
HYBRIDIZATIONS OF GRASP WITH PATH-RELINKING FOR

THE FAR FROM MOST STRING PROBLEM

DANIELE FERONE, PAOLA FESTA, AND MAURICIO G.C. RESENDE

Abstract. Among the sequence selection and comparison problems, the Far

From Most String Problem (FFMSP) is one of the computationally hardest
with applications in several fields, including molecular biology where one is

interested in creating diagnostic probes for bacterial infections or in discovering

potential drug targets. In this paper, several hybrid heuristics are described
and tested. Experiments on a large set of randomly generated test instances

indicate that these randomized hybrid heuristics are both effective and efficient.

1. The Far From Most String Problem (FFMSP)

The Far From Most String Problem (FFMSP) is one of the so called
string selection and comparison problems, that belong to the more general class of
problems known as sequences consensus, where a finite set of sequences is given
and one is interested in finding their consensus, i.e. a new sequence that agrees
as much as possible with all the given sequences. In other words, the objective is
to determine a sequence called consensus, because it represents, in some sense, all
the given sequences. For the FFMSP, the objective is to find a sequence that is far
from as many sequences as possible in a given set of sequences all having the same
length.

To formally state the problem, the following notation is needed:

• An alphabet Σ = {c1, c2, . . . , ck} is a finite set of elements, called characters;
• si = (si1, s

i
2, . . . , s

i
m) is a sequence of length m (|si| = m) on Σ (sij ∈ Σ, j =

1, 2, . . . ,m);
• Given two sequences si and sl on Σ such that |si| = |sl|, dH(si, sl) denotes

their Hamming distance and is given by

(1) dH(si, sl) =

|si|∑
j=1

Φ(sij , s
l
j),

where sij and slj are the characters in position j in si and sl, respectively,
and Φ : Σ× Σ→ {0, 1} is the predicate function such that

Φ(a, b) =

{
0, if a = b;
1, otherwise.

Date: January 26, 2014.
Key words and phrases. Computational biology, Molecular structure prediction, Protein and

sequences alignment, Combinatorial optimization, Hybrid metaheuristics.
AT&T Labs Research Technical Report.

1

2 FERONE, FESTA, AND RESENDE

• Given a set of sequences Ω = {s1, s2, . . . , sn} on Σ (si ∈ Σm, i = 1, 2, . . . , n)
dΩ
H denotes the Hamming distance among the sequences in Ω and it is given

by

(2) 0 ≤ dΩ
H = min

i,l=1,...,n | i<l
dH(si, sl) ≤ m.

The FFMSP consists in determining a sequence far from as many sequences as
possible in the input set Ω. This can be formalized by stating that, given a threshold
t, a string s must be found maximizing the variable x such that

(3) dH(s, si) ≥ t, for si ∈ P ⊆ Ω and |P | = x,

or, equivalently

(4) d
P∪{s}
H ≥ t, for P ⊆ Ω and |P | = x.

Computational intractability of the general sequences consensus problem was
first proved in 1997 by Frances and Litman [13] and in 1999 by Sim and Park
[27]. Among sequence consensus problems, the FFMSP is one of the hardest from
a computational point of view, as proved in 2003 by Lanctot et al. [19], who
demonstrated that for sequences over an alphabet Σ with |Σ| ≥ 3, approximating
the FFMSP within a polynomial factor is NP-hard.

Given theoretical computational hardness results, polynomial-time algorithms
for the FFMSP can yield only solutions with no constant guarantee of approxima-
tion. In such cases, to find good quality solutions in reasonable running times and
to overcome the inner intractability of the problem from a computational point of
view, heuristic methods are recommended. The first attempt in this direction was
done in 2005 by Meneses et al. [20], who proposed a heuristic algorithm consisting
of a simple greedy construction followed by an iterative improvement phase. Later,
in 2007 Festa [7] designed a simple GRASP, recently improved in 2012 by Mousavi
et al. [21]. Mousavi et al. noticed that the search landscape of the FFMSP is
characterized by many solutions having the same objective value. Consequently,
local search is likely to visit many sub-optimal local maxima. To efficiently escape
from these local maxima, Mousavi et al. devised a new hybrid heuristic evaluation
function and used it in conjunction with the objective function when evaluating
neighbor solutions during the local search phase in the GRASP framework.

In 2013 Ferone et al. [6] designed the following pure and hybrid multistart
iterative heuristics:

� a pure GRASP, inspired by [7];
� a GRASP that uses Forward path-relinking for intensification;
� a pure VNS;
� a VNS that uses Forward path-relinking for intensification;
� a GRASP that uses VNS to implement the local search phase; and
� a GRASP that uses VNS to implement the local search phase and Forward

path-relinking for intensification.

The algorithms were tested on several random instances and the results showed
that the hybrid GRASP with VNS and Forward path-relinking always found much
better quality solutions compared with the other algorithms, but clearly with higher
running times as compared to the pure GRASP and the hybrid GRASP with For-
ward path-relinking.

GRASP WITH PATH-RELINKING FOR THE FFMSP 3

The best objective function values found by GRASP and its hybrids were when
the construction phase was more greedy than random. For this reason, overall, the
objective function values found by the pure VNS were the worst. This bad behavior
is not surprising, given the totally random criterion adopted in the VNS construc-
tion. The integration of Forward path-relinking as an intensification procedure in
the pure metaheuristics was beneficial in terms of solution quality. A further in-
vestigation conducted studying the empirical distributions of the random variable
time-to-target-solution-value revealed that, given any fixed amount of computing
time, GRASP with Forward path-relinking has an empirically higher probability
than all competitors of finding a target solution.

Given the results of the analysis conducted involving the empirical distributions
of the random variable time-to-target-solution-value, we opted to design, imple-
ment, and test several different hybridizations of GRASP with path-relinking for
the FFMSP. In this paper we report on the implementation details of the differ-
ent resulting algorithms as well as the results of the experiments we conducted
to compare them. Our objective was to better investigate the benefits with re-
spect to computation time and solution quality of the integration of the different
path-relinking strategies in GRASP.

The remainder of this article is organized as follows. In Section 2, we describe the
GRASP for the FFMSP proposed in [6] as well as the hybrid heuristic evaluation
function proposed by Mousavi et al. [21] that we integrate with the GRASP local
search. We also outline a self-contained experimental analysis whose objective is
to investigate whether the integration of function of Mousavi et al. in GRASP is
beneficial. In Section 3, we propose several path-relinking strategies that can be
integrated in GRASP. The resulting hybrid GRASP with path-relinking algorithms
are described in Section 4. In Section 5 we report on computational experiments
with these algorithms on both a set of randomly-generated and a set of real-world
problem instances. Concluding remarks and insights about further improvements
of the proposed techniques are given in the last section.

2. GRASP for the FFMSP

Each GRASP iteration consists of a construction phase [4, 5], where a solution is
built in a greedy, randomized, and adaptive manner, and a local search phase which
starts at the constructed solution and applies iterative improvement until a locally
optimal solution is found. Repeated applications of the construction procedure
yields diverse starting solutions for the local search and the best overall local optimal
solution is returned as the result. The reader can refer to [10, 11, 12] for annotated
bibliographies of GRASP.

A complete solution is iteratively constructed in the construction phase, one
element at a time. At each construction iteration, the choice of the next element
to be added is determined by ordering all candidate elements (i.e. those that can
be added to the solution) in a candidate list C with respect to a greedy function
that measures the (myopic) benefit of selecting each element. The probabilistic
component of a GRASP is characterized by randomly choosing one of the best
candidates in the list, but not necessarily the top candidate. The list of best
candidates is called the restricted candidate list (RCL). A GRASP was proposed in
[6] to find optimal and near-optimal solutions for the FFMSP. Figure 1 depicts its

4 FERONE, FESTA, AND RESENDE

algorithm GRASP(t, m, Σ, ft(·), {Vj(c)}c∈Σ
j∈{1,...,m}, Seed)

1 sbest:=∅; ft(sbest):=−∞;
2 for j = 1 to m→
3 V min

j :=minc∈Σ Vj(c); V
max
j :=maxc∈Σ Vj(c);

4 endfor
5 while stopping criterion not satisfied→
6 [s, {RCLj}mj=1]:=GrRand(m, Σ, {Vj(c)}c∈Σ

j∈{1,...,m}, V
min
j , V max

j , Seed);

7 s:=LocalSearch(t, m, s, ft(·), {RCLj}mj=1);
8 if (ft(s) > ft(sbest)) then sbest:=s;
9 endwhile
10 return(sbest);
end GRASP

Figure 1. Pseudo-code of a GRASP for the FFMSP.

function GrRand(m, Σ, {Vj(c)}c∈Σ
j∈{1,...,m}, V

min
j , V max

j , Seed)

1 for j = 1 to m→
2 RCLj :=∅; α:=Random([0, 1], Seed);
3 µ:=V min

j + α · (V max
j − V min

j);
4 for all c ∈ Σ→
5 if (Vj(c) ≤ µ)) then RCLj :=RCLj∪{c};
6 endfor
7 sj :=Random(RCLj , Seed);
8 endfor
9 return(s, {RCLj}mj=1);
end GrRand

Figure 2. Pseudo-code of the GRASP construction for the FFMSP.

pseudo-code, where ft : Σm 7→ N denotes the objective function to be maximized
according to (3) and (4).

