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Abstract. Cluster analysis has been applied to several domains with
numerous applications. In this paper, we propose several GRASP with
path-relinking heuristics for data clustering problems using as case study
biological datasets. All these variants are based on the construction and
local search procedures introduced by Nascimento et. al [22]. We hy-
bridized the GRASP proposed by Nascimento et. al [22] with four alter-
natives for relinking method: forward, backward, mixed, and randomized.
To our knowledge, GRASP with path-relinking has never been applied
to cluster biological datasets. Extensive comparative experiments with
other algorithms on a large set of test instances, according to different
distance metrics (Euclidean, city block, cosine, and Pearson), show that
the best of the proposed variants is both effective and efficient.

1 Introduction

Clustering algorithms aim to group data such that the most similar objects be-
long to the same group or cluster, and dissimilar objects are assigned to different
clusters. According to Nascimento et. al [22], cluster analysis has been applied
to several domains, natural language processing [2], galaxy formation [3], image
segmentation [4], and biological data [7; 8; 9]. Surveys on clustering algorithms
and their applications can be found in [5] and [6].

This paper presents a GRASP with path-relinking for data clustering based
on a linearized model proposed by Nascimento et. al [22]:

min

N−1∑

i=1

N∑

j=i+1

dijyij (1)

subject to:
M∑

k=1

xik = 1, i = 1, ..., N (2)



N∑

i=1

xik ≥ 1, k = 1, ..., M (3)

xik ∈ {0, 1}, i = 1, ..., N, k = 1, ..., M (4)

yij ≥ xik + xjk − 1, i = 1, ..., N, j = i + 1, ..., N, k = 1, ..., M (5)

yij ≥ 0 i = 1, ..., N, j = i + 1, ..., N. (6)

As described in [22], the objective function (1) aims to minimize the distance
between the objects inside the same cluster, where dij denotes the distance
between objects i and j; N denotes the number of objects; M denotes the number
of clusters; xik is a binary variable that assumes value 1, if the object i belongs
to the cluster k and 0, otherwise; and yij is a real variable that assumes the
value 1, if the objects i and j belong to the same cluster.

While constraints (2) assure that object i belongs to only one cluster, con-
straints (3) guarantee that cluster k contains at least one object, and con-
straints (4) assure that the variables xik are binaries. Finally, constraints (5)
and (6) guarantee that yij assumes the value 1, if both values of xik and xjk are
equal to 1.

The paper is organized as follows. In Section 2, we describe the GRASP with
path-relinking procedure. Computational results are described in Section 3 and
concluding remarks are made in Section 4.

2 GRASP with path-relinking for data clustering

GRASP, or greedy randomized adaptive search procedure, is a multi-start meta-
heuristic for finding approximate solutions to combinatorial optimization prob-
lems formulated as

min f(x) subject to x ∈ X ,

where f(·) is an objective function to be minimized and X is a discrete set of
feasible solutions. It was first introduced by Feo and Resende [7] in a paper
describing a probabilistic heuristic for set covering. Since then, GRASP has
experienced continued development [8; 23; 25] and has been applied in a wide
range of problem areas [9; 10; 11].

At each GRASP iteration, a greedy randomized solution is constructed to be
used as a starting solution for local search. Local search repeatedly substitutes
the current solution by a better solution in the neighborhood of the current
solution. If there is no better solution in the neighborhood, the current solution
is declared a local minimum and the search stops. The best local minimum found
over all GRASP iterations is output as the solution.

GRASP iterations are independent, i.e. solutions found in previous GRASP
iterations do not influence the algorithm in the current iteration. The use of
previously found solutions to influence the procedure in the current iteration can
be thought of as a memory mechanism. One way to incorporate memory into
GRASP is with path-relinking [13; 16]. In GRASP with path-relinking [18; 24],



an elite set of diverse good-quality solutions is maintained to be used during
each GRASP iteration. After a solution is produced with greedy randomized
construction and local search, that solution is combined with a randomly selected
solution from the elite set using the path-relinking operator. The best of the
combined solutions is a candidate for inclusion in the elite set and is added to
the elite set if it meets quality and diversity criteria.

Algorithm 1 shows pseudo-code for a GRASP with path-relinking heuristic
for the data clustering problem. The algorithm takes as input the dataset to be
clustered and outputs the best clustering π∗ ∈ χ found.

