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Abstract. This paper proposes a linear integer programming formulation and
several heuristics based on GRASP and path relinking for the antibandwidth
problem. In the antibandwidth problem, one is given an undirected graph with
n nodes and must label the nodes in a way that each node receives a unique
label from the set {1, 2, . . . , n}, such that, among all adjacent node pairs, the
minimum difference between the node labels is maximized. Computational
results show that only small instances of this problem can be solved exactly
(to optimality) with a commercial integer programming solver and that the
heuristics find high-quality solutions in much less time than the commercial
solver.

1. Introduction

Let G = (V, E) be an undirected graph, where V denotes the set of vertices
and E the set of edges. Let n = |V | and m = |E|. A labelling f of the vertices
of G is a one-to-one mapping of the integers {1, 2, . . . , n} onto V , i.e. each vertex
v ∈ V has a unique label f(v) ∈ {1, 2, . . . , n}. Given a graph G, the bandwidth of a
vertex v, Bf (v), is the maximum of the differences between f(v) and the labels of
its adjacent vertices N(v). That is:

Bf (v) = max{|f(u)− f(v)| : u ∈ N(v)}.
The bandwidth of a graph G with respect to a labeling f is then:

Bf (G) = max{Bf(v) : v ∈ V }
Then, the bandwidth reduction problem consists in minimizing the value of Bf (G)
over all possible labelings, i.e.

B(G) = min
f∈πn

Bf (v),

where πn is the set of all permutations of {1, 2, . . . , n}. The bandwidth minimiza-
tion problem has been studied extensively. See, e.g. Gibbs et al. (1976), Mart́ı
et al. (2001), Piñana et al. (2004), and Rodriguez-Tello et al. (2008). An important
application of this problem arises in the solution of non-singular systems of linear
algebraic equations. Preprocessing of the coefficient matrix is done to reduce its
bandwidth, resulting in substantial savings in the computational effort associated
with solving the system of equations. Such systems occur in the design of air-
craft structures, liquid nitrogen gas tanks, propeller blades, and submarines. The
bandwidth minimization problem is known to be NP-hard (Papadimitriou, 1976).
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In some practical problems it is interesting to maximize the minimum difference
between adjacent vertices. For example, if the vertices of the graph G represent
sensitive facilities or chemicals, then placing them too close together can be risky.
This optimization problem is dual to the bandwidth problem and it is commonly
known as the antibandwidth problem, also known as the separation problem (Leung
et al., 1984) and the dual bandwidth problem (Yixun and Jinjiang, 2003). It can be
defined as follows. Given a graph G and a labelling f , the antibandwidth ABf (G)
of f is defined as

ABf (G) = min{ABf (v) : v ∈ V },
where

ABf (v) = min{|f(u)− f(v)| : u ∈ N(v)}
is the antibandwidth of vertex v and N(v) is the set of its adjacent vertices. The
antibandwidth AB(G) of G is

AB(G) = max
f∈πn

ABf (G).

The antibandwidth problem is NP-hard (Leung et al., 1984). However, special
cases can be solved in polynomial time, including the complements of intervals,
arborescent comparability, and on threshold graphs (Raspaud et al., 2008).

This problem arises in different contexts such as in scheduling (Leung et al.,
1984), in some variations of the multiprocessor scheduling problems (MSRRD,
SSUPS, and MSIRF), in relation to obnoxious facility location (Raspaud et al.,
2008), and in radio frequency assignment (Hale, 1980).

Previous papers on the antibandwidth problem where devoted to the theoretical
study of its properties to find optimal solutions for special cases. In the variant
studied in Leung et al. (1984), the problem consists in finding a labelling f with a
value ABf (G) greater than a predetermined value k. The authors determined the
NP-completeness of this problem and give polynomial time algorithms for several
classes of graphs.

Yixun and Jinjiang (2003) proposed several upper bounds for AB(G). Some of
them are related to the independent and chromatic numbers of G. The bound UB1

is computed as a function of the minimum degree (mind) and maximum degree
(maxd) of G.

(1) UB1 = min

{⌊

n−mind + 1

2

⌋

, n−maxd

}

,

where

mind = min
u∈V
|N(u)|,

maxd = max
u∈V
|N(u)|.

A weaker upper bound, UB2, is computed as a function of the number n of
vertices and the number m of edges:

(2) UB2 =

⌊

n−
√

8m + 1− 1

2

⌋

.

Raspaud et al. (2008) solve the antibandwidth problem for several classes of
special graphs: two dimensional meshes (Cartesian product of two paths), tori



GRASP WITH PR FOR ANTIBANDWIDTH 3

(Cartesian product of two cycles), and hypercubes. More recently Török and Vrt’o
(2007) extended these results to the case of three dimensional meshes.

Until now, no heuristic has been proposed to obtain high-quality solutions for the
antibandwidth problem on general graphs. In this paper, we first propose a linear
integer programming formulation for the antibandwidth problem and then propose
some heuristics based on GRASP and evolutionary path relinking to find optimal
or near-optimal solutions on general graphs. Finally, we test our formulation with
CPLEX and study the efficiency of these heuristics on a set of medium- and large-
scale instances, including meshes to measure the deviation of the best solution found
with our methods with respect to the optimal solution on large size instances.