Figure 2 shows a pseudo-code of the construction procedure that iteratively
builds a sequence s = (s1, . . . , sm) ∈ Σm, selecting one character at time. The
greedy function is related to the occurrence of each character in a given position.
In fact, as was done in [7], for each position j ∈ {1, . . . ,m} and for each character
c ∈ Σ, we compute Vj(c) as the number of times c appears in position j in any of
the strings in Ω. The pure greedy choice would consist in selecting the character c
with the lowest greedy function value Vj(c). To define the construction mechanism
for the RCL, let

V min
j = min

c∈Σ
Vj(c), V max

j = max
c∈Σ

Vj(c).

Denoting by µ = V min
j + α · (V max

j − V min
j) the cut-off value (line 3), where α is

a parameter such that 0 ≤ α ≤ 1 (line 2), the RCL is made up of all characters
whose greedy function value is less than or equal to µ (line 5). A character is then
selected, uniformly at random, from the RCL (line 7).

The basic step of the local search described in Figure 3 is slightly different from
the one implemented in [7]. In our GRASP, it consists in investigating all positions
j ∈ {1, . . . ,m} (loop in lines 4–13) and changing the character in position j in

GRASP WITH PATH-RELINKING FOR THE FFMSP 5

function LocalSearch(t, m, s, ft(·), {RCLj}mj=1)
1 max:=ft(s); change:=.TRUE.;
2 while (change)→
3 change:=.FALSE.;
4 for j = 1 to m→
5 temp:=sj ;
6 for all c ∈RCLj→
7 sj :=c;
8 if (ft(s) > max) then
9 max:=ft(s); temp:=c; change:=.TRUE.; break;
10 endif
11 endfor
12 sj :=temp;
13 endfor
14 endwhile
15 return(s);
end LocalSearch

Figure 3. Pseudo-code of the GRASP local search for the FFMSP.

the sequence s to another character in RCLj . In [7] the position j and the new
character in position j are selected at random. Moreover, the random selection of
the new character in position j involves the set of all characters occurring in that
position in all the given sequences in Ω.

The current solution is replaced by the first improving neighbor (lines 8–11).
The search stops after all possible moves have been evaluated and no improving
neighbor was found, returning a locally optimal solution (line 15).

2.1. The hybrid heuristic evaluation function. In [21], Mousavi et al. ob-
served that the objective function of the FFMSP is characterized by large plateaus,
since there are |Σ|m points in the search space with only n different objective val-
ues. To efficiently handle the numerous local maxima, they devised a new function
to be used in the GRASP framework in conjunction with the objective function
when evaluating neighbor solutions during the local search phase. They first de-

fine a function G̃pC, called Gain-per-Cost, to evaluate candidate solutions based
on their likelihood to lead to better solutions. Then, they define a heuristic func-
tion h

ft,G̃pC
(·) which takes into account both the objective function ft(·) and the

estimated Gain-per-Cost function G̃pC.
Given two candidate solutions s, ŝ ∈ Σm, s 6= ŝ, function h

ft,G̃pC
(·) must com-

bine ft(·) and G̃pC in such a way that

h
ft,G̃pC

(s) > h
ft,G̃pC

(ŝ),

if and only if either ft(s) > ft(ŝ), or ft(s) = ft(ŝ) and G̃pC(s) > G̃pC(ŝ). In
other words, according to function h

ft,G̃pC
(·), the candidate solution s is considered

better than ŝ if it corresponds to a better objective function value or the objective
function assumes the same value when evaluated in both solutions, but s has a
higher probability to lead to better solutions.

6 FERONE, FESTA, AND RESENDE

Looking at the results of a few experiments conducted in [21], it emerges that
using the hybrid heuristic evaluation function h

ft,G̃pC
(·) in place of the objective

function ft(·) in the GRASP local search proposed by Festa [7] results in a reduction
in the the number of local maxima. Consequently the algorithm’s climb toward
better solutions is sped up.

2.2. Comparing GRASP with and without hybrid heuristic evaluation
function. We next present some experimental analysis to help determine whether
the integration of the hybrid heuristic evaluation function h

ft,G̃pC
(·) of Mousavi et

al. in a GRASP is beneficial. To this end, we implemented two GRASP heuristics.
One is the original algorithm as proposed in [6] with the objective evaluation func-
tion ft(·) and the other is the same GRASP but using in the local search phase
the heuristic evaluation function h

ft,G̃pC
(·). In what follows, we refer to these two

algorithms as grasp and grasp-h-ev, respectively.
The two algorithms were implemented in the C language, compiled with “cc

(GCC) 4.1.3 20070929 (prerelease) (Ubuntu 4.1.2-16ubuntu2)”, and run on an
“Intel Core i7 Quad core @ 2.67 GHz RAM 6GB” with Linux (Ubuntu 11.10)
operating system.

The following two sets of problem instances were used.

Set A. This is the set of benchmark instances introduced in [6], consisting of 600
random instances of different size. More specifically, the number n of input
sequences in Ω is in {100, 200}, and the length m of each of the input
sequences is in {300, 600, 800}. In all cases, the alphabet size is four, i.e.,
|Σ| = 4. For each combination of n and m, the set A consists of 100
random instances. Finally, as in [6], the two algorithms were applied on all
instances for different settings of the threshold parameter t varying from
.75m to .85m.

Set B. This set of problem instances was used in [21] and was kindly provided
to us by the authors. In this set, some instances were randomly gener-
ated, while the remaining are real-world instances from biology (Hyaloper-
onospora parasitica V 6.0 sequence data). In both the randomly generated
and the real-world instances, the alphabet size is four, i.e., |Σ| = 4, the
number n of input sequences in Ω is in {100, 200, 300}, and the length m of
each of the input sequences ranges from 100 to 1200. Finally, the threshold
parameter t varies from .75m to .95m.

We performed a first experiment on the instances in set A. For each problem
size, all the variants were run on 100 random instances and average solution value
computed. The results obtained are summarized in Table 1, where for each problem
type, the instance size is reported in the first column. The remaining columns report
the average running times (in seconds) and the average objective function values
(z) obtained by each algorithm.

We then performed a second experiment on the instances in set B. For each
problem size, this set contains 10 randomly generated instances and three real-
world instances. The average solution values obtained on the random instances are
summarized in Table 2. Table 3 reports the average solution values obtained on
the real instances.

We make the following observations about the experiments described above:

GRASP WITH PATH-RELINKING FOR THE FFMSP 7

Table 1. Comparison between grasp and grasp-h-ev on in-
stances in set A.

grasp grasp-h-ev

Instance size Time (s) z Time (s) z

n = 100,m = 300, t = 225 0.01 100.00 0.02 100.00
n = 100,m = 300, t = 240 2.06 67.53 4.18 72.70
n = 100,m = 300, t = 255 1.54 6.56 7.71 27.80

n = 100,m = 600, t = 450 0.00 100.00 0.06 100.00
n = 100,m = 600, t = 480 3.33 65.37 16.78 75.50
n = 100,m = 600, t = 510 3.10 1.67 35.10 27.42

n = 100,m = 800, t = 600 0.00 100.00 0.09 100.00
n = 100,m = 800, t = 640 4.34 64.75 29.97 77.21
n = 100,m = 800, t = 680 4.16 0.95 59.79 26.17

n = 200,m = 300, t = 225 4.77 197.36 0.13 200.00
n = 200,m = 300, t = 240 5.36 81.08 7.95 87.55
n = 200,m = 300, t = 255 3.03 4.49 17.24 30.48

n = 200,m = 600, t = 450 0.49 199.98 0.38 200.00
n = 200,m = 600, t = 480 6.85 61.18 39.00 81.23
n = 200,m = 600, t = 510 6.04 0.96 74.59 26.07

n = 200,m = 800, t = 600 0.03 200.00 0.40 200.00
n = 200,m = 800, t = 640 8.53 51.16 78.31 85.27
n = 200,m = 800, t = 680 8.09 0.16 149.65 24.36

� The stopping criterion for grasp was set MaxIterations = 5000 or an
objective function value z = n (i.e., an optimal solution);

� Since the computation time of a single iteration of grasp-h-ev is higher
than that of grasp, for grasp-h-ev the stopping criterion was set to
MaxIterations = 150 or an objective function value z = n (i.e., an op-
timal solution);

� At the expense of increased running times, the integration of Mousavi et
al.’s hybrid heuristic evaluation function in grasp was beneficial in terms
of solution quality.

As further investigation, given the random component of the algorithms and the
great variety in their running times per iteration, we plot in Figures 4 the empirical
distributions of the random variable time-to-target-solution-value considering the
following random instances:

(1) n = 100, m = 600, t = 480, and target value ẑ = 0.68× n (Figure 4(a));
(2) n = 200, m = 300, t = 255, and target value ẑ = 0.025× n (Figure 4(b)).