Data : Dataset to be clustered
Result : Solution π∗ ∈ χ.
P ← ∅;1

while stopping criterion not satisfied do2

π′ ← GreedyRandomized(·) as described in [22];3

if elite set P has at least ρ elements then4

π′ ← LocalSearch(π′) as described in [22];5

Randomly select a solution π+ ∈ P ;6

π′ ← PathRelinking(π′, π+);7

π′ ← LocalSearch(π′) as described in [22];8

if elite set P is full then9

if c(π′) ≤ max{c(π) | π ∈ P} and π′ 6≈ P then10

Replace the element most similar to π′ among all11

elements with cost worst than π′;
end12

13

else if π′ 6≈ P then14

P ← P ∪ {π′};15

end16

17

else if π′ 6≈ P then18

P ← P ∪ {π′};19

end20

end21

return π∗ = min{c(π) | π ∈ P};22

Algorithm 1: GRASP with path-relinking heuristic.

After initializing the elite set P as empty in line 1, the GRASP with path-
relinking iterations are computed in lines 2 to 21 until a stopping criterion is
satisfied. This criterion could be, for example, a maximum number of iterations,
a target solution quality, or a maximum number of iterations without improve-
ment. In this paper, we have adopted the maximum number of iterations without
improvement (IWI) as stopping criterion of the GRASP-PR variants. During
each iteration, a greedy randomized solution π′ is generated in line 3. If the elite



set P does not have at least ρ elements, then if π′ is sufficiently different from
all other elite set solutions, π′ is added to the elite set in line 19. To define the
term sufficiently different more precisely, let ∆(π′, π) be defined as the minimum
number of moves needed to transform π′ into π or vice-versa. For a given level
of difference δ, we say that π′ is sufficiently different from all elite solutions in
P if ∆(π′, π) > δ for all π ∈ P , which we indicate with the notation π′ 6≈ P . If
the elite set P does have at least ρ elements, then the steps in lines 5 to 16 are
computed.

The local search described in [22] is applied in line 5 using π′ as a starting
point, resulting in a local minimum, which we denote by π′. Next, path-relinking
is applied in line 7 between π′ and an elite solution π+, randomly chosen in line 6.
Solution π+ is selected with probability proportional to ∆(π′, π+). In line 8, the
local search described in [22] is applied to π′. If the elite set is full, then if π′ is
of better quality than the worst elite solution and π′ 6≈ P , then it will be added
to the elite set in line 11 in place of some elite solution. Among all elite solutions
having cost no better than that of π′, a solution π most similar to π′, i.e. with
the smallest ∆(π′, π) value, is selected to be removed from the elite set. Ties are
broken at random. Otherwise, if the elite set is not full, π′ is simply added to
the elite set in line 15 if π′ 6≈ P .

2.1 Path-relinking

Path-relinking was originally proposed by Glover [13] as an intensification strat-
egy exploring trajectories connecting elite solutions obtained by tabu search or
scatter search [14; 15; 16]. Starting from one or more elite solutions, paths in the
solution space leading toward other elite solutions are generated and explored
in the search for better solutions. To generate paths, moves are selected to in-
troduce attributes in the current solution that are present in the elite guiding
solution. Path-relinking may be viewed as a strategy that seeks to incorporate
attributes of high quality solutions, by favoring these attributes in the selected
moves.

Algorithm 2 illustrates the pseudo-code of the path-relinking procedure ap-
plied to a pair of solutions xs (starting solution) and xt (target solution). The
procedure starts by computing the symmetric difference ∆(xs, xt) between the
two solutions, i.e. the set of moves needed to reach xt (target solution) from xs

(initial solution). A path of solutions is generated linking xs and xt. The best
solution x∗ in this path is returned by the algorithm. At each step, the procedure
examines all moves m ∈ ∆(x, xt) from the current solution x and selects the one
which results in the least cost solution, i.e. the one which minimizes f(x ⊕ m),
where x ⊕ m is the solution resulting from applying move m to solution x. The
best move m∗ is made, producing solution x⊕m∗. The set of available moves is
updated. If necessary, the best solution x∗ is updated. The procedure terminates
when xt is reached, i.e. when ∆(x, xt) = ∅.



