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Abstract. This paper addresses the independent multi-plant, multi-period,
and multi-item capacitated lot sizing problem where transfers between the
plants are allowed. This is an NP-hard combinatorial optimization problem
and few solution methods have been proposed to solve it. We develop a GRASP
(Greedy Randomized Adaptive Search Procedure) heuristic as well as a path-
relinking intensification procedure to find cost-effective solutions for this prob-
lem. In addition, the proposed heuristics are used to solve some instances
of the capacitated lot sizing problem with parallel machines. The results of
the computational tests show that the proposed heuristics outperform other
heuristics previously described in the literature. The results are confirmed by
statistical tests.

1. Introduction

The capacitated lot sizing problem (CLSP) is a combinatorial optimization prob-
lem whose objective is to find a production plan that minimizes production, setup,
and inventory costs, and meets without delay the demands of items in the periods
in the planning horizon. According to Karimi et al. (2003), the CLSP is one of
the most important and difficult problems in tactical production planning. For the
case in which setup times are considered, the problem to find a feasible solution is
NP-complete (Maes et al., 1991). This problem has been studied widely (Trigeiro
et al., 1989; Lozano et al., 1991; Diaby et al., 1992a;b; Armentano et al., 1999).
Moreover, numerous surveys have been published (Bahl et al., 1987; Kuik et al.,
1994; Wolsey, 1995; Karimi et al., 2003).

According to Bahl et al. (1987), one can classify lot sizing problems as single-
stage (with one planning stage) or multi-stage (with several planning stages). A
system has a single stage when the items to be produced are independent, i.e., one
item does not depend on the other to be produced. On the other hand, a multi-
stage system is characterized by the fact that production of each item generates
dependent demand for its components, whose production or purchase should also
be planned.

The CLSP with parallel machines consists of a limited number of machines (or
production lines) where any machine can produce the same items in an environ-
ment composed of a single stage and one plant. The machines can have different
production and setup costs, and can as well be capacitated. This problem has been
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studied by Lasdon and Terjung (1971), Carreno (1990), and Toledo and Armentano
(2006).

In this paper, we address the single-stage, multi-plant, multi-item, and multi-
period capacitated lot sizing problem (MPCLSP). The problem considers transfer
costs among plants and individual per-period plant demands. These transfer costs
are incurred because we allow a plant to produce items for another plant. Likewise,
we allow storage of items in plants distinct from the one in which the item is
produced and/or is demanded. Since customers only pay for transportation from
the nearest plant to the delivery location, the eventual additional transfer costs
must be accounted for. Since the problem to find a feasible solution to the single
plant capacitated lot sizing problem with setup time is NP-complete, so is its multi-
plant variant. As we show later, exact methods encounter difficulties to solve
instances of moderate size. Therefore, the use of heuristics as solution methods
for this problem is justified. Some applications of these problems can be found in
diversified manufacturing sectors, for example, in the mattress, stainless steel, and
beverage industries, where plants are spread out geographically.

Multi-plant lot sizing problems may be classified as one of two types. The de-
pendent type are those whose plants need each other to produce items, i.e., the
production environment has more than one stage and some items need other items
from other plants to be produced (Bhatnagar et al., 1993; Wu and Golbasi, 2004;
Kaminsky and Simchi-Levi, 2003). The independent type are those whose produc-
tion centers are independent, i.e., the plants individually supply the items demanded
(Sambasivan and Schimidt, 2002; Sambasivan and Yahya, 2005). In both cases, the
transfer of lots within the plants is accounted for and the optimal solution to the
problem involves production planning integrating the whole set of plants.

Few papers have previously addressed the MPCLSP and few solution methods
have been proposed. Sambasivan and Schimidt (2002) described a heuristic based
on transfers of production lots. Although the authors described most of the pa-
rameters used in their computational tests, they are not clear in the definition of
loose and tight capacities, which makes their experiments difficult to reproduce.
Sambasivan and Yahya (2005) proposed a method based on Lagrangian relaxation.
In computational tests, the authors observe that the mean gap of their solution
with respect to the optimal is inversely proportional to the number of items. The
configuration of instances in Sambasivan and Yahya (2005) was clear and we are
able to reproduce their experiments on the same set of instances.

