
GRASP WITH EXTERIOR PATH RELINKING FOR

DIFFERENTIAL DISPERSION MINIMIZATION

ABRAHAM DUARTE, JESÚS SÁNCHEZ-ORO, MAURICIO G.C. RESENDE,

FRED GLOVER, AND RAFAEL MARTÍ

Abstract. We propose several new hybrid heuristics for the differential dis-
persion problem are proposed, the best of which consists of a GRASP with sam-
pled greedy construction with variable neighborhood search for local improve-
ment. The heuristic maintains an elite set of high-quality solutions throughout
the search. After a fixed number of GRASP iterations, exterior path relinking
is applied between all pairs of elite set solutions and the best solution found
is returned. Exterior path relinking, or path separation, a variant of the more
common interior path relinking, is first applied in this paper. In interior path
relinking, paths in the neighborhood solution space connecting good solutions
are explored between these solutions in the search for improvements. Exte-
rior path relinking, as opposed to exploring paths between pairs of solutions,
explores paths beyond those solutions. This is accomplished by considering
an initiating solution and a guiding solution and introducing in the initiat-
ing solution attributes not present in the guiding solution. To complete the
process, the roles of initiating and guiding solutions are exchanged. Extensive
computational experiments on 190 instances from the literature demonstrate
the competitiveness of this algorithm.

1. Introduction

Let G = (V,E) be an undirected complete graph, where V is the set of n vertices
and E the set of

(

n
2

)

edges. Each edge (u, v) ∈ E with u, v ∈ V has an associated
distance duv between u and v. Dispersion, or diversity, problems (DP) consist in
finding a subset S ⊆ V with m elements, such that an objective function (based
on the distances between elements in S) is maximized or minimized. According to
Prokopyev et al. (2009), the objective of a dispersion problem can be either to iden-
tify a subset with (i) maximum distance among its elements (diversity problems),
or (ii) with maximum similarity among them (equity problems). The first class of
problems has been intensively studied in the last ten years. For instance, Mart́ı
et al. (2010; 2013) and Gallego et al. (2009) present several exact, heuristic, and
metaheuristic-based methods for the maximum diversity problem. Two important
variants are, respectively, the sum (Maxsum DP) and minimum (Maxmin DP) of
the distances in the selected set (Agca et al., 2000).

Equity problems are mainly used in the context of facility location problems,
where the fairness among candidate facility locations is as relevant as the disper-
sion of the selected locations (Teitz, 1968). These kinds of problems also have

Date: April 3, 2014.
Key words and phrases. Dispersion problems, Equity, GRASP, Variable Neighborhood Search,

Path Relinking, Path Separation.
AT&T Labs Research Technical Report.

1

2 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

applications in the context of urban public facility location (Teitz, 1968), selec-
tion of homogeneous groups (Brown, 1979a), dense/regular subgraph identification
(Kortsarz and Peleg, 1993), and equity-based measures in network flow problems
(Brown, 1979b). In spite of all these applications, we have identified only one pre-
vious metaheuristic-based paper on equitable problems, in which Prokopyev et al.
(2009) adapt a simple generic GRASP algorithm to solve several equitable prob-
lems.

Prokopyev et al. (2009) propose four distinct equity-based functions to balance
the diversity among the selected elements: the mean-dispersion function minimizes
the average dispersion of the selected elements; the generalized mean-dispersion
function, which is an extension of the mean-dispersion function, considers vertex-
weighted graphs; and the min-sum and the min-diff dispersion functions that con-
sider the extreme equity values of the selected elements. In this paper we focus
on the last function, whose associated optimization problem is referred to as the
Minimum Differential Dispersion Problem (Min-Diff DP).

A feasible solution of the Min-Diff problem is a set S ⊆ V of m elements, where
m is a given input parameter. Each feasible solution has associated with it a cost
which can be can be computed as follows. Let ∆(v) be the sum of distances between
a vertex v ∈ S and the remaining elements of S. Formally,

∆(v) =
∑

u∈S

duv.

The objective function of a solution S (denoted by diff (S)) is then computed as

diff (S) = max
u∈S

∆(u)−min
v∈S

∆(v)

Therefore, the Min-Diff problem consists of finding a solution S⋆ ⊆ V with the
minimum differential dispersion, i.e.

S⋆ = argmin
S⊆Vm

diff (S),

where Vm is the set of all subsets of vertices in V with cardinality m.
Figure 1a shows an example of a graph with six vertices and 15 edges with their

associated distances. Figures 1b and 1c depict two possible solutions for the Min-
Diff problem for m = 4. The selected vertices in the solution are shown in black
while the edges in each solution are highlighted by solid lines. The vertices not
in the solution are shown in grey while the edges not in the solution are dashed.
To evaluate the quality of each solution, we first compute the ∆(v) value for all
the elements in the solution. In particular, Figure 1b shows a solution where S =
{A,B,D,E}, ∆(A) = 3+12+8 = 23, ∆(B) = 3+3+2 = 8, ∆(D) = 12+3+6 = 21,
and ∆(E) = 8+2+6 = 16. The diff -value is calculated by first selecting the vertices
having the highest and lowest ∆ values and then taking the difference of their ∆
values. In this solution, these vertices are, respectively, A and B, and therefore
diff (S) = ∆(A) − ∆(B) = 23 − 8 = 15. If we now consider the solution S′ =
{A,C,E, F} in Figure 1c, it is easy to verify that the associated objective function
value is diff (S′) = 9. Considering that the Min-Diff problem is a minimization
problem, solution S′ is better than solution S. The rationale behind this is that
the distances among the elements in S′ are more similar than those among the
elements in S.

GRASP WITH EXTERIOR PR FOR DIFFERENTIAL DISPERSION MINIMIZATION 3

A

B

D E

C

F1

8

5

2

3

12

10

3

4

1

3

23

6

9

(a) Example of a graph

A

B

D E

C

F1

8

5

2

3

12

10

3

4

1

3

2
3

6

9

(b) Solution S

A

B

D E

C

F1

8

5

2

3

12

10

3

4

1

3

23

6

9

(c) Solution S′

Figure 1. Example of two solutions on a graph with six vertices.

Prokopyev et al. (2009) present a basic mixed linear 0-1 formulation of the
problem. Let Li and Ui be lower and upper bounds on the value of

∑

j∈S

dij , i.e.

Li =
∑

j∈S

min{dij , 0} and Ui =
∑

j∈S

max{dij , 0}. Then, the mixed linear 0-1 formu-

lation of the Min-Diff DP is as follows:

min
t,r,s,x

t

s .t . t ≥ r − s, i = 1, . . . , n
r ≥

∑

j:j 6=i

dijxj − Ui(1− xi) +M−(1− xi), i = 1, . . . , n

s ≤
∑

j:j 6=i

dijxj − Li(1− xi) +M+(1− xi), i = 1, . . . , n

n
∑

i=1

xi = m x ∈ {0, 1}n,

where M+ is an upper bound on the Ui values, M− is a lower bound on the Li

values, and the binary decision variable xi = 1 if and only if node i ∈ S.
The computational experiments described in Prokopyev et al. (2009) show that

CPLEX 9.0 is only able to solve instances of small size (up to |V | = 40 andm = 15),
requiring high CPU times (more than 2500 seconds on average). The authors
also propose a generic GRASP that can be applied to different equity problems.
The objective of our paper is to propose a specialized GRASP that obtains high-
quality solutions for the Min-Diff problem without requiring long running times.