Data : Starting solution xs and target solution xt

Result : Best solution x∗ in path from xs to xt

Compute symmetric difference ∆(xs, xt);
f∗ ← min{f(xs), f(xt)};
x∗ ← argmin{f(xs), f(xt)};
x← xs;
while ∆(x, xt) 6= ∅ do

m∗ ← argmin{f(x ⊕m) : m ∈ ∆(x, xt)};
∆(x⊕m∗, xt)← ∆(x, xt) \ {m

∗};
x← x⊕m∗;
if f(x) < f∗ then

f∗ ← f(x);
x∗ ← x;

end
end

Algorithm 2: Path-relinking.

We notice that path-relinking may also be viewed as a constrained local
search strategy applied to the initial solution xs, in which only a limited set of
moves can be performed and where uphill moves are allowed. Several alternatives
have been considered and combined in recent implementations of path-relinking
[1; 2; 3; 5; 26; 27; 29], among them:

– forward relinking: path-relinking is applied using the worst among xs and xt

as the initial solution and the other as the target solution;
– backward relinking: the roles of xs and xt are interchanged, path-relinking is

applied using the best among xs and xt as the initial solution and the other
as the target solution;

– mixed relinking: two paths are simultaneously explored, the first emanating
from xs and the second from xt, until they meet at an intermediary solution
equidistant from xs and xt; and

– randomized relinking: instead of selecting the best yet unselected move, ran-
domly select one from among a candidate list with the most promising moves
in the path being investigated.

Figure 2.1 illustrates an example of path-relinking. Let x be a solution com-
posed by clusters A = {2, 3, 7}, B = {4, 6}, and C = {1, 5}; and xt the target
solution with the clusters A = {6, 7}, B = {4, 5}, and C = {1, 2, 3}. Initially,
∆(x, xt) = {(2, A, C), (3, A, C), (5, C, B), (6, B, A)}, where (e, s, t) means a move
of element e from cluster s to cluster t. After the best move (2, A, C) from so-
lution x is performed, x is updated with clusters A = {3, 7}, B = {4, 6}, and
C = {1, 2, 5}. The process is repeated until xt is reached.

3 Experimental results

In this section, we present results on computational experiments with the GRASP
with path-relinking (GRASP-PR) heuristic introduced in this paper. First, we



Fig. 1. A path-relinking example for data clustering.

describe our datasets. Second, we describe our test environment and determine
an appropriated combination of values for the parameters of the heuristic. Fi-
nally, besides the GRASP-L algorithm introduced by Nascimento [22], we com-
pare several GRASP-PR variants implementations with the three known clus-
tering algorithms described in [22]: K-means, K-medians and PAM [17]6.

3.1 Datasets

We used the same five datasets from [22]: fold protein classification, named Pro-
tein [6], prediction of protein localization sites, named Yeast [21]; seven cancer
diagnosis datasets, named Breast [4], Novartis [30], BreastA [31], BreastB [32],
DLBCLA [20], DLBCLB [28] and MultiA [30]; and the benchmark Iris [12].

Table 1 shows the main characteristics of each dataset. The second column
indicates the number of objects in each dataset. The third column shows the
number of structures in the dataset and, in parenthesis, the number of clusters
for each structure. The fourth column shows the number of attributes in the
objects. Next, we describe in more details each of the datasets used.

3.2 Test environment and parameters for GRASP-PR heuristic

All experiments with GRASP-PR were done on a Dell computer with Core 2 Duo
2.1 GHz T8100 Intel processor and 3 Gb of memory, running Windows XP Pro-
fessional version 5.1 2002 SP3 x86. The GRASP-PR heuristic was implemented

6 K-means and K-medians implementations are available at http://bonsai.ims.

u-tokyo.ac.jp/∼mdehoon/software/cluster/software.htm.



Table 1. Characteristics of datasets used in the experiments.

Data Set #Objects #Str(#Groups) #Attrib

Protein 698 2 (4,27) 125
Yeast 1484 1 (10) 8
Breast 699 2 (2,8) 9

Novartis 103 1 (4) 1000
BreastA 98 1 (3) 1213
BreastB 49 2 (2,4) 1213
DLBCLA 141 1 (3) 661
DLBCLB 180 1 (3) 661
MultiA 103 1 (4) 5565

Iris 140 1 (3) 4

in Java and compiled into bytecode with javac version 1.6.0.20. The random-
number generator is an implementation of the Mersenne Twister algorithm [19]
from the COLT7 library.

The values of the parameters for GRASP-PR heuristic used for each dataset
are shown in Table 2.

Table 2. Path-Relinking parameters. Pool size (PS), elements in pool before start PR
(EPBS), symmetrical difference (SD), and Iterations without Improvement (IWI).