This paper proposes a greedy randomized adaptive search procedure (GRASP)
heuristic embedded with a path-relinking strategy to find cost-effective solutions
to the MPCLSP. The procedure for generating the initial solutions for the GRASP
uses a greedy randomized version of the exact algorithm of Sung (1986) for the un-
capacitated lot sizing problem with multiple machines. These initial solutions are
usually infeasible, forcing us to apply transfer of lots between periods and plants to
restore feasibility before applying the local search procedure. To analyze the per-
formance of the heuristic, we designed three experiments. In the first experiment,
we tested the heuristics using the instances proposed in Sambasivan and Yahya
(2005). In the second experiment, our heuristics are tested using randomly gener-
ated instances according to Toledo and Armentano (2006). In both experiments our
results outperformed those of the literature. Finally, in the third experiment, we
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used the methodology proposed in Aiex et al. (2002; 2007) to assess experimentally
the running time distributions of our randomized algorithms.

The paper is organized as follows. We present the mathematical model in Sec-
tion 2 and provide the algorithmic details in Section 3. Section 4 deals with the
computational experiments. Finally, in Section 5 we make some concluding re-
marks.

2. Mathematical formulation

We review a mathematical model for the MPCLSP, based on Sambasivan and
Schimidt (2002). In this model, the terms ∀i, ∀j, and ∀t, indicate any element
belonging to, respectively, sets NI, MI, and TI (which we describe in Table 1).
This mixed-integer programming model is:

min
∑

i∈NI

∑
j∈MI

∑
t∈TI

(cijtxijt + sijtyijt + hijtIijt +
∑

k∈MI,k 6=j

rjktwijkt)

subject to:

Iij,t−1 + xijt −
∑

k∈MI,k 6=j

wijkt +
∑

l∈MI,l 6=j

wiljt − Iijt = dijt ∀i,∀j, ∀t(1)

xijt ≤ (
∑

j∈MI

T∑
l=t

dijl)yijt ∀i,∀j, ∀t(2)

∑
i∈NI

(bijtxijt + fijtyijt) ≤ Cjt ∀j, ∀t(3)

Iij0 = 0 ∀i,∀j(4)
xijt, Iijt ≥ 0 ∀i,∀j, ∀t(5)

wijkt ≥ 0 ∀i,∀j, ∀k,∀t(6)
yijt ∈ {0, 1} ∀i,∀j, ∀t,(7)

where the variables, parameters, and sets are defined in Table 1.
The minimum transfer cost rjkt represents the minimum cost to transfer any item

from plant j to plant k in period t and satisfies the triangle inequality rijt + rlkt ≥
rjkt. The objective function encodes the goal of the optimization, which is the
minimization of the total cost, i.e., production, setup, inventory, and transfer costs.

Constraints (1) refer to the inventory balance of the quantity of item i during
period t at plant j. These constraints ensure that the demand of item i in period t
at plant j is met by the production of this item in period t at plant j, added to the
amount of the item stored in the previous period at that plant and the quantity
to be transferred from other plants to plant j, subtracted by the quantity of item
i in period t that is transferred to the other plants and the quantity of item i that
is stored in period t at plant j. Constraints (2) ensure that if item i is produced
at plant j in period t, i.e., if xijt > 0, then the binary variable yijt = 1, which
implies that the setup of the plant is to be considered. Constraints (3) ensure that
the available capacity is not violated, while constraints (4) impose empty initial
inventories. Finally, constraints (5–7) impose the non-negativity of variables x, I,
and w, and ensure that y variables are binary.
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Table 1. Definition of variables, parameters, and sets for the
mixed-integer programming model.