We performed 100 independent runs of each heuristic using 100 different random
number generator seeds and recorded the time taken to find a solution at least as

8 FERONE, FESTA, AND RESENDE

Table 2. Comparison between grasp and grasp-h-ev on the ran-
dom problem instances in set B.

grasp grasp-h-ev

Instance size Time (s) z Time (s) z

n = 100,m = 100, t = 75 0.77 99.10 0.01 100.00
n = 100,m = 100, t = 85 0.79 25.10 0.74 30.20
n = 100,m = 100, t = 95 0.53 1.00 0.87 6.80

n = 100,m = 200, t = 150 0.02 100.00 0.02 100.00
n = 100,m = 200, t = 170 1.08 12.60 3.06 28.00
n = 100,m = 200, t = 190 1.05 0.00 3.14 5.10

n = 100,m = 400, t = 300 0.00 100.00 0.03 100.00
n = 100,m = 400, t = 340 2.06 3.90 13.62 27.70
n = 100,m = 400, t = 380 2.10 0.00 10.46 4.20

n = 200,m = 200, t = 150 4.23 195.10 0.61 199.90
n = 200,m = 200, t = 170 2.05 10.70 6.01 30.60
n = 200,m = 200, t = 190 2.02 0.00 6.28 5.00

n = 200,m = 400, t = 300 4.45 198.90 0.21 200.00
n = 200,m = 400, t = 340 4.06 2.50 32.26 29.30
n = 200,m = 400, t = 380 4.14 0.00 21.76 3.70

n = 200,m = 800, t = 600 0.02 200.00 0.36 200.00
n = 200,m = 800, t = 680 8.09 0.20 130.24 24.40
n = 200,m = 800, t = 760 8.27 0.00 87.15 3.00

n = 300,m = 300, t = 225 11.64 286.90 5.52 295.10
n = 300,m = 300, t = 255 4.83 3.60 28.98 32.60
n = 300,m = 300, t = 285 4.92 0.00 22.47 3.80

n = 300,m = 600, t = 450 13.02 296.70 0.65 300.00
n = 300,m = 600, t = 510 9.48 0.60 127.36 24.90
n = 300,m = 600, t = 570 9.70 0.00 83.43 2.50

n = 300,m = 1200, t = 900 0.12 300.00 1.96 300.00
n = 300,m = 1200, t = 1020 19.18 0.00 538.66 21.80
n = 300,m = 1200, t = 1140 19.67 0.00 252.41 1.50

good as the target value ẑ. As in [1], to plot the empirical distribution we associate

with the ith sorted running time (ti) a probability pi = i−1/2
100 , and plot the points

zi = (ti, pi), for i = 1, . . . , 100. We observe in Figure 4 that the relative position of
the curves implies that, given any fixed amount of running time, grasp-h-ev has

GRASP WITH PATH-RELINKING FOR THE FFMSP 9

Table 3. Comparison between grasp and grasp-h-ev on the real-
world problem instances in set B.

grasp grasp-h-ev

Instance size Time (s) z Time (s) z

n = 100,m = 100, t = 75 0.00 100.00 0.00 100.00
n = 100,m = 100, t = 85 1.16 59.67 0.66 61.00
n = 100,m = 100, t = 95 0.49 3.00 0.81 9.67

n = 100,m = 200, t = 150 0.00 100.00 0.00 100.00
n = 100,m = 200, t = 170 1.29 48.00 2.63 52.67
n = 100,m = 200, t = 190 1.00 1.00 3.29 7.67

n = 100,m = 400, t = 300 0.00 100.00 0.02 100.00
n = 100,m = 400, t = 340 2.10 47.00 9.66 57.33
n = 100,m = 400, t = 380 2.03 0.00 11.16 7.33

n = 200,m = 200, t = 150 0.05 200.00 0.01 200.00
n = 200,m = 200, t = 170 3.26 83.33 5.00 86.00
n = 200,m = 200, t = 190 1.94 0.33 6.56 9.67

n = 200,m = 400, t = 300 0.01 200.00 0.03 200.00
n = 200,m = 400, t = 340 4.32 60.67 22.65 73.67
n = 200,m = 400, t = 380 3.99 0.00 23.44 7.00

n = 200,m = 800, t = 600 0.00 200.00 0.09 200.00
n = 200,m = 800, t = 680 8.09 52.67 92.90 79.67
n = 200,m = 800, t = 760 8.10 0.00 101.74 4.33

n = 300,m = 300, t = 225 0.14 300.00 0.04 300.00
n = 300,m = 300, t = 255 6.37 96.00 20.78 101.00
n = 300,m = 300, t = 285 4.71 0.00 22.96 6.67

n = 300,m = 600, t = 450 0.20 300.00 0.12 300.00
n = 300,m = 600, t = 510 13.10 108.33 121.87 125.67
n = 300,m = 600, t = 570 12.50 0.00 128.38 4.00

n = 300,m = 1200, t = 900 0.03 300.00 0.25 300.00
n = 300,m = 1200, t = 1020 18.79 63.00 328.62 98.67
n = 300,m = 1200, t = 1140 19.01 0.00 365.46 1.67

a higher probability of finding a solution whose objective function value is at least
as good as the target objective function value than does grasp.

To confirm these results, we have used a tool proposed by Ribeiro et al. in [26]
to compare algorithms based on stochastic local search. Ribeiro et al. developed a

10 FERONE, FESTA, AND RESENDE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time

grasp
grasp-h-ev

(a) Random instances with n = 100, m = 600, t = 480, and target value ẑ = 0.68 × n.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time

grasp
grasp-h-ev

(b) Random instance with n = 200, m = 300, t = 255, and target value ẑ = 0.025 × n.

Figure 4. Time to target distributions (in seconds) comparing
grasp and grasp-h-ev.

closed form index that compares two algorithms Alg1 and Alg2 and gives the prob-
ability that algorithm Alg1 finds a target solution value in a smaller computation
time than algorithm Alg2. We denote this probability by P (Alg1 ≤ Alg2). We
obtained the following results:

GRASP WITH PATH-RELINKING FOR THE FFMSP 11

algorithm Path-relinking(t, m, ft(·), s′, ŝ, Seed)
1 f∗ := max{ft(s), ft(ŝ)}; s∗ := arg max{ft(s), ft(ŝ)};
2 ∆(s′, ŝ):={i = 1, . . . ,m | s′i 6= ŝi};
3 while (∆(s′, ŝ) 6= ∅) →
4 i∗ := arg max{ft(s′ ⊕ i) | i ∈ ∆(s′, ŝ)};
5 ∆(s′ ⊕ i∗, ŝ) := ∆(s′, ŝ) \ {i∗};
6 s′ := s′ ⊕ i∗;
7 if (ft(s

′) > f∗) then
8 f∗ := ft(s

′); s∗ := s′;
9 endif ;
10 endwhile;
11 return (s∗);
end Path-relinking

Figure 5. Pseudo-code of path-relinking for the FFMSP.

• Figure 4(a): P (grasp-h-ev ≤ grasp) = 0.72;
• Figure 4(b): P (grasp-h-ev ≤ grasp) = 0.67.

We conclude that the integration of Mousavi et al.’s hybrid heuristic evaluation
function h

ft,G̃pC
(·) in the local search of grasp beneficial. The resulting hybrid

GRASP on average finds better solutions in smaller running times. For this reason,
in the remainder of this paper, we will restrict ourselves to the hybrid GRASP
grasp-h-ev.

3. Path-relinking

Path-relinking is a heuristic proposed in 1996 by Glover [14] as an intensification
strategy exploring trajectories connecting elite solutions obtained by tabu search
or scatter search [15, 16, 17, 24].

Starting from one or more elite solutions, paths in the solution space leading
towards other guiding elite solutions are generated and explored in the search for
better solutions. This is accomplished by selecting moves that introduce attributes
contained in the guiding solutions. At each iteration, all moves that incorporate
attributes of the guiding solution are analyzed and the move that best improves (or
least deteriorates) the initial solution is chosen.

Figure 5 illustrates the pseudo-code of path-relinking for the FFMSP. It is applied
to a pair of sequences (s′, ŝ). Their common elements are kept constant, and the
space of solutions spanned by this pair of solutions is searched with the objective
of finding a better solution. This search is done by exploring a path in the solution
space linking solution s′ to solution ŝ. s′ is called the initial solution and ŝ the
guiding solution.

The procedure then computes (line 2) the symmetric difference ∆(s′, ŝ) between
the two solutions as the set of components for which the two solutions differ:

∆(s′, ŝ) := {i = 1, . . . ,m | s′i 6= ŝi}.
Note that, |∆(s′, ŝ)| = dH(s′, ŝ) and ∆(s′, ŝ) represents the set of moves needed to
reach ŝ from s′, where a move applied to the initial solution s′ consists in selecting
a position i ∈ ∆(s′, ŝ) and replacing s′i with ŝi.

12 FERONE, FESTA, AND RESENDE

Path-relinking generates a path of solutions s′1, s
′
2, . . . , s

′
|∆(s′,ŝ)| linking s′ and

ŝ. The best solution s∗ in this path is returned by the algorithm (line 11).
The path of solutions is computed in the loop in lines 3 through 10. This

is achieved by advancing one solution at a time in a greedy manner. At each
iteration, the procedure examines all moves i ∈ ∆(s′, ŝ) from the current solution
s′ and selects the one which results in the highest cost solution (line 4), i.e. the
one which maximizes ft(s

′⊕ i), where s′⊕ i is the solution resulting from applying
move i to solution s′. The best move i∗ is made, producing solution s′⊕ i∗ (line 6).
The set of available moves is updated (line 5). If necessary, the best solution s∗ is
updated (lines 7–9). Clearly, the algorithm stops when ∆(s′, ŝ) = ∅.

algorithm mixed-Path-relinking(t, m, ft(·), s′, ŝ, Seed)
1 f∗ := max{ft(s), ft(ŝ)}; s∗ := arg max{ft(s), ft(ŝ)};
2 ∆(s′, ŝ):={i = 1, . . . ,m | s′i 6= ŝi};
3 while (∆(s′, ŝ) 6= ∅) →
4 i∗ := arg max{ft(s′ ⊕ i) | i ∈ ∆(s′, ŝ)};
5 ∆(s′ ⊕ i∗, ŝ) := ∆(s′, ŝ) \ {i∗};
6 s′ := s′ ⊕ i∗;
7 if (ft(s

′) > f∗) then
8 f∗ := ft(s

′); s∗ := s′;
9 endif ;
10 if (∆(s′, ŝ) 6= ∅) then
11 i∗ := arg max{ft(ŝ⊕ i) | i ∈ ∆(s′, ŝ)};
12 ∆(s′, ŝ⊕ i∗) := ∆(s′, ŝ) \ {i∗};
13 ŝ := ŝ⊕ i∗;
14 if (ft(ŝ) > f∗) then
15 f∗ := ft(ŝ); s

∗ := ŝ;
16 endif ;
17 endif ;
18 endwhile;
19 return (s∗);
end Path-relinking-mixed

Figure 6. Pseudo-code of mixed path-relinking [25] for the FFMSP.