Iris Novartis BrstA BrstB1 BrstB2 DLBCLA DLBCLB MultA Brst1 Brst2 Prt1 Prt2 Yeast

PS 3 5 4 3 3 5 5 5 3 6 5 5 7

EPBS 1 3 1 1 1 2 2 2 1 3 2 3 3

SD 4 70 4 30 30 100 100 70 4 550 450 450 1200

IWI 15 15 15 15 15 15 15 15 15 15 15 15 5

3.3 Numerical comparisons

We compare the three known clustering algorithms described in [22] (K-means,
K-medians and PAM [17]) with the GRASP-L algorithm introduced by Nasci-
mento [22] and the following five GRASP-PR variants implementations: GRASP,
GRASP-PRf, GRASP-PRb, GRASP-PRm and GRASP-PRrnd. GRASP is our
implementation of the GRASP-L algorithm. GRASP-PRf, GRASP-PRb, GRASP-
PRm and GRASP-PRrnd correspond to the following relinking alternatives: for-
ward, backward, mixed and greedy randomized, respectively. We used the same
distance measurements for all of them.

The comparisons of the algorithms were based on the Corrected Rand index
(CRand) proposed in [26] (Table 3). While GRASP-L, K-means and K-medians
were run 100 times, GRASP-PRf, GRASP-PRb, GRASP-PRm and GRASP-

7 COLT is a open source library for high performance scientific and technical comput-
ing in Java. See http://acs.lbl.gov/∼hoschek/colt/.



PRrnd were run 30 times. All algorithms selected the partition with the best
solution for each of the distance metrics.

With respect to the comparisons of the algorithms based on the Corrected
Rand index (CRand) reported in Table 3, we observe that GRASP-PR variants
found the best-quality solutions with all different dissimilarity measures, except
for the Pearson correlation, for which there was a tie. In fact,

– using Euclidean metric as dissimilarity measure, GRASP-PRrnd found best
results for 9 out of 10 datasets; GRASP-PRb and GRASP-PRm found best
results for 8 datasets; GRASP-PRf and GRASP for 6, GRASP-L for 2, while
K-means and K-medians found the best solution for only 1 and 2 datasets,
respectively;

– using City Block metric as dissimilarity measure, GRASP-PRb, GRASP-
PRrnd and GRASP-PRm for 8 out of 10 datasets; GRASP-PRf found best
results for 7 datasets; GRASP for 6, GRASP-L and K-medians for 2, while
K-means only for 1;

– using Cosine metric as dissimilarity measure, GRASP-PRrnd, GRASP-PRb,
and GRASP-PRf found best results for 6 out of 10 datasets; GRASP-PRm
for 5, GRASP for 4, and K-medians, PAM, and K-means for 4, 2, and 1,
respectively.

4 Concluding remarks

In this paper, we propose four variants of GRASP with path-relinking (forward,
backward, mixed, and randomized) for data clustering problem. The algorithms
were implemented in Java and extensively tested. Computational results from
several instances from the literature demonstrate that the heuristic is a well-
suited approach for data clustering.
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Table 3. Summary of CRand results for GRASP-PRrnd, GRASP-PRm, GRASP-PRb, GRASP-PRf, GRASP, GRASP-L, K-means,
K-medians and PAM algorithms. M is the number of clusters for the best CRand found. Times are given in seconds on a Core 2 Duo 2.1
GHz T8100 Intel processor (javac compiler version 1.6.0.20). Times for GRASP-L, K-means, K-medians and PAM algorithms are not
reported in [22].

GRASP-PRrnd GRASP-PRm GRASP-PRb GRASP-PRf GRASP GRASP-L KMEANS KMEDIANS PAM

M cRand Time M cRand Time M cRand Time M cRand Time M cRand Time M cRand M cRand M cRand M cRand

EUCLIDEAN

Protein 4 0.297 71.156 4 0.297 63.624 4 0.294 60.594 4 0.294 61.672 4 0.294 55.234 4 0.322 7 0.322 7 0.313 6 0.250

11 0.169 107.328 11 0.168 306.197 11 0.168 130.249 11 0.168 130.249 11 0.169 121.547 11 0.168 17 0.139 25 0.134 13 0.098

Breast 2 0.878 16.344 2 0.878 19.781 2 0.878 19.843 2 0.878 19.343 2 0.878 18.625 2 0.877 2 0.803 2 0.782 2 0.828