2. Integer programming model

We next propose an integer programming model for the antibandwidth problem.
Let xik be a binary variable that takes on the value 1 if and only if f(i) = k, i.e.
node i takes label k. Define the integer variable li to be the label of node i, i.e.
li = f(i) ∈ {1, 2, . . . , n}. Finally, let b = ABf (G) = min(u,v)∈E |f(u) − f(v)|. An
integer programming formulation for the antibandwidth problem is:

max b

subject to
n

∑

i=1

xik = 1, ∀k = 1, . . . , n,(3)

n
∑

k=1

xik = 1, ∀i = 1, . . . , n,(4)

n
∑

k=1

k · xik = li, ∀i = 1, . . . , n,(5)

b ≤ |li − lj |, ∀(i, j) ∈ E,(6)

xik ∈ {0, 1}, ∀i, k = 1, . . . , n,(7)

li ∈ {1, . . . , n}, ∀i = 1, . . . , n.(8)

Constraints (3) assign one label to each node while constraints (4) assign one node
to each label. Constraints (5) explicitly compute the value of the labels from the
xik variables. Taken together with the objective function, constraints (6) imply
that b = min{|li − lj | : (i, j) ∈ E}. Constraints (7)–(8) define the domain of the
variables.

Note that constraints (6) are nonlinear. To linearize these constraints, we employ
a standard artifact. In (6), if li ≥ lj, then the constraint can be represented as

(9) b ≤ li − lj.

Otherwise, the constraint is

(10) b ≤ −(li − lj).

For each (i, j) ∈ E, we introduce binary variables yij and zij that indicate whether
li ≥ lj holds. If li ≥ lj then yij = 0 and zij = 1. Otherwise, yij = 1 and zij = 0.
With these variables, (9) and (10) can be replaced, respectively, by

b− (li − lj) ≤ 2yij(n− 1), ∀(i, j) ∈ E
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and
b + (li − lj) ≤ 2zij(n− 1), ∀(i, j) ∈ E

with the additional constraints

yij + zij = 1, ∀(i, j) ∈ E,(11)

b ≥ 1.(12)

Constraints (11) imply that only one of the alternatives li ≥ lj or li < lj holds.
Since the absolute value is removed in the linearization, we must add constraint
(12) to guarantee positiveness.

This results in the following linear integer programming formulation for the
antibandwidth problem:

max b

subject to
n

∑

i=1

xik = 1, ∀k = 1, . . . , n,

n
∑

k=1

xik = 1, ∀i = 1, . . . , n,

n
∑

k=1

k · xik = li, ∀i = 1, . . . , n,

b− (li − lj) ≤ 2yij(n− 1), ∀(i, j) ∈ E,

b + (li − lj) ≤ 2zij(n− 1), ∀(i, j) ∈ E,

yij + zij = 1, ∀(i, j) ∈ E,

b ≥ 1,

xik ∈ {0, 1}, ∀i, k = 1, . . . , n,

li ∈ {1, . . . , n}, ∀i = 1, . . . , n.

The integer programming model has n2 + n + 2m + 1 = O(n2) variables and 3n +
3m + 1 = O(n2) constraints.

3. GRASP

The GRASP metaheuristic was developed in the late 1980s (Feo and Resende,
1989) and the acronym was coined in Feo et al. (1994). We refer the reader to
Resende and Ribeiro (2003; 2009) for recent surveys of this metaheuristic. Each
GRASP iteration consists in constructing a trial solution and then applying local
search from the constructed solution. The construction phase is iterative, random-
ized greedy, and adaptive. In this section we propose several adaptations of the
GRASP metaheuristic for the antibandwidth problem.

3.1. Construction procedures. We have designed two constructive algorithms
C1 and C2 for the antibandwidth problem. C1 implements a typical GRASP con-
struction where each candidate element is initially evaluated by a greedy function
to construct a Restricted Candidate List (RCL) and one element is selected at ran-
dom from the RCL. C1 tries to assign a relatively “small” label to the selected
vertex and a “large” label to its adjacent vertices. The rationale behind this is to
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begin C1
1 U ← {1, . . . , n} Set of unlabeled vertices;
2 L← {1, . . . , n} Set of available labels;
3 u0 ← Select F irst V ertex(U);
4 l0 ← Select F irst Label(V );
5 f(u0)← l0;
6 CL← {u ∈ U | (u, u0) ∈ E};
7 Select α1 randomly from (0, 1);
8 while L 6= ∅ do

9 dmin ← min
u∈CL

d(u);

10 dmax ← max
u∈CL

d(u);

11 RCL← {v ∈ CL | d(v) ≥ dmin + α1 · (dmax − dmin)};
12 Select u randomly from RCL;
13 l← Best Available Label(L);
14 f(u)← l;
15 N ∗(u)← Unlabeled vertices adjacent to u;
16 CL← CL \ {u0} ∪ N ∗(u);
17 L← L \ {l};
18 U ← U \ {u};
19 end-while;
end

Figure 1. Constructive heuristic C1 .

maximize the value of the antibandwidth (i.e. maximizing the minimum difference
of adjacent labels). Similarly, we can also assign a “large” label to the selected
vertex and a relatively “small” label to its adjacent vertices.