We adopted several strategies of implementing path-relinking for the FFSMP.
Given two solutions s′ and ŝ, we implemented

Forward PR: The path emanates from s′ which is the worst solution between
s′ and ŝ (Figure 5);

Backward PR: The path emanates from s′ which is the best solution be-
tween s′ and ŝ (Figure 5);

Mixed PR: Two paths are generated, one emanating from s′ and the other
emanating from ŝ: the process stops as soon as an intermediate common
solution is met (Figure 6);

Greedy Randomized Adaptive Forward PR: The path emanates from
the worst solution between s′ and ŝ, and at each iteration the step is moved
towards an intermediate solution selected at random among a subset of top
ranked solutions (Figure 7);

GRASP WITH PATH-RELINKING FOR THE FFMSP 13

algorithm grapr(t, m, ft(·), s′, ŝ, Seed, α)
1 f∗ := max{ft(s′), ft(ŝ)}; s∗ := arg max{ft(s′), ft(ŝ)};
2 ∆(s′, ŝ):={i = 1, . . . ,m | s′i 6= ŝi};
3 while (∆(s′, ŝ) 6= ∅) →
4 imin := arg min{ft(s′ ⊕ i) | i ∈ ∆(s′, ŝ)};
5 imax := arg max{ft(s′ ⊕ i) | i ∈ ∆(s′, ŝ)};
6 µ := imin + α(imax − imin);
7 RCL := {i ∈ ∆(s′, ŝ) | ft(s′ ⊕ i) ≥ µ};
8 i∗ := Random(RCL, Seed);
9 ∆(s′ ⊕ i∗, ŝ) := ∆(s′, ŝ) \ {i∗};
10 s′ := s′ ⊕ i∗;
11 if (ft(s

′) > f∗) then
12 f∗ := ft(s

′); s∗ := s′;
13 endif ;
14 endwhile;
15 return (s∗);
end grapr

Figure 7. Pseudo-code of Greedy Randomized Adaptive Path-
relinking [3] for FFMSP.

algorithm Evolution(t, m, ft(·), E , Seed)

1 Ê := ∅; f∗ := −∞
2 forall s′ ∈ E →
3 forall s′′ ∈ E →
4 if (s′ 6= s′′) then
5 smin := arg min(f(s′), f(s′′));
6 smax := arg max(f(s′), f(s′′));
7 α := Random([0, 1], Seed);
8 s := grapr(t, m, ft(·), smin, smax, Seed, α);
9 if (f(s) > f∗) then s∗ := s; f∗ = f(s∗);

10 AddToElite(Ê , s);
11 endif;
12 endfor;
13 endfor;

14 return (Ê , s∗);
end Evolution

Figure 8. Pseudo-code of evolutionary path-relinking [22, 23] for FFMSP.

Evolutionary PR: A Greedy Randomized Adaptive Forward PR is per-
formed, where at each EvIterations iterations the algorithm Evolution

is invoked (see Figure 8) that performs a path-relinking between each pair
of current elite set solutions with the aim of eventually improve the current
elite set.

14 FERONE, FESTA, AND RESENDE

4. Hybridizations of GRASP with path-relinking

Since GRASP iterations are independent of one another, it does not make use
of solutions produced throughout the search. One way to add memory to GRASP
is its hybridization with path-relinking. In 1999 the first proposal of such a hy-
brid method was published by Laguna and Mart́ı [18]. It was followed by several
extensions, improvements, and successful applications [2, 8, 9, 24].

We integrated a path-relinking intensification procedure in the hybrid GRASP
grasp-h-ev described in Section 2. Path-relinking is applied at each GRASP it-
eration to pairs (s, ŝ) of solutions, where s is the locally optimal solution obtained
by the GRASP local search and ŝ is randomly chosen from a pool with at most
MaxElite high quality solutions found along the search. The pseudo-code for the
proposed hybrid GRASP with path-relinking is shown in Figure 9.

algorithm GRASP+PR(t, m, Σ, ft(·), {Vj(c)}c∈Σ
j∈{1,...,m}, Seed, MaxElite, c, EvIterations)

1 sbest:=∅; ft(sbest):=−∞; E := ∅; iter:=0;
2 for j = 1 to m→
3 V min

j :=minc∈Σ Vj(c); V
max
j :=maxc∈Σ Vj(c);

4 endfor
5 while stopping criterion not satisfied→
6 iter:=iter + 1;
7 [s, {RCLj}mj=1]:=GrRand(m, Σ, {Vj(c)}c∈Σ

j∈{1,...,m}, V
min
j , V max

j , Seed);

8 s:=LocalSearch(t, m, s, ft(·), {RCLj}mj=1);
9 if (iter ≤ MaxElite) then
10 E := E ∪ {s};
11 if (ft(s) > ft(sbest)) then sbest:=s;
12 else
13 s′ := Random(E , Seed); α = Random([0, 1], Seed);
14 (E , s) := Choose-PR-Strategy(c, s′, s, t, m, ft(·), E , Seed, α, EvIterations);
15 AddToElite(E , s);
16 if (ft(s) > ft(sbest)) then sbest:=s;
17 endif
18 endwhile
19 for (s′ ∈ E) →
20 for (s′′ ∈ E) →
21 if (s′ 6= s′′) then
22 α := Random([0, 1], Seed);
23 (E , s) := Choose-PR-Strategy(c, s′, s, t, m, ft(·), E , Seed, α, EvIterations);
24 if (ft(s) > ft(sbest)) then sbest:=s;
25 endif
26 endfor
27 endfor
28 return(sbest);
end GRASP+PR

Figure 9. Pseudo-code of a hybrid GRASP with path-relinking
for the FFMSP.

GRASP WITH PATH-RELINKING FOR THE FFMSP 15

function Choose-PR-Strategy(choice, s′, s′′, t, m, ft(·), E , Seed, α, EvIterations)
1 smin := arg min(f(s′), f(s′′));
2 smax := arg max(f(s′), f(s′′));
3 if (choice = FORWARD) then
4 s∗ := path-relinking(t,m, ft(·), smin, smax, Seed);
5 elseif (choice = BACKWARD) then
6 s∗ := path-relinking(t,m, ft(·), smax, smin, Seed);
7 elseif (choice = MIXED) then
8 s∗ := path-relinking-mixed(t,m, ft(·), smin, smax, Seed);
9 elseif (choice = GRAPR) then
10 s∗ := grapr(t,m, ft(·), smin, smax, Seed, α);
11 elseif (choice = EVOLUTIONARY) then
12 s∗ := grapr(t,m, ft(·), smin, smax, Seed, α);
13 if (iteration mod EvIterations = 0) then
14 (E , s∗) := Evolution(t,m, ft(·), E , Seed);
15 endif ;
16 endif ;
17 return (E , s∗)
end Choose-PR-Strategy

Figure 10. Function for selection of path-relinking strategy.

The pool of elite solutions E is originally empty (line 1) and, until E is not
full, the current GRASP locally optimal solution s is inserted in E . As soon as
the pool becomes full (|E| = MaxElite), through procedure Choose-PR-Strategy,
the desired strategy for implementing path-relinking is chosen. It involves s and
solution ŝ randomly chosen from E . The best solution s found along the relinking
trajectory is returned and considered as a candidate to be inserted into the pool.
Procedure AddToElite evaluates its insertion into E . If s is better than the best
elite solution, then s replaces the worst elite solution. If the candidate is better
than the worst elite solution, but not better than the best, it replaces the worst if
it is sufficiently different (see Section 5) from all elite solutions.

Path-relinking is applied also as post-optimization phase (lines 19–27): at the
end of all GRASP iterations, for each different pair of solutions s′, s′′ ∈ E , if s′

and s′′ are sufficiently different, path-relinking is performed between s′ and s′′ by
using the same strategy used in the intensification phase.

5. Experimental results

In this section, we present results of the computational experiments with the
following heuristics proposed in this paper:

� grasp-h-ev, the hybrid GRASP that integrates Mousavi et al.’s evaluation
function into the local search;
� grasp-h-ev f, the hybrid GRASP that adds forward path-relinking to
grasp-h-ev;
� grasp-h-ev b, the hybrid GRASP that adds backward path-relinking to
grasp-h-ev;
� grasp-h-ev m, the hybrid GRASP that adds mixed path-relinking to grasp-h-ev;

16 FERONE, FESTA, AND RESENDE

� grasp-h-ev grapr, the hybrid GRASP that adds greedy randomized adap-
tive forward path-relinking to grasp-h-ev;
� grasp-h-ev ev pr, the hybrid GRASP that adds evolutionary path-relinking

to grasp-h-ev.

