
Revised GRASP with Path-Relinking for the Linear
Ordering Problem

W. Art Chaovalitwongse
Department of Industrial and Systems Engineering, Rutgers University

96 Frelinghuysen Rd., Piscataway, New Jersey 08854, USA
wchaoval@rci.rutgers.edu

Carlos A.S. Oliveira
Princeton Consultants Inc.

2 Research Way, Princeton, NJ 08540
oliveira@ufl.edu

Bruno Chiarini
PO Box 522274, Miami, FL 33152.

bruno.chiarini@gmail.com

Panos M. Pardalos
Department of Industrial and Systems Engineering, University of Florida

303 Weil Hall, Gainesville, Florida 32601, USA
pardalos@ufl.edu

Mauricio G.C. Resende
AT&T Research Labs

180 Park Avenue, Florham Park, New Jersey 07932, USA
mgcr@research.att.com

The linear ordering problem (LOP) is an NP-hard combinatorial optimization problem

with a wide range of applications in economics, archaeology, the social sciences, scheduling,

and biology. It has, however, drawn little attention compared to other closely related prob-

lems such as the quadratic assignment problem and the traveling salesman problem. Due

to its computational complexity, it is essential in practice to develop solution approaches to

rapidly search for solution of high-quality. In this paper we propose a new algorithm based

on a greedy randomized adaptive search procedure (GRASP) to efficiently solve the LOP.

The algorithm is integrated with a Path-Relinking (PR) procedure and a new local search

scheme. We tested our implementation on the set of 49 real-world instances of input-output

tables (LOLIB instances) proposed in Reinelt (Dec. 2002). In addition, we tested a set

of 30 large randomly-generated instances proposed in Mitchell (1997). Most of the LOLIB

instances were solved to optimality within 0.87 seconds on average. The average gap for the

randomly-generated instances was 0.0173% with an average running time of 21.98 seconds.

The results indicate the efficiency and high-quality of the proposed heuristic procedure.

Key words: linear ordering problem; heuristic; GRASP; path-relinking

1

1. Introduction

In this paper, we propose a new heuristic approach for solving the NP-hard linear ordering

problem (LOP), which has a wide range of applications in practice, especially the triangula-

tion of input-output tables used to study the relationship among the sectors of an economy.

The LOP is also known as the maximum acyclic subgraph problem, whose objective is to find

the maximum weight subgraph that contains no cycles in a given weighted directed graph.

The solution to this problem yields a linear ordering of the vertices in which all edges in the

acyclic subgraph are forward edges.

The LOP can be formally stated as follows. Consider a set N of n objects and a permu-

tation π : N → N . Each permutation π = (π(1), π(2), . . . , π(n)) corresponds one to one to

a linear ordering of the objects. Let eij, i, j = 1, 2, . . . , n, be the cost of having i before j in

the ordering, and E be the n-square matrix of costs. Then the linear ordering problem is to

find a permutation π that maximizes the total cost

Z(π) =
n−1∑
i=1

n∑
j=i+1

eπ(i)π(j). (1)

Note that Eq. (1) is the sum of the elements above the diagonal of a matrix A, whose

entry aij is resulting from a permutation π of the rows and columns of the matrix E. In

other words, we have A = XEX, where X is the permutation matrix associated with the

permutation π (Reinelt, 1985). To be more precise, the LOP is a problem of finding a

simultaneous permutation of the rows and columns of a matrix E such that the sum of the

elements above the diagonal is maximal.

The LOP can also be modeled as a graph problem. Let G(N, A) be a complete directed

graph with node set N and arc set A = {(i, j) : i, j ∈ N ∧ i 6= j}. Let eij be the weight of arc

(i, j). A spanning acyclic tournament in G induces a unique linear ordering of the node set

N (Jünger, 1985). A tournament is defined as a directed graph in which each pair of nodes

is connected by exactly one arc, which is clearly necessary since either a sector i is before j

or j is before i. The complexity of the maximum LOP can be easily proven to be NP-hard

by transforming it it to the equivalent minimum weighted feedback arc set problem on G,

which is a very well-known NP-hard problem (Garey and Johnson, 1979).

The LOP has an interesting symmetry property. If a permutation π = (π(1), π(2), . . . , π(n))

is an optimal solution to the maximization version, then the reverse permutation π =

(π(n), π(n − 1), . . . , π(1)) is an optimal solution to the minimization version. In fact, the

2

LOP accepts a trivial 1
2
-approximation algorithm (Jünger, 1985). Let π be an arbitrary

permutation and π its reverse. It is easy to see that Z(π) + Z(π) is a constant. Choose π̂

such that Z(π̂) = max{Z(π), Z(π)}, then we get

Z(π∗)− Z(π̂)

Z(π∗)
≤ 1

2
,

where π∗ is an optimal permutation and Z(π∗) > 0. No other approximation algorithm

exists (Jünger, 1985). It follows that any permutation is optimal in the unweighted version

of the LOP.

1.1 Problem Formulations

Like most combinatorial optimization problems, the LOP has many alternative formulations.

The LOP can be expressed as an integer programming problem as follows. Let G(N,A) be

the complete directed graph associated with the LOP as shown in the previous section.

Define

xij =

{
1 if (i, j) ∈ A′

0 otherwise,
(2)

where A′ ⊂ A is the arc set of the spanning acyclic tournament on G. Then the problem (1)

can be formulated as the following integer program:

max
∑

(i,j)∈A

eijxij (3)

s.t. xij + xji = 1 ∀i, j ∈ N, i < j (4)

xij + xjk + xki ≤ 2 ∀i, j, k ∈ N, i 6= j, i 6= k, j 6= k (5)

xij ∈ {0, 1}.

The constraints in Eq.(4) define the tournament polytope. It can be proven that the 3-

dicycle inequalities in Eq. (5) are sufficient to prevent any cycles (Reinelt, 1985). These two

constraint sets define the linear ordering polytope. There are 2
(

n
2

)
variables and

(
n
2

)
+ 2

(
n
3

)

constraints in this formulation.

The tournament constraints in Eq.(4) motivate the use of a single variable to represent

the two possible ways, in which every pair of nodes can be connected. Let us substitute

xji = 1− xij, for every i, j ∈ N, j > i, then an equivalent integer programming formulation

3

is given by

max
∑

{(i,j)∈A:i<j}
e′ijxij (6)

s.t. xij + xjk − xik ≤ 1 ∀i, j, k ∈ N, i 6= j, i 6= k, j 6= k (7)

xij + xjk − xik ≥ 0 ∀i, j, k ∈ N, i 6= j, i 6= k, j 6= k (8)

xij ∈ {0, 1},

where e′ij = eij − eji. With the reformulation technique, this integer program has only
(

n
2

)

variables and 2
(

n
3

)
constraints.

Finally, the linear ordering problem can be formulated as a quadratic assignment problem

(QAP), which is well-known to be NP-complete. The QAP can be stated as follows: Given

a positive integer n, and two n×n matrices A = (aij) and B = (bij) with nonnegative entries,

find a permutation p = (p(1), . . . , p(n)) of the set {1, 2, . . . , n} that minimizes

C(p)
n∑

i=1

n∑
j=1

aijbp(i)p(j).