Given the set U (with |U | = n) of unlabeled vertices and L (with |L| = n)
of available labels, the construction procedure C1 performs n steps to obtain a
solution, as shown in Figure 1. It starts by selecting a vertex u0 at random (see
step 3 in Figure 1) and then assigning a label l0 to u0 (step 5). We have implemented
three different ways of selecting the first label l0: (1) select l0 at random in the
range [1, n] (l0 = random(1, n)); (2) assign to l0 the average range value (l0 = n/2);
and (3) set l0 equal to one (l0 = 1). We will discuss in the experimental section the
impact of these strategies in the performance of the method.

Once the first label l0 is assigned to vertex u0, C1 constructs the candidate list
CL (step 6) with the vertices adjacent to u0. It then computes dmin and dmax

as, respectively, the minimum and maximum degrees of the elements in CL. The
algorithm next constructs a RCL (step 11) with all the unselected vertices in CL
having degree greater than or equal to a specified cutoff value

dmin + α1 · (dmax − dmin),

where

dmin = min
u∈CL

d(u) and dmax = max
u∈CL

d(u).

It randomly selects an element u from the RCL (step 12) and assigns the best
available label to it. To this end, we compute the smallest (lmin(u)) and largest
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Figure 2. Labeled partial graph

(lmax(u)) labels of the already labeled vertices adjacent to u, as well as the best
label

Best l(u) = argmax1≤l≤n min{|l− lmax(u)|, |l − lmin(u)|}
for u, where

lmax(u) = max
v∈LN (u)

f(v)

and

lmin(u) = min
v∈LN (u)

f(v),

where LN(u) is the set of labeled vertices adjacent to u. The closest available label
to Best l(u) is assigned to u (step 14). CL, L, and U are updated in steps 16, 17,
and 18 respectively. The method iterates as long as the set L contains available
labels.

Consider the partial representation of a graph G = (V, E), where V is the set of
vertices and E is the set of edges, depicted in Figure 2, consisting of five vertices with
a labeling given by the numbers shown next to each vertex (vertex u is not labeled
yet). To obtain a label for vertex u, construction method C1 first explores the set of
its adjacent labeled vertices, LN(u) = {v, w, x, y}. It then computes the minimum
and maximum labels among the adjacent labeled vertices which are respectively
lmin(u) = 4 and lmax(u) = 10. Finally, C1 computes the best label for u, Best l(u)
with the above expression, which basically tries labels from 1 to n and keeps the
one which maximizes the difference with respect to the labels of its neighbors. In
this example, considering n = 10, label 1 maximizes the antibandwidth of vertex u
obtaining a value of ABf (u) = 3.

We now consider C2 , based on another construction strategy introduced in Re-
sende and Werneck (2004) in which randomization takes place before the greedy
selection is applied in each construction step. In C2 we first randomly choose
candidates and then evaluate them according to a greedy function to make the
greedy choice. C2 first constructs a restricted candidate list RCL2 with a fraction
α2 (0 ≤ α2 ≤ 1) of the elements in CL selected at random. Then, it evaluates all
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begin C2
1 U ← {1, . . . , n} Set of unlabeled vertices;
2 L← {1, . . . , n} Set of available labels;
3 u0 ← Select F irst V ertex(U);
4 l← Select F irst Label(L);
5 f(u0)← l;
6 CL← {v ∈ U | (u0, v) ∈ E};
7 Select α2 randomly from (0, 1);
8 while L 6= ∅ do

9 size← α2 · |CL|;
10 RCL← size elements randomly selected from CL;
11 Select u ∈ RCL | d(u) = max

v∈RCL

d(v);

12 l ← Best Available Label(L);
13 f(u)← l;
14 U ← U \ {u};
15 N ∗(u)← Unlabeled vertices adjacent to u;
16 CL← CL \ {u} ∪ N ∗(u);
17 L← L \ {l};
18 end-while;
end

Figure 3. Constructive heuristic C2 .

the elements in RCL2 , computing d(u) for all u ∈ RCL, and selects the best one,
i.e. the element u0 such that

d(u0) = max
u∈RCL2

d(u).

Figure 3 shows the pseudo-code of the constructive procedure C2 . The main
difference with respect to C1 is that greedy evaluation and random selection are
switched. However, the computation of the best available label for a selected vertex
is the same in both methods. In the computational study, we will discuss how
variations in the search parameters α1 and α2 affect C1 and C2 , respectively.

3.2. Local search procedure. It is worthwhile noting that optimizing a max-
min objective function implies that there may be many different solutions with the
same objective function value, i.e. the solution space has a flat landscape. The
bandwidth reduction, the max-min diversity, and the antibandwidth problems are
examples where this occurs. For this reason these problems are challenging for
solution methods based on heuristic optimization. This issue is especially relevant
in local search procedures where the improvement is based on movements (most of
them with a null associated move value).