4 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

Additionally, we hybridize GRASP with Path Relinking for improved outcomes.
Specifically, we propose in Section 2 two constructive procedures and three local
search methods. We also introduce in Section 2.3 an improvement strategy based on
the Variable Neighborhood Search metaheuristic. Finally, in Section 3, we consider
two post-processing strategies based on Path Relinking. It is worthwhile mentioning
that we apply a new variant of Path Relinking, introduced in (Glover, 2014) and
called Exterior Path Relinking, or Path Separation, and which, for this problem,
obtains very promising results. In Section 4, we present computational experience.
We first analyze and tune the proposed algorithms and then compare our best
proposal with both the GRASP of Prokopyev et al. (2009) and CPLEX 12.5.1 on the
integer programming formulation proposed there and described above. Concluding
remarks are outlined in Section 5.

2. GRASP

The greedy randomized adaptive search procedure (GRASP) is a metaheuristic
developed in the late 1980s (Feo and Resende, 1989) and formally introduced in
Feo et al. (1994). Resende and Ribeiro (2010; 2014) present recent and thorough
surveys of this method. GRASP is a multi-start methodology where each iteration
consists of two stages. The first is a greedy, randomized, and adaptive construc-
tion of a solution. The second stage applies an improvement method to obtain
a local optimum from the constructed solution. These two phases are repeated
until a termination criterion is met. The rest of this section is organized as fol-
lows. Section 2.1 presents two constructive procedures for the Min-Diff problem.
Section 2.2 introduces three local search algorithms whose objective is to improve
the constructed solution. Finally, Section 2.3 describes a more elaborate improve-
ment strategy based on the Variable Neighborhood Search (VNS) metaheuristic
(Mladenović and Hansen, 1997).

2.1. Constructive methods. GRASP constructive procedures apply a greedy
function to evaluate the quality of the elements in a candidate list. Given a par-
tial solution S, we propose the following greedy function to estimate the incre-
ment/decrement of the objective when an element v ∈ V \ S is added to S. Given
the complexity of the objective function evaluation in the Min-Diff problem, the
definition of such a greedy function is not trivial. For the sake of simplicity, the
evaluation of the greedy function consists of four steps. The first step estimates the
∆-value of vertex u (denoted by δ(u)) if it is included in the partial solution:

∀u ∈ V \ S → δ(u) =
∑

v∈S

duv.

The second step estimates the variation in the ∆-values of all vertices v ∈ S if u is
included in S:

∀v ∈ S → δ(v) = ∆(v) + duv.

Once these δ values are computed, the third step determines whether the potential
inclusion of vertex u ∈ V \ S in the partial solution modifies the maximum and/or
the minimum ∆-values. This values are, respectively, denoted as

δmax(u) = max

{

δ(u),max
v∈S

δ(v)

}

,

GRASP WITH EXTERIOR PR FOR DIFFERENTIAL DISPERSION MINIMIZATION 5

and

δmin(u) = min

{

δ(u),min
v∈S
{δ(v)

}

.

The fourth step finally computes the greedy function g for each element u ∈ V \ S
as

g(u) = δmax(u)− δmin(u).

Let us illustrate the computation of the greedy function with an example. Fig-
ure 2a shows a partial solution S = {B,D,E}, where vertices in S are highlighted
in black and the vertices in V \ S are shown in grey. If m = 4, we must in-
clude one vertex from V \ S in the current partial solution. Figure 2b shows
the evaluations of the candidate vertices A, C, and F . For each candidate ver-
tex, we compute its δ-value, as well as the δ-values for each vertex already in
S. For example, if we introduce vertex A in the current partial solution, then
δ(A) = dAB + dAD + dAE = 3 + 12 + 8 = 23. In addition, the inclusion of A
would affect vertices B, D, and E as follows: δ(B) = ∆(B) + dAB = 5 + 3 = 8;
δ(D) = ∆(D) + dAD = 9 + 12 = 21; δ(E) = ∆(E) + dAE = 8 + 8 = 16. Then,
we identify the δmin and δmax-values (δ(B) = 8 and δ(A) = 23, respectively) and
finally the greedy function value for the potential inclusion of A in the partial so-
lution is g(A) = δmax − δmin = δ(A) − δ(B) = 23 − 8 = 15. Figure 2b shows that
the best option is to include vertex C, with g(C) = 11, in the current partial solu-
tion since this insertion produces the minimum increment in the objective function
(g(A) = 15 and g(E) = 12).

A

B

D E

C

F1

8

5

2

3

12

10

3

4

1

3

2
3

6

9

(a) Partial solution.

v A C F

δ(v) 23 17 15
δ(B) 8 8 6
δ(D) 21 19 18
δ(E) 16 12 13

δmin(v) 8 8 6
δmax(v) 23 19 18
g(v) 15 11 12

(b) Greedy function evaluation

Figure 2. Example of computation of the greedy function.

Algorithm 1 shows pseudo-code for C1, the first constructive algorithm. It follows
the standard GRASP template, by initially creating a list of candidates (CL) which
contains the elements that can be added to the partial solution under construction.
At this point, the CL contains all the vertices of the graph (step 2). Then, the
method randomly selects the first vertex from CL (step 3) and includes it in the
partial solution (step 5). The method thus iterates until it obtains a solution with
m vertices (steps 6 to 13). In each iteration, C1 calculates the maximum (gmax)
and minimum (gmin) values of the greedy function (steps 7 to 8). After that, C1
constructs a restricted candidate list (RCL) with all the candidates whose greedy
value does not exceed a percentage α of the best greedy value (step 9). Finally,

6 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

in the last step of the iteration the method selects at random one vertex from the
RCL and adds it to the solution, updating CL (steps 10 to 12).

Algorithm 1: C1

1: S ← ∅
2: CL← V

3: v0 ← SelectRandom(CL)
4: S ← S ∪ {v0}
5: CL← CL \ {v0}
6: while |S| < m do
7: gmin ← min

u∈CL
g(u)

8: gmax ← max
u∈CL

g(u)

9: RCL← {v ∈ CL | g(v) ≤ gmin + α · (gmax − gmin)}
10: v ← SelectRandom(RCL)
11: S ← S ∪ {u}
12: CL← CL \ {u}
13: end while
14: return S

We now consider C2, a second constructive procedure based on a different strat-
egy introduced in Resende and Werneck (2004). Specifically, this alternative con-
struction swaps the greedy and random stages of a standard GRASP construction.
This construction template has been recently applied with success in other papers
(Campos et al., 2013; Resende et al., 2010; Pantrigo et al., 2012; Duarte et al.,
2011).

Algorithm 2 shows the pseudo-code of the proposed method whose first steps
are similar to the ones of Algorithm 1. The differences between these constructive
procedures are limited to the main loop (steps 6 to 11). In particular, C2 constructs
the RCL by selecting α × |CL| elements from CL at random (step 7). Then, all
the elements in the RCL are evaluated with the greedy function, selecting the one
which presents the minimum greedy value (step 8). Finally, the solution and the
associated candidate list are updated (steps 9 and 10). The method ends when the
solution becomes feasible (i.e., |S| = m).

