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Abstract. The generalized quadratic assignment problem (GQAP) is a gen-
eralization of the NP-hard quadratic assignment problem (QAP) that allows

multiple facilities to be assigned to a single location as long as the capacity
of the location allows. The GQAP has numerous applications, including facil-
ity design, scheduling, and network design. In this paper, we propose several
GRASP with path-relinking heuristics for the GQAP using different construc-
tion, local search, and path-relinking procedures. We introduce a novel ap-
proximate local search scheme, as well as a new variant of path-relinking that
deals with infeasibilities. Extensive experiments on a large set of test instances
show that the best of the proposed variants is both effective and efficient.

1. Introduction

Given n facilities and m locations, the generalized quadratic assignment problem
(GQAP) consists in feasibly assigning each facility to a location. Each facility
demands some amount of location capacity and each location has a fixed amount of
capacity to distribute among facilities. An assignment is feasible if each location has
sufficient capacity to accommodate the demands of all facilities assigned to it. Given
nonnegative flows between all pairs of facilities and nonnegative distances between
all pairs of locations, the GQAP seeks a feasible assignment that minimizes the sum
of products of flows and distances in addition to a linear assignment component.
Ideally, two facilities with high inter-facility flow are either assigned to the same
location or to two nearby locations. The GQAP is a generalization of the quadratic
assignment problem (QAP) that allows multiple facilities to be assigned to a single
location as long as the capacity of the location permits. The QAP (see, e.g., Li
et al. (1994), Oliveira et al. (2004), and Pardalos et al. (1994)) is a special case of
the GQAP where each facility demands one unit of capacity and each location has
one unit of capacity to distribute.

Let N = {1, . . . , n} denote the set of facilities and M = {1, . . . , m} the set of
locations. Furthermore, denote by An×n = (aii′ ) the flow between facilities i ∈ N
and i′ ∈ N , such that aii′ ∈ ℜ+ if i 6= i′ and otherwise aii′ = 0, by Bm×m = (bjj′ )
the distance between locations j ∈ M and j′ ∈ M , such that bjj′ ∈ ℜ+ if j 6= j′

and otherwise bjj′ = 0, and by Cn×m = (cij), the cost of assigning facility i ∈ N to
location j ∈M , such that cij ∈ ℜ+. Let z ∈ ℜ+ be a scaling factor called the unit
traffic cost, qi ∈ ℜ+ be the capacity demanded by facility i ∈ N , and Qj ∈ ℜ+,
the capacity of location j ∈ M . The GQAP consists in finding Xn×m = (xij),
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with xij = {0, 1}, where facility i ∈ N is assigned to location j ∈ M if and only if
xij = 1, such that the constraints

(1)
∑

j∈M

xij = 1, ∀i ∈ N,

(2)
∑

i∈N

qixij ≤ Qj , ∀j ∈M,

(3) xij ∈ {0, 1}, ∀i ∈ N, ∀j ∈M

are satisfied and the objective function

(4)
∑

i∈N

∑

j∈M

cijxij + z
∑

i∈N

∑

j∈M

∑

i′∈N,i′ 6=i

∑

j′∈M

aii′bjj′xijxi′j′

is minimized. Constraints (1) guarantee that each facility is assigned to exactly one
location, while constraints (2) ensure that location capacities are not violated.

The generalized quadratic assignment problem, introduced by Lee and Ma (2005),
is a relatively new combinatorial optimization problem. Lee and Ma proposed three
linear programming relaxations and a branch and bound algorithm for the GQAP,
as well as suite of test problems on which they tested their algorithms. Elloumi et al.
(2003) proposed three families of lower bounding techniques for the constrained
module allocation problem, a special case of the GQAP. They also propose a suite
of test problems. Cordeau et al. (2006) proposed a new suite of test problems and
an integer linear programming formulation with which they solved small instances
of their test problems (having 5 to 16 facilities and 3 to 30 locations). A heuristic
based on truncating the branch and bound tree was also proposed. The authors
finally describe a memetic algorithm which was shown to find optimal solutions for
all small instances tested and, on larger instances (having 20 to 50 facilities and 6
to 20 locations) was able to find better solutions than those found with the trun-
cated branch and bound. Hahn et al. (2007) use the reformulation linearization
technique (RLT) dual ascent procedure to find optimal solutions to some problems
from Cordeau et al. (2006), Lee and Ma (2005), and Elloumi et al. (2003), having
up to 20 facilities and 15 locations. For problems of these dimensions, the runtimes
of their algorithm were no worse than those of previous exact methods. Pessoa
et al. (2008) proposed a new lower bound for the GQAP based on the Lagrangian
relaxation of the RLT formulation proposed in Hahn et al. (2007). To efficiently
solve the relaxed problem, they combined the Hahn et al. (2007) dual ascent pro-
cedure with the general-purpose volume algorithm of Barahona and Anbil (2000).
They tested the new bounding procedure using the branch-and-bound method of
Hahn et al. (2007) on a subset of instances from Cordeau et al. (2006), Lee and Ma
(2005), and Elloumi et al. (2003).

GRASP, or greedy randomized adaptive search procedure, is a metaheuristic for
finding approximate solutions to combinatorial optimization problems formulated
as

min f(x) subject to x ∈ X ,

where f(·) is an objective function to be minimized and X is a discrete set of feasible
solutions. It was first introduced by Feo and Resende (1989) in a paper describ-
ing a probabilistic heuristic for set covering. Since then, GRASP has experienced
continued development (Feo and Resende, 1995; Resende and Ribeiro, 2002; 2010)
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and has been applied in a wide range of problem areas (Festa and Resende, 2002;
2009a;b).

In this paper, we present a GRASP with path-relinking heuristic (Laguna and
Mart́ı, 1999; Resende and Ribeiro, 2005) for the generalized quadratic assignment
problem. Extensive computational experiments on benchmark test problems show
the effectiveness of these heuristics.

The paper is organized as follows. In Section 2, we describe the GRASP with
path-relinking procedure. We consider variants of the greedy randomized construc-
tion procedure, the local search, and the path-relinking intensification procedure.
Computational results are described in Section 3 and concluding remarks are made
in Section 4.

2. GRASP with Path-relinking for GQAP

A GRASP is a multi-start heuristic where at each iteration a greedy randomized
solution is constructed to be used as a starting solution for local search. Local search
repeatedly substitutes the current solution by a better solution in the neighborhood
of the current solution. Each such replacement is called a move. If there is no better
solution in the neighborhood, the current solution is declared a local minimum and
the search stops. The best local minimum found over all GRASP iterations is
output as the solution.

GRASP iterations are independent, i.e. solutions found in previous GRASP iter-
ations do not influence the algorithm in the current iteration. The use of previously
found solutions to influence the procedure in the current iteration can be thought
of as a memory mechanism. One way to incorporate memory into GRASP is with
path-relinking (Glover, 1996; Glover et al., 2000). In GRASP with path-relinking
(Laguna and Mart́ı, 1999; Resende and Ribeiro, 2005), an elite set of diverse good-
quality solutions is maintained to be used during each GRASP iteration. After a
solution is produced with greedy randomized construction and local search, that
solution is combined with a randomly selected solution from the elite set using the
path-relinking operator. The best of the combined solutions is a candidate for in-
clusion in the elite set and is added to the elite set if it meets quality and diversity
criteria.

Algorithm 1 shows pseudo-code for a GRASP with path-relinking heuristic for
the GQAP. The algorithm takes as input the set N of facilities, the set M of
locations, the flow matrix A, the distance matrix B, the assignment cost matrix
C, the scaling factor z, the facility demands qi, i ∈ N , and the location capacities
Qj, j ∈ M , and outputs an assignment vector π∗ specifying the location of each
facility in the best solution found.

After initializing the elite set P as empty in line 1, the GRASP with path-
relinking iterations are computed in lines 2 to 24 until a stopping criterion is sat-
isfied. This criterion could be, for example, a maximum number of iterations, a
target solution quality, or a maximum number of iterations without improvement.
During each iteration, a greedy randomized solution π′ is generated in line 3. If the
elite set P does not have at least ρ elements, then if π′ is feasible and sufficiently
different from all other elite set solutions, π′ is added to the elite set in line 22.
To define the term sufficiently different more precisely, let ∆(π′, π) be defined as
the minimum number of moves needed to transform π′ into π or vice-verse. For a
given level of difference δ, we say π′ is sufficiently different from all elite solutions
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in P if ∆(π′, π) > δ for all π ∈ P , which we indicate with the notation π′ 6≈ P .
If the elite set P does have at least ρ elements, then the steps in lines 5 to 19
are computed. The greedy randomized construction procedure is not guaranteed
to generate a feasible solution. It is described in detail in Subsection 2.1. If the
greedy randomized procedure returns an infeasible solution, a feasible solution π′ is
selected uniformly at random from the elite set in line 6 to be used as a surrogate
for the greedy randomized solution. An approximate local search is applied using
π′ as a starting point in line 8, resulting in an approximate local minimum, which
we denote by π′. Since elite solutions are made up of approximate local minima,
then applying an approximate local search to an elite solution will, with high prob-
ability, result in a different approximate local minimum. The approximate local
search is not guaranteed to find an exact local minimum. It is described in detail
in Subsection 2.2. Since π′ is an approximate local minimum, the application of
an approximate local search to it will, with high probability, result in a different
approximate local minimum. Next, path-relinking is applied in line 10 between π′

and an elite solution π+, randomly chosen in line 9. Solution π+ is selected with
probability proportional to ∆(π′, π+). In line 11, the approximate local search is
applied to π′. If the elite set is full, then if π′ is of better quality than the worst
elite solution and π′ 6≈ P , then it will be added to the elite set in line 14 in place of
some elite solution. Among all elite solutions having cost no better than that of π′,
a solution π most similar to π′, i.e. with the smallest ∆(π′, π) value, is selected to
be removed from the elite set. Ties are broken at random. Otherwise, if the elite
set is not full, π′ is simply added to the elite set in line 18 if π′ 6≈ P .

2.1. Greedy randomized construction. Recall that a solution to the GQAP
consists of n assignments of facilities to locations. The construction procedure
builds a solution one assignment at time.

Suppose a number of assignments have already been made. To make the next
assignment, the procedure needs to select a new facility and a location. Locations
are made available, one at time. The procedure randomly determines whether
to use a new location or a previously chosen location, favoring a new location
when the previously chosen locations have insufficient or barely sufficient available
capacity. Later in this section, we define this choice more precisely. If the procedure
determines that a previously chosen location is to be selected, it then determines
which facilities can be assigned to a previously chosen location having the maximum
available capacity and randomly selects one of these facilities to be assigned. Of
the locations that can accommodate this facility, one is selected at random and
the assignment is made. Otherwise, if there is no previously chosen location with
sufficient capacity or if the available capacity is barely sufficient, a new location
is selected at random from the set of yet unchosen locations. Figure 1 illustrates
this procedure. In the figure, the set N of facilities is partitioned into the set CF
of assigned facilities and the set F of unassigned ones. Likewise, the set M of
locations is partitioned into the set CL of previously chosen locations and the set L
of unselected locations. Facilities in CF are assigned to locations in CL. The facility
set T consists of all unassigned facilities with demands less than or equal to the
maximum available capacity of locations in CL. After a facility from T is randomly
selected, set R consists of previously selected locations that can accommodate it.
A location is randomly selected from set R and the facility is assigned to it.
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Data : N, M, A, B, C, z, qi, Qj .
Result: Solution π∗ ∈ χ.
P ← ∅;1

while stopping criterion not satisfied do2

π′ ← GreedyRandomized(·);3

if elite set P has at least ρ elements then4

if π′ is not feasible then5

Randomly select a new solution π′ ∈ P ;6

end7

π′ ← ApproxLocalSearch(π′);8

Randomly select a solution π+ ∈ P ;9

π′ ← PathRelinking(π′, π+);10

π′ ← ApproxLocalSearch(π′);11

if elite set P is full then12

if c(π′) ≤ max{c(π) | π ∈ P} and π′ 6≈ P then13

Replace the element most similar to π′ among all14

elements with cost worst than π′;
end15

16

else if π′ 6≈ P then17

P ← P ∪ {π′};18

end19

20

else if π′ is feasible and π′ 6≈ P then21

P ← P ∪ {π′};22

end23

end24

return π∗ = min{c(π) | π ∈ P};25

Algorithm 1: Pseudo-code for GRASP+PR: GRASP with path-relinking
heuristic.