15 0.016 172.422 15 0.016 137.857 15 0.016 131.202 15 0.016 152.203 15 0.016 312.563 15 0.015 18 -0.010 17 0.036 5 0.012

Yeast 9 0.151 1689.766 9 0.153 1410.047 9 0.153 1492.132 9 0.150 849.363 9 0.151 1738.641 9 0.150 7 0.170 8 0.173 8 0.143

Novartis 4 0.950 7.124 4 0.950 6.921 4 0.950 7.045 4 0.950 7.344 4 0.950 6.344 4 0.921 4 0.946 4 0.946 4 0.897

BreastA 2 0.682 5.782 2 0.723 5.844 2 0.682 5.891 2 0.682 6.188 2 0.682 6.172 2 0.682 2 0.654 2 0.654 2 0.543

BreastB 2 0.694 1.875 2 0.694 1.906 2 0.694 1.906 2 0.694 1.985 2 0.694 1.968 2 0.626 3 0.502 4 0.500 2 0.388

2 0.322 1.890 2 0.322 2.031 2 0.322 1.922 2 0.322 1.984 2 0.321 1.968 2 0.314 3 0.286 3 0.260 2 0.187

DLBCLA 4 0.447 9.531 4 0.431 10.187 4 0.447 8.249 4 0.408 8.297 4 0.408 11.750 4 0.408 4 0.309 5 0.365 4 0.276

DLBCLB 4 0.519 11.437 4 0.519 21.661 4 0.519 16.390 4 0.509 13.219 4 0.509 12.468 4 0.481 2 0.420 3 0.424 3 0.391

MultiA 4 0.874 32.629 4 0.874 31.562 4 0.874 32.359 4 0.874 33.859 4 0.874 29.937 4 0.874 6 0.765 5 0.682 4 0.765

Iris 3 0.757 0.281 3 0.757 0.312 3 0.757 0.312 3 0.757 0.391 3 0.757 0.391 3 0.756 3 0.730 3 0.744 3 0.730

CITY BLOCK

Protein 5 0.310 81.937 5 0.310 85.748 5 0.310 57.161 5 0.309 50.812 5 0.310 44.562 5 0.293 8 0.223 7 0.229 3 0.192

9 0.180 77.328 9 0.176 254.432 9 0.185 164.155 9 0.185 164.155 9 0.178 76.937 9 0.166 17 0.158 28 0.141 19 0.084

Breast 2 0.877 14.406 2 0.877 17.672 2 0.877 17.502 2 0.877 17.234 2 0.877 16.531 2 0.877 2 0.770 2 0.765 2 0.807

19 0.016 134.782 19 0.015 295.462 19 0.016 336.701 19 0.015 210.172 19 0.016 237.203 19 0.013 19 -0.009 10 0.023 13 0.010

Yeast 7 0.161 1432.047 7 0.159 953.766 7 0.160 1374.019 7 0.161 1630.917 7 0.161 706.266 7 0.157 7 0.181 6 0.167 7 0.152

Novartis 4 0.950 2.874 4 0.950 2.796 4 0.950 2.749 4 0.950 2.796 4 0.950 2.516 4 0.921 4 0.946 4 0.921 4 0.947

BreastA 2 0.723 1.875 2 0.723 1.889 2 0.723 1.750 2 0.723 1.922 2 0.722 1.890 2 0.682 2 0.583 2 0.618 4 0.560

BreastB 4 0.329 1.000 4 0.366 1.343 4 0.281 1.250 4 0.288 2.250 4 0.328 2.125 4 0.228 3 0.563 2 0.561 2 0.388

7 0.368 3.172 7 0.344 1.828 7 0.293 1.390 7 0.328 1.265 7 0.293 1.140 7 0.159 3 0.328 3 0.284 2 0.187

DLBCLA 3 0.838 1.875 3 0.838 1.999 3 0.838 1.875 3 0.838 1.954 3 0.838 1.937 3 0.800 3 0.805 3 0.784 3 0.406

DLBCLB 2 0.701 2.703 2 0.701 2.797 2 0.701 2.797 2 0.701 2.843 2 0.701 2.640 2 0.700 2 0.690 2 0.690 3 0.350

MultiA 4 0.899 9.888 4 0.924 11.141 4 0.899 10.890 4 0.899 11.015 4 0.899 10.406 4 0.899 4 0.851 4 0.875 5 0.750