The α parameter controls the greediness/randomness of the GRASP constructive
procedures. Specifically, if α = 0 the corresponding methods are purely greedy
algorithms, while if α = 1 they are totally random procedures. In Section 4 we
investigate the influence of α.

2.2. Local search procedures. The second stage of a GRASP algorithm consists
in improving the constructed solutions using a local search method, which will
guide the search process to a local optimum. One of the key elements in designing
a effective local search method is the definition of the move and the associated
move value (change in the objective function value). In particular, for the Min-Diff
problem we define move(S, u, v) as the move that interchanges vertex u ∈ S with
vertex v ∈ V \S. This move usually produces a variation in the objective function,
denoted as move value(S, u, v). As with the definition of the greedy function, the
computation of this quantity is not trivial if we want to update the value of the

GRASP WITH EXTERIOR PR FOR DIFFERENTIAL DISPERSION MINIMIZATION 7

Algorithm 2: C2

1: S ← ∅
2: CL← V

3: v0 ← SelectRandom(CL)
4: S ← S ∪ {v0}
5: CL← CL \ {v0}
6: while |S| < m do
7: RCL← SelectRandom(CL,α)
8: u← argmin

v∈RCL

g(v)

9: S ← S ∪ {u}
10: CL← CL \ {u}
11: end while
12: return S

objective function in an incremental way. Specifically, we need to identify the subset
of edges of u (associated with the removed vertex) that no longer contribute to the
objective function and the subset of edges of v (associated with the inserted vertex)
which will be included in the computation of the objective function. Even without
performing the move, we can estimate the ∆-values of the elements in S. We denote
this estimate as δ (to be consistent with the notation introduced earlier). Therefore,
if we were to remove vertex u and include vertex v in the solution S, the variation
of the ∆-values would be computed as

∀w ∈ S \ {u} → δ(w) = ∆(w) − dwu + dwv.

We additionally must consider the estimation of including v in S, denoted as

δ(v) =
∑

w∈S\{u}

dvw .

The estimation of the objective function value if we would perform the move is
computed as

δmin = min

{

δ(v), min
w∈S\{u}

δ(w)

}

,

δmax = max

{

δ(v), max
w∈S\{u}

δ(w)

}

.

and

MinDiff (S \ {u} ∪ {v}) = δmax − δmin.

Therefore, the move value would be finally defined as

move value(S, u, v) = MinDiff (S \ {u} ∪ {v})−MinDiff (S).

This way, we can quickly compute the value of the move without computing the
value of the objective function from scratch. In fact, we do not really perform the
move to estimate the increment/decrement of the objective function. Starting from
the solution depicted in Figure 1b, we show in Figure 3a the resulting solution
after performing move(S,B, F). Figure 3b shows a table with the computation of
the δ-values defined above. Taking these values into account, the minimum and
maximum values are respectively δmin = 15 for F and δmax = 27 for D, resulting

8 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

in a potential solution with MinDiff (S \ {B}∪ {F}) = δmax− δmin = 27− 15 = 12.
This move is accepted since it improves the current solution.

A

B

D E

C

F1

8

5

2

3

12

10

3

4

1

3

2
3

6

9

(a) Resulting solution after performing

move(S,B, F).

v δ(v)
A 23 - 3 + 1 = 21
D 21 - 3 + 9 = 27
E 16 - 2 + 5 = 19
F 1 + 5 + 9 = 15

δmin 15
δmax 27

MinDiff 12

(b) Estimation of the δ-values for each

vertex in the solution.

Figure 3. Example of the computation of move value(S,B, F).

In a straightforward implementation, the complexity of computing the MinDiff -
value is O(m2) because the method should compute, for each one of the m vertices
in S, the distance to remaining m − 1 vertices in S. However, using the proposed
updating strategy defined above, the complexity reduces to O(m) since it is only
necessary to explore the m − 1 vertices in S adjacent to the removed vertex and
the m− 1 vertices in S adjacent to the included vertex.

In this paper, we propose three local search procedures, denoted by LS1, LS2,
and LS3, based on the move defined above. These three methods mainly differ in
how the vertices are scanned. LS1 follows a best improvement template, resulting
in an exhaustive search. Specifically, the method explores the vertices in the current
solution S and those in V \ S. Then, it selects the best move between a vertex in
S and a vertex in V \ S (evaluating the aforementioned move value). Finally, if
the best move found improves the current solution, the move is made, updating the
solution. The second local search method, denoted LS2, follows a first improvement
template. The algorithm is similar to LS1, but instead of exploring all possible
moves, it performs the first move that improves the current solution. Vertices in S

and V \ S are randomly explored to avoid focusing on the same subset of vertices.
The third local search, LS3, also performs a first improvement strategy but ordering
the vertices before exploring them. In order to start exploring the most promising
moves, LS3 scans the vertices in S in descending order according to their ∆-values,
while the vertices in V \ S are scanned in ascending order according to their δ-
values. Then, LS3 traverses both S and V \ S performing the first move which
improves the value of the current solution. The three local search methods end
when no improvement is found after exploring all possible moves, returning the
best solution found.

2.3. Variable Neighborhood Search. Variable Neighborhood Search (VNS) is
a metaheuristic proposed by Mladenović and Hansen (1997) as a general framework
to solve hard optimization problems. It is based on the idea of performing system-
atic changes of neighborhood structures within the search procedure. Heuristics
based on this metaheuristic have been successfully applied to a large variety of

GRASP WITH EXTERIOR PR FOR DIFFERENTIAL DISPERSION MINIMIZATION 9

optimization problems (see for instance Duarte et al. (2013), Sánchez-Oro et al.
(2013), Duarte et al. (2012), and Lozano et al. (2012). We refer the reader to
Hansen and Mladenović (2014) for a recent survey of VNS.

An early proposal for multiple neighborhood search appeared in Glover et al.
(1984) using a design based on the strategic oscillation concept. The oscillation
strategy in that study was organized to apply different types of moves of vary-
ing complexity using a hierarchy of size-increasing neighborhoods in the terminol-
ogy VNS has made popular. Some tabu search multiple neighborhood proposals
(Glover, 1997; Glover and Laguna, 1997) are based on the interplay among classes
of moves based on their distance measures, coupled with the use of memory to
keep track of the attractiveness of moves from different classes. Such memory en-
ables the search to jump between different neighborhood structures to link the most
promising types of moves from each.

In this paper, we propose the use of a Basic VNS variant with a Jump Neigh-
borhood Change strategy (Hansen et al., 2010) in place of the standard local search
used in GRASP. Algorithm 3 shows the pseudo-code of the VNS. It has three input
arguments: the initial solution (S), the maximum neighborhood to be explored
(kmax), and the jump magnitude (kstep). The initial solution is built with one of
the constructive procedures described in Section 2.1. The best constructive proce-
dure as well as the values of kmax and kstep will be experimentally determined in
Section 4.