The above procedure is not guaranteed to produce a feasible solution. The greedy
randomized construction procedure, shown in Algorithm 2, addresses this difficulty
by repeatedly applying the steps described above. The main loop in lines 1 to 21 is
repeated a maximum number of times or until all facilities are assigned, i.e. when
F = ∅. In each iteration of the procedure, the working sets are initialized in line 2
and the threshold probability is set to 1 in line 3. The purpose of the threshold is to
control whether a new location should be selected. Since it is initially set to 1, then
in the first iteration of the until loop in lines 4 to 19, the procedure always selects
a new (first) location. At each iteration of the until loop, the threshold is updated
in line 17 such that it will be more likely that a new location is selected when there
are few facilities that can be assigned to locations in the current set R. The until
loop consists of two stages. With probability equal to the threshold, the first stage
(lines 5 to 9) selects a new location in line 6, updates the sets L and CL in line 7,
and in line 8 determines the set T of facilities that can be assigned to some selected
location. In the second stage (lines 10 to 18), the procedure randomly selects a



6 G.R. MATEUS, M.G.C. RESENDE, AND R.M.A. SILVA

Figure 1. Greedy randomized construction process. Facilities on
the left are assigned to locations on the right. Facilities in set
F have not yet been assigned. Locations in set L have not yet
been assigned to. Facilities in set CF have already been assigned.
Locations in set CL have been or can potentially be assigned to.
Facilities in T have demands less than or equal to the maximum
slack of facilities in set CL. After randomly selecting a facility to
assign from set T , set R is defined as the set of locations that can
accommodate that facility. One of these locations is selected at
random to accommodate the facility.

facility from set T in line 11, updates the sets T , F , and CF in line 12, creates
the location set R in line 13, randomly selects a location from that set in line 14,
makes the assignment of the facility to the location in line 15, determines the set T
of facilities that can be assigned to some selected location in line 16, and updates
the threshold probability in line 17. The until loop is repeated until both sets T
and L are empty in line 19. The while loop ends either with a valid assignment in
line 25 (indicated by F = ∅) or with no solution found determined in line 23.

The construction procedure makes use of randomization to select a location in
the first stage of the until loop and to select a facility and location in the second
stage. To select a location in the first stage (line 6), the procedure favors locations
in L with high capacity and that are close to high-capacity locations in CL. For all
k ∈ L, let

Hk =
∑

l∈CL

Qk ·Ql

bkl

.

The probability that location k is chosen is

Hk
∑

r∈L Hr

.
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Data : t̄ = maximum number of tries
Result: Solution x ∈ X
while k < t̄ and F 6= ∅ do1

F ← N ; CF ← ∅; L←M ; CL← ∅; T ← ∅;2

Set threshold← 1;3

repeat4

if L 6= ∅ and random([0, 1]) ≤ threshold then5

Randomly select a location l ∈ L;6

Update sets L← L \ {l} and CL← CL ∪ {l};7

Set T ⊆ F to be all facilities with demands less than8

or equal to the maximum slack in CL;
end9

if T 6= ∅ then10

Randomly select a facility f ∈ T ;11

Update sets T ← T \ {f}; F ← F \ {f}; and12

CF ← CF ∪ {f};
Create set R ⊆ CL to be all locations having slack13

greater than or equal to demand of facility f ;
Randomly select a location l ∈ R;14

Assign facility f to location l;15

Set T ⊆ F to be all facilities with demands less than16

or equal to the maximum slack in CL;
Set threshold← 1− | T |/| F |;17

end18

until T = ∅ and L = ∅;19

k ← k + 1;20

end21

if F 6= ∅ then22

Solution not found;23

else24

return assignment x ∈ X ;25

end26

Algorithm 2: Pseudo-code for GreedyRandomized: Greedy randomized con-
struction procedure.

To select a facility in the second stage (line 11), the procedure favors facilities in T
having high demand and high flows to other facilities. For all facilities k ∈ T , let

Wk = qk

∑

l∈N\{k}

akl.

The probability that facility k is selected is

Wk
∑

r∈T Wr

.

To select a location in the second stage (line 14), the procedure favors locations
in R that have high capacity slack and that are close to high-capacity locations in
CL. Furthermore, the procedure favors locations in R for which there is a small
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increase in the objective function resulting from the assignment to it of the chosen
facility in T . For all locations k ∈ R, let

Zk =
∑

l∈CL\{k}

σk ·Ql

d · bkl

,

where σk is the available capacity of location k and

d = ctk + z
∑

i′∈CF

∑

j′∈CL

ati′bkj′xi′j′

is the increase in the objective function resulting from the assignment to it of the
chosen facility in t ∈ T . The probability that location k ∈ R is selected is

Zk
∑

r∈R Zr

.

2.2. Approximate local search. When the construction procedure of Subsec-
tion 2.1 produces a feasible solution π, it is not guaranteed to be locally optimal.
In GRASP heuristics, a local search procedure is usually applied starting at π to
find a local minimum. The heuristic described in this paper makes use of an ap-
proximate local search procedure. This procedure uses two neighborhood structures
which we call 1-move and 2-move. A solution in the 1-move neighborhood of π is
obtained by changing one facility-to-location assignment in π. Likewise, a solu-
tion in the 2-move neighborhood of π is obtained by simultaneously changing two
facility-to-location assignments in π.

One way to carry out a local search in these neighborhoods is to evaluate moves in
the 1-move neighborhood and move to the first improving solution. This is called the
first fit local search. If no 1-move improving solution exists, 2-move neighborhood
solutions are evaluated and a move is made to the first improving solution. Another
way to carry out the local search is to evaluate all 1-move and 2-move neighborhood
solutions and move to the best improving solution. This is called the best fit local
search. In both variants, the search is repeated until no improving solution in the
neighborhoods exists. A tradeoff approach is used here. Instead of evaluating all
of the 1-move and 2-move neighborhood solutions, we sample these neighborhoods
and populate a candidate list with improving solutions. One of the solutions from
the candidate list is randomly selected and a move is made to that solution. The
search is repeated until no improving solution is sampled. Because solutions are
sampled, not all neighbors may be evaluated. Consequently, the best solution found
may not be a local minimum. We call this solution an approximate local minimum.

Pseudo-code for the approximate local search is shown in Algorithm 3. The
procedure takes as input the starting solution π and two parameters, MaxCLS
and MaxItr , which control the sampling. The repeat until loop in lines 1 to 13 is
repeated until an approximate local minimum is produced. In line 2, the sampling
counter count and the candidate list CLS are initialized. At each iteration of
the inner loop in lines 3 to 9, the 1-move and 2-move neighborhoods of π are
sampled without replacement by procedure Move(π) in line 4. If this neighbor is
an improving feasible solution, it is inserted into CLS in line 6. This is repeated
until either the candidate list is full or a maximum number of neighbors have
been sampled. In lines 10 to 12, if the candidate list is not empty, an assignment
π ∈ CLS is randomly chosen. If the set CLS is empty after the sampling process,
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the procedure terminates returning π as an approximate local minimum in line 14.
Otherwise, the procedure moves to a solution in CLS , repeating the outer loop.

We propose two possible schemes for carrying out a move. In the first, the greedy
scheme, the move is made to the solution in CLS having the smallest cost. In the
second, the random scheme, the move is made at random to some solution in CLS
with a bias favoring lower-cost solutions. One reason for using this approximate
local search is the size of the neighborhood, which in the standard local search
needs to be completely evaluated at least once.

Since there are many more 2-move neighbors than 1-move neighbors, we sample
each neighbor as follows. With probability p1 we sample from the 1-move neighbor-
hood while with probability p2 = 1− p1 we sample from the 2-move neighborhood.
Note that by doing this, the set CLS can have both 1-move and 2-move neighbors.

Data : π,MaxCLS ,MaxItr
Result: Approximate local minimum π
repeat1

count ← 0; CLS ← ∅;2

repeat3

π′ ← Move(π);4

if π′ is feasible and cost(π′) < cost(π) then5

CLS ← CLS ∪ {π′};6

end7

count ← count + 1;8

until |CLS | ≥ MaxCLS or count ≥ MaxItr ;9

if CLS 6= ∅ then10

Randomly select a solution π ∈ CLS ;11

end12

until CLS = ∅;13

return π;14

Algorithm 3: Pseudo-code for ApproxLocalSearch: Approximate local
search procedure.

The approximate local search procedure makes use of randomization to select a
solution π from set CLS in line 11. The procedure favors solutions in CLS with
smaller cost, according to the objective function (4). The probability that solution
π is chosen is

Gπ
∑

π′∈CLS
Gπ′

,

where, for all π′ ∈ CLS ,

Gπ′ =
1

f(π′)
,

where f(·) is the objective function (4).
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2.3. Path-relinking. Path-relinking (PR) is a search strategy that explores tra-
jectories connecting two solutions (Glover, 1996; Glover et al., 2000). Given two
solutions (one which we call the initial solution and the other the target solution),
their common elements are kept fixed and the space of solutions spanned by the
remaining elements is explored with a greedy algorithm. Starting from an initial
solution, the scheme moves from one solution to another until the target solution
is reached. The objective consists in finding a solution that is better than both the
initial and target solutions. Faria Jr. et al. (2005) introduced greedy randomized
adaptive path-relinking, where instead of moving between two solutions in a greedy
way, the moves are done in a greedy randomized fashion: one from among a candi-
date list with the most promising moves in the path being investigated is randomly
selected.

One way of carrying out PR is through forward PR, where the best of the two
given solutions is used as the target solution and the other as the initial solution.
Another way is through backward PR (Aiex et al., 2005; Resende and Ribeiro,
2003), where the best of the two given solutions is used as the initial solution and
the other as the target solution. In back and forward PR, forward PR is applied
and is followed by backward PR. Another way to proceed is with mixed PR (Glover,
1996; Ribeiro and Rosseti, 2002), where two paths are simultaneously explored, the
first emanating from the initial solution and the other from the target solution,
until they meet at an intermediary solution equidistant from both extremes.

According to Ribeiro et al. (2002) and Aiex et al. (2003), better solutions are
found in the backward approach than in the forward scheme, where the worst of
the two solutions to be relinked is used as the initial solution. Back and forward
PR usually finds better solutions than either forward or backward PR but at the
expense of longer running times. Ribeiro and Rosseti (2002) showed that mixed
PR outperformed forward, backward, and back and forward PR. As we will see in
Section 3, for the GRASP with path-relinking heuristic proposed in this paper, the
forward and backward schemes are better than the mixed scheme.