T : number of periods in the planning horizon;
N : number of items in the planning horizon;
M : number of plants in the planning horizon;
TI: set composed by the elements 1, . . . , T ;
NI: set composed by the elements 1, . . . , N ;
MI: set composed by the elements 1, . . . ,M ;
dijt: demand of item i at plant j in period t;
Cjt: available capacity of production at plant j in period t;
bijt: time to produce a unit of item i at plant j in period t;
fijt: setup time to produce the item i at plant j in period t;
cijt: unit production cost of item i at plant j in period t;
sijt: setup cost of item i at plant j in period t;
hijt: unit inventory cost of item i at plant j in period t;
rjkt: unity minimum transfer cost of an item from plant j to k in period t;
xijt: quantity of item i produced at plant j in period t (variable);
Iijt: quantity of item i storage at plant j at the end of period t (variable);

wijkt: quantity of item i transferred from plant j to plant k during
period t (variable);

yijt: is a binary variable which assumes value 1 if the item i is produced
at plant j in period t, and 0, otherwise (variable).

The differences between the mathematical models of the MPCLSP and the CLSP
with parallel machines are the non-existence of transfer costs in the objective func-
tion and the presence of a single warehouse in the CLSP model, which implies the
unique inventory cost and production center.

3. Solution method

In order to find approximate solutions for the MPCLSP, we proposed two heuris-
tics, a pure GRASP and a GRASP with path-relinking. GRASP was first proposed
by Feo and Resende (1989; 1995). See also Resende and Ribeiro (2002) and Resende
(2008) for recent surveys and Festa and Resende (2002; 2008a;b) for annotated bib-
liographies of successful applications of GRASP.

Metaheuristics are high-level procedures specialized to solve combinatorial opti-
mization problems. They guide other simpler heuristics to search for good-quality
feasible solutions. GRASP is a metaheuristic based on a multi-start strategy, i.e.,
many initial solutions are generated through repeated applications of a semi-greedy
process. Local search is applied at each multi-start iteration starting from the semi-
greedy solution in an attempt to improve the quality of the constructed solution.
The semi-greedy process builds a solution, one element at a time. At each step
of this construction all candidate elements, i.e., elements whose inclusion in the
solution does not lead to infeasibility, are analyzed with respect to their contribu-
tion to the cost of the solution. A restricted candidate list (RCL) with some of
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the best-valued candidates is set up. The construction procedure selects a candi-
date element from the RCL at random and adds this element to the solution under
construction. This procedure is repeated there are no more candidate elements to
choose from. At the end of the construction, if a feasible solution in not on hand,
a repair procedure is applied to achieve feasibility.

In addition to the construction and local search components found in GRASP,
a path-relinking intensification strategy is also incorporated in the GRASP with
path-relinking heuristic. Path-relinking was originally proposed by Glover (1998)
in the context of tabu search and scatter search. Its hybridization with GRASP was
first proposed by Laguna and Mart́ı (1999). See Resende and Ribeiro (2005) for a
recent survey on GRASP with path-relinking. The hybridization of path-relinking
with GRASP consists in the collection of a set of high-quality solutions, called
elite solutions, found during the search. New solutions are developed by exploring
trajectories that connect elite solutions and those produced by GRASP.

The GRASP with path-relinking proposed in this paper consists of multiple
iterations of the following steps:

(1) Construct an initial solution with a semi-greedy procedure;
(2) If possible, make the solution feasible;
(3) Apply local search starting from the feasible solution;
(4) Apply the path-relinking strategy between the locally optimal solution

found in the local search and some elite solution previously found.
The pure GRASP heuristic does not have the path-relinking phase.

In what follows, we describe both heuristics, by considering four phases. The
first three phases make up the GRASP, while the last phase is the path-relinking
intensification. These four phases are described in detail next.

3.1. Initial solution. Since finding a feasible solution for the multi-plant single
stage capacitated lot sizing problem is difficult, we propose to obtain an initial
solution for the problem by relaxing the capacity constraints (3). Furthermore, if
we ignore the transfer costs, the problem can be decomposed into N uncapacitated
lot sizing problems on a parallel machine, where we associate each of the N items
with each problem. This problem can be solved by the optimal algorithm of Sung
(1986) which we describe below.

For each item i in the planning horizon, let Γijkt be the production cost of item
i at plant j in period k + 1, to meet the demand d′ikt of item i from period k + 1 to
period t for all plants (1, . . . ,M), i.e.,

d′ikt =
t∑

r=k+1

M∑
j=1

dijr,

with k < t, for t = 1, . . . , T . Hence,

Γijkt =
{

sij,k+1 + cij,k+1d
′
ikt +

∑t−1
r=k+1 hijrd

′
irt if d′ikt > 0,

0 if d′ikt = 0.