The computer environment and problem instances used to experimentally eval-
uate the different algorithms are those described in Subsection 2.2, and, as in Sub-
section 2.2, we run the algorithms first on the instances in set A and then on those
in set B.

For each problem size in set A, all the variants were run on 100 random instances
and average solution value and average running times were computed. The results
obtained are summarized in Table 4, where for each problem type, in the first
column the instance size (n, m, and t) is reported. The remaining columns report
the average running times (in seconds) and the average objective function values
(z) obtained by each algorithm.

We make the following observations:

� The stopping criterion for all algorithms was set to MaxIterations = 150
or objective function value z = n (i.e., an optimal solution);

� The maximum number MaxElite of elite solutions was set to 50;
� A candidate solution s is inserted in the elite set E if s is better than the

best elite set solution or if it is better than the worst elite set solution but
not better than the best and its Hamming distance to at least half of the
solutions in the elite set is at least .75m. Solution s replaces the worst
solution in the elite set;

� In the post-optimization phase, path-relinking is performed between s′

and s′′ if their Hamming distance is at least .75m;
� At the expense of increased running times, the integration of path-relinking

in the hybrid GRASP that integrates Mousavi et al.’s evaluation function
into the local search improves slightly the algorithm in terms of solution
quality;

� Overall, the hybrid GRASP that integrates Mousavi et al.’s evaluation func-
tion into the local search with evolutionary path-relinking found better
quality solutions as compared to the other algorithms.

The same observations can be made looking at the results of the experiments
conducted on both the randomly generated and the real-world instances in the set
B. The results obtained on the random instances are summarized in Table 5, while
Table 6 summarizes the results obtained on the real instances.

In Figures 11, we plot the empirical distributions of the random variable time-to-
target-solution-value, involving algorithms grasp-h-ev, grasp-h-ev_b, and grasp-h-ev_

ev_pr. Although Tables 4–6 show that grasp-h-ev_ev_pr outperforms the other
variants when running for the same number of iterations, Figures 4(b) show that,
given any fixed amount of computing time, grasp-h-ev_b has a higher probability
than the other algorithms of finding a good quality target solution.

Using the tool proposed by Ribeiro et al. in [21] to compare algorithms based
on stochastic local search, we have obtained that:

• Figure 11(a): P (grasp-h-ev b ≤ grasp-h-ev) = 0.54;
• Figure 11(a): P (grasp-h-ev b ≤ grasp-h-ev ev pr) = 0.60;
• Figure 11(b): P (grasp-h-ev b ≤ grasp-h-ev) = 0.61;
• Figure 11(b): P (grasp-h-ev b ≤ grasp-h-ev ev pr) = 0.73.

GRASP WITH PATH-RELINKING FOR THE FFMSP 17

T
a
b
l
e
4
.

A
ve

ra
ge

ru
n

n
in

g
ti

m
es

(i
n

se
co

n
d

s)
an

d
av

er
ag

e
ob

je
ct

iv
e

fu
n

ct
io

n
va

lu
es

o
b

ta
in

ed
b
y

ea
ch

a
lg

o
ri

th
m

o
n

th
e

in
st

an
ce

s
in

th
e

se
t
A

.

g
r
a
s
p
-
h
-
e
v

g
r
a
s
p
-
h
-
e
v
f

g
r
a
s
p
-
h
-
e
v
b

g
r
a
s
p
-
h
-
e
v
m

g
r
a
s
p
-
h
-
e
v
e
v
p
r

g
r
a
s
p
-
h
-
e
v
g
r
a
p
r

In
st
a
n
c
e
si
z
e

T
im

e
(s
)

z
T
im

e
(s
)

z
T
im

e
(s
)

z
T
im

e
(s
)

z
T
im

e
(s
)

z
T
im

e
(s
)

z

n
=

1
0
0
,
m

=
3
0
0
,
t
=

2
2
5

0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
n

=
1
0
0
,
m

=
3
0
0
,
t
=

2
4
0

4
.1
8

7
2
.7
0

5
.0
0

7
2
.8
8

4
.9
9

7
3
.9
9

5
.0
1

7
3
.8
5

2
2
.7
0

7
4
.4

8
5
.0
4

7
2
.9
8

n
=

1
0
0
,
m

=
3
0
0
,
t
=

2
5
5

7
.7
1

2
7
.8
0

8
.4
6

2
7
.8
0

8
.4
8

2
7
.8
1

8
.4
8

2
7
.8
1

2
2
.7
5

2
7
.8

2
8
.4
6

2
7
.8
0

n
=

1
0
0
,
m

=
6
0
0
,
t
=

4
5
0

0
.0
6

1
0
0
.0

0
0
.0
7

1
0
0
.0

0
0
.0
7

1
0
0
.0

0
0
.0
7

1
0
0
.0

0
0
.0
7

1
0
0
.0

0
0
.0
7

1
0
0
.0

0
n

=
1
0
0
,
m

=
6
0
0
,
t
=

4
8
0

1
6
.7
8

7
5
.5
0

2
1
.0
7

7
5
.6
1

2
1
.4
4

7
6
.2
5

2
1
.3
9

7
6
.1
4

8
1
.6
2

7
6
.6

1
2
1
.1
4

7
5
.6
7

n
=

1
0
0
,
m

=
6
0
0
,
t
=

5
1
0

3
5
.1
0

2
7
.4

2
3
9
.1
6

2
7
.4

2
3
9
.2
3

2
7
.4

2
3
9
.7
4

2
7
.4

2
8
9
.1
2

2
7
.4

2
3
9
.6
3

2
7
.4

2

n
=

1
0
0
,
m

=
8
0
0
,
t
=

6
0
0

0
.0
9

1
0
0
.0

0
0
.1
1

1
0
0
.0

0
0
.1
0

1
0
0
.0

0
0
.1
1

1
0
0
.0

0
0
.1
0

1
0
0
.0

0
0
.1
1

1
0
0
.0

0
n

=
1
0
0
,
m

=
8
0
0
,
t
=

6
4
0

2
9
.9
7

7
7
.2
1

3
5
.5
2

7
7
.2
1

3
5
.6
3

7
7
.6
0

3
7
.4
7

7
7
.5
9

1
3
7
.5
7

7
8
.0

3
3
7
.0
6

7
7
.2
6

n
=

1
0
0
,
m

=
8
0
0
,
t
=

6
8
0

5
9
.7
9

2
6
.1

7
6
5
.4
0

2
6
.1

7
6
5
.4
9

2
6
.1

7
6
6
.0
6

2
6
.1

7
1
5
6
.0
5

2
6
.1

7
6
6
.0
3

2
6
.1

7

n
=

2
0
0
,
m

=
3
0
0
,
t
=

2
2
5

0
.1
3

2
0
0
.0

0
0
.1
4

2
0
0
.0

0
0
.1
4

2
0
0
.0

0
0
.1
4

2
0
0
.0

0
0
.1
4

2
0
0
.0

0
0
.1
4

2
0
0
.0

0
n

=
2
0
0
,
m

=
3
0
0
,
t
=

2
4
0

7
.9
5

8
7
.5
5

9
.6
9

8
8
.2
4

9
.6
8

9
0
.0
4

9
.7
1

8
9
.9
7

5
0
.8
8

9
1
.4

8
9
.7
7

8
8
.1
9

n
=

2
0
0
,
m

=
3
0
0
,
t
=

2
5
5

1
7
.2
4

3
0
.4
8

1
8
.8
3

3
0
.4
8

1
8
.8
3

3
0
.4
8

1
8
.9
5

3
0
.4
8

5
3
.0
2

3
0
.5

5
1
8
.9
2

3
0
.4
8

n
=

2
0
0
,
m

=
6
0
0
,
t
=

4
5
0

0
.3
8

2
0
0
.0

0
0
.4
2

2
0
0
.0

0
0
.4
1

2
0
0
.0

0
0
.4
2

2
0
0
.0

0
0
.4
2

2
0
0
.0

0
0
.4
2

2
0
0
.0

0
n

=
2
0
0
,
m

=
6
0
0
,
t
=

4
8
0

3
9
.0
0

8
1
.2
3

4
7
.5
9

8
1
.2
8

4
7
.4
6

8
1
.8
5

4
8
.0
0

8
1
.6
7

1
9
0
.7
7

8
2
.1

9
4
7
.9
2

8
1
.3
2

n
=

2
0
0
,
m

=
6
0
0
,
t
=

5
1
0

7
4
.5
9

2
6
.0

7
8
4
.4
3

2
6
.0

7
8
4
.4
5

2
6
.0

7
8
4
.5
6

2
6
.0

7
2
0
2
.9
7

2
6
.0

7
8
4
.4
5

2
6
.0

7

n
=

2
0
0
,
m

=
8
0
0
,
t
=

6
0
0

0
.4
0

2
0
0
.0

0
0
.4
4

2
0
0
.0

0
0
.4
4

2
0
0
.0

0
0
.4
4

2
0
0
.0

0
0
.4
4

2
0
0
.0

0
0
.4
4

2
0
0
.0

0
n

=
2
0
0
,
m

=
8
0
0
,
t
=

6
4
0

7
8
.3
1

8
5
.2
7

8
7
.9
4

8
5
.2
7

8
7
.9
4

8
5
.3
8

8
9
.7
5

8
5
.4
0

3
3
1
.6
8

8
5
.5

4
8
9
.6
8

8
5
.3
0

n
=

2
0
0
,
m

=
8
0
0
,
t
=

6
8
0

1
4
9
.6
5

2
4
.3

6
1
5
3
.2
2

2
4
.3

6
1
5
3
.4
0

2
4
.3

6
1
5
3
.9
6

2
4
.3

6
3
6
8
.7
5

2
4
.3

6
1
5
3
.8
0

2
4
.3

6

18 FERONE, FESTA, AND RESENDE

T
a
b
l
e
5
.