In this paper, a new variant of path-relinking is proposed, motived by the fact
that a single move guided by the target solution does not guarantee the feasibility
of the newly constructed solution. For instance, suppose that among the differences
between a solution π′ and the target solution is the location assigned to some specific
facility. Performing a move in π′ that assigns the facility to the same location
assigned to it in the target solution can result in a solution that may or not be
feasible. If the capacity constraint of this location is not violated, the new solution
is feasible. Otherwise, the repair procedure makeFeasible is applied in an attempt
to make it feasible. The repair procedure is described in detail in Subsection 2.4. In
a path-relinking step, the move described above, with or without a repair procedure,
is repeated for each facility of solution π′ assigned to a location that is different
from the one in the target solution. Let G denote the set of assignments resulting
from these moves and let B ⊆ G denote a subset of the best solutions in set G.

The path-relinking process consists of a sequence of path-relinking steps. In each
step, a feasible solution is either greedily or randomly selected from B to become
the new solution π of the next step. This process continues until the target solution
is reached or when no single feasible solution is obtained from π′, i.e. when B = ∅.
The best solution in this path, including the start and target solutions, is returned
as the final result.
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Data : Starting solution πs, target solution πt, and candidate
size factor η

Result: Best solution π∗ in path from πs to πt

π∗ ← argmin{f(πs), f(πt)};1

f∗ ← f(π∗);2

π′ ← πs; Fix ← ∅; nonFix ← N ;3

Compute difference ϕ(π′, πt) between solution π′ and πt;4

while ϕ(π′, πt) 6= ∅ do5

B ← ∅;6

for ∀v ∈ ϕ(π′, πt) do7

Move the facility v in π′ to the same location l assigned8

to v in πt;
π̄ ← makeFeasible(π′, v);9

if π̄ is feasible then10

if |B| ≥ η · |ϕ(π′, πt)| then11

if c(π̄) ≤ max{c(π) | π ∈ B} and π̄ 6∈ B then12

replace the element most similar to π̄ among13

all elements with cost worst than π̄;
end14

15

else if π̄ 6∈ B then16

B ← B ∪ {π̄};17

end18

end19

end20

if B 6= ∅ then21

Randomly select a solution π ∈ B;22

Compute difference ϕ(π, πt) between solution π and πt;23

Set I = ϕ(π′, πt) \ (ϕ(π′, πt) ∩ ϕ(π, πt));24

Randomly select a facility i ∈ I;25

Fix ← Fix ∪ {i}; nonFix ← nonFix \ {i};26

π′ ← π;27

if f(π′) < f∗ then28

f∗ ← f(π′);29

π∗ ← π′;30

end31

else32

return assignment π∗;33

end34

end35

return assignment π∗;36

Algorithm 4: Pseudo-code for PathRelinking: Path-relinking procedure.
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Algorithm 4 shows pseudo-code for the path-relinking procedure. The algorithm
takes as input πs and πt, the starting and target solutions, respectively, and outputs
the best solution π∗ in path from πs to πt. Initially, the best solution in the path
is set as π∗ in line 1 and its corresponding objective function is assigned to f∗ in
line 2. In line 3, the current solution π′ is initialized with πs, and the working sets
Fix and nonFix are respectively initialized empty and with N . The while loop in
lines 5 to 35 is repeated until all facilities in π′ are assigned to the same locations
assigned to them in πt, i.e. the set ϕ(π′, πt) = {i ∈ N | π′(i) 6= πt(i)} is empty,
where π′(i) and πt(i) are the locations assigned to facility i in solutions π′ and πt,
respectively.

After the set B of best solutions is set to empty in line 6, each while loop
iteration consists of two stages. The first stage in lines 7 to 20 implements the path-
relinking step. It creates set B with the best feasible solutions constructed from the
current solution π′. In line 6, B is initialized as empty. Each facility v ∈ ϕ(π′, πt)
is analyzed in lines 7 to 20 to create the set B with the best feasible solutions
constructed from the current solution π′. Procedure makeFeasible (described in
detail in Subsection 2.4) is applied in line 8 to facility v to attempt to create a new
solution π̄ from π′. The application of makeFeasible to facility v can either result
in a feasible or infeasible solution. In case makeFeasible returns a feasible solution
π̄ 6∈ B, π̄ is added to B if B is not yet full. Otherwise, if B is full and solution π̄ 6∈ B
is not worse than any elite solution, then π̄ is added to B replacing some other elite
solution.

In the second stage (lines 21 to 34), the procedure first randomly selects a solution
π from set B in line 22. Then, in line 25, it selects at random a facility i ∈ I =
ϕ(π′, πt) \ (ϕ(π′, πt) ∩ ϕ(π, πt)), where I is defined in line 24 as the set containing
all unfixed facilities whose locations were corrected in the previous path-relinking
step. A facility is corrected when its location becomes the one assigned to it in
the target solution. After fixing facility i ∈ I, sets Fix and nonFix are updated in
line 26. Finally, the next path-relinking step solution π′ is set as π in line 27 and,
if f(π′) < f∗, then the best cost f∗ and best solution π∗ are updated in lines 29
and 30, respectively. However, if in some path-relinking step no feasible solution
is obtained from π′, the while loop is interrupted, returning the current solution
π∗ as the result in line 33. If the target solution is reached, then π∗ is returned in
line 36.

This path-relinking is different from the standard variant because given solutions
πs and πt, their common elements are not kept fixed a priori, such that a small
portion of the solution space spanned by the remaining elements is explored. The
new variant fixes one facility at a time at each step.

The path-relinking procedure makes use of randomization to select a solution π
from set B is line 22 and to select a facility i from set I in line 25. To select a
solution in B, the procedure favors those solutions having smaller cost, according
to the objective function f(·). For all s ∈ B, let

Us =
1

f(s)
.

The probability that solution π is chosen is

Uπ
∑

r∈B

Ur

.
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Figure 2. Single path-relinking process with repair. Facilities in
set N on the left are assigned to locations in set M on the right.
Facilities in set Fix ⊆ N have already been fixed. Facilities in set
nonFix ⊆ N have not yet been fixed. Facilities in FTL ⊆ nonFix
are assigned to location l in solution π. Facilities in T ⊆ FTL have
demands less than or equal to the maximum slack of facilities in
set M . After randomly selecting a facility from set T to assign, set
R is defined as the set of locations that can accommodate that
facility.

To select a facility i from set I, a uniform probability distribution is used.

2.4. Repair procedure. Suppose π is an intermediary solution obtained while
applying path-relinking from πs to πt, as illustrated in Figure 2. The set N of
facilities is partitioned into two sets, the set Fix of fixed facilities and the set
nonFix of the remaining facilities. Let f ∈ nonFix be a facility whose location in
πt is l and in π is u 6= l, where l, u ∈M .

According to Figure 2, performing a move in π that assigns facility f to location
l is infeasible since the capacity Ql of location l is insufficient to accommodate that
facility. In this case, the facility set FTL ⊆ nonFix is created with all unfixed
facilities assigned to l in π. Next, set T ⊆ FTL is constructed. It is made up of all
facilities in FTL having demands at most equal to the maximum available capacity
of locations in M . Let i be a facility that is randomly selected from T . Set R
consists of locations in M that can accommodate facility i. A location j is selected
at random from set R and facility i is assigned to it. This process is repeated until
the capacity of location l has a nonnegative slack.

Algorithm 5 shows pseudo-code for the procedure makeFeasible(·). The algo-
rithm takes as input a solution π, a facility f ∈ ϕ(π, πt), and the maximum number
of tries τ̄ , to output a feasible solution if possible. As input, facility f in π was
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moved to the same location l assigned to it in πt. If the slack of location l is non-
negative (σl ≥ 0), i.e. the capacity of l is not violated, the algorithm returns the
updated feasible solution π in line 2. Otherwise, in lines 3 to 24, the repair process
is applied as follows. While the capacity of location l remains violated and the
number k of tries is less than a maximum limit established a priori, a copy π′ of
solution π is made in line 6 before the repeat loop in lines 7 to 16. In this loop,
a facility set FTL ⊆ nonFix is created in line 8 with all yet unfixed facilities in N
assigned to l in π′. Next, in line 9, set T ⊆ FTL is constructed with all facilities
in FTL having demands less than or equal to the maximum available capacity of
locations in M . Then, if set T is not empty, a facility i is randomly selected from
it in line 12 to create a set R ⊆M with all locations in M that can accommodate
the facility. Finally, in line 13, a location j is randomly selected from set R and
facility i is assigned to it in line 14. This loop is repeated until either the capacity
of location l has a nonnegative slack or set T is empty. At the end, if the slack of l
is nonnegative, the returned solution π′ is feasible. Otherwise, it is infeasible.

The repair procedure makes use of randomization to select a facility i from set
T in line 11 and to select a location j from set R in line 13. To select a facility
in T , the procedure favors those with higher demand. Then, the probability that
facility i is chosen is

qi
∑

r∈T

qr

,

where we recall that qi is the capacity demanded by facility i ∈ N . To select a
location j from set R, a uniform probability distribution is used.

3. Experimental results

In this section, we present results on computational experiments with the GRASP
with path-relinking (GRASP-PR) heuristic introduced in this paper. First, we de-
scribe our test environment. Next, we determine an appropriated combination of
values for the three most important parameters of the heuristic. Finally, we com-
pare our implementation with other heuristics from the literature on a suite of test
problems.

3.1. Test environment. All experiments with GRASP-PR were done on a Dell
PE1950 computer with dual quad core 2.66 GHz Intel Xeon processors and 16 Gb of
memory, running Red Hat Linux nesh version 5.1.19.6 (CentOS release 5.2, kernel
2.6.18-53.1.21.el5). The GRASP-PR heuristic was implemented in Java and com-
piled into bytecode with javac version 1.6.0 05. The random-number generator is
an implementation of the Mersenne Twister algorithm (Matsumoto and Nishimura,
1998) from the COLT1 library.

3.2. Parameter tuning for the GRASP-PR heuristic. Several parameters
are used to describe the GRASP-PR heuristics. Some of these parameters were set
to fixed values. These parameters and their fixed values are:

• size |P | of elite set: 10

1COLT is a open source library for high performance scientific and technical computing in
Java. See http://acs.lbl.gov/∼hoschek/colt/.
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Data : solution π, facility f , and
τ̄ = maximum number of tries

Result: If possible, a feasible solution
if σl ≥ 0 then1

return feasible solution π;2

else3

k ← 0;4

while k < τ̄ and σl < 0 do5

π′ ← π;6

repeat7

Set FTL ⊆ nonFix to be all facilities in π′ assigned8

to l;
Set T ⊆ FTL to be all facilities with demands less9

than or equal to the maximum slack in M ;
if T 6= ∅ then10

Randomly select a facility i ∈ T ;11

Set R ⊆M to be all locations having slack12

greater than or equal to demand of facility i;
Randomly select a location j ∈ R;13

Assign facility i to location j: π′(i)← j;14

end15

until T = ∅ or σl ≥ 0;16

k ← k + 1;17

end18

if σl < 0 then19

return infeasible solution π′;20

else21

return feasible solution π′;22

end23

end24

Algorithm 5: Pseudo-code for makeFeasible: Repair procedure in path-
relinking.

• minimum number ρ of elements in elite set to perform path-relinking: 2
• maximum number t̄ of trials in the greedy randomized construction: 10
• 1-move sample probability p1 in the local search: 0.5
• maximum number MaxItr of neighbors sampled in local search: 100
• maximum size MaxCLS of the candidate list in the local search: 10
• candidate size factor η in the non-mixed path-relinking: 0.5
• maximum number τ̄ of tries in makeFeasible: 10
• minimum difference δ with respect to elite solutions needed for trial solution

to be inserted into elite set during path-relinking: 4.