Let ζit be the minimum production cost from period 1 to period t of item i, with
an empty initial inventory. Therefore, ζit may be determined recursively by

(8) ζit =


min

0≤k<t
1≤j≤M

{ζik + Γijkt} for t = 1, . . . , T,

0 for t = 0.
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The dynamic programming forward recursion (8) is equivalent to the problem of
finding a minimum cost path in an appropriately defined network. This problem
can be solved by an efficient algorithm based on Evans (1985) and proposed by
Armentano and Toledo (1997) with complexity O(mT 2).

We produce the initial solution of the heuristic in the construction phase using (8)
in a greedy strategy. This construction, for each item i = 1, . . . , N, and specific
period t = 1, . . . , T , is done in the following four steps:

(1) Let S be the values g(j, k) = ζik + Γijkt, with 1 ≤ k ≤ t and 1 ≤ j ≤ M .
(2) Define gmin = min{g(j, k) | 1 ≤ j ≤ M, 1 ≤ k ≤ t} and gmax =

max{g(j, k) | 1 ≤ j ≤ M, 1 ≤ k ≤ t}.
(3) Let RCL be a restricted candidate list composed of the elements g(j, k) ∈

S such that gmin ≤ g(j, k) ≤ gmin + α(gmax − gmin) and α is chosen
randomly in the interval [0, 1].

(4) Select an element from the RCL at random and let ζit be equal to the value
of this element.

This routine should be carried out for all items of the problem to obtain the
initial solution which is, in most cases, infeasible. Feasibility must be restored
before the local search procedure can be applied.

3.2. Feasibility phase. The feasibility procedure consists in transferring the pro-
duction of items between periods and plants, inspired by the idea of Gopalakrishnan
et al. (2001). The value of an infeasible solution is defined to be the sum of the ob-
jective function value of the solution and the total overtime capacity multiplied by
an integer p. The savings is a consequence of the transfer of a production amount
of item i from period t at plant j to period td at plant jd. Let Solution(i, t, j, td, jd)
be the solution resulting from the above described transfer and Actual solution be
the solution before this transfer. The savings resulting from such transfer is given
by:

Savings = Actual solution− Solution(i, t, j, td, jd).

The feasibility phase consists in the following six step procedure:

(1) Search for the period t and the plant j with the largest overtime capacity,
and define this period-plant pair {t, j} as the transfer origination;

(2) If there are no period and plant with overtime capacity use, then a feasible
solution is found. Return this feasible solution and Stop.

(3) Determine, among all items, the item i and the period-plant pair {td, jd}
which will be the transfer destination. To do this, consider all possi-
ble lot sizes to be transferred from the following: the maximum amount
from the transfer origination (xijt); the amount that cancels overtime from
the transfer origination (overtime(t, j)/bijt); or maximum quantity that
the time destination allows without overtime ((free capacity(td, jd) − (1 −
yijdtd

)fijdtd
)/bijt). Among those, select the one that results in the best

savings considering the origination transfer as defined in Step 1;
(4) If the best savings is positive, execute the transfer and go back to Step 1;
(5) If the best savings is not positive, then do not further consider this period

and plant in the evaluation until a positive savings has been found. Search
for another period t and plant j with the largest overtime capacity. Define
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this period-plant pair {t, j} as the transfer origination and go back to Step
3;

(6) If there is a period-plant pair with overtime capacity use, then the procedure
cannot find a feasible solution, so Stop.

In addition to the stopping criteria described above, we also limit the number of
iterations which is defined according to the dimension of the instance (see Section 4).

3.3. Local search procedure. This local search procedure is similar to the fea-
sibility phase. It differs in that we assume that the starting solution is feasible and
hence the periods and plants do not violate the capacity constraints. The local
search can be summarized by the following three steps:

(1) Find the item i which is produced in the period-plaint pair {t, j} that could
be transferred to a period-plant pair {td, jd} without causing overtime and
such that the savings by this transfer is maximum.

(2) If the best savings is positive, execute the transfer and go to Step 1;
(3) If the best savings is zero, then return this solution.