The QAP can be formulated in several equivalent forms. One of the most common formula-

tions is the the following quadratic zero-one programming problem:

min
n∑

i=1

n∑
j=1

n∑

k=1

n∑

l=1

aijblkxikxjl

s.t.
n∑

i=1

xij = 1 (j = 1, . . . , n)

n∑
j=1

xij = 1 (i = 1, . . . , n) (9)

xij ∈ {0, 1} (i, j = 1, . . . , n).

The LOP can be transformed to the QAP by using the matrix of weights E of the LOP as

the distance matrix of the QAP. Then, the flow matrix A = {aij} is constructed as follows,

aij = −1 if i < j and aij = 0, otherwise (Burkard et al., 1998).

1.2 Application in Economics

The main application of the LOP is the triangulation of input-output models in economics.

The input-output models are primarily used by economists and policy-makers to obtain

a systematic description of interrelations among the sectors (Leontief, 1986). Specifically,

4

the input-output models provide the impact of changes of an economic variable through

transactions among the sectors of an economy. An input-output model begins by dividing

the economy of a country (or region) into a specified number of sectors. Then a table

is constructed, where the entries are the total transactions between every pair of sectors.

The total output (or input) of a sector can be obtained by summing the entries on the

corresponding row (or column). The resulting table thus summarizes the interdependence

among the economic sectors. Structural properties of the input-output tables may not be

apparent. A particular choice in the order of the sectors used in constructing the table

might conceal an otherwise evident structure. These features are revealed by a process

called triangulation, whose objective is to find a hierarchy of the sectors such that those who

are predominantly producers will appear first, while those who are mainly consumers will

appear last.

The degree to which an economic structure “agrees” with a hierarchy of the sectors is

called linearity. In a perfectly linear economy, the flow of goods “cascades” from the upper

sectors to the lower sectors of the hierarchic ordering. If we arrange the rows and columns

of the input-output matrix according to the hierarchy, the linearity would be reflected by a

matrix that has an upper triangular structure; that is, all entries below the diagonal would

be zero. On the other hand, if there is a flow of goods back to the upper sectors, it would

be reflected by positive values on the entries below the diagonal. This leads to the definition

of a quantitative measure of linearity. Let n denote the number of sectors and E = {eij} be

the n-square matrix representing the input-output table. Assume that the rows and columns

have been arranged according to the hierarchy. Then, the linearity of an economy is given

by

λ =

∑n−1
i=1

∑n
j=i+1 eij∑n

i=1

∑n
j=1,i6=j eij

. (10)

That is, the linearity is the ratio of the sum of the elements above the diagonal to the sum of

all elements (except the diagonal). It follows that λ = 1 for a perfectly linear economy. Typ-

ical linearity values are 70% and 90% for a highly developed and underdeveloped economy,

respectively (Leontief, 1986). In addition to the knowledge of a hierarchy of sectors, the tri-

angulation of an input-output table is the process of finding a hierarchy of sectors among all

possible orderings. It is obvious that such ordering is the one that most closely resembles an

upper triangular matrix, and thus has the maximum value of λ. Note that the denominator

of Eq. (10) is constant. Additionally, every ordering is a permutation of the sectors and

5

can be applied to both the rows and columns of the input-output matrix. Therefore, we can

state the triangulation problem as that of finding a permutation of the rows and columns

such that the sum of the elements above the diagonal is maximum. Mathematically, this is

equivalent to an LOP.

1.3 Other Applications

In this section, we discuss a few other applications of the LOP besides that in economics

(see Reinelt (1985) for an extensive survey). The following problems are application areas

that the LOP has been applied.

Personnel Ranking Applications: Consider the problem of having a group of people rank

n objects. Each individual in the group is asked to express their preference with respect to

every possible pair. If we let eij be the number of people who preferred i to j, the solution to

the corresponding LOP is the ranking that most likely reflects the preferences of the group.

Sports Applications: A similar application can be found in the context of sports. For

example, consider a tournament of n teams in which every team plays against every other

team. Let eij be the score of the match between i and j if i wins, and 0 otherwise. The

ranking obtained by the LOP is considered to be the one that most closely reflects the “true”

performance of the teams. Still, it has not gained support for its implementation, probably

because the outcome of a particular match is not closely related to the result in the ranking.

Archaeology Applications: The LOP is used to determine the “most probable” chronolog-

ical ordering of a set of artifacts recovered from different sites. Samples belonging to various

time periods are given a value based on their distance to the surface. The objective is to

aggregate the data and determine an ordering of the artifacts.

Wireless Applications: In data broadcast, to reduce the access latency for processing the

complex query, it is beneficial to place the data accessed in a query close to each other on

the broadcast channel (Lee et al., 2002). The LOP is used to optimize the performance of

query processing by determining the best allocation of the data on the broadcast channel

such that frequently co-accessed data are not only allocated close to each other. The LOP

enables the data broadcast business to be widely expanded in the near future, where clients

are expected to perform complex queries or transactions on the broadcast data.

6

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2, we give an overview

discussion of some previous work. In Section 3, we give an introduction describing the

GRASP and path-relinking framework and later describe a detailed implementation of the

Revised GRASP with Path-Relinking algorithm. The computational results are given in

Section 4. Section 5 gives some concluding remarks and a discussion of practical issues.

2. Previous Work

2.1 Exact Methods

A common approach in the LOP literature is the use of cutting plane algorithms (Grötschel

et al., 1984; Reinelt, 1985). The goal is to obtain an approximate description of the convex

hull of the solution set by introducing valid inequalities that are violated by current fractional

solutions, which are added to the set of inequalities of the current linear programming

problem. Jünger (1985) studied the structure of a LOP-related problem, the acyclic directed

subgraph problem, which is equivalent to the LOP if we restrict the solution to span the entire

node set. Reinelt (1985) introduced facets induced by subgraphs. Bolotashvili et al. (1999)

extended Reinelt’s results by introducing a generalized method to generate new facets. A

complete characterization has only been obtained for very small problems, n = 7 (Christof

and Reinelt, 1997). In fact, we know that unless P = NP there exist an exponential

number of such facets. However, research in this area has resulted in valid inequalities that

improve the performance of branch-and-cut algorithms (Reinelt, 1985). There are several

other studies in the facet defining inequalities for the LOP polytope (Grötschel et al., 1985;

Reinelt, 1993; Leung and Lee, 1994; Bolotashvili et al., 1999).

Although cutting plane methods provide a way to obtain an optimal solution to a linear

ordering problem, it is now possible to solve linear ordering problems of a size where these

linear programming problems can be solved more efficiently by using an interior point method

than by using simplex. The first authors to discuss an interior point cutting plane algorithm

for the linear ordering problem were Mitchell (1997), in which the interior point method is

integrated with a simplex cutting plane method. The pioneering work in applying an interior

point algorithm for the LOP is Mitchell (1997); Mitchell and Borchers (2000). The solution

given by a interior point algorithm is used as a starting point for a simplex cutting plane

7

algorithm (Mitchell and Borchers, 2000). They solved all the considered problem instances

to optimality.