In the case of the antibandwidth problem, there may be many labelings f with
identical ABf (G) value. Moreover, for a given labeling there may be multiple ver-
tices with antibandwidth equal to ABf (G). Consequently, changing a labeling to
increase the antibandwidth ABf (u) of a particular vertex u does not necessarily im-
ply that ABf (G) will also increase. Moreover, vertices with unequal antibandwidth,
but close to ABf (G), can be crucial in future iterations. They do not determine
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the value of the objective function ABf (G) in the current labeling, but they are
considered likely to do so in subsequent iterations. We therefore define the set C(f)
of crucial vertices of a labeling f to be

C(f) = {u : ABf (u) ≤ β ×ABf (G)},

where β is a parameter that takes values in the range 1 < β < 2.
We define a move as the swap of labels of a pair of vertices. That is, the operator

move(v, u) assigns the label f(u) to vertex v and the label f(v) to vertex u obtaining
a new labeling f ′. To significantly increase the value of the current labeling f , the
local search procedure scans the set of crucial vertices C(f) changing their labels
to increase their antibandwidth. To find a good label for a vertex u ∈ C(f) we
proceed in a way similar to the construction procedures above. Define

Best l(u) = argmax1≤l≤n min{|l− lmax(u)|, |l − lmin(u)|}

to be the best label for u, where

lmax(u) = max
v∈N(u)

f(v)

and

lmin(u) = min
v∈N(u)

f(v).

Once we establish the best label Best l(u) for vertex u, we need to determine the
vertex v with this label (f(v) = Best l(u)) to evaluate move(v, u). Note that we
know that the label Best l(u) is “good” for u, but we need to check whether f(u)
is “good” for v. We therefore extend the search for a good label for u to include not
only the vertex v with f(v) = Best l(u), but also those vertices with labels close
to Best l(u).

If Best l(u) > lmax(u), then Best l(u) = n. We scan the labels f ′(u) = n, n −
1, n−2, . . . , lmax(u)+ABf (u)+1 sequentially until we find the first available label
or verify that none of these labels is available. It should be noted that if we were
to choose f ′(u) to be one of labels lmax(u)+ABf (u)− 1, . . . , lmax(u)+1, then this
would result in ABf ′(u) < ABf (u), thus deteriorating the current solution.

Symmetrically, if Best l(u) < lmin(u), then Best l(u) = 1. A label that is close
to 1 will improve the antibandwidth of u if is less than lmin(u)−ABf (u). Note that
if were to consider f ′(u) to be one of labels lmin(u)−ABf (u) + 1, . . . , lmin(u)− 1,
then the antibandwidth of vertex u would be less than ABf (u). We therefore
sequentially examine labels f ′(u) = 1, . . . , lmin(u) − ABf (u) − 1 until we find the
first available label or verify that none of these labels is available.

Finally, the remaining possibility is when lmin(u) < Best l(u) < lmax(u). In
this case good labels for u are located close to Best l(u) but far from both lmin(u)
and lmax(u). We scan these labels sequentially in the following order: Best l(u) +
1, Best l(u) − 1, Best l(u) + 2, Best l(u) − 2, . . . , until we reach the upper bound
lmax(u)−ABf (u)− 1 and the lower bound lmin(u) + ABf (u) + 1 until we find the
first available label or verify that none of these labels is available.
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To summarize, depending on the value of Best l(u) with respect to lmin(u) and
lmax(u), the set N ′(u) of suitable swapping vertices for u ∈ C(f) is

N ′(u) =







































{v ∈ V : 1 ≤ f(v) < lmin(u)−ABf (u)}
if Best l(u) < lmin(u);

{v ∈ V : lmax(u) + ABf (u) < f(v) ≤ n}
if Best l(u) > lmax(u);

{v ∈ V : lmin(u) + ABf (u) < f(v) < lmax(u)−ABf (u)}
if lmin(u) < Best l(u) < lmax(u).

The candidate list CL(u) of moves associated with a vertex u ∈ C(f) is defined as

CL(u) = {move(v, u) : v ∈ N ′(u)}.
Note that if N ′(u) = ∅, then ABf (u) cannot be increased in a single step by
changing the current label of u.

Let us consider again the example introduced in Figure 2 with vertex u labeled
with 1 and not considering the edges with a single endpoint. The antibandwidth
of each vertex depicted in the partial representation of Figure 2 is

ABf (u) = min{|1− 7|, |1− 4|, |1− 10|, |1− 5|} = 3,

ABf (v) = min{|7− 1|, |7− 4|} = 3,

ABf (w) = min{|4− 1|, |4− 7|, |4− 10|} = 3,

ABf (x) = min{|10− 1|, |10− 4|} = 6,

ABf (y) = min{|5− 1|} = 4.

Consequently, the antibandwidth of the graph, computed as the minimum of these
values for all vertices, is less than or equal to 3 (we only depict in the figure a
fraction of the vertices). As noted above, we can see that the solution space for
this problem has a flat landscape because relabeling one vertex does not necessarily
improve the objective function. In other words, we need to apply several moves to
change the value of a solution. If we consider that in this example ABf (G) = 3
and β = 1.4, the set of crucial vertices is C(f) = {u, v, w, y}. The goal of the local
search procedure consists in increasing the antibandwidth of the vertices in C(f).
To do that, we compute the best label Best l(u) for each vertex u. Let us consider
in our example of Figure 2 the vertex v with lmin(v) = 1 and lmax (v) = 4. In this
case, Best l(v) = 10 (assuming again that n = 10). Labels 8, 9, and 10 can be
assigned to vertex v to improve its antibandwidth. Therefore, N ′(v) = {z ∈ V :
lmax(v) + ABf (v) < f(z) ≤ Best l(v)} = {z ∈ V : 7 < f(z) ≤ 10}.