3.4. Path-relinking phase. Path-relinking is a strategy which integrates intensi-
fication and diversification in search. It explores trajectories in the solution space
connecting good-quality solutions (Glover, 1998). The solutions found in this path
can be better than those being connected.

In this paper, we use a path-relinking strategy that is hybridized with the
GRASP heuristic. This procedure maintains a fixed number of elite solutions found
during the search which are combined with the GRASP solutions to produce per-
haps better solutions. The combinations have a hierarchical choice, i.e., the new
solutions are always built combining the configuration of each item of the lower
value solution in the higher value solution. These combinations are summarized in
five steps as follows:

(1) Build a new solution from the higher valued solution using the item configu-
ration from the lower value solution which results in the best value solution
while maintaining fixed the other item configurations from the higher value
solution;

(2) Keep the resulting new solution;
(3) If the new solution is infeasible, then apply the feasibility phase of Sec-

tion 3.2, and on the resulting feasible solution apply the local search of
Section 3.3;

(4) If the resulting solution is better than the best solution obtained, update
the incumbent;

(5) Continue to obtain the next item configuration from the lower value solution
which results in the best value solution, substitute such a configuration in
the solution kept in Step 2 and go back to Step 3;

The number of iterations of the above procedure is the number of items in the
planning horizon.

4. Computational tests

We implemented the heuristics in C and carried out the computational exper-
iments on an AMD Athlon 64 microcomputer, with 1GB of RAM and under the
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Windows XP Operating System. The codes were compiled using the Borland C++
v. 6 compiler.

Computational tests involve three experiments. In the first, the heuristics are
tested using instances of Sambasivan and Yahya (2005). We compared the solutions
obtained with the results reported by Sambasivan and Yahya (2005). In the second
experiment, the heuristics are tested using instances randomly generated according
to Toledo and Armentano (2006). The quality of each solution is evaluated against
the lower bound generated by a linear programming relaxation, since the solver
cannot find the optimal solution for these instances in an acceptable computational
time. In both experiments, for each instance both heuristics are applied ten times
to check for robustness relative to the construction phase. The third experiment
evaluates the probability distribution of the running time of the heuristics. Using
time-to-target plots, their differences with respect to performance become very
clear.

4.1. Experiment I. In this first experiment, we used the same instances of Sam-
basivan and Yahya (2005) which consist of all combinations of 3, 4, 5, and 6 periods
with 5, 10, and 15 items and with three and four plants. Each combination, or class,
of instances was made up of five elements.

To evaluate the solutions, we compute the relative gap with respect to the opti-
mal solution of the linear programming relaxation. The linear relaxation consists
in considering variables yijt as real numbers, i.e., by relaxing constraints (7) to
0 ≤ yijt ≤ 1, ∀i, ∀j, and ∀t. The percentage relative gap is computed as

Gap =
(zh − zl)

zl
× 100,

where zh is the objective function value of the heuristic solution and zl is the value
of linear programming relaxation.

We denote the classes of instances by: “Number of plants” × “Number of peri-
ods” × “Number of items.” For example, the class made up of 3 plants, 4 periods,
and 10 items is referred to as 3× 4× 10. In all, there are 24 classes. The number
of initial solutions and maximum number of iterations in the feasibility phase were
set to 1000 and 100, respectively. The number of elite solutions we considered in
this case was 15. The penalty value p chosen after preliminary tests is 50.

The experiments show that the proposed heuristics are robust, since the mean,
worst, and best gaps are similar. For this reason, only the mean gaps are presented
in the tables. In Table 2, we call LRA the heuristic of Sambasivan and Yahya (2005),
Gheur corresponds the pure GRASP, while GPRheur is the GRASP with path-
relinking. The columns labeled MG and MT indicate, respectively, the percentage
mean gap and the mean time in seconds of each class of instances repeated ten
times.