Algorithm 3: BasicVNS(S, kstep , kmax)

1: k ← kstep
2: repeat
3: S′ ← Shake(S, k)
4: S′′ ← LocalSearch(S′)
5: NeighborhoodChange(S, S′′, k)
6: until k = kmax

7: return S

The algorithm mainly consists in executing three strategies: shake, local search,
and neighborhood change. First, given a solution S, the shake method generates a
new solution, S′, in the k-th neighborhood of the current solution (step 4). In the
context of the Min-Diff problem, it consists in performing k moves at random. Then,
S′ is improved using a local search method, producing a new improved solution S′′

(step 5). We will experimentally determine the best local search among the three
proposed in this paper.

The NeighborhoodChange function typically employed in a VNS compares the
new solution S′′ with the incumbent solution S obtained in the k-th neighborhood.
If an improvement is obtained, k is reset to its original value (usually k = 1).
Otherwise, the next neighborhood is considered for a further exploration (usually
k = k + 1). In this paper, we investigate the effect on the search of the so-called
jump neighborhood search, where the NeighborhoodChange function considers the
parameter kstep to control the change of the neighborhood. Specifically, when the
VNS method performs an improving move, it sets k = kstep instead of k = 1.
Similarly, in non-improving moves, it sets k = k + kstep instead of k = k + 1. As
customary in VNS, the search ends when k reaches or surpasses kmax, returning

10 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

the best solution found. Note that the jumping strategy of this method skips some
neighborhoods in the perturbation, which performs well on this type of nested
neighborhoods of the same type of moves.

3. Path Relinking

Path Relinking (PR) is a metaheuristic introduced in ? and Glover and Laguna
(1997), originally proposed as a methodology to integrate intensification and di-
versification strategies in the context of tabu search. This metaheuristic explores
trajectories that connect high-quality solutions, generating intermediate solutions
that can eventually be better than the high-quality solutions being connected. La-
guna and Mart́ı (1999) adapted PR in the context of GRASP as a form of intensi-
fication. The PR algorithm operates on a set of solutions, called the elite set (ES),
typically sorted from best (first solution in ES) to worst (last solution in ES). In
this paper, we limit ourselves to consider only a quality criterion to populate the
elite set. Therefore, the ES consists of the best b solutions generated with GRASP.
This design is usually referred to as static (Resende et al., 2010), since we first ap-
ply GRASP to construct the elite set and then we apply PR to explore trajectories
between all pairs of solutions in the ES.

Given two solutions in ES, S and S′, the standard implementation of the path
relinking (which in this paper we call Interior Path Relinking (IPR)) starts from
the initiating solution S and gradually transforms it into the guiding solution S′.
This transformation is accomplished by swapping out elements selected in S with
elements in S′, generating a set of intermediate solutions. The elements present in
both solutions (S ∩ S′) remain selected in solutions generated in the path between
them. The set of elements in S and not in S′ is S \S′ . Symmetrically, S′ \S is the
set of elements selected in S′ and not selected in S. To obtain the first intermediate
solution in this path, we remove a single element u ∈ S \ S′ and include a single
element v ∈ S′ \ S, thus obtaining S1 = S \ {u} ∪ {v}. Notice that S1 can be
trivially generated with the move described above. For the sake of simplicity, we
denote this move as S1 = move(S, u, v). In general, the k + 1-th intermediate
solution is constructed from the previous solution as Sk+1 = move(Sk, u, v) with
u ∈ Sk \ S

′ and v ∈ S′ \ Sk.
Given a graph with 12 vertices (labeled {A,B, . . . , L}) and m = 6, let S =

{A,B,C,D,E, F} and S′ = {A,B,C,G,H, I}. Figure 4 illustrates the construc-
tion of two interior paths, one from S to S′ and another from S′ to S. As it
was aforementioned, common vertices between both solutions appear in all inter-
mediate solutions. Solution S1 is obtained from S by performing move(S,D,G).
Similarly, S2 is obtained after applying move(S1, E,H). Notice that the reverse
path is similarly constructed. In all cases, the introduced vertices are highlighted
in grey.

The election of vertices u and v can be performed in a greedy or a random
fashion. In particular, the greedy strategy obtains Sk+1 from Sk by evaluating all
the possibilities for v ∈ Sk \ S′ to be unselected and u ∈ S′ \ Sk to be selected,
and performs the best move. On the other hand, the random strategy constructs
Sk+1 by randomly selecting a vertex v ∈ Sk \ S′ to be unselected and a vertex
u ∈ S′ \ Sk to be selected. In this paper, we propose two interior path relinking
methods: IPRG which constructs the paths between each pair of solutions in the
ES using a greedy strategy, and IPRR, which follows the random strategy. The best

GRASP WITH EXTERIOR PR FOR DIFFERENTIAL DISPERSION MINIMIZATION 11

A

B

C

D

E

F

A

B

C

G

H

I

A

B

C

G

E

F

A

B

C

G

H

F

A

B

C

D

E

I

A

B

C

D

H

I

S
1

S S’

S
2

S’
2

S’
1

Figure 4. Example of two interior paths between S and S′.

solution generated in each path is subjected to the improvement method described
in Section 2.3. The algorithm terminates when all pairs of solutions in the ES have
been relinked, each pair by two paths. The best overall solution is returned.

Despite the widespread application of path relinking in combinatorial optimiza-
tion, almost all PR implementations only consider the between-form of PR (In-
terior Path Relinking). This paper discusses the beyond-form of path relinking,
introduced in Glover (2014) and called Exterior Path Relinking (EPR), and focuses
on its relevance for effectively solving the MinDiff problem. Instead of introduc-
ing into the initiating solution characteristics present in the guiding solution, this
new strategy introduces in the initiating solution characteristics not present in the
guiding solution. Specifically, it removes from the initiating solution those elements
which also belong to the guiding solution, obtaining intermediate solutions which
are further away from both the initiating the guiding solutions.

The relevance of paths that go beyond the initiating and guiding solutions was
broached in Glover (1997) as follows: The scope of strategies made available by
path relinking is significantly affected by the fact that the term neighborhood has a
broader meaning in tabu search than it typically receives in the popular literature
on search methods. Often, the neighborhood terminology refers solely to methods
that progressively transform one solution into another. Such neighborhoods are
called transition neighborhoods in tabu search, and are considered as merely one
component of a collection of neighborhoods that also include those operating in
regions beyond solutions previously visited.

Given the initiating (S) and guiding (S′) solutions for the MinDiff problem, the
first intermediate solution in the exterior path beyond S is generated by removing
a single element u ∈ S ∩ S′ and adding a single element v ∈ V \ (S′ ∪ S), thus
obtaining S1 = S \ {u} ∪ {v}. Again, this solution can be directly obtained with
the move operator described in Section 2.2. The k + 1-th intermediate solution
is constructed from Sk, the previous solution, as Sk+1 = move(Sk, u, v) with u ∈
Sk ∩ S′ and v ∈ V \ (S′ ∪ Sk). As for IPR, we propose two methods: EPRG and
EPRR. EPRG constructs the paths using a greedy strategy while EPRR follows

12 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

the random strategy. Again, the best solution generated in each path is subjected
to the improvement method described in Section 2.3. The algorithm terminates
when all pairs of solutions in the ES have been relinked, each pair by two paths,
one beyond S and the other beyond S′.