One of the key elements in heuristic search is the definition of the value of a
move. The most common practice is to define the move value as the change in the
objective function value. However, in the context of the antibandwidth problem, as
we have mentioned, the change in the objective function value usually provides little
or no information. Therefore, given a vertex u ∈ C(f) and a vertex v ∈ CL(u) we
define the value of move(u, v) as the difference in the antibandwidth of vertex u. If
f is the original labeling and f ′ the resulting labeling after performing move(u, v),
then

MoveValue(u, v) = ABf ′(u)− ABf (u).

Note that we do not consider in the definition of the move value the change
in the antibandwidth of vertex v. We therefore check whether this change affects
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ABf ′(G) and only perform move(u, v) if ABf ′(v) > ABf (G). On the other hand,
note that the calculation of ABf (G) requires the examination of all the vertices
in the graph and is computationally expensive. We therefore do not update this
value after performing a single move (as is customary in local search heuristics).
As suggested in Glover and Laguna (1997), we do not compute this value every
iteration but rather only when we compute C(f). This strategy is particularly
useful when move value updates are computationally expensive, as in our context.

Specifically, after the vertices in C(f) have been explored and their antiband-
widths have eventually been increased, we examine all the vertices in the graph
to first update the ABf (G) value and then compute the associated C(f) set. It
must be noted that when we modify the label of a vertex, the antibandwidth of its
neighbors may change. This is why when we examine a vertex in C(f), we first
check whether its antibandwidth has increased above the β×ABf (G) threshold as
a result of the modification of the label of one of its neighbors previously selected
in C(f). In that case, we do not change its label and resort to the next vertex in
C(f).

As can be seen in the pseudo-code in Figure 4, the local search algorithm LS
starts by constructing the set C(f) of crucial vertices (step 5). It then selects at
random a vertex u in C(f) (step 7). In step 9, LS selects the best available label for
u and in step 10 it computes the set of candidate vertices N ′(u) for swapping, with
a label close to the best computed above. The procedure scans this neighborhood
in the inner while loop (steps 12 to 19) in search for an improving move. The set
N ′(u) is scanned from best to worst label. The first improving move move(u, v)
is made. If no improving move is found, no move is performed and we move on
to the next vertex in C(f). When all of the vertices in C(f) have been examined,
the objective function value of the new labeling f ′ is recomputed. If the solution
improves, a new set C(f ′) is computed and a new global iteration is performed.
Otherwise, LS stops.

4. Path Relinking

Path relinking (PR) was suggested as an approach to integrate intensification
and diversification strategies in the context of tabu search (Glover, 1996; Glover
and Laguna, 1997). This approach generates new solutions by exploring trajecto-
ries that connect high-quality solutions – by starting from one of these solutions,
called the initiating solution, and generating a path in the neighborhood space that
leads toward the other solutions, called guiding solutions. This is accomplished by
selecting moves that introduce attributes contained in the guiding solutions, and
incorporating them in an intermediate solution initially originated in the initiating
solution. In this section we explore different adaptations of PR to the antiband-
width problem.

Let X and Y be two solutions to the antibandwidth problem and let fx and
fy be their associated representations (permutations). Given these two solutions,
the PR method operates over the set D of vertices that are not allocated in each
permutation in the same position. D is thus considered the candidate list of vertices
to be examined. To create a path from X to Y , PR selects at each step a vertex
v from D and labels it with its label fy(v) in the guiding solution Y . To do this,
we look in the initiating solution X for the vertex u with label fx(u) = fy(v) and
perform move(u, v). Then the vertex v is removed from D and the next vertex is
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begin LS
1 prevAB ← −∞;
2 currAB ← ABf (G);
3 while currAB > prevAB do

4 prevAB ← currAB;
5 C (f )← {v ∈ V | ABf (v) ≤ β · currAB} with 1 ≤ β ≤ 2;
6 while C(f) 6= ∅ do

7 Select u randomly in C(f);
8 C (f )← C (f ) \ {u};
9 Best l(u)← argmax1≤l≤n min{|l− lmax(u)|, |l − lmin(u)|};
10 Compute N ′(u);
11 improve = FALSE ;
12 while improved = FALSE and N ′

i(u) 6= ∅ do

13 Select the best vertex v in N ′(u);
14 N ′(u)← N ′(u) \ {v};
15 if MoveValue(u, v) > 0 and ABf ′(v) ≥ ABf (G) then

16 Perform move(u, v);
17 improved = TRUE;
18 end-if;
19 end-while;
20 end-while;
21 currAB ← UpdateAB() = ABf ′(G);
22 end-while;
end

Figure 4. Local search – LS .

selected from D. PR performs a greedy selection in each step (i.e., PR evaluates all
possible movements move(u, v) for all v ∈ D and performs the best one in terms of
the objective function).