2.2 Approximation Algorithms

Although the LOP is NP-hard, the solution can be estimated to the optimality within a fac-

tor of 1/2. It is not known whether the maximum can be estimated to a better factor using

a polynomial-time algorithm. Hansen (1989) presented O(log2 n)-approximation algorithms

for the LOP (also called minimum linear arrangement problem) and for the more general

problem of graph embeddings in d-dimensional meshes. Even et al. (2000) applied the re-

cursive decomposition technique to obtain polynomial time O(log n log log n)-approximation

algorithms for the LOP. In a later study, it was shown that the best previous approximation

bound for the LOP can be improved to a polynomial time O(log n)-approximation algo-

rithm (Rao and Richa, 2004). However, it was recently shown that polyhedral relaxations

of the LOP cannot be used to approximate the problem to within a factor better than

1/2 (Newman, 2000). This result was achieved by demonstrating that the integrality gap of

the polyhedral relaxations is 2 on random graphs with uniform edge probability p = 2
√

log n

n
,

where n is the number of vertices. This result is followed by another study showing that

approximating the LOP to within better than 65
66

is NP-hard (Newman and Vempala, 2001).

In a more recent study, a new semidefinite programming relaxation for the linear ordering

problem is proposed by showing that if a random graph is chosen with uniform edge prob-

ability p = d
n
, where d = ω(1), then the gap between the semidefinite relaxation and the

integral optimal is at most 1.64, with a high probability (Newman, 2004). A semidefinite

program for the LOP derived in that study is similar to the semidefinite program used in

the Goemans-Williamson algorithm to approximate the maximum cut problem (Goemans

and Williamson, 1995) but different objective functions are used.

2.3 Heuristic Methods

Heuristic methods such as GRASP, tabu search, simulated annealing, genetic search, and

evolution strategies have shown to able to efficiently find high quality solutions to many

combinatorial and global optimization problems, by exploring the solutions space more thor-

oughly to find a good solution. A recent survey on multi-start heuristic algorithms for global

optimization is given by Mart́ı (2003). One of the earliest heuristics for the LOP was pro-

posed in Chenery and Watanabe (1958) in the context of the triangulation of input-output

8

tables. Given a sector i, the ratio of total input to the total output

ui =

∑n
k=1 cik∑n
k=1 cki

(11)

is used to arrange the sectors in the order of decreasing ui. The use of Eq. (11) gives a fairly

good ordering considering its simplicity. Based on the symmetry property mentioned in Sec-

tion 1.2, Chanas and Kobylański (1996) developed a heuristic that performs a sequence of

optimal insertions and reversals. Laguna et al. (1999) developed an algorithm based on tabu

search. They analyzed several intensification and diversification techniques, and compared

their algorithm with that of Chanas and Kobylański (1996). Campos et al. (2001) used a

scatter search approach. A correction term based on the frequency by which an object i ap-

pears in a particular position in the ordering is added to 11 to reflect previous solutions. The

preliminary version of this paper can be found in Campos et al. (1998). Variable Neighbor-

hood Search for the LOP is proposed in González and Pérez-Brito (2001). In a later study,

a hybrid genetic algorithm, which includes the selection of crossover/mutation operators,

accelerating the local search module and tuning the parameters, for the LOP is proposed in

Huang and Lim (2003). A Lagrangian-based heuristic approach is proposed in Belloni and

Lucena (2004). This approach is embedded within a Lagrangian Relaxation framework and

started with a construction phase. Solutions are then subsequently improved by Subgradient

Optimization procedure. Greistorfer (2004) investigated several versions of a tabu scatter

search heuristic to solve permutation type optimization problems including the LOP. The

main idea of this method is to incorporate the following procedures: the input and output

procedures used maintain the solution pool and determine the transfer of elite solutions,

and a solution combination method used to effectively combine a set of elite solutions. In

the most recent study, Campos et al. (2005) developed a general-purpose heuristic based on

the scatter-search and tabu-search methodologies for permutations problems. The proposed

technique treats the objective-function evaluation as a black box, which makes the search

algorithm context-independent.

3. A GRASP with Path-Relinking algorithm

3.1 Introduction to GRASP and Path-Relinking

Many problems in combinatorial optimization are inherently intractable. In other cases, we

might be able to obtain a global optimal solution but with a running time that exceeds

9

Procedure GRASP(RCLSize, StoppingCondition)
1 BestSolutionFound = ∅;
2 while StoppingCondition not satisfied, do
3 x = ConstructGreedyRandomizedSolution(RCLSize);
4 LocalSearch(x);
5 UpdateSolution(BestSolutionFound,x);
6 end;
7 return BestSolutionFound;
end;

Figure 1: A Generic GRASP pseudo-code

what it is demanded in practice. Therefore, researchers and practitioners usually try to

develop algorithms that can generate “good” solutions within an acceptable time limit.

Most hard problems in combinatorial optimization require the use of heuristics to obtain

approximate solutions due to their inherent intractability. In this case, we are interested in

finding solutions that are close “enough” to the optimal value at a low computational cost.

Heuristics, as opposed to approximation algorithms, do not give a guaranteed quality of

the obtained solutions. Nevertheless, the flexibility we have in developing heuristics allows us

to exploit the special structure of the problem, tailoring the existing methods, and resulting

in very well performing algorithms. The quality of a heuristic, however, must be validated

by extensive testing. GRASP (Greedy Randomized Adaptive Search Procedure),

which is an iterative restart approach, has proven to be one of the most effective heuristics

to date. In this paper, we developed a GRASP-based algorithm for the LOP, offering a

significant improvement on the computational time and quality of solution compared to

previous heuristics. In the next section, we discuss the basic principles for implementing a

new local search scheme and Path-Relinking in GRASP framework. Since its inception by

Feo and Resende in the late 1980s, GRASP has been successfully used in many applications.

In 1995, the authors formally introduced GRASP as a framework for the development of

new heuristics (Feo and Resende, 1995). For a recent extensive annotated bibliography of

GRASP applications, see Festa and Resende (2000).

Each iteration of GRASP consists of two phases: a construction phase in which we

seek to obtain a feasible solution, and a local search phase that attempts to improve the

solution. Figure 1 shows a generic pseudo-code of GRASP. In the construction phase, we

iteratively build a solution by randomly selecting objects from a restricted candidate list

(RCL). At each step, we form the RCL by selecting those objects with the highest measures

of attractiveness, we select a random object from the RCL, and adapt the greedy function

10

x

O
bj

ec
ti

ve
 F

un
ct

io
n

V
al

ue

Solution

gN(p)

p

Figure 2: A visualization of a path-relinking procedure. Given the initial solution s and the
guiding solution g, we iteratively explore the trajectory linking these solutions, checking for
any improvements on the way.

to reflect the addition to the solution. The size of the list is typically restricted in one of two

ways: by quality, when we choose the elements based on a threshold on the greedy function,

or by cardinality. In the literature, they are often referred to as α and β, respectively. The

size of the RCL controls the degree of greediness and randomness of the construction phase.

A null RCL results in a purely greedy solution whereas a RCL size equal to the size of the

problem yields a purely random solution.

After a solution is constructed, we attempt to improve it by performing a local search in an

appropriately defined neighborhood. Given a solution x, we explore the neighborhood N(x)

aspiring to find a local (global) optimal solution. Although larger neighborhoods increase the

probability of finding the global optimum, local search algorithms are often computationally

expensive and thus careful consideration must be given to the election of the neighborhood.

