××××××××
×××××××××××××××××××××××××××××××××××××××××

××××××××××
×××

×××××××××××××××××××××××××××
×
×
×

×××××××××××××××××××××××××××××××××××××××
××××××××××××××× ×××××××××××××××

×××××
×××××××××××××××××××
× ×××××××××××××

×

×

×××××
××××××××××××××
××××××

××××××××××××
××××××

×××××××××××××××
×
××××××××××××××

512 grasp itrs b
bbbbbbbbb

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbb

bbbbb
bbbbbbbbbbbbbbbbbbbbb

bbbbb
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbb bbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbb bbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbb bbbbbbbbbbbbbbb bbbbb bbbbbbbbbbbbbbbbbbbb bbbbb bbbbbbbbbb bbbbbbbbbb bbbbbbbbbbbbbbb

bbbbbbbbbbb
bbbbbbbbbbbbbbb bbbbbbbbbbbbbbb128 grasp itrs +

+++++

++++++++++++++++++++++++++++++++++

+++++++++

+++++

+++++++++++

+++++

+++++++++++++++
+++

++++++++++++++++++++++++++++++++++++++
++++++++++

+++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++ ++++++++++++++
+
+++++

++++++++++++++++++++
++++++++++++++++++++++

++++++++++++
++++++

++++++

++++++++++++++
+

+

++++++++++++++

32 grasp itrs r
rr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrr

rrrrr
rrrrrr

rrrrr
rrrrrrrrr rrrrrrr rrrr rrrrrrrrrrrrrrr rrrrrrr rrrrr rrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrrrrrrrrrrrr rrrrrrrrrrrrrrr rrrrrrrrrrrrrrr rrrrr rrrrrrrrrrrrrrrrrrrr rrrrr rrrrrrrrrr rrrrrrrrrr rrrrrrrrrrrrrrr

rrr
rrrrrrrrrrrrrrr rrrrrrrrrrrrrrr

Fig. 6. Running time as a function of problem dimension and number of GRASP iterations

5. CONCLUDING REMARKS

In this paper, a set of FORTRAN subroutines that implement a GRASP for finding
approximate solutions to dense symmetric assignment problems is described. The
code is shown to efficiently produce good quality solutions for the test set QAPLIB.
It consistently outperforms Algorithm 608 [9], a code published in ACM Transac-

tions of Mathematical Software for the approximate solution of the quadratic as-
signment problem. It can be used on a stand-alone basis as a heuristic, as well as
part of a branch and bound algorithm to quickly produce good quality initial upper
bounds.

The subroutines can be easily adapted for use in an N -processor parallel com-
puter, by making N parallel calls to the subroutine gqapd, each with a copy of the
subroutine’s variables and arrays, and a different random number seed. The best
permutation found by each of the N calls is returned to the main program, which
picks the overall best as the GRASP solution.

Several improvements to the code are envisioned:

– handling sparse flow and distance matrices,

– more sophisticated local search, such as 3-exchange,

– dropping the symmetry requirement,

– handling QAPs with a linear term.
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