In this paper we explore the PR variant called Mixed Path Relinking (MPR)
(Glover, 1996; Ribeiro and Rosseti, 2002). Instead of starting from a solution
X and gradually transforming it into the solution Y by swapping elements in the
permutation, this variant performs one step from X to Y , obtaining an intermediate
solution A. Then Y becomes the initiating solution and A the guiding solution,
obtaining a new intermediate solution B. In the next step of the procedure A
becomes the initiating solution and B the guiding solution, obtaining C and so on.
This logic is maintained until both paths joint in the middle. Figure 5 graphically
shows how MPR builds this path. The main advantage of this strategy is that it
explores deeply neighborhoods of both input solutions.

The PR algorithm operates on a set of solutions, called elite set

ES = {f1, f2, . . . , f b},
ordered from best (f1) to worst (f b). It is constructed with the application of a
previous method. In this paper, we apply GRASP to build the elite set. If we only
consider a quality criterion to populate the elite set, we could simply populate it
with the the best |ES | solutions generated with GRASP. However, previous studies
(Resende and Werneck, 2004) have empirically found that an application of PR
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Figure 5. Mixed Path Relinking

to a pair of solutions is likely to be unsuccessful if the solutions are very similar.
Therefore, to construct ES we will consider both quality and diversity including
in ES a new solution f ′ when it improves the best solution in ES (ABf ′(G) >
ABf1(G)) or it improves upon the worst in ES and its distance to ES is larger
than a pre-established threshold dth (ABf ′(G) > ABfb(G) and d(f ′, ES) ≥ dth)

A distance function, d, is used to measure how diverse one solution is with respect
to a set of solutions. Specifically, for the antibandwidth problem we consider the
distance d between two permutations as:

d(f i, f j) =

n
∑

k=1

|f i(k)− f j(k)|

and the distance between a permutation and the set ES as:

d(f, ES) = min
i∈ES

d(f, f i).

The parameter dth is a distance threshold value that reflects the term “suffi-
ciently different” and it is empirically adjusted (see Section 5). To keep the size of
ES constant and equal to b, whenever we add a solution to this set, we remove an-
other one. To maintain the quality and the diversity, we remove the closest solution
to f ′ in ES among those worse than it in value.

The design in Figure 6 is called static since we first apply GRASP to construct
the elite set ES (see steps 4 to 13) and then we apply PR to generate solutions
between all the pairs of solutions in ES (see steps 15 to 21). During the realization
of the GRASP phase we only replace a solution in the ES when the quality and
diversity criteria are satisfied. Given two solutions in ES , f i and f j, we apply the
mixed path relinking described above, obtaining f , the best solution found in the
path (we represent it as MPR(f i, f j) = f in step 16). We then apply the local
search method to f obtaining f ′ (step 17) and check whether the improved solution
f ′ improves or not upon the best solution so far (steps 18 to 20). The algorithm
terminates when PR is applied to all the pairs in ES and the best overall solution
f best is returned as the output.

An alternative implementation of GRASP with PR consists in a dynamic update
of the elite set as introduced in Laguna and Mart́ı (1999). Figure 7 shows the
pseudo-code for this dynamic variant in which each solution f ′ generated with
GRASP is directly subjected to the PR algorithm (see step 8), which is applied
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begin StaticGRASP+PR
1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES | iterations

to populate ES ← {f1, f2, . . . , fb} which are kept ordered from f1 (best) to fb (worst);
3 iter ← b + 1;
4 while iter ≤ GlobalIter do

5 f ← GRASP construction phase;
6 f ′ ← GRASP local search starting at f ;
7 if ABf ′ (G) > ABf1(G) or

(ABf ′ (G) > ABfb(G) and d(f ′, ES) ≥ dth ) then

8 fk ← closest solution to f ′ in ES with ABf ′ (G) > ABfk (G);

9 ES ← ES \ {fk};
10 Insert f ′ into ES so that ES remains ordered;
11 end-if;
12 iters ← iters + 1;
13 end-while;
14 fbest ← f1;
15 for (i = 1 to b− 1 and j = i + 1 to b do

16 Apply MPR(f i, fj) = f ;
17 f ′ ← local search phase of GRASP starting from f ;
18 if ABf ′ (G) > ABfbest (G) then

19 fbest ← f ′;
20 end-if;
21 end-for;
22 return fbest ;
end

Figure 6. GRASP with PR in a static variant.

between f ′ and a solution f j probabilistically selected from ES according to the
values of solutions. In our computational experience, described on Section 5, we
compare the static variant versus the dynamic variant with respect to both quality
and speed.

Resende and Werneck (2004) introduced the evolutionary path relinking (evPR)
as a post-processing phase for GRASP with PR (see also Andrade and Resende
(2007) and Resende et al. (2009)). In evPR, the solutions in the elite set (ES ) are
evolved in a way that is similar to how the reference set evolves in scatter search
(SS) (Laguna and Mart́ı, 2003). We refer the reader to Resende et al. (2009) too
see similarities and differences between both methods.

As in the dynamic variant of GRASP with path relinking, in evPR we apply in
each iteration the construction and the improvement phase of GRASP as well as
the PR method to obtain the elite set (see steps 5 to 9 in the pseudo-code shown in
Figure 8). After a pre-established number of iterations the GRASP with dynamic
path relinking stops. However, in evPR, a post-processing phase based on path
relinking is applied to each pair of solutions in ES. The solutions obtained with
this latter application of PR are considered to be candidates to enter ES, and PR
is again applied to them as long as new solutions enter ES. This way we say that
ES evolves. Figure 8 shows the pseudo-code of GRASP with evPR in which this
process is repeated for GlobalIter iterations.