We illustrate in Figure 5 the construction of the exterior paths by considering the
same graph with 12 vertices labeled {A,B, . . . , L} introduced earlier, with m = 6
and the same initiating and guiding solutions. As it can be seen, the exterior path
generates solutions S1 and S2 by performing move(S,A, J) and move(S1, B,K),
respectively. It is easy to see that those intermediate solutions (i.e., S1 and S2 are
further from S′ than S). The other exterior path (starting from S′ and finishing
in S′

2) is constructed in a similar way. As in the previous example, the introduced
vertex is highlighted in grey.

J

B

C

D

E

F

A

B

C

D

E

F

A

B

C

G

H

I

J

K

C

D

E

F

J

K

L

D

E

F

J

B

C

G

H

I

J

K

C

G

H

I

J

K

L

G

H

I

S S’S
1

S
2

S
3

S’
1

S’
2

S’
3

Figure 5. Example of two exterior paths, one beyond S and the
other beyond S′.

4. Computational results

In this section, we report on the computational experiments performed to test
the efficiency and effectiveness of the proposed strategies. All algorithms were
implemented in Java 7 and the experiments were conducted on an Intel Core i7 2600
CPU (3.4 GHz) with 4GB of RAM. We considered the MDPLIB benchmark, which
consists of three sets of instances previously used in other variants of this problem.
The instances were introduced in the context of the maximum diversity problem
by Duarte and Mart́ı (2007) and can be found in http://www.optsicom.es/mdp.
The three sets of instances are:

• SOM: This data set consists of 70 inter-node distance matrices of sizes
ranging from n = 25 and m = 2 to n = 500 and m = 200 and were collected
by Duarte and Mart́ı (2007). They were created with a generator developed
by Silva et al. (2004) and have been used in most of the previous papers
dealing with the maximum diversity problem (see for example Aringhieri
et al. (2008)).
• GKD: This data set consists of 145 inter-node distance matrices for which
distance values were calculated as the Euclidean distance between pairs of
randomly generated points with coordinates in the [0, 10]× [0, 10] square.
The sizes of these instances range from n = 10 and m = 2 to n = 500
and m = 50. These instances were introduced in Glover et al. (1998) and
generated in Duarte and Mart́ı (2007) and Mart́ı et al. (2010).
• MDG: This data set consists of 100 inter-node distance matrices with real
numbers randomly selected between 0 and 10 from a uniform distribution
and size varying from n = 500 andm = 50 to n = 3000 andm = 600. These

GRASP WITH EXTERIOR PR FOR DIFFERENTIAL DISPERSION MINIMIZATION 13

instances are extensively described in Duarte and Mart́ı (2007), Palubeckis
(2007), and Mart́ı et al. (2013).

The experiment has two parts. In the first part, we adjust the parameters of
the methods and select the best variants of the proposed algorithms on a subset
of 25 representative instances from the MDPLIB. The second part is devoted to a
comparison of our the best proposal with the current state-of-the-art for this prob-
lem, including the solution of the mixed linear 0-1 formulation of Prokopyev et al.
(2009) with the commercial MIP solver CPLEX 12.5.1. To avoid large computing
times, all the algorithms are executed for a maximum CPU time of n seconds, where
n = |V |.

4.1. Algorithm configuration. The first experiment compares the two construc-
tive methods described in Section 2.1. For GRASP, both the quality and variability
of the constructed solutions are important for the success of local search. Ideally,
we want to construct good solutions that are scattered about the solution space.
For the Min-Diff problem we compute variability as the average number of steps
in the neighborhood space among the constructed solutions. In other words, the
variability between two solutions S and S′ is defined as the cardinality of the set
difference of the two solutions. Then, the variability of the set C of constructed
solutions is defined as

variability (C) =

∑

S∈C

∑

S′∈C

|S \ S′|

|C|
.

This experiment compares the quality and variability of the solutions produced
by the constructive methods C1 and C2 by considering 100 independent construc-
tions of each. The α parameter value is set to random , 0.25, 0.50, 0.75, where ran-
dom indicates that the method randomly selects an α value in the range [0, 1] for
each construction. Notice that the greater the value of α, the greater will be the
expected variability of the constructed solutions. Figure 6 shows the result of this
comparison where the values of quality and variability have been normalized to fall
between 0 and 1. This figure shows that C2(0.50) attains the largest quality but
with relatively low variability. On the other hand, one of the most randomized
methods, C1(0.75), produces poor-quality solutions, but having the largest vari-
ability among all methods. Finally, C2(0.25) shows a balance between quality and
variability. Specifically, it presents slightly worse quality than the best method, but
considerably larger variability.

In the experiments that follow, we limit ourselves to the constructive procedures
identified above as having produced the best quality, C2(0.50), the best variability,
C1(0.75), and a good tradeoff between quality and variability, C2(0.25).

We next study the efficiency of the three local search methods proposed in Section
2.2 when coupled with C2(0.50), C1(0.75), and C2(0.25), the three constructive
procedure chosen above. Recall that these local search procedures are: LS1 – best
improvement strategy; LS2 – first improvement with random selection; and LS3 –
first improvement with ordered selection. We embed them in a GRASP algorithm,
constructing and improving 100 solutions. We report, for each variant, the average
objective function value, Avg.; the CPU time in seconds, Time (s); the average
deviation with respect to the best result found in the experiment, Dev (%); and the
number of times that the method finds the best result in the experiment, #Best.
For the sake of clarity, we highlight in bold font the best combination of methods.

14 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

Figure 6. Comparison of quality and variability of the construc-
tive methods

Table 1 shows the results obtained by the different combinations of constructive
and local search procedures.

Table 1. Three local search methods coupled with three construc-
tive procedures.

Avg. Time (s) Dev. (%) #Best

C1(0.75)
LS1 163.51 77.09 17.52 6
LS2 162.65 16.95 12.18 6
LS3 166.87 88.30 16.06 2

C2(0.25)
LS1 184.11 30.23 18.65 3
LS2 180.16 13.08 14.72 3
LS3 181.53 63.57 13.38 4

C2(0.50)
LS1 172.21 30.24 14.74 3
LS2 171.49 14.08 11.10 7
LS3 173.23 60.59 12.28 4

In this experiment C2(0.50) coupled with LS2 emerges as the best GRASP vari-
ant. It obtains the smallest deviation (11.10%) and the largest number of best
solutions (7 out of 25). It is important to remark that this method ranks second
(very close to the fastest algorithm) when comparing CPU times of the nine vari-
ants tested. This experiment confirms that the compromise between quality and
variability is crucial in a GRASP design. We therefore select C2(0.50) with LS2 as
the best variant and use it in the remaining experiments.