A
vera

g
e

ru
n

n
in

g
tim

es
(in

seco
n

d
s)

a
n

d
avera

g
e

o
b

jective
fu

n
ctio

n
va

lu
es

ob
tain

ed
b
y

each
algorith

m
on

th
e

in
sta

n
ces

in
th

e
set
B

.

g
r
a
s
p
-
h
-
e
v

g
r
a
s
p
-
h
-
e
v
f

g
r
a
s
p
-
h
-
e
v
b

g
r
a
s
p
-
h
-
e
v
m

g
r
a
s
p
-
h
-
e
v
e
v
p
r

g
r
a
s
p
-
h
-
e
v
g
r
a
p
r

In
sta

n
c
e
siz

e
T
im

e
(s)

z
T
im

e
(s)

z
T
im

e
(s)

z
T
im

e
(s)

z
T
im

e
(s)

z
T
im

e
(s)

z

n
=

1
0
0
,
m

=
1
0
0
,
t
=

7
5

0
.0
1

1
0
0
.0

0
0
.0
1

1
0
0
.0

0
0
.0
1

1
0
0
.0

0
0
.0
1

1
0
0
.0

0
0
.0
1

1
0
0
.0

0
0
.0
1

1
0
0
.0

0
n

=
1
0
0
,
m

=
1
0
0
,
t
=

8
5

0
.7
4

3
0
.2
0

0
.8
3

3
0
.2
0

0
.8
3

3
0
.4

0
0
.8
3

3
0
.4

0
3
.0
4

3
0
.4

0
0
.8
3

3
0
.2
0

n
=

1
0
0
,
m

=
1
0
0
,
t
=

9
5

0
.8
7

6
.8

0
0
.9
7

6
.8

0
0
.9
7

6
.8

0
0
.9
7

6
.8

0
3
.1
7

6
.8

0
0
.9
7

6
.8

0

n
=

1
0
0
,
m

=
2
0
0
,
t
=

1
5
0

0
.0
2

1
0
0
.0

0
0
.0
1

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
n

=
1
0
0
,
m

=
2
0
0
,
t
=

1
7
0

3
.0
6

2
8
.0
0

3
.3
8

2
8
.0
0

3
.4
2

2
8
.1
0

3
.3
9

2
8
.1
0

1
0
.2
8

2
8
.3

0
3
.3
9

2
8
.0
0

n
=

1
0
0
,
m

=
2
0
0
,
t
=

1
9
0

3
.1
4

5
.1

0
3
.4
1

5
.1

0
3
.4
5

5
.1

0
3
.4
2

5
.1

0
9
.0
1

5
.1

0
3
.4
2

5
.1

0

n
=

1
0
0
,
m

=
4
0
0
,
t
=

3
0
0

0
.0
3

1
0
0
.0

0
0
.0
4

1
0
0
.0

0
0
.0
4

1
0
0
.0

0
0
.0
3

1
0
0
.0

0
0
.0
3

1
0
0
.0

0
0
.0
4

1
0
0
.0

0
n

=
1
0
0
,
m

=
4
0
0
,
t
=

3
4
0

1
3
.6
2

2
7
.7

0
1
5
.3
0

2
7
.7

0
1
5
.4
1

2
7
.7

0
1
5
.2
9

2
7
.7

0
3
7
.3
2

2
7
.7

0
1
5
.3
2

2
7
.7

0
n

=
1
0
0
,
m

=
4
0
0
,
t
=

3
8
0

1
0
.4
6

4
.2

0
1
1
.7
1

4
.2

0
1
1
.7
6

4
.2

0
1
1
.7
1

4
.2

0
2
9
.8
1

4
.2

0
1
1
.7
5

4
.2

0

n
=

2
0
0
,
m

=
2
0
0
,
t
=

1
5
0

0
.6
1

1
9
9
.9
0

0
.7
7

1
9
9
.9
0

0
.6
2

2
0
0
.0

0
0
.7
7

1
9
9
.9
0

4
.2
1

2
0
0
.0

0
0
.7
4

2
0
0
.0

0
n

=
2
0
0
,
m

=
2
0
0
,
t
=

1
7
0

6
.0
1

3
0
.6
0

6
.7
7

3
0
.6
0

6
.7
5

3
0
.7
0

6
.8
0

3
0
.7
0

2
3
.1
8

3
0
.8

0
6
.7
8

3
0
.6
0

n
=

2
0
0
,
m

=
2
0
0
,
t
=

1
9
0

6
.2
8

5
.0

0
6
.8
5

5
.0

0
6
.8
3

5
.0

0
6
.8
6

5
.0

0
1
8
.9
1

5
.0

0
6
.8
7

5
.0

0

n
=

2
0
0
,
m

=
4
0
0
,
t
=

3
0
0

0
.2
1

2
0
0
.0

0
0
.2
2

2
0
0
.0

0
0
.2
2

2
0
0
.0

0
0
.2
2

2
0
0
.0

0
0
.2
2

2
0
0
.0

0
0
.2
2

2
0
0
.0

0
n

=
2
0
0
,
m

=
4
0
0
,
t
=

3
4
0

3
2
.2
6

2
9
.3

0
3
5
.5
8

2
9
.3

0
3
5
.4
9

2
9
.3

0
3
5
.6
2

2
9
.3

0
8
9
.4
4

2
9
.3

0
3
5
.6
1

2
9
.3

0
n

=
2
0
0
,
m

=
4
0
0
,
t
=

3
8
0

2
1
.7
6

3
.7

0
2
3
.6
9

3
.7

0
2
3
.6
3

3
.7

0
2
3
.7
1

3
.7

0
5
4
.3
9

3
.7

0
2
3
.7
3

3
.7

0

n
=

2
0
0
,
m

=
8
0
0
,
t
=

6
0
0

0
.3
6

2
0
0
.0

0
0
.4
1

2
0
0
.0

0
0
.4
1

2
0
0
.0

0
0
.4
1

2
0
0
.0

0
0
.4
4

2
0
0
.0

0
0
.4
1

2
0
0
.0

0
n

=
2
0
0
,
m

=
8
0
0
,
t
=

6
8
0

1
3
0
.2
4

2
4
.4

0
1
4
1
.7
0

2
4
.4

0
1
4
1
.6
7

2
4
.4

0
1
4
2
.5
4

2
4
.4

0
3
7
2
.9
9

2
4
.4

0
1
4
2
.0
9

2
4
.4

0
n

=
2
0
0
,
m

=
8
0
0
,
t
=

7
6
0

8
7
.1
5

3
.0

0
8
7
.0
5

3
.0

0
8
7
.2
0

3
.0

0
8
7
.2
6

3
.0

0
1
6
8
.0
7

3
.0

0
8
7
.2
4

3
.0

0

n
=

3
0
0
,
m

=
3
0
0
,
t
=

2
2
5

5
.5
2

2
9
5
.1
0

8
.7
1

2
9
6
.1
0

8
.6
2

2
9
7
.0
0

8
.9
5

2
9
6
.6
0

9
2
.6
0

2
9
7
.6

0
9
.0
5

2
9
5
.4
0

n
=

3
0
0
,
m

=
3
0
0
,
t
=

2
5
5

2
8
.9
8

3
2
.6

0
3
2
.1
7

3
2
.6

0
3
2
.0
2

3
2
.6

0
3
2
.3
7

3
2
.6

0
1
0
2
.2
8

3
2
.6

0
3
2
.3
6

3
2
.6

0
n

=
3
0
0
,
m

=
3
0
0
,
t
=

2
8
5

2
2
.4
7

3
.8

0
2
4
.3
3

3
.8

0
2
4
.2
6

3
.8

0
2
4
.4
7

3
.8

0
6
4
.6
9

3
.8

0
2
4
.4
5

3
.8

0

n
=

3
0
0
,
m

=
6
0
0
,
t
=

4
5
0

0
.6
5

3
0
0
.0

0
0
.6
9

3
0
0
.0

0
0
.6
9

3
0
0
.0

0
0
.6
9

3
0
0
.0

0
0
.6
9

3
0
0
.0

0
0
.6
9

3
0
0
.0

0
n

=
3
0
0
,
m

=
6
0
0
,
t
=

5
1
0

1
2
7
.3
6

2
4
.9

0
1
4
1
.0
3

2
4
.9

0
1
4
0
.6
8

2
4
.9

0
1
4
1
.7
4

2
4
.9

0
3
5
9
.2
0

2
4
.9

0
1
4
1
.5
4

2
4
.9

0
n

=
3
0
0
,
m

=
6
0
0
,
t
=

5
7
0

8
3
.4
3

2
.5

0
8
5
.5
9

2
.5

0
8
5
.3
7

2
.5

0
8
5
.8
3

2
.5

0
1
4
7
.4
0

2
.5

0
8
5
.8
4

2
.5

0

n
=

3
0
0
,
m

=
1
2
0
0
,
t
=

9
0
0

1
.9
6

3
0
0
.0

0
2
.1
4

3
0
0
.0

0
2
.1
4

3
0
0
.0

0
2
.1
4

3
0
0
.0

0
2
.1
4

3
0
0
.0

0
2
.1
4

3
0
0
.0

0
n

=
3
0
0
,
m

=
1
2
0
0
,
t
=

1
0
2
0

5
3
8
.6
6

2
1
.8

0
5
8
6
.7
8

2
1
.8

0
5
7
7
.1
6

2
1
.8

0
6
0
7
.0
3

2
1
.8

0
1
2
7
2
.2
4

2
1
.8

0
5
7
7
.2
9

2
1
.8

0
n

=
3
0
0
,
m

=
1
2
0
0
,
t
=

1
1
4
0

2
5
2
.4
1

1
.5

0
2
5
9
.3
6

1
.5

0
2
5
9
.9
3

1
.5

0
2
5
9
.8
2

1
.5

0
3
3
4
.7
3

1
.5

0
2
5
9
.8
7

1
.5

0

GRASP WITH PATH-RELINKING FOR THE FFMSP 19

T
a
b
l
e
6
.