To select the strategies that define the GRASP-PR variant that we use in the
computational testing, we conducted the following experiment. For each combi-
nation of algorithm strategy and instance, we make 200 independent runs of the
heuristic, recording the time taken to find the best known solution for the instance,
and plot its runtime distribution. We consider four large instances of Cordeau et al.
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Table 1. Time in seconds for 25%, 50%, 75%, and 100% of
GRASP-PR runs to find the best-valued solutions for instance 20-
15-75.

GRASP-PR variants 25% 50% 75% 100%

b-r-g-g 0.030 0.034 0.039 0.060
b-r-r-g 0.034 0.039 0.044 0.072
f-r-g-g 2.109 2.746 3.540 17.069

f-g-r-g 2.105 2.963 4.164 15.426
f-g-g-g 1.932 2.508 3.521 27.175
f-r-r-g 2.070 2.799 3.893 22.986
m-g-g-g 1.341 2.242 4.471 80.463
m-r-g-g 1.014 1.731 3.541 80.291
b-g-g-g 1.467 2.545 6.244 209.327
m-r-r-g 1.199 2.187 4.643 181.163
b-g-r-g 1.859 2.993 6.798 227.481
m-g-r-g 1.651 3.172 7.435 402.552
f-r-g-r 12.293 22.018 48.717 1610.136
f-r-r-r 12.741 27.553 67.312 837.054
f-g-r-r 17.977 39.560 90.693 3029.421
f-g-g-r 17.456 40.174 128.335 2043.053
b-g-g-r 33.275 78.100 267.390 5529.753
m-g-g-r 28.210 63.343 224.118 3820.697
m-r-r-r 30.408 61.083 285.124 5595.585
m-g-r-r 33.145 87.868 258.000 3778.661
b-r-g-r 40.362 90.625 303.850 6801.102
m-r-g-r 29.987 72.820 186.898 6484.493
b-r-r-r 51.821 114.362 324.944 9920.335
b-g-r-r 57.024 148.409 691.220 85854.522

Table 2. Time in seconds for 25%, 50%, 75%, and 100% of
GRASP-PR runs to find the best-valued solutions for instance 30-
20-75.

GRASP-PR variants 25% 50% 75% 100%

f-r-g-g 11.581 21.537 45.499 454.887
f-r-r-g 11.085 21.738 52.666 701.121
f-g-g-g 18.380 36.205 104.795 969.521
f-g-r-g 26.769 52.559 122.278 1563.631

b-r-g-g 17.170 45.885 178.478 5830.817
m-r-r-g 14.439 33.797 238.672 13933.570
m-r-g-g 14.476 34.509 204.042 16598.494
b-g-r-g 44.274 127.487 472.226 20432.680
b-r-r-g 20.736 51.221 268.023 24120.400
b-g-g-g 29.507 93.994 465.674 41981.810
m-g-r-g 25.481 75.039 378.109 50797.920
m-g-g-g 25.219 71.297 383.568 54138.195
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Figure 3. Plots of cumulative probability distributions of
GRASP-PR running times for instances 20-15-75 and 30-20-75 us-
ing several variants of the GRASP with path-relinking heuristic.

(2006): 20-15-75, 30-20-75, 40-10-65, and 50-10-95, and tested the GRASP-PR vari-
ants defined by the following strategies:

• Path-relinking direction: Forward (f), backward (b), mixed (m);
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Figure 4. Plots of cumulative probability distributions of
GRASP-PR running times for instances 40-10-65 and 50-10-95 us-
ing several variants of the GRASP with path-relinking heuristic.

• Criteria to select a facility from set T in the makeFeasible procedure:
Randomly (r), such as in Algorithm 5, or greedily (g), where the facility
with the highest demand in T is selected;
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Table 3. Time in seconds for 25%, 50%, 75%, and 100% of
GRASP-PR runs to find the best-valued solutions for instance 40-
10-65.

GRASP-PR variants 25% 50% 75% 100%

b-r-g-g 4.252 6.596 11.775 34.417
f-r-g-g 5.554 8.537 13.345 53.852
m-r-g-g 4.27 7.385 13.022 72.927

m-r-r-g 7.406 11.748 20.498 81.569
b-r-r-g 7.301 12.68 23.889 95.407
f-r-r-g 9.018 15.105 25.87 121.209
m-g-g-g 9.152 15.575 26.77 526.456
b-g-g-g 6.939 13.97 29.169 428.596
f-g-g-g 12.827 22.772 33.514 211.246
f-g-r-g 19.056 33.469 52.842 190.087
b-g-r-g 14.539 27.271 52.388 621.276
m-g-r-g 13.93 24.733 44.394 494.348

Table 4. Time in seconds for 25%, 50%, 75%, and 100% of
GRASP-PR runs to find the best-valued solutions for instance 50-
10-95.

GRASP-PR variants 25% 50% 75% 100%

f-r-g-g 44.319 77.375 118.371 595.610
f-r-r-g 53.916 77.523 136.206 693.350
f-g-g-g 78.560 135.611 215.584 32120.332
f-g-r-g 82.669 134.995 228.472 2317.059
m-r-r-g 48.898 86.436 236.827 33131.920
m-r-g-g 79.790 150.354 404.184 5500.276
b-r-g-g 132.240 262.648 671.102 27117.906
b-r-r-g 124.392 270.583 631.574 72390.710
m-g-g-g 115.116 292.063 673.854 89439.910
m-g-r-g 127.618 291.607 971.098 61027.715
b-g-r-g 543.194 1150.462 4784.563 88714.290

• Criteria to select a solution from candidate list CLS in the approximate
local search: Randomly (r), such as in Algorithm 3, or greedily (g), where
the best cost solution in set CLS is selected;
• Criteria to select solution to move to in the path-relinking phase: Randomly

(r), as in Algorithm 4 or greedily (g), where the best-valued solution in B
is selected.

Among the 3 × 23 = 24 possible combinations of these strategies, Figures 3 and 4
illustrate the combinations for which the GRASP-PR heuristics found the best
known solution for the four test instances in less than 100,000 seconds. These fig-
ures show time-to-target plots (Aiex et al., 2002; 2007) (or runtime distributions)
for each algorithm variant. For each of the four instances, 200 independent runs of
each variant were conducted and the time to find the target solution was recorded.
The sorted running times make up the plots. Note that some of the combinations
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are not shown in the figures because they failed to find their target solutions within
the time limit. In the figures, the strategies are represented in such a way that
the first parameter corresponds to the path-relinking direction, the second param-
eter corresponds to the facility selection criterion, the third parameter defines the
solution selection criterion, and the fourth parameter defines which path-relinking
move strategy is used. For example, f-g-r-g represents the strategy that uses for-
ward path-relinking, greedy facility selection, random solution selection, and greedy
move in path-relinking. Along with Figures 3 and 4, Tables 1, 2, 3, and 4 show the
running times for 25%, 50%, 75%, and 100% of the runs to find the best-valued
solutions for instances 20-15-75, 30-20-75, 40-10-65, and 50-10-95, respectively.

Figures 3 and 4 show the dominance of strategies f-r-g-g, f-r-r-g, b-r-g-g,
and b-r-r-g over the other combinations. Considering the top two combinations
for each instance, the frequencies of occurrence of each strategy among the winners
were
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We choose the most popular strategy (f-r-g-g) as the preferred GRASP-PR heuris-
tic in the remaining experiments. This heuristic uses forward path-relinking, ran-
domly selects a facility from set T in procedure makeFeasible, greedily selects a
solution from the candidate list in the approximate local search, and greedily selects
a solution to move to in the path-relinking phase.

To conclude the tuning, we ran an experiment to determine the best local search
strategy. We consider GRASP with path-relinking using four local search strategies:

(1) use the approximate local search scheme during the GRASP and after path-
relinking;

(2) use the approximate local search scheme during the GRASP but do not do
local search after path-relinking;

(3) use first fit local search scheme during the GRASP and after path-relinking;
(4) use best fit local search scheme during the GRASP and after path-relinking;

The best fit scheme searches the entire neighborhood of the current solution looking
for the best improving solution. If no improving solution is found, then the current
solution is declared a local minimum.

For each variant, we made 200 independent runs on instances 20-15-35 and 40-
10-65 of Cordeau et al. (2006). Each run was stopped when the best known solution
for the instance was found and its running time was recorded. Runtime distribution
plots for these runs are shown in Figure 5. The time to target plots clearly show
that the approximate local search scheme is preferable to either first fit or best fit
local search. As expected, first fit is shown to be better than best fit. Furthermore,
the plots show that it is advisable to perform local search after each call to the
path-relinking procedure.

Finally, to demonstrate the need for the repair procedure makeFeasible in the
path-relinking procedure, we conducted the following experiment using instances
40-10-65 and 50-10-95 of Cordeau et al. (2006). For each instance, we repeated 200
independent runs of GRASP-PR using path-relinking with repair, path-relinking
without repair (simply removing the makeFeasible from Algorithm 4 and stopping
path-relinking when no further feasible movement could be made by the path-
relinking procedure). For each of these two heuristics, we tested variants with and
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Figure 5. Plots of cumulative probability distributions of
GRASP-PR running times for instances 20-15-35 and 40-10-65 us-
ing four variants for the local search strategy. The figures show
that applying approximate local search is better than using best
fit or first fit local search and that applying local search after path-
relinking is better than not applying any local search after path-
relinking.
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Figure 6. Plots of cumulative probability distributions of
GRASP-PR running times for instances 40-10-65 and 50-10-95 us-
ing four variants for the path-relinking strategy. 200 independent
runs of the algorithms were made and each run was stopped after
15,000 seconds. The bottom plot for instance 50-10-95 shows all
measured times for six combinations of path-relinking strategy and
target value. The figures show that, independent of using approx-
imate local search after path-relinking, it is always better to use
the repair procedure in path-relinking.



GRASP WITH PATH-RELINKING FOR THE GQAP 23

without the approximate local search after path-relinking (line 11 of Algorithm 1),
resulting in a total of four variants: PR with repair and local search, PR with repair
and no local search, PR without repair and with local search, and PR with neither
repair nor local search. The results are summarized in the two plots in Figure 6.

The top plot in the figure shows runtime distributions for instance 40-10-65. For
that experiment we used as target solution value the best known solution for this
instance. The plot clearly shows that GRASP-PR with PR having both repair
and posterior approximate local search dominates the other variants. In particular,
using repair dominates not using repair.

The dominance of PR with repair can be better seen in the bottom plot, cor-
responding to the more difficult instance 50-10-95. In those runs, we first ran the
four variants with the best known solution value of 12,845,598 as the target solution
value in the stopping criterion. Both variants using repair (with and without poste-
rior local search) found the solution on all 200 runs in less than 600 seconds (about
70% of the runs terminated in less than 100 seconds). On the other hand, neither
variant without repair was able to find a single solution in less than 15,000 seconds.
To show the relative performance of those variants we used the weak target value of
16,004,409 for the variant without repair but with local search and the even weaker
value 17,7461,596 for the variant without either repair or local search. Even with
these weaker target values, the two variants only found the target solution in less
than 15,000 seconds in fewer than 30% of the runs, as can be seen in the lower
plot in Figure 6. Using those weaker targets, the variants using repair (with and
without local search) found the target solutions in less than one second on all 200
independent runs each.