Next, we analyze the effect of replacing the local search component of a GRASP
by a VNS (see Section 2.3). Specifically, we compare the best algorithm iden-
tified above with nine variants of GRASP with VNS local search. These VNS

GRASP WITH EXTERIOR PR FOR DIFFERENTIAL DISPERSION MINIMIZATION 15

procedures differ in the kstep and kmax parameters. We tested the values kmax =
{0.1n, 0.2n, 0.3n} and kstep = {0.01n, 0.025n, 0.05n}, where n = |V |, and denote
the method by VNS(kstep , kmax). Table 2 shows that including a VNS in a GRASP
procedure considerably improves the quality of the results. As a comparison of Ta-
bles 1 and 2 shows, the average objective function for constructive with local search
varies from 162.65 to 184.11, while that average for constructive with VNS in place
of local search varies from 136.56 to 155.11. However, as expected, the running
time of the VNS grows with large values of kmax and/or with small values of kstep .
To find a compromise between CPU time and quality, we select VNS(0.01, 0.1) for
the next experiments, since it presents the best results in terms of average objective
function (136.56) and number of best solutions found (9 out of 25). Additionally, it
ranks third (out of 9 methods) when considering the average deviation (8.80%) but
taking about half the CPU time (156.64 seconds) of VNS(0.01, 0.2) and VNS(0.01,
0.3) whose computing times are 226.90 and 300.81 seconds, respectively.

Table 2. Influence of the kstep and kmax parameters in the VNS
algorithm.

Avg. Time (s) Dev. (%) #Best

0.1
0.01 136.56 156.64 8.80 9
0.025 149.09 93.22 15.82 5
0.05 155.11 59.16 17.68 6

0.2
0.01 143.20 226.90 8.20 5

0.025 142.02 141.40 10.16 7
0.05 150.79 92.54 17.38 3

0.3
0.01 141.54 300.81 7.01 8

0.025 143.74 172.98 12.38 4
0.05 151.47 122.31 13.72 6

To single out the contribution of the VNS we conducted an additional exper-
iment. In particular, we compared the GRASP method in which construction is
C2(0.50) and improvement is LS2 with the GRASP method in which LS2 is re-
placed by VNS, allowing both algorithms to run for 150 seconds, on average, which
is the average running time taken by the best variant with VNS. The algorithm
with VNS consistently produced better outcomes. Specifically, it obtained a lower
average objective function value (136.48 versus 156.41), a lower average deviation
(0.56 % versus 6.89 %) and a larger number of best solutions found (20 and 9).

We next compared the four path relinking algorithms described in Section 3 by
incorporating them into the GRASP with VNS local search. Table 3 compares
the methods with interior path relinking with greedy (IPRg) and random (IPRr)
construction of the path, as well as the exterior path relinking with the same two
strategies of exploring the path (EPRg, EPRr). Observing these results, we con-
clude that the greedy construction of the path consistently produces better out-
comes than the random strategy. In fact, the greedy exploration of the path barely
affects the computing time. This is true mainly because we use the move strategy
described in Section 2.2. Another relevant observation is that the two exterior ver-
sions of PR clearly outperform the interior variants. With this, the GRASP with
VNS using the EPRg strategy emerges as the best algorithm for all statistics. We

16 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

believe that this result could be an important lesson for future implementations of
path relinking.

Table 3. Comparison among the proposed path relinking algorithms.

Avg. Time (s) Dev (%) #Best
IPRg 136.81 151.22 4.32 13
IPRr 137.01 150.81 4.60 14
EPRg 136.23 156.05 0.80 20
EPRr 137.09 162.73 3.28 14

We conducted an additional experiment to single out the actual contribution of
PR in final design of the algorithm. In particular we compare EPRg with the best
GRASP algorithm executed for the same computing time (about 150 seconds on
average). EPRg obtains a lower average deviation (0.71 % versus 5.69 %) and a
larger number of best solutions found (23 versus 14).

In the remainder of the paper we refer to this GRASP with VNS and Greedy
Exterior Path Relinking algorithm simply as EPR.

4.2. Algorithm evaluation. In Section 4.1, we identified EPR as being our best
proposed procedure. We next compare it with the current state-of-the-art methods
for the Min-Diff problem. These methods are a GRASP proposed by Prokopyev
et al. (2009) and the commercial MIP solver CPLEX 12.5.1 on their exact formu-
lation.

Our evaluation consists of two experiments. In the first, we compare EPR with
two variants of the GRASP of Prokopyev et al. (2009), one denoted as GRASP1
which runs for 500 iterations and the other, GRASP2, which runs for 1000 itera-
tions. In the second experiment, we compare EPR with CPLEX on all instances
that fit in memory.

For the first experiment, we implemented all of the algorithms in Java with
the objective of making a fair comparison with EPR. The experiments were run
on the same computer. Table 4 summarizes the results of this experiment, where
we consider the three sets of instances (GKD, MDG, and SOM) and the three
algorithms (EPR, GRASP1, and GRASP2). The table is organized in three groups
of rows (one for each type of instance). For each pair of instance type and algorithm,
the table lists average solution value over all instances in the set, the average CPU
time in seconds, the average percent deviation from the best known solution, and
the number of times that the methods matches the best known solution.

Each algorithm was run a single time on each instance. With respect to solution
quality, EPR clearly outperforms both GRASP1 and GRASP2. It should be noted
that the GRASP proposed by Prokopyev et al. (2009) was designed to work on
a number of equitable dispersion problems and not specifically on the MinDiff
problem as EPR is designed for.

EPR found the best known solution in 188 of 190 instances, while GRASP1
and GRASP2 did so for only 12 and 18 instances, respectively. The instances for
which GRASP1 and GRASP2 found the best known solution are all in the class
GKD, which has the smallest instances as well as Euclidean distances, making them
easier to solve as we will see later in this section in the experiments with CPLEX.
In addition to not finding many best known solutions, both GRASP1 and GRASP2

GRASP WITH EXTERIOR PR FOR DIFFERENTIAL DISPERSION MINIMIZATION 17

Table 4. EPR compared with the GRASP algorithms of
Prokopyev et al. (2009).

Instance set EPR GRASP1 GRASP2

GKD

Avg. 52.57 107.82 90.19
Time (s) 56.99 76.03 152.07
Dev (%) 0.00 74.19 69.69
#Best 68 12 18

MDG

Avg. 3567.63 5981.61 5981.80
Time (s) 1472.35 1421.10 2793.23
Dev (%) 0.00 81.51 79.57
#Best 100 0 0

SOM

Avg. 23.35 37.90 37.25
Time (s) 173.41 124.40 198.82
Dev (%) 0.00 61.54 58.18
#Best 20 0 0

ALL

Avg. 1899.53 3200.00 3189.18
Time (s) 814.17 789.05 1547.07
Dev (%) 0.00 76.71 73.68
#Best 188 12 18

found solutions that had a high percent deviation from the best known solutions,
varying, on average, from 58% for GRASP2 on SOM to 81% for GRASP1 on MDG.
As expected, running times for EPR were comparable to those of GRASP1, which,
also as expected, were about one half of those of GRASP2.

We applied the Friedman test to the raw data obtained in the previous experi-
ment. This test ranks each method for each instance in the data set. That is, for
each instance, the method that performs the best is assigned the number 1, followed
by the second best (assigned number 2), and finally the worst method receives the
number 3. Then, an average ranking is calculated for each method. A small p-
value associated with this test indicates that the averages are indeed significantly
different. We obtained a p-value of 0.00 indicating significant difference among the
methods. Additionally, the test provided the ranking in which the best method is
EPR with an average ranking of 1.10, followed by GRASP2 (average ranking of
2.31), followed by GRASP1 (average ranking of 2.60).