A
ve

ra
ge

ru
n

n
in

g
ti

m
es

(i
n

se
co

n
d

s)
an

d
av

er
ag

e
ob

je
ct

iv
e

fu
n

ct
io

n
va

lu
es

o
b

ta
in

ed
b
y

ea
ch

a
lg

o
ri

th
m

o
n

th
e

re
a
l-

w
o
rl

d
in

st
an

ce
s

in
th

e
se

t
B

.

g
r
a
s
p
-
h
-
e
v

g
r
a
s
p
-
h
-
e
v
f

g
r
a
s
p
-
h
-
e
v
b

g
r
a
s
p
-
h
-
e
v
m

g
r
a
s
p
-
h
-
e
v
e
v
p
r

g
r
a
s
p
-
h
-
e
v
g
r
a
p
r

In
st
a
n
c
e
si
z
e

T
im

e
(s
)

z
T
im

e
(s
)

z
T
im

e
(s
)

z
T
im

e
(s
)

z
T
im

e
(s
)

z
T
im

e
(s
)

z

n
=

1
0
0
,
m

=
1
0
0
,
t
=

7
5

0
.0
0

1
0
0
.0

0
0
.0
0

1
0
0
.0

0
0
.0
0

1
0
0
.0

0
0
.0
0

1
0
0
.0

0
0
.0
0

1
0
0
.0

0
0
.0
0

1
0
0
.0

0
n

=
1
0
0
,
m

=
1
0
0
,
t
=

8
5

0
.6
6

6
1
.0
0

0
.7
2

6
1
.3
3

0
.7
1

6
1
.3
3

0
.7
2

6
1
.3
3

2
.0
8

6
2
.3

3
0
.7
2

6
1
.0
0

n
=

1
0
0
,
m

=
1
0
0
,
t
=

9
5

0
.8
1

9
.6

7
0
.8
9

9
.6

7
0
.8
8

9
.6

7
0
.8
9

9
.6

7
2
.4
9

9
.6

7
0
.8
8

9
.6

7

n
=

1
0
0
,
m

=
2
0
0
,
t
=

1
5
0

0
.0
0

1
0
0
.0

0
0
.0
0

1
0
0
.0

0
0
.0
0

1
0
0
.0

0
0
.0
0

1
0
0
.0

0
0
.0
0

1
0
0
.0

0
0
.0
0

1
0
0
.0

0
n

=
1
0
0
,
m

=
2
0
0
,
t
=

1
7
0

2
.6
3

5
2
.6
7

2
.8
7

5
2
.6
7

2
.8
8

5
3
.6
7

2
.8
8

5
3
.3
3

7
.6
4

5
4
.6

7
2
.9
0

5
2
.6
7

n
=

1
0
0
,
m

=
2
0
0
,
t
=

1
9
0

3
.2
9

7
.6

7
3
.4
9

7
.6

7
3
.5
0

7
.6

7
3
.4
9

7
.6

7
6
.8
9

7
.6

7
3
.5
0

7
.6

7

n
=

1
0
0
,
m

=
4
0
0
,
t
=

3
0
0

0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
0
.0
2

1
0
0
.0

0
n

=
1
0
0
,
m

=
4
0
0
,
t
=

3
4
0

9
.6
6

5
7
.3

3
1
0
.9
3

5
7
.3

3
1
1
.1
0

5
7
.3

3
1
0
.9
4

5
7
.3

3
2
5
.0
5

5
7
.3

3
1
0
.9
0

5
7
.3

3
n

=
1
0
0
,
m

=
4
0
0
,
t
=

3
8
0

1
1
.1
6

7
.3

3
1
2
.1
8

7
.3

3
1
2
.1
7

7
.3

3
1
2
.1
9

7
.3

3
2
2
.3
3

7
.3

3
1
2
.2
0

7
.3

3

n
=

2
0
0
,
m

=
2
0
0
,
t
=

1
5
0

0
.0
1

2
0
0
.0

0
0
.0
2

2
0
0
.0

0
0
.0
2

2
0
0
.0

0
0
.0
1

2
0
0
.0

0
0
.0
1

2
0
0
.0

0
0
.0
2

2
0
0
.0

0
n

=
2
0
0
,
m

=
2
0
0
,
t
=

1
7
0

5
.0
0

8
6
.0
0

5
.4
7

8
6
.6
7

5
.4
6

8
9
.3

3
5
.4
7

8
8
.6
7

1
5
.2
4

8
9
.0
0

5
.4
9

8
6
.3
3

n
=

2
0
0
,
m

=
2
0
0
,
t
=

1
9
0

6
.5
6

9
.6

7
6
.9
4

9
.6

7
6
.9
4

9
.6

7
6
.9
8

9
.6

7
1
4
.8
5

9
.6

7
6
.9
4

9
.6

7

n
=

2
0
0
,
m

=
4
0
0
,
t
=

3
0
0

0
.0
3

2
0
0
.0

0
0
.0
4

2
0
0
.0

0
0
.0
3

2
0
0
.0

0
0
.0
4

2
0
0
.0

0
0
.0
3

2
0
0
.0

0
0
.0
4

2
0
0
.0

0
n

=
2
0
0
,
m

=
4
0
0
,
t
=

3
4
0

2
2
.6
5

7
3
.6
7

2
4
.8
0

7
4
.0
0

2
4
.7
8

7
3
.6
7

2
4
.9
4

7
3
.6
7

5
5
.1
5

7
4
.3

3
2
8
.8
9

7
3
.6
7

n
=

2
0
0
,
m

=
4
0
0
,
t
=

3
8
0

2
3
.4
4

7
.0

0
2
9
.1
1

7
.0

0
2
4
.8
0

7
.0

0
2
9
.1
4

7
.0

0
4
0
.6
0

7
.0

0
2
9
.1
8

7
.0

0

n
=

2
0
0
,
m

=
8
0
0
,
t
=

6
0
0

0
.0
9

2
0
0
.0

0
0
.1
1

2
0
0
.0

0
0
.1
1

2
0
0
.0

0
0
.1
1

2
0
0
.0

0
0
.1
0

2
0
0
.0

0
0
.1
2

2
0
0
.0

0
n

=
2
0
0
,
m

=
8
0
0
,
t
=

6
8
0

9
2
.9
0

7
9
.6
7

1
0
0
.7
7

7
9
.6
7

9
8
.5
9

7
9
.6
7

1
1
5
.6
2

7
9
.6
7

1
8
6
.3
1

8
0
.0

0
9
9
.9
1

7
9
.6
7

n
=

2
0
0
,
m

=
8
0
0
,
t
=

7
6
0

1
0
1
.7
4

4
.3

3
1
0
0
.5
1

4
.3

3
1
0
0
.3
9

4
.3

3
1
0
0
.4
9

4
.3

3
1
3
3
.6
0

4
.3

3
1
0
0
.5
1

4
.3

3

n
=

3
0
0
,
m

=
3
0
0
,
t
=

2
2
5

0
.0
4

3
0
0
.0

0
0
.0
5

3
0
0
.0

0
0
.0
4

3
0
0
.0

0
0
.0
4

3
0
0
.0

0
0
.0
4

3
0
0
.0

0
0
.0
4

3
0
0
.0

0
n

=
3
0
0
,
m

=
3
0
0
,
t
=

2
5
5

2
0
.7
8

1
0
1
.0
0

2
2
.5
8

1
0
1
.0
0

2
2
.5
6

1
0
3
.3

3
2
2
.6
9

1
0
3
.0
0

6
1
.6
3

1
0
3
.0
0

2
2
.7
6

1
0
1
.3
3

n
=

3
0
0
,
m

=
3
0
0
,
t
=

2
8
5

2
2
.9
6

6
.6

7
2
4
.0
1

6
.6

7
2
4
.0
0

6
.6

7
2
4
.0
7

6
.6

7
4
1
.3
1

6
.6

7
2
4
.0
6

6
.6

7

n
=

3
0
0
,
m

=
6
0
0
,
t
=

4
5
0

0
.1
2

3
0
0
.0

0
0
.1
3

3
0
0
.0

0
0
.1
3

3
0
0
.0

0
0
.1
3

3
0
0
.0

0
0
.1
3

3
0
0
.0

0
0
.1
4

3
0
0
.0

0
n

=
3
0
0
,
m

=
6
0
0
,
t
=

5
1
0

1
2
1
.8
7

1
2
5
.6
7

1
3
2
.8
4

1
2
5
.6
7

1
3
2
.3
8

1
2
6
.3
3

1
3
3
.2
7

1
2
6
.3
3

2
5
8
.6
1

1
2
6
.6

7
1
3
3
.1
2

1
2
5
.6
7

n
=

3
0
0
,
m

=
6
0
0
,
t
=

5
7
0

1
2
8
.3
8

4
.0

0
1
2
8
.0
1

4
.0

0
1
2
7
.5
6

4
.0

0
1
2
8
.2
0

4
.0

0
1
4
8
.9
6

4
.0

0
1
2
8
.0
7

4
.0

0

n
=

3
0
0
,
m

=
1
2
0
0
,
t
=

9
0
0

0
.2
5

3
0
0
.0

0
0
.2
6

3
0
0
.0

0
0
.2
7

3
0
0
.0

0
0
.2
7

3
0
0
.0

0
0
.2
6

3
0
0
.0

0
0
.2
6

3
0
0
.0

0
n

=
3
0
0
,
m

=
1
2
0
0
,
t
=

1
0
2
0

3
2
8
.6
2

9
8
.6
7

3
4
3
.1
1

9
8
.6
7

3
4
3
.1
6

9
8
.6
7

3
4
5
.1
1

9
8
.6
7

5
3
1
.8
2

9
9
.0

0
3
4
3
.7
3

9
8
.6
7

n
=

3
0
0
,
m

=
1
2
0
0
,
t
=

1
1
4
0

3
6
5
.4
6

1
.6

7
3
6
9
.5
1

1
.6

7
3
6
9
.3
2

1
.6

7
3
6
9
.7
9

1
.6

7
3
9
2
.6
1

1
.6

7
3
6
9
.2
2

1
.6

7

20 FERONE, FESTA, AND RESENDE

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time

grasp-h-ev
grasp-h-ev_b

grasp-h-ev_ev_pr

(a) Random instances with n = 100, m = 300, t = 240, and target value ẑ = 0.73 × n.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100 120 140 160 180

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

time

grasp-h-ev
grasp-h-ev_b

grasp-h-ev_ev_pr

(b) Random instance with n = 200, m = 300, t = 240, and target value ẑ = 0.445 × n.

Figure 11. Time to target distributions (in seconds) comparing
grasp-h-ev, grasp-h-ev b and grasp-h-ev ev pr.

6. Concluding remarks and future work

Given the computational intractability of the Far From Most String Prob-
lem (FFMSP), we designed several hybrid GRASP based heuristics that guarantee
good quality solutions for this problem within realistic and acceptable running

GRASP WITH PATH-RELINKING FOR THE FFMSP 21

times. The algorithms combine a state-of-the-art GRASP heuristic for the FFMSP
proposed by Ferone et al. [6] with the evaluation function proposed by Mousavi
et al. [21] in the GRASP local search. The resulting hybrid algorithm was then
hybridized with path-relinking procedures implemented with different strategies.

The algorithms were tested on several random and real-world instances and the
results show that the hybrid GRASP with the evaluation function and evolutionary
path-relinking finds better quality solutions compared with the other algorithms,
but at the expense of longer running times. In the following, we summarize our
observations about our computational experience.