It is in this part of GRASP where the particular properties of the problem in question can

be exploited to develop schemes that can provide an intensification of the search, while not

compromising its running time. Finally, the best solution is updated if necessary with the

newly found solution. The procedure is repeated until a stopping condition is met—for

example, number of iterations, running time, etc.

Path-relinking was introduced in Glover and Laguna (1997) as a method to integrate

intensification and diversification to tabu search. It explores the trajectories linking two

good-quality solutions, starting at an initial solution and moving towards a guiding solution.

A set of good quality solutions referred to as the elite list is stored, from which the guiding

solution is usually taken from. It generates new solutions by exploring routes that connect

high-quality solutions by starting from one of these solutions, so-called initiating solution,

11

and generating a path in the neighborhood space that leads toward the other solutions, a

so-called guiding solution. This is completed by selecting moves that introduce attributes

contained in the guiding solutions. Path relinking is a directly-focused instance of a strategy

that seeks to fit in features of high quality solutions. On the other hand, instead of using

an incentive that supports the inclusion of such attributes, the path relinking approach

subordinates all other considerations to the goal of choosing moves that initiate the attributes

of the guiding solutions, in order to generate a good attribute composition in the current

solution. The composition at each step is determined by choosing the best move, using

customary choice criteria, from the restricted set of moves that incorporate a maximum

number of the attributes of guiding solutions.

3.2 Revised GRASP with Path-Relinking

Laguna and Mart́ı (1998) were the first to combine GRASP with a path-relinking procedure,

essentially adding memory to a procedure that would otherwise be a multi-start algorithm.

In this paper, we propose a new heuristic that integrates GRASP with path-relinking for

the linear ordering problem. In addition, we also revise the GRASP procedure based on the

technique suggested in Chaovalitwongse et al. (2003). The GRASP procedure was revised

by by adding an ad hoc neighborhood greedy search in the construction phase. The revised

procedure has been proven to make the best solution converged much faster (Chaovalitwongse

et al., 2003). Fig. 3 illustrates a flowchart of GRASP with path-relinking procedure. Fig. 4

shows the pseudo-code for the generic implementation of GRASP with Path-Relinking.

For the LOP, the measure of attractiveness for each object consists of the difference

between the row and column sums for the object, given by

di =
n∑

k=1

(eik − eki), i = 1, 2, . . . , n. (12)

In the context of the LOP, Eq. (12) represents the net gain by substituting (permuting)

two orders. In earlier experimentations with a GRASP algorithm (Chiarini et al., 2004), we

compared the use of Eq. (12) with the ratios as defined in Eq. (11). Although we have not

observed significant differences in the quality of the solutions, adapting the greedy function

when ratios are used is computationally more expensive. The use of Eq. (11) demands O(n2)

time to update the greedy function whereas Eq. (12) requires O(n) time. For this reason,

based on our experience, we will use Eq. (12) as our greedy function.

12

Construction Phase

Local Search

Path-Relinking

Best Solution Found

Step (05)

Step (06)

Step (08)

Step (15)

Step (10)

Step (07)

Figure 3: A flowchart of GRASP with path-relinking procedure. The steps shown in this
figure correspond to the ones in Fig. 4

As apposed to a generic implementation of GRASP with Path-Relinking, we herein pro-

pose a revised implementation. Since, LOPs usually have many alternative solutions (for

both optimal and suboptimal) with the same objective function value, it may occur at some

point in the algorithm that the elite list becomes mostly populated by alternative solu-

tions. Thus, it is increasingly difficult to enter a path-relinking as the best solution found

approaches the optimal. To solve this problem, we attempt to avoid such situations by

adapting the elite list and forcing a path-relinking procedure after a certain number of non-

improving iterations. Next, we proceed to discuss in detail the different components of the

algorithm.

3.2.1 Construction Phase

In this phase, we will construct a set of good feasible solutions based on our greedy function.

We start the procedure by creating the restricted candidate list (RCL) (see Fig. 5), which

is the list of good candidates to be inserted to a solution. The parameter β of GRASP

determines the cardinality limit on the RCL—i.e., the number of elements in RCL. The

value of β defines the trade–off between the diversity and greediness of GRASP. Larger

values of β will lead to greater diversity of the element candidates but if β is too large, then

13

Procedure GRASP-PR(β, ρ, MaxIteration)
01 BestSolutionFound = ∅;
02 EliteList = ∅;
03 nNonImprovingIt = 0;
04 for k = 1,2,...,MaxIteration
05 x = ConstructGreedyRandomizedSolution(β);
06 LocalSearch(x);
07 if x is better than worse solution in EliteList
08 DoPathRelinking(EliteList,x);
09 nNonImprovingIt = 0;
10 else if nNonImprovingIt > γ
11 AdjustEliteList(EliteList,ρ);
12 DoPathRelinking(EliteList,x);
13 nNonImprovingIt = 0;
14 else nNonImprovingIt = nNonImprovingIt + 1;
13 UpdateSolution(BestSolutionFound,x);
14 rof ;
15 return BestSolutionFound;
end;

Figure 4: The Revised GRASP with Path-Relinking pseudo-code

it will increase a chance of constructing many lower-quality solutions. The best value of β is

usually determined by extensive testings. Once the RCL is created, an element is selected at

random. After the selection, we proceed to insert the selected element in the partial solution.

A conventional GRASP implementation would simply append the recently selected object

s to the end of the partial solution. Instead, we added a procedure named “Insert” (line

5 on Fig. 5) that seeks to insert the object in an optimal position. More precisely, let

Tk = (t1, t2, . . . , tk), k = 1, 2, . . . , n, denote the current (partial) solution obtained after k

steps. The Insert operation intercalates the most recently selected object s in Tk in the

position r that maximizes

∆(i, Tk) =
r−1∑
j=1

etji +
k∑

j=r

eitj (13)

breaking ties arbitrarily. First introduced in Chanas and Kobylański (1996) as part of their

heuristic, it can be considered as a very efficient local search procedure in a relatively small

neighborhood. In fact, it can be implemented in O(k). After the insertion, the algorithm

then performs a small neighborhood greedy search as proposed in Chaovalitwongse et al.

(2003). A step of the construction phase finalizes with the task of adapting the greedy

function. The row and column corresponding to the object s are removed from the matrix,

and the attractiveness (12) of the objects is updated. We set ds = −M , where M is a large

positive value, and re-sort the top n− k objects that have yet to be selected. The procedure

14

procedure ConstructGreedyRandomizedSolution(β)
1 Solution = ∅, RCL = ∅;
2 while |Solution| < N
3 MakeRCL(RCL,β);
4 s = SelectElementAtRandom(RCL);
5 Insert(Solution,s);
6 NeighborGreedySearch(s);
7 AdaptGreedyFuction(s);
8 end;
end;

Figure 5: The GRASP construction phase

continues until a solution is constructed.

3.2.2 Local Search

Local search is one of the critical parts of the GRASP algorithm. The local search method

uses a greedy algorithm to explore the neighborhood of the current solution with the goal of

improving it as much as possible.