Finally, we compare EPR with GRASP2 by considering two well-known non-
parametric tests for pairwise comparisons: the Wilcoxon test and the Sign test. The
former answers the question: Do the two samples (in our case, solutions obtained
with EPR and GRASP2) represent two different populations? The resulting p-
value of 0.00 indicates that the values compared come from different algorithms

18 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

and there are significant differences between both methods. On the other hand,
the Sign test computes the number of instances on which an algorithm supersedes
another. The resulting p-value of 0.00 again indicates that there are significant
differences between EPR and GRASP2, confirming the superiority of the method
proposed in this paper.

Table 5. Comparison of EPR and CPLEX (limited to 1800 seconds)

EPR CPLEX
Instance MinDiff Time (s) UB LB Time (s) Opt

GKD-b 10 n25 m7 23.26523 0.312 23.26523 23.26523 1.014 1
GKD-b 11 n50 m5 1.9261 0.187 1.9261 1.9261 8.814 1
GKD-b 12 n50 m5 2.12104 0.171 2.0513 2.0513 9.044 1
GKD-b 13 n50 m5 2.36231 0.187 2.36231 2.36231 6.668 1
GKD-b 14 n50 m5 1.6632 0.188 1.6632 1.6632 6.428 1
GKD-b 15 n50 m5 2.85313 0.187 2.85313 2.85313 8.3 1

GKD-b 16 n50 m15 42.74578 1.389 42.74578 42.74578 54.937 1
GKD-b 17 n50 m15 48.10761 1.608 48.10761 48.10761 36.853 1
GKD-b 18 n50 m15 43.19609 1.343 43.19609 43.19609 441.016 1
GKD-b 19 n50 m15 46.41245 1.358 46.41245 46.41245 347.622 1

GKD-b 1 n25 m2 0 0 0 0 0.012 1
GKD-b 20 n50 m15 47.71511 1.265 47.71511 47.71511 599.622 1
GKD-b 21 n100 m10 13.83202 1.171 12.30384 0 1330.461 0
GKD-b 24 n100 m10 8.64064 1.202 9.81926 0 1500.213 0
GKD-b 26 n100 m30 168.72959 9.439 176.86238 0 1104.597 0
GKD-b 27 n100 m30 127.09726 9.72 205.76481 0 1099.519 0
GKD-b 28 n100 m30 106.37919 10.422 148.59098 0 1212.293 0
GKD-b 29 n100 m30 137.45316 10.048 176.75614 0 1091.947 0

GKD-b 2 n25 m2 0 0 0 0 0.018 1
GKD-b 30 n100 m30 127.47974 9.283 134.10651 0 1140.244 0

GKD-b 3 n25 m2 0 0.017 0 0 0.016 1
GKD-b 4 n25 m2 0 0.016 0 0 0.016 1
GKD-b 5 n25 m2 0 0.015 0 0 0.016 1
GKD-b 6 n25 m7 12.71796 0.173 12.71796 12.71796 0.468 1
GKD-b 7 n25 m7 14.09875 0.156 14.09875 14.09875 1.732 1
GKD-b 8 n25 m7 16.76119 0.156 16.76119 16.76119 1.186 1
GKD-b 9 n25 m7 17.06921 0.172 17.06921 17.06921 0.173 1

SOM-b 2 n100 m20 6 3.042 6 0 663.937 0
SOM-b 3 n100 m30 10 5.796 12 0 99.342 0
SOM-b 4 n100 m40 13 8.715 14 0 121.602 0

We compared EPR with CPLEX 12.5.1 only on the 30 instances which fit in
memory for CPLEX. Most of these instances were from the GKD set. Three were
from SOM and none were from MDG (the smallest instance in MDG has 500
vertices). Running times for CPLEX were limited to 1800 seconds. EPR again did
100 GRASP iterations, followed by exterior path relinking between all pairs of the
ten elite set solutions. Table 5 summarizes these runs. For each instance, the table
lists the solution values and CPU times in seconds for EPR, as well as the upper and
lower bounds found by CPLEX and the time taken by CPLEX. The last column in
the table indicates whether CPLEX was able to prove optimality. Though CPLEX
was limited to 1800 seconds, it often terminated before that, even when it could
not prove optimality. This occurred because its search tree could no longer fit in

GRASP WITH EXTERIOR PR FOR DIFFERENTIAL DISPERSION MINIMIZATION 19

memory. CPLEX was able to prove optimality in 20 of the 30 instances. In 19 of
those 20 instances, EPR was able to match the value of the optimal solution in a
single run. In the remaining ten instances, EPR was able to improve the upper
bound found by CPLEX in eight of them, match it in one, and do worse in only
one. Running times for EPR were comparable to those of CPLEX on the smaller
instances and, as expected, were orders of magnitude smaller than those of CPLEX
on the larger instances.

5. Conclusions

This paper proposed several new hybrid heuristics for the differential dispersion
problem. The heuristics used components of GRASP, variable neighborhood search
(VNS), and path relinking. To find a good configuration for our best heuristic, we
considered eight constructive procedures, four local search procedures, including one
based on VNS, and four path relinking strategies. The best configuration consisted
of a GRASP with sampled greedy construction and VNS for local search. As
opposed to the standard way of applying VNS where the starting solution is random,
the sampled greedy constructed solution is used. During the search, and elite set of
the best solutions found (with no repetition allowed) is built and maintained. After
a fixed number of GRASP iterations, exterior path relinking is applied between all
pairs of elite set solutions and the best solution found is returned.

Exterior path relinking, or path separation, introduced in Glover (2014) and first
used here, is a variant of the more common interior path relinking. In interior
path relinking, paths in the neighborhood solution space connecting good solutions
are explored from between the solutions in the search for improvements. Exterior
path relinking, as opposed to exploring paths between pairs of solutions, explores
paths beyond those solutions. This is accomplished by considering an initiating
solution and a guiding solution and introducing in the initiating solution attributes
not present in the guiding solution. To complete the process, the roles of initiating
and guiding solutions are exchanged.

Extensive computational experiments on 190 instances from the literature demon-
strated the competitiveness of this algorithm. Not only was it able to outperform
the GRASP heuristic of Prokopyev et al. (2009) and find optimal solutions to all
but one of the instances that CPLEX is able to solve, it improved the CPLEX
upper bound on all but one of the instances that CPLEX failed to solve.

For future research, we note the possibility of applying a form of multiple neigh-
borhood search different from VNS by reference to the strategic oscillation (oscillat-
ing assignment) framework as implemented in Glover et al. (1984) and elaborated
in Glover and Laguna (1997) ch. 9. We also observe the relevance of additional
variants of exterior path relinking suggested in Glover (2014). These variants open
the door to a wide variety of possibilities that invite closer examination and that
may give an interesting basis for future research.

Acknowledgment

This research has been partially supported by the Spanish Ministry of “Economı́a
y Competitividad”, grant ref. TIN2012-35632-C02, and the Government of the
Community of Madrid, grant ref. S2009/TIC-1542.

20 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

References

S. Agca, B. Eksioglu, and J.B. Ghosh. Lagrangian solution of maximum dispersion
problems. Naval Research Logistics, 47:97–114, 2000.