Both the Lagrangian relaxation heuristic (LRA) and the two GRASP heuristics
obtained feasible solutions for 100% of the instances. Notice that, in Table 2, the
GRASP with path-relinking variant (GPRheur) had the largest number of problem
classes with the best mean gap between its solution and that of the Lagrangian
relaxation heuristic (LRA), totaling 22 best mean gaps (in bold in Table 2) compared
to two for LRA. The mean gap for GPRheur for all classes was also the best: 6.7%
compared to 9.7% for LRA. Furthermore, the mean time for the pure GRASP was
less than that of LRA on 17 of the 24 problem classes.
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Table 2. Results for Experiment I. For each problem class, the
table lists for each heuristic (Lagrangian relaxation, GRASP, and
GRASP with path-relinking), the mean percentage gap (MG) and
mean solution time (MT) in seconds. Best gaps are in boldface.

LRA Gheur GPRheur
Class MG MT MG MT MG MT

3× 3× 5 7.1 7.7 8.1 0.9 6.5 1.9
3× 3× 10 12.1 13.5 6.5 2.2 5.1 5.7
3× 3× 15 15.3 11.6 8.1 4.8 5.7 14.6
3× 4× 5 7.5 4.4 7.7 1.4 6.2 3.7
3× 4× 10 11.7 31.0 7.3 5.3 5.2 11.2
3× 4× 15 13.4 21.2 9.2 11.2 5.8 31.5
3× 5× 5 13.9 3.7 9.5 3.3 7.3 6.2
3× 5× 10 10.2 3.4 10.6 10.2 7.2 21.0
3× 5× 15 11.7 15.8 9.9 21.0 6.9 49.3
3× 6× 5 8.2 13.6 9.1 4.8 7.0 8.4
3× 6× 10 9.2 11.8 10.8 14.2 7.7 35.1
3× 6× 15 9.6 17.7 11.6 22.8 7.3 67.1

4× 3× 5 6.1 8.9 7.3 1.4 6.0 3.2
4× 3× 10 11.3 11.7 7.6 4.8 5.6 11.5
4× 3× 15 7.1 10.9 9.4 10.2 6.4 29.6
4× 4× 5 8.8 6.3 8.8 3.2 6.9 6.2
4× 4× 10 9.2 27.1 9.6 10.0 6.3 22.9
4× 4× 15 10.7 33.5 11.4 20.8 7.0 56.3
4× 5× 5 8.2 24.6 10.8 5.9 8.1 11.4
4× 5× 10 7.1 33.1 10.7 19.3 7.2 41.2
4× 5× 15 8.7 20.6 11.6 39.1 6.7 95.8
4× 6× 5 7.1 29.7 11.2 9.0 8.2 14.8
4× 6× 10 8.1 30.9 11.9 32.9 7.6 71.3
4× 6× 15 10.1 46.1 13.9 70.2 8.2 166.3

Means 9.7 18.3 9.7 13.7 6.7 32.8

The heuristic Gheur, without the path-relinking phase, was less effective than
GPRheur, but it was still competitive with published results in the literature. The
gap was equal to the gaps reported in literature (9.7%) and mean running times
were smaller (13.7 seconds versus 18.3 seconds).

To confirm the better performance of the proposed heuristic, we carried out a
paired t-Student’s test comparing the mean gaps of each class of instances of Sam-
basivan and Yahya (2005) with the pure GRASP and GRASP with path-relinking
proposed in this paper. These statistical tests indicated that GPRheur, i.e., GRASP
with path-relinking, was significantly better than LRA. Furthermore, the statistical
test also showed that the LRA was not significantly better than pure GRASP.
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All statistical tests were done using the R 2.3.0 software package and correspond
to the Student’s t-paired test for multi-plant with a significance level of 0.05.

Table 3. Statistical results for mean gaps.

Alternative hypothesis t df p-value

MG of GPRheur < MG of LRA -1.708 23 0.00524
MG of Gheur > MG of LRA 0.0398 23 0.4843

In Table 3, we report the statistical results for mean gaps. Columns df and
t correspond, respectively, to the degrees of freedom and the value of t-Student.
Furthermore, we denoted the Alternative Hypothesis, abbreviating mean gap as
MG, e.g., the Alternative Hypothesis MG of GPRheur < MG of LRA means that
the difference between the mean gaps of GPRheur is less than the mean gaps of LRA.