After a set of good solutions is constructed, we apply a 2-exchange neighborhood (2-opt

exchange) as a local search procedure. Given a solution π, its 2-exchange neighborhood

N(π) consists of all the solutions obtained by permuting the position of two objects in

the ordering—i.e., if π = (3, 1, 2), then N(π) = {(1, 3, 2), (2, 1, 3), (3, 2, 1)}. Clearly, for a

problem of size n, |N(π)| = (
n
2

)
.

The simplest way to implement local search for the LOP is to find, for each possible

pair of positions i and j, the value of the objective function when positions i and j are

exchanged in the permutation. However, directly calculating the objective function for each

perturbation of the original solution is inefficient.

A better way to do local search is to calculate only the improvement achieved by exchang-

ing a pair of positions (i, j). Consider a solution π and two objects π(i) and π(j) located in

positions i and j respectively. For simplicity assume that i < j. The change in the objective

function for an exchange of objects π(i) and π(j) is

∆Z(π, i, j) = −eπ
i,j −

j−1∑

k=i+1

(eπ
i,k + eπ

k,j) (14)

where eπ
i,j = eπ(i)π(j) − eπ(j)π(i). Using this formula we can derive a more efficient algorithm,

displayed on Figure 6.

15

procedure LocalSearch()
01 max ← −∞
02 for i from 1 to n
03 for j from 1 to n
04 delta ← −e′π(i)π(j)

05 for k from 1 to n− 1
06 delta ← delta + (e′π(i)π(k) + e′π(k)π(i))
07 end
08 if delta > max
09 max ← val ; besti ← i; bestj ← j
12 end
13 end
14 end
15 return (max , besti , bestj)
end;

Figure 6: Local Search algorithm

At completion, the local search would have exchanged the pair of objects that maximizes

Eq. (14). The operations of exploring the neighborhood and performing the exchange can

be implemented in O(n3).

3.2.3 Using Dynamic Programming to Calculate Improvements

The algorithm described above can compute an optimum exchange pair for local search,

but with unnecessarily high complexity. While Algorithm 6 has time complexity O(n3),

which is better than the O(n4) of the naive algorithm, this can be impractical for a GRASP

implementation, which repeatedly uses local search to improve solutions.

To avoid this high computational complexity, we devise a dynamic programming strat-

egy for calculating a local optimum for the LOP. The method is based on computing the

improvement due to the exchange of positions (i, j) in terms of the improvements due to the

exchange of neighboring positions. In this way we can leverage previous calculations and

avoid duplication of effort.

First, we prove a basic result that shows the recursive nature of improvements in the

local search algorithm. The result directly leads to an enhanced local search algorithm for

the LOP.

Theorem 1. Let Mi,j = ∆Z(π, i, j) represent the gain of exchanging positions i and j on

16

permutation π. Then,

Mi,j =




−eπ

i,j when i− j = 1,
−eπ

i,j + eπ
i,j−1 + eπ

i+1,j when i− j = 2,
−eπ

i,j + Mi,j−1 + Mi+1,j −Mi+1,j−1 + eπ
i+1,j−1 when i− j > 2,

where eπ
i,j = eπ(i)π(j) − eπ(j)π(i).

Proof. The first two cases are easy to check, so we consider only the third case. Using

Equation (14) and rearranging the terms, we have

Mi,j = −
j−2∑

k=i+1

eπ
i,k −

j−1∑

k=i+2

eπ
k,j − eπ

i,j−1 − eπ
i+1,j − eπ

i,j,

Mi,j−1 = −
j−2∑

k=i+1

eπ
i,k −

j−2∑

k=i+2

eπ
k,j−1 − eπ

i+1,j−1 − eπ
i,j−1,

Mi+1,j = −
j−2∑

k=i+2

eπ
i+1,k −

j−1∑

k=i+2

eπ
k,j − eπ

i+1,j−1 − eπ
i+1,j, and

Mi+1,j−1 = −
j−2∑

k=i+2

eπ
i+1,k −

j−2∑

k=i+2

eπ
k,j−1 − eπ

i+1,j−1.

Calculating the expression Mi,j−1 + Mi,j−1 −Mi+1,j−1 −Mi,j we are left with eπ
i,j − eπ

i+1,j−1,

as desired.

The insight to go from ∆Z(π, i, j) to a dynamic programming solution is to understand

that the improvement for a pair of positions (i, j) can be decomposed into improvements

for related pair of positions (i + 1, j), (i, j − 1), and (i + 1, j − 1). If we represent by Mi,j

the variation in objective value when positions i and j are exchanged, then we can represent

Mi,j as the sum of Mi,j−1, Mi+1,j, and −Mi+1,j−1, along with the addition of eπ
ij and removal

of ei+1,j−1.

The local search algorithm now becomes a simple implementation of the result above, as

shown in Figure 7. The computational complexity of this algorithm is O(n2), since for each

pair of positions, we are only using results that have been previously stored.

3.2.4 Path Relinking

The solution provided by the local search procedure is used as the initial solution for the

path-relinking. We randomly select a solution from the elite list as the guiding solution,

determining the trajectory to be followed by the procedure. Fig. 8 shows the pseudo-code

17

procedure ImprovedLocalSearch()
01 max ← −∞
02 for k from 1 to n− 1
03 i ← 1
04 for j from k + 1 to n
05 delta ← eπ

π(i)π(j)

06 if j − i > 1 then
07 delta ← delta + Mi,j−1 + Mi+1,j

08 end
09 if j − i > 2 then
00 delta ← delta −Mi+1,j−1 − eπ

π(i+1)π(j−1)

11 end
12 Mij ← delta
13 if delta > max
14 max ← val ; besti ← i; bestj ← j
15 end
16 i ← i + 1
17 end
18 end
19 return (max , besti , bestj)
end;

Figure 7: Local Search algorithm based on dynamic programming.

for the path relinking procedure. The parameter ρ determines the size of the elite list as a

fraction of the problem size.

With the trajectory defined by the two end solutions, we proceed to perform a series of

moves that will transform the initial solution into the guiding solution. In each iteration,

the algorithm performs a single move, thus creating a sequence of intermediate solutions (see

Fig. 2). To add some greediness to the process, we search the 2-exchange neighborhood of

the intermediate solutions. The solutions obtained in this manner are added to the elite list

if they are better than either the initial or the guiding solutions. It should be noted that

the search on the 2-exchange neighborhood may yield a previously examined solution in the

path. However, this is not of concern in our implementation since we do not use the local

minima during the procedure. The moving process terminates when the algorithm reaches

the guiding solution. At this point, the elite list size could have grown considerably due

to the added solutions. The procedure “AdjustEliteList” will discard the worst solutions,

keeping the best ρn. The list is kept sorted at all times and therefore no sorting is needed.

18

procedure DoPathRelinking(EliteList,x)
1 TempSolution = ∅;
2 g = SelectSolutionAtRandom(EliteList);
3 while x 6= g do
4 TempSolution = MakeNextMove(x, g);
5 LocalSearch(TempSolution);
6 if TempSolution is better than x or g then
7 EliteList = EliteList ∪ TempSolution;
8 AdjustEliteList(EliteList,ρ);
9 end;
end;

Figure 8: The GRASP Path-Relinking procedure

4. Computational Results

In this section we discuss the computational results we obtained when applying our algorithm

to two sets of test problems:

1. LOLIB. These are real-world instances of linear ordering problems that are publicly

available on the internet (Reinelt, Dec. 2002). They consist of 49 input-output tables

for some European countries, with sizes ranging from 44 to 60 objects.