Iris 3 0.818 0.250 3 0.818 0.281 3 0.818 0.281 3 0.818 0.359 3 0.818 0.343 3 0.818 3 0.717 3 0.717 3 0.772

COSINE

Protein 4 0.350 102.668 4 0.348 89.419 4 0.348 98.421 4 0.342 81.656 4 0.348 71.235 4 0.349 7 0.320 6 0.304 6 0.247

12 0.170 135.000 12 0.170 141.794 12 0.173 269.374 12 0.173 269.374 12 0.170 291.391 12 0.166 20 0.134 21 0.125 15 0.091

Breast 3 0.294 28.282 3 0.294 32.812 3 0.294 32.297 3 0.294 31.796 3 0.294 31.610 3 0.293 4 0.258 3 0.306 3 0.332

8 0.021 75.859 8 0.021 77.403 8 0.021 92.515 8 0.022 82.703 8 0.021 90.610 8 0.020 2 0.027 8 0.052 3 0.021

Yeast 9 0.137 1103.942 9 0.137 972.313 9 0.137 680.172 9 0.137 988.547 9 0.136 716.172 9 0.135 9 0.138 6 0.132 7 0.146

Novartis 4 0.950 12.559 4 0.950 12.328 4 0.950 12.045 4 0.950 11.734 4 0.950 10.860 4 0.920 4 0.919 4 0.919 4 0.745

BreastA 2 0.687 12.125 2 0.687 10.996 2 0.687 10.921 2 0.687 10.485 2 0.687 10.453 2 0.686 2 0.691 2 0.691 2 0.664

BreastB 2 0.694 3.016 2 0.694 2.875 2 0.694 2.891 2 0.694 2.688 2 0.694 2.687 2 0.626 2 0.561 3 0.502 4 0.443

2 0.322 3.000 2 0.322 2.875 2 0.322 2.875 2 0.322 2.687 2 0.321 2.687 2 0.314 2 0.269 3 0.264 4 0.239

DLBCLA 4 0.607 14.406 4 0.619 16.64 4 0.607 11.844 4 0.607 12.078 4 0.607 11.406 4 0.605 5 0.642 4 0.678 3 0.547

DLBCLB 4 0.500 22.968 4 0.500 21.109 4 0.500 20.921 4 0.500 20.031 4 0.500 20.031 4 0.502 3 0.501 3 0.623 5 0.385

MultiA 4 0.831 54.303 4 0.831 54.468 4 0.831 54.046 4 0.831 48.532 4 0.831 45.609 4 0.805 4 0.718 7 0.731 6 0.716

Iris 3 0.942 0.296 3 0.942 0.344 3 0.942 0.359 3 0.942 0.406 3 0.942 0.391 3 0.941 3 0.904 3 0.941 3 0.904

PEARSON

Protein 4 0.345 124.032 4 0.345 127.592 4 0.345 129.281 4 0.345 139.625 4 0.345 120.219 4 0.344 7 0.313 7 0.306 6 0.245

12 0.164 363.957 12 0.172 251.089 12 0.168 211.186 12 0.168 211.186 12 0.174 382.015 12 0.167 20 0.129 27 0.136 14 0.096

Breast 3 0.311 38.109 3 0.311 41.327 3 0.311 41.609 3 0.311 42.141 3 0.311 39.360 3 0.284 2 0.441 2 0.368 2 0.289

11 0.016 95.922 11 0.016 197.056 11 0.017 93.452 11 0.016 110.844 11 0.017 130.156 11 0.017 9 0.015 19 0.024 6 0.015

Yeast 9 0.138 1010.289 9 0.138 877 9 0.138 662.390 9 0.138 660.406 9 0.138 510.969 9 0.131 8 0.135 8 0.133 7 0.145

Novartis 4 0.950 20.621 4 0.950 20.156 4 0.950 20.357 4 0.950 23.422 4 0.950 21.265 4 0.920 4 0.919 4 0.919 4 0.746

BreastA 2 0.692 20.563 2 0.692 18.904 2 0.692 19.188 2 0.692 21.734 2 0.692 21.609 2 0.692 2 0.705 2 0.705 2 0.635

BreastB 2 0.766 4.734 2 0.766 5.562 2 0.766 6.453 2 0.766 5.546 2 0.766 5.562 2 0.694 3 0.502 3 0.529 3 0.445