4.2. Experiment II. In the second experiment, the heuristics were tested on a
set of 960 instances with the same dimensions as in Section 4.1. These tests were
randomly generated according to Toledo and Armentano (2006), where the authors
studied the problem with parallel machines, i.e., not considering the transfer costs
and presence of only one warehouse for inventory.

We generated transfer costs as in Sambasivan and Yahya (2005) with the same
interval of inventory costs. Different demands of items for each plant were gen-
erated and we adapted the plant capacities. All parameters, except for demand,
are considered constant along the planning horizon (for example, cijt = cij and
Cjt = Cj). The parameters were generated as follows. Unit production cost (cij)
is randomly generated in U[1.5, 2.5]. Low setup cost (sij) is randomly generated in
U[5.0, 95.0] while high setup costs are obtained by multiplying low setup costs by
10. Unit inventory (hij) and transfer (rjk) costs are randomly generated in U[0.2,
0.4] and U[0.2, 0.4], respectively. Unit processing (bij) and setup times (fij) are
randomly generated in U[1.0, 5.0] and U[10.0, 50.0], respectively. Low setup times
are generated in this interval and high setup times are obtained by multiplying low
setup time by 1.5. Finally, demand (dijt) is randomly generated in U[0, 180].

For each period in the planning horizon, the capacities Cj of each plant j were
generated according to

(9) Cj =
T∑

t=1

N∑
i=1

(bijdijt + fij)
T

.

Let the normal and tight capacities be the value of equation (9) multiplied by,
respectively, 1.0 and 0.9. The instances were generated with distinct setup costs
and time values according to the high and low criteria. To define such classes of
distinct instances, consider the notation of its definition: Capacity/setup cost/setup
time: (N) Normal; (T) Tight; (L) Low; (H) High. Then, for example, the class of
instances with normal capacity, low setup cost, and high setup time is denoted by
NLH. Observe that the normal option only exists for the capacity, and the high
option does not exist for this parameter.

In Table 4, we present the mean gaps and mean times of some classes of instances,
the 4×6×15 configuration, when the CPLEX 7.5 solver was applied with a threshold
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Table 4. CPLEX tests of some instances. For each problem class,
the table lists the the mean percentage gap (MG) and mean solu-
tion time (MT) in seconds.

Class Mean Gap (%) Mean Time (s)

NHL 8.8 1800.2
NHH 8.4 1800.3
THL 9.5 1800.2
THH 9.2 1800.2
NLL 0.1 757.0
NLH 0.1 629.6
TLL 0.1 1106.1
TLH 0.1 1182.6

Means 4.6 1359.6

run time of 30 minutes for each instance. As a result, all instance classes but one
could not be solved within the established time. Furthermore, we could not obtain
an optimal solution in less than 10 minutes. Such poor results for the exact solver
suggest that heuristics may be more appropriate for these problems.

To evaluate the solution of the proposed heuristics we used a lower bound gen-
erated by a linear programming relaxation in the percentage gap calculation, as in
Section 4.1. The number of initial solutions and maximum number of iterations
in the feasibility phase were set in this heuristic at 200 and 100, respectively. The
number of elite solutions we considered in this case was 15. The penalty value p
adopted is 50.

We report these results in Table 5 whose columns indicate respectively, the results
of the GRASP without path-relinking (Gheur) and the GRASP with path-relinking
(GPRheur). The Class column indicates the problem class, while FEA indicates the
feasibility incidence in percentage of the corresponding strategies. Observe that
the GRASP heuristic with and without the path-relinking phase has the same
FEA because the modification has just been done in the improvement phase of the
solution approach. The MG and MT columns indicate, respectively, the mean gap
in percentage and the mean time in seconds of each class of instances (120 instances
each class) executed 10 times.

For instances with low setup cost, the mean gaps for Gheur and GPRheur are
similar to those in Experiment 1, which confirms the quality of the heuristics. For
instances with a high setup cost, the mean gaps are worse than the low setup
instances. This is probably due to the fact that the linear program tends to have
small values for variable y and for high setup costs this results in a poor lower
bound.