2. Mitchell. This is a set of 30 random-generated instances by Mitchell (1997), with sizes

ranging from 100 to 250 objects. Three different percentages of zero entries were used:

0, 10, and 20%, denoted by the last digit on the problem name. The generator as well

as the instances are available at the author’s web site (Mitchell, Dec. 2002).

The optimal values for all instances are known. The generated instances are similar to

those from LOLIB except for the numerical range of the entries—considerably larger for the

latter. Despite attempts to replicate the characteristics of real-world instances such as those

found in LOLIB, Mitchell’s test set is significantly harder to solve. All previous works on the

LOP that included computational results predates the Mitchell instances, hence featuring

only the LOLIB problems. The algorithm was written in C++ and executed on a Core Duo,

2.1 GHz, with 2 GB of memory. Empirically, we determined β = 0.25 and ρ = 0.35 as the

best values for the parameters—e.g., for a problem of size n, the size of the RCL and the

elite list are at most 0.25n and 0.35n respectively. The algorithm was executed five times

for each problem instance, with a limit of 5000 GRASP iterations in its running time. We

report the running time, number of iterations, and the gap between the best solution and

the optimal solution. All times are reported in seconds and the gaps as percentages.

19

Table 1 shows the performance characteristics of our Revised GRASP with Path-Relinking

algorithm tested on the LOLIB instances after 200 and 5000 iterations. These character-

istics are compared with the one obtained by CPLEX and XPRESS. Note that CPLEX

and XPRESS solves every LOLIB instance to optimality. The CPU times of CPLEX come

from Belloni and Lucena (2004). The CPU times of XPRESS come from our experiments

using Xpress–Mosel under Windows environment based on default settings. Table 2 shows

the performance characteristics of our Revised GRASP with Path-Relinking algorithm tested

on the Mitchell instances after 200 and 5000 iterations. Note that we do not report the per-

formance characteristics of CPLEX and XPRESS tested on the Mitchell instances because

they failed to solve the test problems within the time limit. The algorithm found optimal

solutions for 47 out of 49 LOLIB instances, 17 of which were consistently solved to optimal-

ity. The average gap for the remaining LOLIB instances was 0.0013%. The average running

time for these real-world instances was 0.16 seconds. Although none of the Mitchell instances

were solved to optimality, the average gap after 5000 iterations was 0.001% with an average

running time of 14.30 seconds. Table 3 summarizes the performance characteristics of our

algorithm on the two test sets after 200 and 5000 iterations.

Table 4 compares the performance characteristics of our algorithm with other algorithms

in the literature. CK10 represents the Chanas– Kobylański algorithm reported in Chanas

and Kobylański (1996). represents the Tabu Search algorithm reported in Campos et al.

(2001). SS and SS10 are two Scatter Search algorithms proposed in Campos et al. (1998).

SS2 and TS are the Context-Independent Scatter and Tabu Search algorithms for permuta-

tion problems recently proposed in Campos et al. (2005). PC and ND are the Position Cut

and Node Degree procedures, respectively, proposed in the framework of Lagrangian heuris-

tics for the LOP (Belloni and Lucena, 2004). From the comparison, the results suggest that

our algorithm seems to be the algorithm with the best appropriate trade-off between solution

quality and CPU time. Figures 9 and 10 show the evolution of the gap as a function of the

running time and the number of iterations for the LOLIB and Mitchell instances, respec-

tively. Note that the units on the ordinates are percentage points. Tables 1 and 2 show the

elapsed running time and gap values after 200 and 5000 iterations. The results reported are

the averages of 5 runs for each problem instance. The averages of the values presented in

these tables are shown in Table 3.

20

Table 1: Performance Characteristics of Revised GRASP with Path-Relinking tested on the
LOLIB Instances after 200 and 5000 iterations Versus the Performance Characteristics of
CPLEX and XPRESS.

Instance Size 200 Iterations 5000 Iterations CPLEX XPRESS
Gap(%) Time (s) Gap(%) Time (s) Time (s) Time (s)

be75eec 50 0.0018 0.0310 0.00057 5.1410 1.83 2.61
be75np 50 0.0008 0.0001 0.00055 8.1250 74.68 7.44
be75oi 50 0.0017 0.2030 0.00080 3.6250 2.43 3.13
be75tot 50 0.0016 0.0160 0.00058 7.6410 1.84 2.70
stabu1 60 0.0023 0.2810 0.00161 16.3130 8.57 12.39
stabu2 60 0.0016 0.2970 0.00160 0.2970 5.69 9.94
stabu3 60 0.0038 0.3440 0.00119 11.3130 6.12 10.56

t59b11xx 44 0.0010 0.1880 0.00016 2.8440 1.93 1.97
t59d11xx 44 0.0012 0.0310 0.00002 1.7180 1.17 1.67
t59f11xx 44 0.0009 0.1410 0.00000 0.6410 0.99 1.59
t59i11xx 44 0.0000 0.0780 0.00000 2.8440 0.99 1.63
t59n11xx 44 0.0001 0.0310 0.00000 1.4380 1.25 1.58
t65b11xx 44 0.0014 0.0780 0.00039 1.4690 1.02 1.64
t65d11xx 44 0.0021 0.0940 0.00034 0.3600 1.13 1.61
t65f11xx 44 0.0019 0.0780 0.00078 1.0000 0.98 1.61
t65i11xx 44 0.0014 0.1720 0.00030 4.2030 1.09 1.59
t65l11xx 44 0.0001 0.0310 0.00000 1.0470 0.80 1.59
t65n11xx 44 0.0027 0.0780 0.00090 1.8910 1.36 1.63
t65w11xx 44 0.0010 0.1880 0.00019 2.0780 1.00 1.59
t69r11xx 44 0.0008 0.2030 0.00003 2.6250 1.19 1.59
t70b11xx 44 0.0011 0.1560 0.00018 2.0470 0.98 1.67
t70d11xn 44 0.0010 0.1880 0.00019 2.0470 24.17 2.20
t70d11xx 44 0.0017 0.0940 0.00015 5.3440 1.21 1.63
t70f11xx 44 0.0015 0.2030 0.00012 2.7500 1.01 1.59
t70i11xx 44 0.0020 0.0930 0.00076 3.7970 1.54 1.59
t70k11xx 44 0.0000 0.0001 0.00003 5.2970 1.02 1.64
t70l11xx 44 0.0004 0.0940 0.00000 0.2660 0.94 1.59
t70n11xx 44 0.0004 0.0150 0.00000 1.4380 1.06 1.63
t70u11xx 44 0.0015 0.2030 0.00037 0.9380 1.09 1.63
t70w11xx 44 0.0002 0.2350 0.00018 0.2190 1.01 1.59
t70x11xx 44 0.0004 0.1250 0.00010 4.0310 0.99 1.59
t74d11xx 44 0.0020 0.0630 0.00055 4.3440 1.20 1.59
t75d11xx 44 0.0004 0.0310 0.00022 5.6560 1.31 1.69
t75e11xx 44 0.0027 0.2030 0.00106 0.9060 1.00 1.61
t75i11xx 44 0.0002 0.1410 0.00011 4.0310 1.27 1.61
t75k11xx 44 0.0021 0.1560 0.00104 2.0160 1.24 1.61
t75n11xx 44 0.0007 0.1250 0.00002 0.8440 1.07 1.63
t75u11xx 44 0.0008 0.2810 0.00047 10.7810 1.10 1.58
tiw56n54 56 0.0008 0.2810 0.00047 10.7810 3.61 4.36
tiw56n58 56 0.0008 0.3280 0.00031 12.4380 3.25 4.27
tiw56n62 56 0.0009 0.0470 0.00047 15.3750 3.67 4.39
tiw56n66 56 0.0018 0.3750 0.00091 5.5780 3.18 4.33
tiw56n67 56 0.0014 0.0160 0.00030 11.3600 4.67 4.64
tiw56n72 56 0.0012 0.5160 0.00032 7.9210 3.00 4.50
tiw56r54 56 0.0008 0.5160 0.00048 7.9220 3.28 4.42
tiw56r58 56 0.0014 0.2190 0.00040 14.9840 2.85 4.52
tiw56r66 56 0.0014 0.1560 0.00092 14.8600 2.79 4.28
tiw56r67 56 0.0014 0.4060 0.00090 13.1880 3.25 5.22
tiw56r72 56 0.0026 0.2190 0.00068 1.5000 2.96 4.74
Average 0.0013 0.1642 0.00044 5.08718 3.99 3.05
Std. Dev. 0.0008 0.1271 0.00041 4.69538 1.56 0.36