2 0.281 4.842 2 0.322 5.016 2 0.281 4.735 2 0.281 5.547 2 0.279 5.219 2 0.355 4 0.289 3 0.283 3 0.227

DLBCLA 4 0.604 20.562 4 0.604 20.577 4 0.604 20.687 4 0.604 23.140 4 0.607 19.578 4 0.585 4 0.605 4 0.684 4 0.586

DLBCLB 2 0.585 36.750 2 0.585 33.796 2 0.585 34.093 2 0.585 39.641 2 0.585 39.641 2 0.527 3 0.665 3 0.561 3 0.545

MultiA 4 0.829 93.395 4 0.829 92.655 4 0.829 93.093 4 0.829 102.156 4 0.829 87.079 4 0.828 4 0.718 9 0.691 4 0.705

Iris 3 0.886 0.500 3 0.886 0.64 3 0.886 0.656 3 0.886 0.781 3 0.886 0.796 3 0.886 3 0.886 3 0.941 3 0.886
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de tempo de solução em heuŕısticas GRASP e sua aplicação na análise de
implementações paralelas. Ph.D. thesis, Department of Computer Science,
Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil (2002)

[2] Aiex, R., Binato, S., Resende, M.: Parallel GRASP with path-relinking for
job shop scheduling. Parallel Computing 29, 393–430 (2003)

[3] Aiex, R., Resende, M., Pardalos, P., Toraldo, G.: GRASP with path relink-
ing for the three-index assignment problem. INFORMS J. on Computing
17(2), 224–247 (2005)

[4] Bennett, K.P., Mangasarian, O.: Robust linear programming discrimination
of two linearly inseparable sets. Optimization Methods and Software 1(1),
23–34 (1992)

[5] Binato, S., Faria Jr., H., Resende, M.: Greedy randomized adaptive path
relinking. In: Sousa, J. (ed.) Proceedings of the IV Metaheuristics Interna-
tional Conference. pp. 393–397 (2001)

[6] Ding, C., Dubchak, I.: Multi-class protein fold recognition using support
vector machines and neural networks. Bioinformatics 17(4), 349–358 (2001)

[7] Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters 8, 67–71 (1989)

[8] Feo, T., Resende, M.: Greedy randomized adaptive search procedures. J. of
Global Optimization 6, 109–133 (1995)

[9] Festa, P., Resende, M.: GRASP: An annotated bibliography. In: Ribeiro,
C., Hansen, P. (eds.) Essays and Surveys on Metaheuristics, pp. 325–367.
Kluwer Academic Publishers (2002)

[10] Festa, P., Resende, M.: An annotated bibliography of GRASP – Part I:
Algorithms. International Transactions on Operational Research 16, 1–24
(2009)

[11] Festa, P., Resende, M.: An annotated bibliography of GRASP – Part II:
Applications. International Transactions on Operational Research (2009)

[12] Fisher, R., et al.: The use of multiple measurements in taxonomic problems.
Annals of Eugenics 7, 179–188 (1936)

[13] Glover, F.: Tabu search and adaptive memory programing – Advances, ap-
plications and challenges. In: Barr, R., Helgason, R., Kennington, J. (eds.)
Interfaces in Computer Science and Operations Research, pp. 1–75. Kluwer
(1996)

[14] Glover, F.: Multi-start and strategic oscillation methods – Principles to
exploit adaptive memory. In: Laguna, M., Gonzáles-Velarde, J. (eds.) Com-
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Ph.D. thesis, Department of Computer Science, Catholic University of Rio
de Janeiro, Rio de Janeiro, Brazil (July 2003)

[30] Su, A., Cooke, M., Ching, K., Hakak, Y., Walker, J., Wiltshire, T., Orth,
A., Vega, R., Sapinoso, L., Moqrich, A., et al.: Large-scale analysis of the
human and mouse transcriptomes. Proceedings of the National Academy of
Sciences 99(7), 4465–4470 (2002)

[31] Van’t, V., Laura, J., Hongyue, D., Vijver, M.V.D., He, Y., Hart, A., et al.:
Gene expression profiling predicts clinical outcome of breast cancer. Nature
415(6871), 530–536 (2002)



[32] West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R.,
Zuzan, H., Olson, J., Marks, J., Nevins, J.: Predicting the clinical status
of human breast cancer by using gene expression profiles. Proceedings of
the National Academy of Sciences of the United States of America 98(20),
11462 (2001)