In our computational experience, described on Section 5, we compare these vari-
ants of path relinking with respect to both quality and speed.
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begin DynamicGRASP+PR
1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES | iterations

to populate ES ← {f1, f2, . . . , fb} which are kept ordered from f1 (best) to fb (worst);
3 iter ← b + 1;
4 while iter ≤ GlobalIter do

5 f ← GRASP construction phase;
6 f ′ ← GRASP local search starting at f ;
7 Select fj from ES according to its quality

(randomly selected according to its quality);
8 Apply MPR(f ′, fj) = f ;
9 f ′ ← GRASP local search starting at f ;
10 if ABf ′ (G) > ABf1(G) or

(ABf ′ (G) > ABfb(G) and d(f ′, ES) ≥ dth ) then

11 fk ← closest solution to f ′ in ES with ABf ′ (G) > ABfk (G);

12 ES ← ES \ {fk};
13 Insert f ′ into ES so that ES remains ordered;
14 end-if;
15 end-while;
16 fbest ← f1;
17 return fbest ;
end

Figure 7. GRASP with PR in a dynamic variant.

5. Computational results

This section describes the computational experiments performed to test the effi-
ciency of the GRASP with path relinking heuristics. We implemented the methods
in C and solved the integer linear programming formulation described in Section 2
with CPLEX 11.2, the most recent version of CPLEX when the experiments were
carried out. All experiments with the heuristics were conducted on a Pentium 4
computer running at 3 GHz with 3 Gb of RAM while the CPLEX runs were done
on a computer running 32 1.5 GHz Itanium 2 processors with 244 Gb of RAM.
CPLEX used a single processor for each run. The GRASP implementations make
use the Mersenne Twister (Matsumoto and Nishimura., 1998) for random number
generation.

5.1. Test problems. We used two sets of test problems in our experiments. A
total of 48 instances1 were considered.

5.1.1. Harwell-Boeing. We derived 24 instances from the Harwell-Boeing Sparse
Matrix Collection2. This collection consists of a set of standard test matrices arising
from problems in linear systems, least squares, and eigenvalue calculations from a
wide variety of scientific and engineering disciplines. The problems range from
small matrices, used as counter-examples to hypotheses in sparse matrix research,
to large matrices arising in applications. Graphs are derived from these matrices as
follows. Let Mij denote the element of the i-th row and j-th column of the n × n
sparse matrix M . The corresponding graph has n vertices. Edge (i, j) exists in the
graph if and only if Mij 6= 0. We considered two subsets in the Harwell-Boeing set.

1These instances are available for download at http://www.uv.es/rmarti.
2http://math.nist.gov/MatrixMarket/data/Harwell-Boeing
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begin GRASP+evPR
1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES | iterations

to populate ES ← {f1, f2, . . . , fb};
3 iter1 ← b + 1;
4 while iter1 ≤ GlobalIter do

3 iter2 ← 1;
5 while iter2 ≤ LocalIter do

6 f ← GRASP construction phase;
7 f ′ ← GRASP local search starting at f ;
8 Select fj from ES according to its quality

(randomly selected according to its quality);
9 Apply MPR(f ′, fj) = f ;
10 f ′ ← GRASP local search starting at f ;
11 if ABf ′(G) > ABf1(G) or

(ABf ′ (G) > ABfb(G) and d(f ′, ES) ≥ dth ) then

12 fk ← closest solution to f ′ in ES with ABf ′(G) > ABfk (G);

13 ES ← ES \ {fk};
14 Insert f ′ into ES so that ES remains ordered;
15 end-if;
16 end-while;
17 NewSols ← True;
18 while NewSols do

19 NewSols ← False;
20 for (i = 1 to b− 1 and j = i + 1 to b do

21 Apply MPR(f i, fj) = f ;
22 f ′ ← local search phase of GRASP starting from f ;
23 if ABf ′ (G) > ABf1(G) or

(ABf ′ (G) > ABfb(G) and d(f ′, ES) ≥ dth ) then

24 fk ← closest solution to f ′ in ES with ABf ′(G) > ABfk (G);

25 Add f ′ to ES and remove fk ;
26 Sort ES from best f1 to worst fb;
27 NewSols ← True;
28 end-if;
29 end-for;
30 end-while;
31 end-while;
32 fbest ← f1;
33 return fbest ;
end

Figure 8. Evolutionary Path Relinking.

The first consists of 12 smaller instances of size n ∈ [30, 100]: bcspwr01, bcspwr02,
ibm32, pores1, curtis54, will57, bcsstk01, dwt234, ash85, bcspwr03, impcol.b,
and nos4. The second subset is made up of 12 larger instances with n ∈ [400, 900]:
494bus, 662bus, 685bus, bcsstk07, bcsstk06, can445, can715, dwt503, dwt592,
impcol.d, nos6, and sherman4.