3.3. Comparison of the GRASP-PR heuristic with other algorithms. In
the experiments to follow, we make use of the test problems used by Lee and
Ma (2005), Cordeau et al. (2006), and Hahn et al. (2007). In the comparisons,
we show nominal and normalized running times. Times are normalized by the
processor clock speed. For example, 96.0 seconds reported on a 1.2 GHz processor
and 0.16 seconds on a 2.66 GHz processor have corresponding normalized times of
96.0×1.2 = 115.2 and 0.16×2.66 = 0.43 seconds, respectively. All nominal running
times reported will be followed by their normalized value (between parentheses).

Among the largest instances are those presented by Cordeau et al. (2006) with 20
to 50 facilities and 6 to 20 locations. Cordeau et al. developed a memetic algorithm
which found promising results for these larger instances. Table 5 compares these
results with ones obtained with the GRASP-PR heuristic. The first column of the
table shows the names of the instances. These instances are labeled with three
parameters: n = |N |, m = |M |, and s ∈ {1, . . . , 100}. Parameter s controls the
tightness of the capacity constraints. The higher the value of s, the higher is the
tightness of the capacity constraints.

The third column lists the time (in seconds) reported by Cordeau et al. (2006)
for their memetic algorithm to find the solutions whose values are given in the
second column. It should be noted that Cordeau et al. implemented their memetic
algorithm in C and ran their experiment on a 1.2 GHz Sun workstation. The
solution values in the second column are the best values found by the memetic
algorithm.

For each instance, we made 200 independent runs of GRASP-PR, with the ex-
ception of instance 30-20-95 for which we made only 18 runs. Each run stopped
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Table 5. Summary of results for memetic and GRASP-PR heuristics on the Cordeau et al. (2006) instances. Times
are given in 1.2 GHz Sun workstation seconds running C for the memetic algorithm and 2.66 GHz Intel Xeon processor
running Java for GRASP-PR. Normalized times are given between parentheses.

Memetic algorithm GRASP-PR times to target solution

instance solution time min max avg s.d. 0.95

20-15-35 1471896 96.0(115.2) 0.16(0.43) 38.87(103.40) 7.05(18.76) 6.47(17.21) 21.04(55.98)
20-15-55 1723638 102.0(122.4) 0.24(0.64) 14.42(38.36) 2.87(7.62) 2.18(5.79) 7.69(20.46)
20-15-75 1953188 102.0(122.4) 0.26(0.69) 12.82(34.10) 2.01(5.36) 1.72(4.57) 5.25(13.97)

30-06-95 5160920 114.0(136.8) 0.55(1.45) 23.81(63.32) 2.59(6.88) 2.22(5.90) 6.44(17.13)
30-07-75 4383923 156.0(187.2) 0.50(1.32) 38.47(102.33) 7.80(20.74) 5.47(14.56) 18.18(48.348)
30-08-55 3501695 96.0(115.2) 0.18(0.48) 4.89(13.01) 1.61(4.29) 0.95(2.53) 3.60(9.58)
30-10-65 3620959 210.0(252.0) 2.75(7.31) 1032.80(2747.25) 121.94(324.37) 146.059(388.52) 514.82(1369.41)
30-20-35 3379359 564.0(676.8) 1.08(2.87) 4441.40(11814.11) 79.03(210.23) 312.62(831.57) 166.21(442.11)
30-20-55 3593105 462.0(554.4) 1.28(3.40) 150.11(399.30) 25.16(66.92) 21.19(56.37) 66.82(177.74)
30-20-75 4050938 522.0(626.4) 2.11(5.61) 759.81(2021.11) 41.43(110.22) 68.39(181.89) 148.43(394.82)
30-20-95 5710645 5232.0(6278.4) 833.99(2218.41) 2533608.00(6739397.28) 543019.01(1444430.57) 747962.39(1989579.96) 2186440.80(5815932.53)

35-15-35 4456670 456.0(547.2) 8.41(22.37) 1717.94(4569.72) 306.11(814.26) 242.49(645.04) 775.25(2062.17)
35-15-55 4639128 384.0(460.8) 4.33(11.52) 75.69(201.34) 21.13(56.21) 11.95(31.79) 42.47(112.96)
35-15-75 6301723 396.0(475.2) 5.18(13.77) 621.83(1654.07) 68.23(181.50) 74.17(197.30) 183.19(487.30)
35-15-95 6670264 864.0(1036.8) 6.61(17.58) 19171.48(50996.14) 1454.00(3867.64) 3057.43(8132.76) 6949.08(18484.55)

40-07-75 7405793 180.0(216.0) 4.53(12.037) 377.06(1002.97) 59.37(157.91) 51.21(136.22) 159.00(422.94)
40-09-95 7667719 1140.0(1368.0) 6.18(16.44) 5017.56(13346.70) 417.00(1109.22) 610.28(1623.34) 1490.31(3964.24)
40-10-65 7265559 240.0(288.0) 0.84(2.23) 115.06(306.05) 17.87(47.53) 15.88(42.23) 52.73(140.27)

50-10-65 10513029 504.0(604.8) 2.52(6.70) 84.64(225.15) 24.56(65.32) 16.34(43.48) 64.04(170.34)
50-10-75 11217503 606.0(727.2) 22.79(60.62) 24507.34(65189.52) 1352.41(3597.41) 3085.42(8207.22) 4404.50(11715.97)
50-10-95 12845598 1254.0(1504.8) 9.97(26.52) 1059.59(2818.51) 89.36(237.70) 91.95(244.59) 200.20(532.53)



GRASP WITH PATH-RELINKING FOR THE GQAP 25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  2  4  6  8  10  12  14

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution (seconds)

Instance: 20-15-75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  500  1000  1500  2000  2500  3000  3500  4000  4500

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution (seconds)

Instance: 30-20-35

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 4000 8000 12000 16000 20000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution (seconds)

Instance: 35-15-95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1000  2000  3000  4000  5000

cu
m

ul
at

iv
e 

pr
ob

ab
ili

ty

time to target solution (seconds)

Instance: 40-09-95

Figure 7. Time-to-target plots. Plots of cumulative probability
distributions of GRASP-PR running times for four instances: 20-
15-75, 30-20-35, 35-15-95, and 40-09-95.

when a solution value as good as the one in column 2 was found. Columns 4 to 7
give the minimum, maximum, and average times, as well as the standard deviation
of these runs to find solutions with values equal to those listed in column 2. Finally,
column 8 lists the time for 95% of the GRASP-PR runs to find solutions having
those same target values.

On all runs for each instance in Table 5, the GRASP-PR heuristic found solutions
with the target values shown in column 2. The average performance improvement
with respect to the memetic algorithm varied between a factor of 1.482(0.667) and
59.186(26.634), except for instances 30-20-95, 35-15-95, and 50-10-75, for which
the times reported by Cordeau et al. were smaller than the average times for the
GRASP-PR heuristic. Note, however, that on all instances, including 30-20-95,
35-15-95, and 50-10-75, the smallest GRASP-PR running times were far less than
those reported for the memetic algorithm. Figure 7 shows time-to-target-plots
(Aiex et al., 2007) for GRASP-PR on four instances from Table 5. For each group
with identical number of facilities, we chose to plot the running-time distribution
for the instance on which the memetic algorithm took longest to solve.

To optimally solve the GQAP, Lee and Ma (2005) proposed a branch and
bound (B&B) algorithm having single assignment as the branching rule, as done by
Burkard (1991) for the quadratic assignment problem (QAP). Furthermore, they
proposed three linearization methods, F-Y, K-B, and L3, based on the Frieze and
Yadegar (1983), Kaufman and Broeckx (1978), and Padberg and Rijal (1996) lin-
earizations for the QAP, respectively. Lee and Ma created a suite of test problems
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with 10 to 16 facilities and 3 to 8 locations on which they tested their algorithms.
Table 6 compares these results with ones obtained with the GRASP-PR heuristic.

The first and second columns of Table 6 show the instance names and their
corresponding optimum values. These instances are labeled in three parts: the
number before the × is n = |N |, the number after the × is m = |M |, and the
optional last two letters indicate the following additional characteristics: facilities
having a wide range of demands (E ), facilities having roughly the same demand
(F ), locations having a wide range of capacities (G), locations having roughly the
same capacity (H ). Columns 3 to 6 list the times (in seconds) reported by Lee
and Ma (2005) for their four algorithms (F-Y, K-B, L3, and B&B) to find solutions
whose values are given in the second column. Times in boldface are the best among
the Lee and Ma algorithms.

For each instance, we made 200 independent runs of GRASP-PR. Each run
stopped when a solution value as good as the one in column 2 was found. Columns
7 to 10 denote, respectively, the minimum, maximum, and average times, and
standard deviation of these runs to find solutions with values equal to those of
column 2. Finally, column 11 lists the time for 95% of the runs to find solutions
having those same target values. GRASP-PR found the target value on all 200
runs for each of the instances in Table 6, with an average performance improvement
varying between a factor of 11.2(2.8) and 1004.6(251.15) in relation to the best time
of the algorithms of Lee and Ma.

Hahn et al. (2007) proposed a level-1 reformulation-linearization technique (RLT)
dual ascent procedure in a branch-and-bound scheme (RLT1 B&B) for the GQAP.
They solved four instances (c2005De, 2005Aa, 2408Ca, and 2408Aa) from the web-
site2 of S. Elloumi, one instance (20-15-35) from Cordeau et al. (2006), and three
instances (14×9EG, 15×8, and 16×17-1115) from Lee and Ma (2005), as shown in
the first column of Table 7. That table compares the results of the RLT1 B&B al-
gorithm with ones obtained with the GRASP-PR heuristic. Column 3 lists the time
(in seconds on a 733 MHz Intel Itanium processor) reported by Hahn et al. (2007)
for RLT1 B&B to find the optimum solutions with the values given in column 2.
For each instance, we made 200 independent runs of the GRASP-PR heuristic.
Each of these runs stopped when the optimal solution value was found. Columns 5
to 8 denote, respectively, the minimum, maximum, and average times, and stan-
dard deviation of the time to find optimal solutions. Finally, column 9 lists the
times needed for 95% of GRASP-PR runs to find optimally-valued solutions.

On all runs, GRASP-PR achieved the target values (optimal solutions) on all
instances in Table 7. The average performance improvement, with respect to the
RLT1 B&B algorithm, varied between a factor of 8.8(2.46) and over 69,000(1,930).
With respect to the time taken by RLT1 B&B to first find an optimally-valued
solution, the improvement of GRASP-PR varied from 4.6 and over 18 thousand.

Pessoa et al. (2008) proposed a new lower bound for the GQAP based on the
Lagrangian relaxation of the RLT formulation proposed in Hahn et al. (2007). As
shown in the first column of Table 8, Pessoa et al. tested their approach on four
instances (c2005De, 2005Aa, 2408Ca, and 2408Aa) from the website of S. Elloumi,
12 instances (20-15-35, 20-15-55, 20-15-75, 30-08-55, 30-20-35, 30-20-55, 30-20-75,
30-20-95, 30-15-35, 35-15-55, 35-15-75, and 35-15-95) from Cordeau et al. (2006),
and three instances (14× 9EG, 15× 8, and 16× 17-1115) from Lee and Ma (2005).

2http://cedric.cnam.fr/oc/TAP/all CTAP instances/
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Table 6. Summary of results for the four algorithms of Lee and Ma (2005) and the GRASP-PR heuristic on the Lee
and Ma (2005) instances. Times in seconds are measured on a 677 MHz Intel Pentium III running AMPL/CPLEX
8.1 for the Lee and Ma (2005) algorithms and on a 2.66 GHz Intel Xeon running Java for GRASP-PR. Normalized
times are given between parentheses.