The average capacity utilization for both proposed heuristics is similar. It is
85.2% and 78.8%, for low and high setup costs, respectively. The instances with
tight capacity use on average 85.6% of capacity, while for the normal capacity this
value is 79.1%. The setup time consumes at most 12.6% of the normal or tight
capacity.
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Table 5. Results for Experiment II. For each problem class, the
table lists the percentage of instances for which a feasible solution
was found and for GRASP and GRASP with path-relinking, the
percentage mean gap and mean solution time in seconds.

Gheur GPRheur
Class FEA MG MT MG MT

NHL 99.1 27.7 6.0 27.0 3.2
NHH 100 26.7 6.0 25.8 3.8
THL 97.5 31.4 5.4 31.3 3.1
THH 97.5 30.3 5.8 28.4 4.7

Means 98.5 29.0 5.8 28.1 3.7

Gheur GPRheur
Class FEA MG MT MG MT

NLL 100 8.7 17.8 8.2 7.6
NLH 100 8.6 17.5 8.1 7.1
TLL 98.3 9.8 15.0 9.2 7.8
TLH 99.1 9.5 15.8 9.0 7.7

Means 99.4 9.1 16.5 8.6 7.5

Total means 98.9 19.1 11.2 18.3 5.6

We also tested our heuristics using the instances generated by Toledo and Ar-
mentano (2006) for the parallel machines version of the problem. For this problem,
the GRASP reached feasibility in 97% of cases, while the heuristic proposed by
Toledo and Armentano (2006) obtained feasible solution in 97.6% of cases. For the
pure GRASP, the mean percentage gap with respect to the lower bounds reported
by Toledo and Armentano (2006) and the mean times in seconds, were 11.1% and
9.9 seconds, respectively. The GRASP with path-relinking obtained, respectively,
8.6% and 14.8 seconds, while the Lagrangian relaxation of Toledo and Armentano
(2006) obtained, respectively, 10.0% and 7.4 seconds.

4.3. Experiment III. According to Aiex et al. (2002), GRASP and GRASP with-
relinking have running time to the optimal solution that are distributed according
to a shifted exponential distribution. Time-to-target (TTT) plots can be used
to compare stochastic local search procedures by comparing their running time
distributions. A TTT plot is generated by independently running an algorithm
several times and measuring the time it takes to find a solution at least as good as
a given target solution.

We compared Gheur and GPRheur by producing TTT plots with 50 independent
runs for the ten instances of THL with six periods and three plants, in which five
instances have five items and five have 15 items. As targets we used values 0.9%
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Figure 1. TTT Plots for THL instances with 6 periods, 3 plants,
and 5 items.
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Figure 2. TTT Plots for THL instances with 6 periods, 3 plants,
and 15 items.
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above the best solution found by Gheur. Time-to-target plots (TTT plots) were
produced using Aiex et al. (2007) and are presented in Figures 1 and 2. The figures
clearly show that the running times of the GRASP with path-relinking variant were
much smaller than those of the pure GRASP.

5. Conclusions

This paper addressed the multi-plant capacitated lot sizing problem (MPCLSP)
and proposed new approaches using GRASP and path-relinking to find good-quality
solutions for this problem. The initial solution of GRASP is usually not feasible,
forcing us to transfer lots between periods and plants to obtain feasibility. For path-
relinking, we proposed combinations of initial solutions with a guiding solution and
the feasibility and local search phases at each step of the way.

The pure GRASP performed well for the MPCLSP when compared with the
results in the literature. In some cases of multi-plant instances, the performance
was better than the results presented in the literature. The mean solution times for
our heuristics were also always better. When the strategy based on path-relinking
was embedded into the GRASP heuristic, the results had an improved mean gap
and performed better than heuristics in the literature. As a result, the mean gap of
the GRASP with path-relinking was significantly better than that of the Lagrangian
relaxation of Sambasivan and Yahya (2005) as statistical tests confirm. Thus, both
GRASP heuristics proposed in this paper are new important solution approaches
for the MPCLSP.

We also applied these heuristics to the parallel machine lot sizing problem and
the results obtained are better than those in the literature. The heuristics can be
adapted to other classes of lot sizing problems, such as single machine lot sizing
problems and lot sizing problems with carry-over.
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São Paulo, Caixa Postal 668, São Carlos, SP, CEP 13560-970, Brazil.

E-mail address: fran@icmc.usp.br