• The integration into the GRASP local search of Mousavi et al.’s hybrid
heuristic evaluation function is beneficial, since it improves also the GRASP
proposed by Ferone et al. [6], besides the GRASP previously proposed by
Festa [7], as shown by Mousavi et al. [21].
• The integration of path-relinking as an intensification and post-optimization

procedure in the pure heuristic was beneficial in terms of mean solution
quality, but at the expense of increased running times.
• Overall, the objective function values found by the hybrid GRASP that

integrates Mousavi et al.’s evaluation function into the local search with
evolutionary path-relinking proved to be the best.
• The plots in Figure 11 show the empirical distributions of the random vari-

able time-to-target-solution-value considering two random instances. Our
conclusion is that, given any fixed amount of computing time, the hybrid
GRASP algorithm that integrates Mousavi et al.’s evaluation function into
the local search with backward path-relinking has a higher probability than
the other algorithms of finding a good quality target solution. This con-
sideration emerges also by computing the probabilities with Ribeiro et al.’s
tool.

References

[1] R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution time in

grasp: an experimental investigation. Journal of Heuristics, 8:343–373, 2002.
[2] S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations for the

prize-collecting Steiner tree problem in graphs. Networks, 38:50–58, 2001.
[3] H. Faria Jr., S. Binato, M.G.C. Resende, and D.J. Falc ao. Transmission network design by a

greedy randomized adaptive path relinking approach. IEEE Transactions on Power Systems,

20(1):43–49, 2005.

[4] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set
covering problem. Oper. Res. Lett., 8:67–71, 1989.

[5] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. J. Global
Optim., 6:109–133, 1995.

[6] D. Ferone, P. Festa, and M.G.C. Resende. Hybrid metaheuristics for the far from most string

problem. In Proceedings of 8th International Workshop on Hybrid Metaheuristics, volume
7919 of Lecture Notes in Computer Science, pages 174–188, 2013.

[7] P. Festa. On some optimization problems in mulecolar biology. Mathematical Bioscience,

207(2):219–234, 2007.
[8] P. Festa, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. GRASP with path-relinking for

the weighted MAXSAT problem. ACM J. of Experimental Algorithmics, 11:1–16, 2006.

[9] P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Randomized heuristics for the
MAX-CUT problem. Optimization Methods and Software, 7:1033–1058, 2002.

[10] P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C.C. Ribeiro and

P. Hansen, editors, Essays and Surveys on Metaheuristics, pages 325–367. Kluwer Academic
Publishers, 2002.

22 FERONE, FESTA, AND RESENDE

[11] P. Festa and M.G.C. Resende. An annotated bibliography of GRASP – Part I: Algorithms.

International Transactions in Operational Research, 16(1):1–24, 2009.

[12] P. Festa and M.G.C. Resende. An annotated bibliography of GRASP – Part II: Applications.
International Transactions in Operational Research, 16(2):131–172, 2009.

[13] M. Frances and A. Litman. On covering problems of codes. Theory of Computing Systems,

30(2):113–119, 1997.
[14] F. Glover. Tabu search and adaptive memory programing – Advances, applications and chal-

lenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, Interfaces in Computer

Science and Operations Research, pages 1–75. Kluwer, 1996.
[15] F. Glover. Multi-start and strategic oscillation methods – Principles to exploit adaptive mem-

ory. In M. Laguna and J.L. Gonzáles-Velarde, editors, Computing Tools for Modeling, Opti-

mization and Simulation: Interfaces in Computer Science and Operations Research, pages
1–24. Kluwer, 2000.

[16] F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, 1997.
[17] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of scatter search and path relinking.

Control and Cybernetics, 39:653–684, 2000.

[18] M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line crossing mini-
mization. INFORMS J. on Computing, 11:44–52, 1999.

[19] J. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selection problems.

Information and Computation, 185(1):41–55, 2003.
[20] C.N. Meneses, C.A.S. Oliveira, and P.M. Pardalos. Optimization techniques for string se-

lection and comparison problems in genomics. IEEE Engineering in Medicine and Biology

Magazine, 24(3):81–87, 2005.
[21] S.R. Mousavi, M. Babaie, and M. Montazerian. An improved heuristic for the far from most

strings problem. Journal of Heuristics, 18:239–262, 2012.

[22] M.G.C. Resende, R. Mart́ı, M. Gallego, and A. Duarte. GRASP and path relinking for the
max-min diversity problem. Computers and Operations Research, 37:498–508, 2010.

[23] M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem. Journal of
Heuristics, 10:59–88, 2004.

[24] C.C. Ribeiro and M.G.C. Resende. Path-relinking intensification methods for stochastic local

search algorithms. Journal of Heuristics, 18:193–214, 2012.
[25] C.C. Ribeiro and I. Rosseti. Efficient parallel cooperative implementations of GRASP heuris-

tics. Parallel Computing, 33:21–35, 2007.

[26] C.C. Ribeiro, I. Rosseti, and R. Vallejos. Exploiting run time distributions to compare sequen-
tial and parallel stochastic local search algorithms. Journal of Global Optimization, 54:405–

429, 2012.

[27] J.S. Sim and K. Park. The consensus string problem for a metric is NP -complete. In Proceed-
ings of the Annual Australiasian Workshop on Combinatorial Algorithms (AWOCA), pages

107–113, 1999.

(D. Ferone) Department of Mathematics and Applications “R. Caccioppoli”, Univer-
sity of Napoli FEDERICO II, Compl. MSA, Via Cintia, 80126 Napoli, Italy.

E-mail address, D. Ferone: danieleferone@gmail.com

(P. Festa) Department of Mathematics and Applications “R. Caccioppoli”, University
of Napoli FEDERICO II, Compl. MSA, Via Cintia, 80126 Napoli, Italy.

E-mail address, P. Festa: paola.festa@unina.it

(M.G.C. Resende) Algorithms and Optimization Research Department, AT&T Labs

Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.
E-mail address, M.G.C. Resende: mgcr@research.att.com