Lee and Ma (2005) times GRASP-PR time to target solution

instance solution F-Y K-B L3 B&B min max avg s.d. 0.95

10 × 5EG 1021050 39.2(26.5) 12.2(8.3) 11.5(7.8) 161.5(109.3) 0.031(0.082) 0.663(1.764) 0.207(0.551) 0.118(0.314) 0.466(1.240)
10 × 5EH 1188500 49.8(33.7) 21.4(14.5) 20.4(13.8) 361.1(244.5) 0.038(0.101) 0.459(1.221) 0.185(0.491) 0.097(0.257) 0.386(1.027)
10 × 5FG 1433500 51.6(34.9) 5.2(3.5) 21.3(14.4) 196.2(132.8) 0.040(0.106) 0.785(2.088) 0.282(0.747) 0.149(0.395) 0.543(1.444)
10 × 5FH 1471950 96.2(65.1) 26.5(17.9) 17.1(11.6) 723.9(490.1) 0.039(0.104) 0.559(1.487) 0.243(0.646) 0.124(0.331) 0.467(1.242)

12 × 3EG 1323900 5.4(3.7) 2.0(1.4) 2.1(1.4) 72.1(48.8) 0.039(0.104) 0.417(1.109) 0.147(0.390) 0.071(0.188) 0.263(0.700)
12 × 3EH 1771450 17.6(11.9) 8.4(5.7) 5.7(3.9) 418.3(283.2) 0.038(0.101) 0.622(1.655) 0.217(0.578) 0.113(0.300) 0.453(1.205)
12 × 3FG 1788750 19.6(13.3) 6.3(4.3) 6.0(4.1) 251.4(170.2) 0.032(0.085) 0.474(1.261) 0.136(0.363) 0.078(0.209) 0.304(0.809)
12 × 3FH 1970500 17.3(11.7) 14.8(10.0) 6.0(4.1) 359.2(243.2) 0.039(0.104) 0.433(1.152) 0.148(0.394) 0.090(0.240) 0.345(0.918)

12 × 4EG 1500150 31.8(21.5) 11.2(7.6) 11.3(7.7) 202.6(137.2) 0.038(0.101) 0.995(2.647) 0.351(0.934) 0.182(0.485) 0.689(1.833)
12 × 4EH 2081370 102.9(69.7) 29.6(20.0) 30.0(20.3) 626.5(424.1) 0.045(0.120) 0.717(1.907) 0.327(0.870) 0.135(0.360) 0.564(1.500)
12 × 4F G 1770500 88.5(59.9) 55.3(37.4) 20.5(13.9) 925.3(626.4) 0.046(0.122) 0.79(2.101) 0.326(0.867) 0.165(0.438) 0.614(1.633)
12 × 4F H 2213500 82.0(55.5) 5.9(4.0) 17.8(12.1) 251.4(170.2) 0.072(0.192) 1.117(2.971) 0.524(1.394) 0.208(0.553) 0.858(2.282)

12 × 5EG 1519100 119.1(80.6) 65.4(44.3) 32.3(21.9) 565.3(382.7) 0.054(0.144) 1.264(3.362) 0.284(0.756) 0.153(0.408) 0.517(1.375)
12 × 5EH 2086100 567.9(384.5) 20.6(13.9) 59.3(40.1) 510.6(345.7) 0.023(0.061) 1.399(3.721) 0.605(1.608) 0.220(0.586) 0.951(2.530)

12 × 6 1960750 651.5(441.1) 18.2(12.3) 229.7(155.5) 641.9(434.6) 0.086(0.229) 1.110(2.953) 0.526(1.399) 0.207(0.552) 0.845(2.248)

12 × 8 1244300 1091.0(738.6) 1333.9(903.1) 278.2(188.3) 1445.8(978.8) 0.079(0.210) 1.060(2.820) 0.403(1.072) 0.218(0.581) 0.804(2.139)

14 × 6 2351000 408.6(276.6) 52.5(35.5) 78.3(53) 1030.0(697.3) 0.068(0.181) 1.295(3.445) 0.632(1.682) 0.252(0.670) 1.083(2.881)
14 × 7 2365650 1670.2(1130.7) 172.1(116.5) 315.0(213.3) 2459.1(1664.8) 0.092(0.245) 1.563(4.158) 0.558(1.483) 0.194(0.517) 0.811(2.157)
14 × 8 2622470 2717.6(1839.8) 256.4(173.6) 275.3(186.4) 2034.5(1377.4) 0.073(0.194) 0.936(2.490) 0.396(1.053) 0.183(0.488) 0.746(1.984)
14 × 9 2326370 3759.1(2544.9) 7881.7(5335.9) 483.2(327.1) 3278.9(2219.8) 0.057(0.152) 0.919(2.445) 0.479(1.274) 0.160(0.425) 0.748(1.990)

15 × 6 2707850 1614.1(1092.7) 109.4(74.1) 284.8(192.8) 2160.1(1462.4) 0.109(0.290) 7.769(20.666) 1.009(2.685) 0.836(2.225) 2.084(5.543)
15 × 7 2720070 1971.3(1334.6) 658.7(445.9) 296.2(200.5) 3119.2(2111.7) 0.201(0.535) 2.090(5.559) 0.798(2.123) 0.375(0.997) 1.653(4.397)
15 × 8 2856850 4056.1(2746.0) 397.5(269.1) 1242.1(840.9) 5007.9(3390.3) 0.414(1.101) 21.727(57.794) 2.336(6.214) 2.575(6.849) 8.032(21.365)

16 × 6 2709300 1815.7(1229.2) 630.3(426.7) 338.4(229.1) 4884.4(3306.7) 0.121(0.322) 0.934(2.484) 0.458(1.218) 0.149(0.396) 0.730(1.942)
16 × 7 2809870 22423.7(15180.8) 988.7(669.3) 7208.4(4880.1) 5921.9(4009.1) 0.472(1.256) 13.962(37.139) 1.752(4.660) 1.577(4.195) 4.431(11.786)
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Table 7. Summary of results for RLT1 B&B algorithm and GRASP-PR heuristic. Times in seconds are measured
on a 733 MHz Intel Itanium processor (Intel Fortran 8.0 compiler) for the RLT1 B&B algorithm and on a 2.66 GHz
Intel Xeon running Java for GRASP-PR. Normalized times are given between parentheses.

RLT1 B&B algorithm GRASP-PR times to target solution

instance solution tot. time time to bks min max avg s.d. 0.95

2005De 2302 17640.0(12930.12) 14390.0(10547.87) 0.096(0.255) 6.069(16.144) 1.531(4.073) 0.891(2.371) 3.302(8.783)
2005Aa 3059 136.0(99.69) 128.0(93.82) 0.180(0.479) 14.152(37.644) 3.420(9.097) 2.371(6.306) 19.268(51.253)
2408Ca 1028 6.3(4.618) 3.3(2.419) 0.149(0.396) 2.307(6.137) 0.714(1.899) 0.447(1.189) 1.594(4.240)
2408Aa 5643 719862.0(527658.85) 185726.0(136137.16) 1.604(4.267) 50.445(134.184) 10.288(27.366) 8.369(22.262) 29.735(79.095)

20-15-35 1471896 735.0(538.76) 528.8(387.61) 1.604(4.267) 50.445(134.184) 10.288(27.366) 8.369(22.262) 29.735(79.095)

14 × 9EG 2326370 169.0(123.88) 90.7(66.48) 1.604(4.267) 50.445(134.184) 10.288(27.366) 8.369(22.262) 29.735(79.095)
15 × 8 2856850 130.0(95.29) 39.5(28.95) 1.604(4.267) 50.445(134.184) 10.288(27.366) 8.369(22.262) 29.735(79.095)
16 × 7-1115 2809870 548.0(401.68) 512.6(375.74) 1.604(4.267) 50.445(134.184) 10.288(27.366) 8.369(22.262) 29.735(79.095)
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Table 8. Summary of results for Hybrid B&B algorithm and GRASP-PR heuristic. Times are given in seconds on
a 1.6 GHz Ultra 45 Sun workstation (C++ compiler) for the Hybrid B&B algorithm and on a 2.66 GHz Intel Xeon
running Java for GRASP-PR. Normalized times are given between parentheses.

Hybrid B&B algorithm GRASP-PR times

instance opt soln time min max avg s.d. 0.95

c2005De 5435 10085.0(16136.0) 0.083(0.221) 16.764(44.592) 2.129(5.664) 1.745(4.642) 4.965(13.207)
2005Aa 3059 3018.0(4828.8) 0.180(0.479) 14.152(37.644) 3.420(9.097) 2.371(6.306) 19.268(51.253)
2408Ca 1028 117.0(187.2) 0.149(0.396) 2.307(6.137) 0.714(1.899) 0.447(1.189) 1.594(4.240)
2408Aa 5643 1031637.0(1650619.2) 1.604(4.267) 50.445(134.184) 10.288(27.366) 8.369(22.262) 29.735(79.095)

20-15-35 1471896 2729.0(4366.4) 0.16(0.43) 38.87(103.40) 7.05(18.76) 6.47(17.21) 21.04(55.98)
20-15-55 1723638 4370.0(6992.0) 0.24(0.64) 14.42(38.36) 2.87(7.62) 2.18(5.79) 7.69(20.46)
20-15-75 1953188 1340.0(2144.0) 0.26(0.69) 12.82(34.10) 2.01(5.36) 1.72(4.57) 5.25(13.97)

30-08-55 3501695 2826.0(4521.6) 0.18(0.48) 4.89(13.01) 1.61(4.29) 0.95(2.53) 3.60(9.58)
30-20-35 3379359 228177.0(365083.2) 1.08(2.87) 4441.40(11814.11) 79.03(210.23) 312.62(831.57) 166.21(442.11)
30-20-55 3593105 707027.0(1131243.2) 1.28(3.40) 150.11(399.30) 25.16(66.92) 21.19(56.37) 66.82(177.74)
30-20-75 4050938 18803.0(30084.8) 2.11(5.61) 759.81(2021.11) 41.43(110.22) 68.39(181.89) 148.43(394.82)
30-20-95 5710645 2612.0(4179.2) 833.99(2218.41) 2533608.00(6739397.28) 543019.01(1444430.57) 747962.39(1989579.96) 2186440.80(5815932.53)

35-15-35 4456670 978664.0(1565862.4) 8.41(22.37) 1717.94(4569.72) 306.11(814.26) 242.49(645.04) 775.25(2062.17)
35-15-55 4639128 413241.0(661185.6) 4.33(11.52) 75.69(201.34) 21.13(56.21) 11.95(31.79) 42.47(112.96)
35-15-95 6670264 205931.0(329489.6) 6.61(17.58) 19171.48(50996.14) 1454.00(3867.64) 3057.43(8132.76) 6949.08(18484.55)

14 × 9 2326370 139.0(222.4) 0.057(0.152) 0.919(2.445) 0.479(1.274) 0.160(0.425) 0.748(1.990)
15 × 8 2856850 359.0(574.4) 0.414(1.101) 21.727(57.794) 2.336(6.214) 2.575(6.849) 8.032(21.365)
16 × 7 2809870 311.0(497.6) 0.472(1.256) 13.962(37.139) 1.752(4.660) 1.577(4.195) 4.431(11.786)
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Table 8 compares these results with ones obtained with the GRASP-PR heuristic.
The column 3 lists the time (in seconds on a 1.6 GHz Ultra 45 Sun workstation)
reported by Pessoa et al. (2008) for their hybrid B&B algorithm to find the optimal
solutions and prove their optimality, using the optimum values given in column 2
as upper bounds.