R. Aringhieri, R. Cordone, and Y. Melzani. Tabu search vs. GRASP for the max-
imum diversity problem. 4OR: A Quarterly Journal of Operations Research, 6
(1):45–60, 2008.

J.R. Brown. The knaspack sharing problem. Operations Research, 27(2):341–355,
1979a.

J.R. Brown. The sharing problem. Operations Research, 27(2):324–340, 1979b.
V. Campos, R. Mart́ı, J. Sanchez-Oro, and A. Duarte. GRASP with PR for the
orienteering problem. Journal of the Operational Research Society, 2013. doi:
10.1057/jors.2013.156.

A. Duarte and R. Mart́ı. Tabu search and GRASP for the maximum diversity
problem. European Journal of Operational Research, 178(1):71–84, 2007.

A. Duarte, R. Mart́ı, M.G.C. Resende, and R.M.A. Silva. GRASP with path relink-
ing heuristics for the antibandwidth problem. Networks, 58(3):171–189, 2011.

A. Duarte, L.F. Escudero, R. Mart́ı, N. Mladenović, J.J. Pantrigo, and J. Sánchez-
Oro. Variable neighborhood search for the vertex separation problem. Computers
& Operations Research, 39(12):3247–3255, 2012.

A. Duarte, J.J. Pantrigo, E.G. Pardo, and J. Sánchez-Oro. Parallel variable neigh-
bourhood search strategies for the cutwidth minimization problem. IMA Journal
of Management Mathematics, 2013. doi: 10.1093/imaman/dpt026.

T.A Feo and M.G.C Resende. A probabilistic heuristic for a computationally diffi-
cult set covering problem. Operations Research Letters, 8(2):67–71, 1989.

T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search
procedure for maximum independent set. Operations Research, 42:860–878, 1994.

M. Gallego, A. Duarte, M. Laguna, and R. Mart́ı. Hybrid heuristics for the max-
imum diversity problem. Computational Optimization and Applications, 44(3):
411–426, 2009.

F. Glover. Tabu search and adaptive memory programming: Advances, applica-
tions and challenges. In R.. Barr, R.V. Helgason, and J.L. Kennington, editors,
Interfaces in Computer Science and Operations Research, volume 7 of Operations
Research/Computer Science Interfaces Series, pages 1–75. Springer US, 1997.

F. Glover. Exterior path relinking for zero-one optimization. International Journal
of Applied Metaheuristic Computing, to appear, 2014.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

F. Glover, C. McMillan, and R. Glover. A heuristic programming approach to the
employee scheduling problem and some thoughts on managerial robots. Journal
of Operations Management, 4(2):113–128, 1984.

F. Glover, C.C. Kuo, and K.S. Dhir. Heuristic algorithms for the maximum diver-
sity problem. Journal of Information and Optimization Sciences, 19(1):109–132,
1998.

P. Hansen and N. Mladenović. Variable neighborhood search. In E.K. Burke and
G. Kendall, editors, Search Methodologies, pages 313–337. Springer US, 2014.

P. Hansen, N. Mladenović, and J.A. Moreno-Pérez. Variable neighbourhood search:
Methods and applications. Annals of Operations Research, 175(1):367–407, 2010.

GRASP WITH EXTERIOR PR FOR DIFFERENTIAL DISPERSION MINIMIZATION 21

G. Kortsarz and D. Peleg. On choosing a dense subgraph. In Proceedings of the
34th Annual Symposium on Foundations of Computer Science, pages 692–701,
1993.

M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS Journal on Computing, 11(1):44–52, 1999.

M. Lozano, A. Duarte, F. Gortázar, and R. Mart́ı. Variable neighborhood search
with ejection chains for the antibandwidth problem. Journal of Heuristics, 18:
919–938, 2012.

R. Mart́ı, M. Gallego, and A. Duarte. A branch and bound algorithm for the
maximum diversity problem. European Journal of Operational Research, 200(1):
36–44, 2010.

R. Mart́ı, M. Gallego, A. Duarte, and E.G. Pardo. Heuristics and metaheuristics
for the maximum diversity problem. Journal of Heuristics, 19(4):591–615, 2013.

N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Oper-
ations Research, 24(11):1097–1100, 1997.

G. Palubeckis. Iterated tabu search for the maximum diversity problem. Applied
Mathematics and Computation, 189(1):371–383, 2007.

J.J. Pantrigo, R. Mart́ı, A. Duarte, and E.G. Pardo. Scatter search for the cutwidth
minimization problem. Annals of Operations Research, 199(1):285–304, 2012.

O.A. Prokopyev, N. Kong, and D.L. Martinez-Torres. The equitable dispersion
problem. European Journal of Operational Research, 197(1):59–67, 2009.

M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures:
Advances, hybridizations, and applications. In M. Gendreau and J.-Y. Potvin,
editors, Handbook of Metaheuristics, volume 146 of International Series in Opera-
tions Research & Management Science, pages 283–319. Springer US, 2nd edition,
2010.

M.G.C. Resende and C.C. Ribeiro. GRASP: Greedy randomized adaptive search
procedures. In E.K. Burke and G. Kendall, editors, Search Methodologies, pages
287–312. Springer US, 2014.

M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem.
Journal of Heuristics, 10(1):59–88, 2004.

M.G.C. Resende, R. Mart́ı, M. Gallego, and A. Duarte. GRASP and path relinking
for the max-min diversity problem. Computers & Operations Research, 37(3):
498–508, 2010.

J. Sánchez-Oro, J.J. Pantrigo, and A. Duarte. Combining intensification and di-
versification strategies in VNS. An application to the vertex separation problem.
Computers & Operations Research, 2013. doi: 10.1016/j.cor.2013.11.008.

G.C. Silva, L.S. Ochi, and S.L. Martins. Experimental comparison of greedy ran-
domized adaptive search procedures for the maximum diversity problem. In Ex-
perimental and Efficient Algorithms, volume 3059 of Lecture Notes in Computer
Science, pages 498–512. Springer Berlin Heidelberg, 2004.

M.B. Teitz. Toward a theory of urban public facility location. Papers of the Regional
Science Association, 21(1):35–51, 1968.

22 A. DUARTE, J. SÁNCHEZ-ORO, M.G.C. RESENDE, F. GLOVER, AND R. MARTÍ

(A. Duarte) Departamento de Ciencias de la Computación, Universidad Rey Juan Car-

los, Spain.

E-mail address: abraham.duarte@urjc.es

(J. Sánchez-Oro) Departamento de Ciencias de la Computación, Universidad Rey Juan

Carlos, Spain.

E-mail address: jesus.sanchezoro@urjc.es

(M.G.C. Resende) Network Evolution Research Department, AT&T Labs Research,

200 S. Laurel Avenue, Room A5-1F34, Middletown, NJ 07748 USA.

E-mail address: mgcr@research.att.com

(F. Glover) OptTek Systems, Inc. Boulder, CO, USA,

E-mail address: glover@opttek.com

(R. Mart́ı) Departamento de Estad́ıstica e Investigación Operativa, Universidad de

Valencia, Spain

E-mail address: rafael.marti@uv.es