21

Table 2: Performance Characteristics of Revised GRASP with Path-Relinking tested on the
Mitchell Instances after 200 and 5000 iterations.

Instance 200 Iterations 5000 Iterations
Gap(%) Time (s) Gap(%) Time (s)

r100a2 0.0268 0.2350 0.00191 58.6100
r100b2 0.0462 0.3600 0.00217 0.3750
r100c2 0.0416 0.0310 0.00180 19.2350
r100d2 0.0389 1.9220 0.00235 44.7970
r100e2 0.0270 1.9060 0.00257 51.7650
r150a0 0.0137 8.9690 0.00055 177.4530
r150a1 0.0263 11.6560 0.00110 155.7030
r150b0 0.0230 3.7970 0.00076 350.6720
r150b1 0.0224 10.4380 0.00118 234.6720
r150c0 0.0207 8.4060 0.00049 252.5940
r150c1 0.0369 4.9850 0.00118 167.5310
r150d0 0.0146 0.2500 0.00079 107.2660
r150d1 0.0212 6.7180 0.00095 338.5630
r150e0 0.0148 1.0780 0.00038 242.4690
r150e1 0.0388 10.7030 0.00133 141.9850
r200a0 0.0181 6.1100 0.00043 6.2970
r200a1 0.0409 6.2500 0.00102 546.5310
r200b0 0.0196 19.2350 0.00063 404.5160
r200b1 0.0333 12.7660 0.00101 785.6250
r200c0 0.0096 24.8910 0.00042 296.7660
r200c1 0.0244 27.5630 0.00109 212.7350
r200d0 0.0159 25.9060 0.00050 26.5000
r200d1 0.0345 20.5310 0.00108 665.7030
r200e0 0.0212 15.5630 0.00050 858.8750
r200e1 0.0297 0.3280 0.00086 43.4220
r250a0 0.0233 68.8130 0.00070 1565.1410
r250b0 0.0189 15.2030 0.00061 458.0940
r250c0 0.0159 3.2660 0.00064 3.3280
r250d0 0.0184 61.6100 0.00044 1133.6410
r250e0 0.0241 49.6100 0.00059 585.5310
Average 0.001344 14.3033 0.001002 331.2132

Std. Dev. 0.00082 17.6397 0.000601 368.2197

Table 3: Summary of the Performance Characteristics of Revised GRASP with Path-
Relinking obtained for the LOLIB and Mitchell test sets after 200 and 5000 iterations.

Problem Set Measure 200 Iterations 5000 Iterations

Gap(%) Time (s) Gap(%) Time (s)
LOLIB Average 0.0013 0.16 0.0004 5.08

Std. Dev. 0.0008 0.12 0.0004 4.69
Maximum 0.004 0.51 0.002 16.31

Mitchell Average 0.001 14.30 0.001 331.21
Std. Dev. 0.001 17.63 0.001 368.22
Maximum 0.003 68.81 0.003 1565.1

22

Table 4: Results Comparision on the LOLIB Instances.

Measure GRASP-PR CK10 SS SS10 TS SS2 PC ND

Gap(%) 0.002 0.150 0.010 0.010 0.001 0.003 0.004 0.000
Time(s) 0.869 0.100 2.350 14.280 12.800 8.900 8.254 6.157

1000 2000 3000 4000 5000

0.02

0.04

0.06

0.08

0.10

1 2 3 4 5

0.02

0.04

0.06

0.08

0.10

Figure 9: LOLIB Instances: the gap from the optimal solution as a percentage is shown as
a function of the number of iterations (left) and time (right). Time is in seconds.

1000 2000 3000 4000 5000

0.02

0.04

0.06

0.08

0.10

10 20 30 40 50 60

0.02

0.04

0.06

0.08

0.10

Figure 10: Mitchell Instances: the gap from the optimal solution as a percentage is shown
as a function of the number of iterations (left) and time (right). Time is in seconds.

23

5. Conclusions

In this paper, we proposed and implemented a new heuristic based on a revised GRASP

with path-relinking to efficiently obtain good solutions to linear ordering problems. The re-

sults demonstrated the benefit of embedding GRASP with a path-relinking procedure. The

algorithm was tested on two sets of problems, exhibiting a remarkably robust performance

as shown in Table 3. For all instances we obtained optimality gaps of less than 0.05% within

200 iterations and times ranging from 0.16 to 14.3 seconds on the average. We found optimal

solutions for most of the LOLIB instances. The average gap for the Mitchell instances was

0.001%. With application in economics, researchers often use simulations in which many

triangulation problems need to be solved in limited time. The efficiency and high-quality

performance of our algorithm makes it superior candidate for such applications. Never-

theless, we believe that several features can be added to improve the algorithm’s long-run

performance as well as further studying the effects of the parameters. GRASP algorithms,

as well as most multi-start methods, do not generally require significant memory resources.

However, added features such as path-relinking might compromise its performance, requiring

a balance between intensification and efficiency. We have not observed such limitations in

our implementation and thus we were able to fully exploit the intensification provided by

the path-relinking method. More importantly, we applaud the work by Campos et al. (2005)

on the development of a context-independent approach for permutation problems. We hope

to develop GRASP with Path-Relinking in a context-independent manner as well.

Acknowledgments

This work was partially supported by the the NSF CAREER grant CCF–0546574 and Rut-

gers Research Council grant 202018.

References

Belloni, Alexandre, Abilio Lucena. 2004. Lagrangian heuristics for the linear ordering prob-

lem 37–63.

Bolotashvili, G., M. Kovalev, E. Girlich. 1999. New facets of the linear ordering polytope.

SIAM Journal on Discrete Mathematics 12 326–336.