For each instance, we made 200 independent runs of the GRASP-PR heuris-
tic. Each of these runs stopped when an optimally-valued solution (column 2) was
found. Columns 4 to 7 denote the minimum, maximum, and average times, and
standard deviation of the time needed to find the optimally-valued solutions. Fi-
nally, column 8 gives the time needed for 95% of these runs to find solutions having
those same target values. The GRASP-PR heuristic achieved the target values on
all instances in Table 8, with an average performance improvement, with respect
to the hybrid B&B algorithm, varying between a factor of 132.7(79.62) and over
100,000(60,000), with the exception of instance 30-20-95. The smallest GRASP-
PR running time for instance 30-20-95, however, was less than the running time
reported by Pessoa et al. (2008) for the hybrid B&B algorithm.

Elloumi et al. (2003) proposed three linearization methods (L1, L2, and L3),
three semidefinite programming formulations (S0, S1, and S2), and a Lagrangian de-
composition (D0) algorithm for the constrained module allocation problem (CMAP),
or constrained task assignment problem (CTAP). The CTAP is a special case of the
GQAP, where a slightly different cost function is used. For these experiments, we
adopted this cost function to be able to compare the GRASP-PR heuristic with
their algorithms. Elloumi et al. used the instances introduced in Elloumi (1991)
and also used in Roupin (2004). In these instances, four configurations (A, B, C,
and D) are considered. For each configuration, two classes of instances are gener-
ated: a class with a complete communication graph and a second class where the
density of the communication graph is 50%, resulting in a total of eight types of
instances. For each type, five instances (a-e), with 10 facilities and three locations,
and five instances (a-e), with 20 facilities and five locations, are generated. These
instances were downloaded from a website of S. Elloumi. Only a subset of these
instances have their optimal values available in the website. Therefore, we decided
to divide the instances into two tables. Table 9 compares the running times of the
algorithms of Elloumi et al. with those of GRASP-PR on the CTAP instances with
known optimal values listed in the website of S. Elloumi. Tables 10–12 list the other
instances, jointly with the best solution obtained with the GRASP-PR heuristic.
We computed these values because they could not be found in the website. The
tables list the average CPU times, and in parentheses, their corresponding average
errors with the best known solutions for the seven bounds of Elloumi et al. (2003).

In Tables 9–12, the first and second columns show the instance names and their
corresponding optimum or best known values. These instances are labeled in five
parts: a letter “c”, if the communication graph is complete, n = |N |, m = |M |, the
configuration (A, B, C, or D), and the instance identifier (a, b, c, d, or e).

Columns 3 to 9 list the average time (in seconds) reported by Elloumi et al.
(2003) per instance category for their seven methods (L1, L2, L3, S0, S1, S2, and
D0) to find solutions whose values are given in the second column. Least mean
error values are indicated by boldface with ties broken by running time.

For each instance, we made 200 independent runs of the GRASP-PR heuristic.
Each run stopped when a solution value equal to one in column 2 was found.
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Table 9. Summary (Part I) of results for the seven algorithms of Elloumi et al. (2003) and the GRASP-PR heuristic
on the instances used in Elloumi et al. (2003). Times in seconds are measured on a 400 MHz Pentium II for the
algorithms of Elloumi et al. (2003) and on a 2.66 GHz Intel Xeon running Java for GRASP-PR. Normalized times are
given between parentheses.

Algs. of Elloumi et al.: avg time in secs (avg error = (bks - lower)/bks) GRASP-PR times to bks

instance bks L1 L2 L3 S0 S1 S2 D0 min max avg s.d. 0.95

c1003Aa 1616 0.038(0.101) 0.927(2.466) 0.191(0.507) 0.139(0.370) 0.518(1.378)
c1003Ab 1390 0.035(0.093) 0.991(2.636) 0.210(0.559) 0.154(0.409) 0.505(1.343)
c1003Ac 1730 1(0.4) 1(0.4) 1(0.4) 6(2.4) 948(379.2) 884(353.6) 30(12) 0.037(0.098) 0.609(1.620) 0.204(0.544) 0.133(0.354) 0.482(1.282)
c1003Ad 1289 (68%) (12%) (23%) (69%) (9%) (3%) (15%) 0.031(0.082) 0.535(1.423) 0.168(0.447) 0.114(0.304) 0.419(1.115)
c1003Ae 1048 0.040(0.106) 0.996(2.649) 0.322(0.856) 0.182(0.483) 0.670(1.782)

c1003Ba 1299 0.023(0.061) 0.815(2.168) 0.209(0.555) 0.127(0.338) 0.505(1.343)
c1003Bb 865 0.041(0.109) 0.838(2.229) 0.331(0.882) 0.194(0.516) 0.684(1.819)
c1003Bc 1154 1(0.4) 1(0.4) 1(0.4) 144(57.6) 998(399.2) 890(356) 25(10) 0.032(0.085) 1.142(3.038) 0.335(0.891) 0.222(0.591) 0.880(2.341)
c1003Bd 834 (94%) (29%) (37%) (94%) (26%) (12%) (33%) 0.034(0.090) 0.768(2.043) 0.249(0.661) 0.151(0.401) 0.546(1.452)
c1003Be 812 0.031(0.082) 0.668(1.777) 0.189(0.503) 0.126(0.334) 0.462(1.229)

c1003Ca 455 0.033(0.088) 0.516(1.373) 0.185(0.491) 0.117(0.312) 0.426(1.133)
c1003Cb 467 0.033(0.088) 1.089(2.897) 0.114(0.303) 0.099(0.263) 0.301(0.801)
c1003Cc 475 1(0.4) 1(0.4) 1(0.4) 3(1.2) 96(38.4) 274(109.6) 19(7.6) 0.034(0.090) 0.558(1.484) 0.164(0.437) 0.110(0.292) 0.408(1.085)
c1003Cd 472 (4%) (1%) (4%) (11%) (1%) (1%) (1%) 0.038(0.101) 0.340(0.904) 0.105(0.279) 0.075(0.199) 0.285(0.758)
c1003Ce 350 0.033(0.088) 0.349(0.928) 0.112(0.299) 0.091(0.241) 0.298(0.793)

c1003Da 843 0.022(0.059) 0.756(2.011) 0.185(0.493) 0.134(0.356) 0.470(1.250)
c1003Db 879 0.032(0.085) 0.662(1.761) 0.150(0.399) 0.108(0.288) 0.417(1.109)
c1003Dc 1230 1(0.4) 1(0.4) 1(0.4) 2(0.8) 798(319.2) 568(227.2) 27(10.8) 0.032(0.085) 0.606(1.612) 0.196(0.522) 0.122(0.326) 0.477(1.269)
c1003Dd 956 (100%) (25%) (39%) (100%) (22%) (8%) (32%) 0.029(0.077) 0.494(1.314) 0.185(0.493) 0.114(0.304) 0.435(1.157)
c1003De 848 0.036(0.096) 0.618(1.644) 0.199(0.529) 0.125(0.333) 0.478(1.271)
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Columns 10 to 13 denote, respectively, the minimum, maximum, and average times,
and standard deviation of these times to find solutions with values equal to those
of column 2. Finally, column 14 lists the times taken by the faster 95% of these
200 runs.

The GRASP-PR heuristic found the target values on all 200 runs for each in-
stance in Tables 9–12, with an improvement varying between a factor of 7.3(1.1)
and over 5,000(750) with respect to the best method of Elloumi et al. (2003). For
each problem group, the improvement was computed by taking the mean value of
the average GRASP-PR running times for that group with respect to the running
times in boldface.

4. Concluding remarks

In this paper, we propose a new GRASP with path-relinking heuristic for the
generalized quadratic assignment problem. To better explore the solution space,
this heuristic incorporates randomization in three novel components: a construction
procedure, a local search procedure, and a path-relinking procedure with repair.

With the exception of the construction procedure, randomization is not common
in the components of a GRASP heuristic. Randomization in construction is usually
confined to the selection of a solution element from the restricted candidate list.
Similarly, path-relinking procedures do not usually incorporate randomization. A
well-known exception is the greedy randomized adaptive path-relinking variant of
Faria Jr. et al. (2005).

In addition to enabling better exploration of the solution space, randomization
is useful to help deal with infeasibilities. The randomized construction steps are
repeated until either a feasible solution is constructed or a maximum number of
repetitions is reached. The main role of randomization in the path-relinking phase
is to enable the repair of infeasible solutions that can be produced when an attribute
of the guiding solution is incorporated in the current solution.

Randomization in the local search is used to sample moves from those leading
to an improving solution. Since the entire neighborhood is not evaluated, this sam-
pling speeds up the search without compromising its effectiveness. Since not all
neighborhood solutions are evaluated and the procedure terminates when no im-
proving solution is sampled, the resulting solution may not be a true local minimum.
We call such solutions approximate local minima.

The algorithm was implemented in Java and tested extensively on a set of 128
instances available in the literature (Cordeau et al., 2006; Lee and Ma, 2005; Elloumi
et al., 2003). Previous papers on this subject only considered small subsets of
these instances. For each instance (except 30-20-95 of Cordeau et al. (2006)), 200
independent runs of the heuristic were done.3 Each run terminated when the best-
known solution for that instance was found. For all instances, the heuristic found
the best-known solution on all runs, demonstrating its robustness.

For all instances, except 30-20-95, 35-15-95, and 50-10-75 of Cordeau et al.
(2006), the average running time of the GRASP with path-relinking heuristic was
never greater than the running time reported for the other heuristics in the liter-
ature. In addition to the aforementioned three instances of Cordeau et al. (2006),
average normalized times of the GRASP with path-relinking were longer than the
reported times for the memetic algorithm only on instances 30-10-65 and 35-15-35.

3Because of long running times, on instance 30-20-95, only 18 independent runs were done.
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Table 10. Summary (Part II) of results for the seven algorithms of Elloumi et al. (2003) and the GRASP-PR
heuristic on the instances used in Elloumi et al. (2003). Times in seconds are measured on a 400 MHz Pentium II for
the algorithms of Elloumi et al. (2003) and on a 2.66 GHz Intel Xeon running Java for GRASP-PR. Normalized times
are given between parentheses.

Algs. of Elloumi et al.: avg time in secs (avg error = (bks - lower)/bks) GRASP-PR times to bks

instance bks L1 L2 L3 S0 S1 S2 D0 min max avg s.d. 0.95

1003Aa 731 0.032(0.085) 0.377(1.003) 0.081(0.215) 0.040(0.106) 0.441(1.173)
1003Ab 713 0.019(0.051) 0.238(0.633) 0.070(0.187) 0.032(0.085) 0.318(0.846)
1003Ac 645 1(0.4) 1(0.4) 1(0.4) 4(1.6) 575(230) 458(183.2) 26(10.4) 0.032(0.085) 0.343(0.912) 0.085(0.226) 0.042(0.110) 0.393(1.045)
1003Ad 688 (37%) (21%) (27%) (41%) (12%) (5%) (25%) 0.029(0.077) 0.127(0.338) 0.061(0.162) 0.020(0.053) 0.128(0.340)
1003Ae 715 0.02(0.053) 0.142(0.378) 0.063(0.169) 0.021(0.057) 0.109(0.290)

1003Ba 306 0.02(0.053) 0.24(0.638) 0.097(0.259) 0.043(0.115) 0.513(1.365)
1003Bb 528 0.032(0.085) 0.383(1.018) 0.123(0.328) 0.063(0.169) 0.487(1.295)
1003Bc 326 1(0.4) 1(0.4) 1(0.4) 12(4.8) 860(344) 898(359.2) 25(10) 0.029(0.077) 0.260(0.692) 0.110(0.291) 0.046(0.122) 0.517(1.375)
1003Bd 364 (85%) (48%) (57%) (85%) (29%) (11%) (57%) 0.021(0.056) 0.559(1.487) 0.139(0.371) 0.077(0.206) 0.295(0.785)
1003Be 324 0.02(0.053) 0.248(0.660) 0.090(0.239) 0.040(0.107) 0.165(0.439)

1003Ca 346 0.033(0.088) 0.126(0.335) 0.061(0.164) 0.017(0.044) 0.33(0.878)
1003Cb 424 0.025(0.067) 0.674(1.793) 0.098(0.262) 0.059(0.157) 0.465(1.237)
1003Cc 347 1(0.4) 1(0.4) 1(0.4) 4(1.6) 189(75.6) 156(62.4) 19(7.6) 0.033(0.088) 0.082(0.218) 0.047(0.124) 0.009(0.023) 0.230(0.612)
1003Cd 434 (2%) (1%) (3%) (4%) (2%) (1%) (1%) 0.031(0.082) 0.326(0.867) 0.066(0.175) 0.026(0.070) 0.097(0.258)
1003Ce 285 0.028(0.074) 0.074(0.197) 0.043(0.116) 0.006(0.017) 0.048(0.128)

1003Da 219 0.02(0.053) 0.386(1.027) 0.103(0.275) 0.057(0.153) 0.629(1.673)
1003Db 402 0.030(0.080) 0.425(1.131) 0.119(0.316) 0.058(0.155) 0.619(1.647)
1003Dc 297 1(0.4) 1(0.4) 1(0.4) 3(1.2) 1631(652.4) 855(342) 25(10) 0.028(0.074) 0.196(0.521) 0.079(0.210) 0.031(0.083) 0.431(1.146)
1003Dd 445 (100%) (43%) (52%) (100%) (27%) (13%) (55%) 0.025(0.067) 0.318(0.846) 0.112(0.297) 0.060(0.159) 0.398(1.059)
1003De 358 0.029(0.077) 0.940(2.500) 0.073(0.195) 0.067(0.179) 0.147(0.391)
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Table 11. Summary (Part III) of results for the seven algorithms of Elloumi et al. (2003) and the GRASP-PR
heuristic on the instances used in Elloumi et al. (2003). Times in seconds are measured on a 400 MHz Pentium II for
the algorithms of Elloumi et al. (2003) and on a 2.66 GHz Intel Xeon running Java for GRASP-PR. Normalized times
are given between parentheses.

Algs. of Elloumi et al.: avg time in secs (avg error = (bks - lower)/bks) GRASP-PR times to bks

instance bks L1 L2 L3 S0 S1 S2 D0 min max avg s.d. 0.95

2005Aa 3059 0.180(0.479) 14.152(37.644) 3.420(9.097) 2.371(6.306) 19.268(51.253)
2005Ab 2954 0.143(0.380) 3.089(8.217) 1.041(2.768) 0.550(1.464) 4.585(12.196)
2005Ac 3012 1(0.4) 82(32.8) 4(1.6) 59(23.6) 1800(720) 1800(720) 238(95.2) 0.199(0.529) 4.173(11.100) 1.119(2.975) 0.592(1.574) 3.961(10.536)
2005Ad 3174 (85%) (12%) (27%) (85%) (10%) (2%) (19%) 0.108(0.287) 3.561(9.472) 1.056(2.809) 0.508(1.350) 2.51(6.677)
2005Ae 3054 0.163(0.434) 9.363(24.906) 1.685(4.483) 1.338(3.559) 4.570(12.156)

2005Ba 2442 0.663(1.764) 54.714(145.539) 14.731(39.184) 10.785(28.687) 49.609(131.960)
2005Bb 2088 0.210(0.559) 42.142(112.098) 4.070(10.827) 5.092(13.544) 17.237(45.850)
2005Bc 1986 1(0.4) 75(30) 4(1.6) 600(240) 1800(720) 1800(720) 223(89.2) 0.281(0.747) 11.458(30.478) 2.643(7.031) 1.885(5.015) 9.428(25.078)
2005Bd 2449 (98%) (17%) (32%) (98%) (16%) (3%) (26%) 0.413(1.099) 8.503(22.618) 2.452(6.522) 1.597(4.248) 6.331(16.840)
2005Be 2453 0.363(0.966) 7.904(21.025) 1.938(5.154) 1.099(2.923) 4.177(11.111)

2005Ca 783 0.062(0.165) 0.936(2.490) 0.141(0.375) 0.069(0.183) 0.686(1.825)
2005Cb 636 0.060(0.160) 0.319(0.849) 0.162(0.432) 0.058(0.153) 0.843(2.242)
2005Cc 772 1(0.4) 78(31.2) 4(1.6) 71(28.4) 1800(720) 1800(720) 239.8(95.9) 0.057(0.152) 0.702(1.867) 0.244(0.649) 0.114(0.302) 1.387(3.689)
2005Cd 682 (19%) (1%) (10%) (31%) (1%) (0%) (1%) 0.057(0.152) 0.268(0.713) 0.139(0.369) 0.046(0.123) 0.239(0.636)
2005Ce 732 0.060(0.160) 0.406(1.080) 0.165(0.440) 0.065(0.173) 0.300(0.798)

2005Da 2413 0.578(1.537) 41.654(110.800) 5.591(14.872) 6.004(15.970) 25.535(67.923)
2005Db 2316 0.291(0.774) 12.017(31.965) 2.271(6.040) 1.625(4.323) 8.646(22.998)
2005Dc 1965 1(0.4) 66(26.4) 4(1.6) 34(13.6) 1800(720) 1800(720) 206(82.4) 0.072(0.192) 3.126(8.315) 1.188(3.161) 0.636(1.692) 3.343(8.892)
2005Dd 2211 (100%) (18%) (30%) (100%) (14%) (3%) (24%) 0.085(0.226) 2.940(7.820) 0.863(2.295) 0.378(1.005) 1.402(3.729)
2005De 2302 0.096(0.255) 6.069(16.144) 1.531(4.073) 0.891(2.371) 3.302(8.783)
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Table 12. Summary (Part IV) of results for the seven algorithms of Elloumi et al. (2003) and the GRASP-PR
heuristic on the instances used in Elloumi et al. (2003). Times in seconds are measured on a 400 MHz Pentium II for
the algorithms of Elloumi et al. (2003) and on a 2.66 GHz Intel Xeon running Java for GRASP-PR. Normalized times
are given between parentheses.

Algs. of Elloumi et al.: avg time in secs (avg error = (bks - lower)/bks) GRASP-PR times to bks

instance bks L1 L2 L3 S0 S1 S2 D0 min max avg s.d. 0.95

2408Aa 5643 Instances in http://cedric.cnam.fr/oc/TAP/all CTAP instances/ 1.604(4.27) 50.445(134.18) 10.288(27.37) 8.369(22.26) 29.735(79.10)
2408Ca 1028 but not in Elloumi et al. (2003). 0.149(0.40) 2.307(6.14) 0.714(1.90) 0.447(1.19) 1.594(4.24)

c2005Aa 6412 1.209(3.22) 18.117(48.19) 5.280(14.05) 3.281(8.73) 13.211(35.14)
c2005Ab 6260 0.253(0.67) 15.489(41.20) 3.125(8.31) 2.047(5.45) 7.442(19.80)
c2005Ac 6491 1(0.4) 72(28.8) 4(1.6) 85(34) 1800(720) 1800(720) 214(85.6) 0.346(0.92) 20.114(53.50) 4.466(11.88) 3.146(8.37) 11.287(30.02)
c2005Ad 6267 (69%) (29%) (40%) (70%) (12%) (3%) (35%) 0.237(0.63) 8.763(23.31) 1.935(5.15) 1.088(2.90) 3.982(10.59)
c2005Ae 6194 0.185(0.49) 11.353(30.20) 2.923(7.78) 2.132(5.67) 7.264(19.32)

c2005Ba 5420 1.457(3.88) 42.049(111.85) 10.596(28.19) 6.976(18.56) 26.247(69.82)
c2005Bb 5370 0.665(1.77) 24.880(66.18) 4.433(11.79) 3.292(8.76) 11.138(29.63)
c2005Bc 5645 1(0.4) 81(32.4) 4(1.6) 199(79.6) 1800(720) 1800(720) 156(62.4) 1.163(3.09) 40.923(108.86) 9.447(25.13) 6.924(18.42) 25.171(66.96)
c2005Bd 5420 (98%) (17%) (32%) (98%) (16%) (3%) (26%) 0.260(0.69) 22.465(59.76) 3.345(8.90) 3.027(8.05) 9.235(24.57)
c2005Be 5836 0.725(1.93) 25.527(67.90) 3.901(10.38) 3.161(8.41) 10.125(26.93)

c2005Ca 1181 0.134(0.36) 3.356(8.93) 1.059(2.82) 0.619(1.65) 2.145(5.71)
c2005Cb 1017 0.071(0.19) 3.385(9.00) 0.377(1.00) 0.287(0.76) 0.746(1.98)
c2005Cc 1197 1(0.4) 69(27.6) 4(1.6) 58(23.2) 1800(720) 1800(720) 228(91.2) 0.11(0.29) 3.558(9.46) 0.996(2.65) 0.810(2.16) 3.04(8.09)
c2005Cd 1038 (2%) (0%) (7%) (12%) (1%) (0%) (1%) 0.061(0.16) 0.402(1.07) 0.171(0.46) 0.061(0.16) 0.295(0.79)
c2005Ce 1166 0.057(0.15) 0.564(1.50) 0.195(0.52) 0.084(0.22) 0.387(1.03)

c2005Da 5139 0.421(1.12) 7.787(20.71) 2.584(6.87) 1.441(3.83) 5.872(15.62)
c2005Db 5519 0.548(1.46) 29.663(78.90) 4.824(12.83) 3.935(10.47) 12.613(33.55)
c2005Dc 5907 1(0.4) 69(27.6) 4(1.6) 34(13.6) 1800(720) 1800(720) 127(50.8) 0.834(2.22) 55.999(148.96) 9.945(26.45) 9.786(26.03) 36.641(97.47)
c2005Dd 5494 (100%) (56%) (63%) (100%) (20%) (9%) (66%) 0.505(1.34) 3.977(10.58) 1.494(3.98) 0.699(1.86) 2.878(7.66)
c2005De 5435 0.083(0.22) 16.764(44.59) 2.129(5.67) 1.745(4.64) 4.965(13.21)
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However, normalized minimum running times of the GRASP with path-relinking
heuristic were smaller than those of the memetic algorithm on all instances tested.
Even on instance 30-20-95, where we measured the longest running times, the fastest
of the 18 solution times of the GRASP with path-relinking heuristic implemented
in Java was 834 seconds on a 2.66 GHz processor (normalized to 2218 seconds)
while the time reported for the C implementation by Cordeau et al. (2006) was
5232 seconds on a 1.2 GHz processor (normalized to 6278 seconds).

With respect to exact methods, our average running times were often orders
of magnitude smaller than those reported in the literature. This is not surprising
since the same is observed on the quadratic assignment problem where heuristics
can quickly find a solution having an optimal objective function value whereas exact
methods on large computational grids sometimes take months of computation to
prove optimality of these solutions (Anstreicher et al., 2002).

Taking into account the effects of processor speed and programming languages,
we believe that the heuristic proposed in this paper is competitive with the algo-
rithms proposed in the literature for solving the generalized quadratic assignment
problem.
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