24

Burkard, R.E., E. Çela, P.M. Pardalos, L.S. Pitsoulis. 1998. The quadratic assignment

problem. P.M. Pardalos, D.-Z. Du, eds., Handbook of Combinatorial Optimization. Kluwer

Academic Publishers, 241–338.

Campos, Vicente, , Manuel Laguna, Rafael Mart́ı. 1998. Scatter search for the linear ordering

problem. Tech. rep., Graduate School of Business, University of Colorado, Boulder, CO

80309, USA.

Campos, Vicente, Fred Glover, Manuel Laguna, Rafael Mart́ı. 2001. An experimental eval-

uation of a scatter search for the linear ordering problem. Journal of Global Optimization

21 397–414.

Campos, Vicente, Manuel Laguna, Rafael Mart́ı. 2005. Context-independent scatter and

tabu search for permutation problems. INFORMS Journal on Computing 17 111–122.

Chanas, Stefan, PrzemysÃlaw Kobylański. 1996. A new heuristic algorithm solving the linear

ordering problem. Computational Optimization and Applications 6 191–205.

Chaovalitwongse, Wanpracha, Du-Kwon Kim, Panos M. Pardalos. 2003. Grasp with a new

local search scheme for vehicle routing problems with time windows. Journal of Combi-

natorial Optimization 7 179–207.

Chenery, Hollis B., Tsunehiko Watanabe. 1958. International comparisons of the structure

of production. Econometrica 26 487–521.

Chiarini, Bruno, Wanpracha Chaovalitwongse, Panos M. Pardalos. 2004. A New Algorithm

for the Triangulation of Input-Output Tables. A. Migdalas P.M. Pardalos, G. Baourakis,

eds., Supply Chain and Finance. World Scientific, 254–273.

Christof, Thomas, Gerhard Reinelt. 1997. Low-dimensional linear ordering polytopes.

Even, G., J. Naor, S. Rao, B. Schieber. 2000. Divide–and–conquer approximation algorithms

via spreading metrics. Journal of the ACM 47 585–616.

Feo, Thomas A., Mauricio G.C. Resende. 1995. Greedy randomized adaptive search proce-

dures. Journal of Global Optimization 2 1–27.

Festa, Paola, Mauricio G.C. Resende. 2000. GRASP: An annotated bibliography. Tech. rep.,

AT&T Labs Research, Florham Park, NJ 07733, USA.

25

Garey, Michael R., David S. Johnson. 1979. Computers and Intractability: A Guide to the

Theory of NP-Completeness . W.H. Freeman and Co., New York, USA.

Glover, Fred, Manuel Laguna. 1997. Tabu Search. Kluwer Academic Publishers, Boston.

Goemans, Michel X., David P. Williamson. 1995. Improved approximation algorithms for

maximum cut and satisfiability problems using semidefinite programming. Journal of the

ACM 42 1115–1145.

González, C.G., D. Pérez-Brito. 2001. A variable neighborhood search for solving the linear

ordering problem. Proceedings of the MIC’2001-4th Metahruristics International Confer-

ence. 181–185.

Greistorfer, Peter. 2004. Experimental pool design: input, output and combination strategies

for scatter search 279–300.

Grötschel, Martin, Michael Jünger, Gerhard Reinelt. 1984. A cutting plane algorithm for

the linear ordering problem. Operations Research 2 1195–1220.

Grötschel, Martin, Michael Jünger, Gerhard Reinelt. 1985. Facets of the linear ordering

polytope. Mathematical Programming 33 43–60.

Hansen, M. 1989. Approximation algorithms for geometric embeddings in the plane with

applications to parallel processing problems. Proceedings of the 30th Annual Symposium

on Foundations of Computer Science. IEEE Computer Society Press, 604–609.

Huang, Gaofeng, Andrew Lim. 2003. Designing a hybrid genetic algorithm for the linear

ordering problem. Erick Cantú-Paz, James A. Foster, Kalyanmoy Deb, et al., eds., Lecture

Notes in Computer Science, vol. 2723. Springer–Verlag, 1053–1064.

Jünger, Michael. 1985. Polyhedral Combinatorics and the Acyclic Subdigraph Problem. No. 7

in Research and Exposition in Mathematics, Heldermann Verlag, Berlin.

Laguna, Manuel, Rafael Mart́ı. 1998. GRASP and path relinking for 2-layer straight line

crossing minimization. INFORMS Journal on Computing 11 44–52.

Laguna, Manuel, Rafael Mart́ı, Vicente Campos. 1999. Intensification and diversification

with elite tabu search solutions for the linear ordering problem. Computers & Operations

Research 26 1217–1230.

26

Lee, Guanling, Shou-Chih Lo, Arbee L.P. Chen. 2002. Data allocation on wireless broadcast

channels for efficient query processing. IEEE Transactions on Computers 51 1237–1252.

Leontief, Wassily. 1986. Input-Output Economics . Oxford University Press, New York, USA.

Leung, J., J. Lee. 1994. More facets from fences for linear ordering and acyclic subgraphs

polytopes. Discrete Applied Mathematics 50 185–200.

Mart́ı, Rafael. 2003. Multi-start methods. Fred Glover, Gary A. Kochenberger, eds., Hand-

book of Metaheuristics , chap. 12. International Series in Operations Research & Manage-

ment Sciences, Kluwer Academic Publishers, 355–368.

Mitchell, John E. 1997. Computational experience with an interior point cutting plane

algorithm. Tech. rep., Mathematical Sciences, Rensellaer Polytechnic Intitute, Troy, NY

12180-3590, USA.

Mitchell, John E. Dec. 2002. Generating linear ordering problems.

http://www.rpi.edu/∼mitchj/generators/linord.

Mitchell, John E., Brian Borchers. 2000. Solving linear ordering problems with a combined

interior point/simplex cutting plane algorithm. H. Frenk et al., ed., High Performance

Optimization, chap. 14. Kluwer Academic Publishers, Dordrecht, The Netherlands, 345–

366. URL http://www.rpi.edu/ mitchj/papers/combined.html.

Newman, Alantha. 2000. Approximating the maximum acyclic subgraph. Master’s thesis,

Massachusetts Institute of Technology.

Newman, Alantha. 2004. Cuts and orderings: On semidefinite relaxations for the linear

ordering problem. Klaus Jansen, Sanjeev Khanna, José D. P. Rolim, Dana Ron, eds.,

Lecture Notes in Computer Science, vol. 3122. Springer–Verlag, 195–206.

Newman, Alantha, Santosh Vempala. 2001. Fences are futile: On relaxations for the linear

ordering problem. Proceedings of the Eighth Conference on Integer Programming and

Combinatorial Optimization (IPCO). 333–347.

Rao, S., A. W. Richa. 2004. New approximation techniques for some linear ordering problems.

SIAM Journal on Computing 34 388–404.

27

Reinelt, G. 1993. A note on small linear ordering polytope. Discrete Computational Geometry

10 67–78.

Reinelt, Gerhard. 1985. The linear ordering problem: algorithms and applications . No. 8 in

Research and Exposition in Mathematics, Heldermann Verlag, Berlin.

Reinelt, Gerhard. Dec. 2002. Linear ordering library (LOLIB).

http://www.iwr.uni-heildelberg.de/iwr/comopt/soft/LOLIB/LOLIB.html.

28