5.1.2. Grid graphs. This data set consists of 24 matrices constructed as the Carte-
sian product of two paths (Raspaud et al., 2008). They are also called two-
dimensional meshes and, as documented in Raspaud et al. (2008), the optimal
solutions of the antibandwidth problem for these types of instances are known by
construction. As in the previous set, we considered two subsets, the first with
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Table 1. Average upper bounds (UB1 and UB2) and best known
solution values (LB) for each subset of test problems.

UB1 UB2 LB

12 Smaller Grid graphs 50.42 83.75 48.00
12 Larger Grid graphs 505.66 951.17 498.58

12 Smaller Harwell-Boeing 32.08 48.75 19.75
12 Larger Harwell-Boeing 273.67 487.75 140.17

12 smaller instances (n ∈ [81, 120]): mesh9x9, mesh50x2, mesh34x3, mesh25x4,
mesh20x5, mesh10x10, mesh17x6, mesh13x8, mesh15x7, mesh12x9, mesh11x11, and
mesh12x12, and the second with 12 larger instances (n ∈ [960, 1170]): mesh-

130x7, mesh120x8, mesh110x9, mesh100x10, mesh50x20, mesh40x25, mesh60x17,
mesh34x30, mesh80x13, mesh70x15, mesh90x12, and mesh33x33.

5.2. Experiments. Four main experiments were carried out. We first compute
the upper bounds UB1 and UB2 as defined by Yixun and Jinjiang (2003) in (1)
and (2), respectively. Then, we attempt to solve the instances using the integer
linear programming formulation, given in Section 2, with the commercial solver
CPLEX 11.2. In the third part of the experiment, we determine which construction
procedure, local search parameter values, and path-relinking strategy to use in
the full experiment with the heuristics. Finally, we compare GRASP with path
relinking and GRASP with evolutionary path relinking with the commercial solvers
Evolver3 and Solver.4

5.2.1. Upper bounds. In this experiment, we evaluate the quality of the two bounds
(UB1 and UB2) introduced in Section 1. Table 1 reports, for each subset of in-
stances, the average values of both bounds as well as LB, the average values of the
best known, or optimal, solutions. For the case of the grid instances the values of
LB are optimal (known by construction), while for the Harwell-Boeing instances
they are the best solutions found by our heuristics. With the exception of two
of the smaller Harwell-Boeing instances solved by CPLEX, these values are not
necessarily optimal. Upper bounds are shown in detail in Tables 7 and 8.

Table 1 clearly shows that both bounds for the grid instances are not tight while
for the Harwell-Boeing instances they are far from the best known values. Although
bounds UB1 are more accurate than UB2, they are still far from their corresponding
LB values. Note, however, that this does not necessarily mean that the bounds are
weak. Since the LB values for the Harwell-Boeing instances are mostly produced
by our heuristics, it may be the case that the heuristics are finding weak lower
bounds. The only indication we have that the upper bounds are indeed weak is
the fact that on the two small Harwell-Boeing instances (bcspwr01 and ibm32) for
which CPLEX proved optimality, both bounds were weak (for bcspwr01, UB1 = 19

3Evolver (http://www.palisade.com/evolver) is a product of Palisade Corporation.
4Solver (http://www.solver.com) is a product of Frontline Systems.
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Table 2. CPLEX 11.2 integer programming solver on Harwell-
Boeing instances.

dimension of integer program itrs
Problem n m nz (106) B&B nodes time value UB

bcspwr01 209 1607 4931 10.4 268428 1987.67s 17 17
bcspwr02 265 2510 7675 425.3 8830998 ∗ 21 22
ibm32 276 1147 3792 27.5 549004 5701.56s 9 9
pores1 296 1034 3524 350.1 16760248 ∗ 6 8
curtis54 410 3095 9740 215.0 6867978 ∗ 10 13
will57 425 3434 10763 214.6 3984994 ∗ 12 14
bcsstk01 496 2529 8320 218.2 4906025 ∗ 6 11

dwt234 675 13969 42363 88.9 1674757 ∗ 22 58
ash85 693 7530 23427 115.1 3816727 ∗ 12 27
bcspwr03 712 14222 43204 73.8 1628719 ∗ 22 57
impcol.b 739 3822 12691 143.1 3035712 ∗ 4 14
nos4 794 10348 31976 88.5 1553986 ∗ 10 47

494bus 2654 245117 736796 4.5 949 ∗ 12 247
662bus 3798 439813 1321980 1.3 408 ∗ 16 331
685bus 4619 471193 1417931 1.5 10 ∗ 3 342
bcsstk06 8700 180541 558960 6.0 406 ∗ 1 210
bcsstk07 8700 180541 558960 5.8 401 ∗ 1 210
can445 4699 200153 607531 3.3 321 ∗ 1 221
can715 8095 514916 1557475 1.9 16 ∗ 1 357
dwt503 7033 256275 781123 2.4 103 ∗ 1 250
dwt592 6288 353313 1069440 3.4 84 ∗ 2 295
impcol.d 3809 182318 552011 4.6 466 ∗ 2 212
nos6 4605 457591 1377195 2.4 48 ∗ 4 337
sherman4 4320 300004 905076 3.2 107 ∗ 5 272

∗ – stopped after 24 hours of CPU time

and UB2 = 29 while the optimum is 17; for ibm32, UB1 = 15 and UB2 = 19 while
the optimum is 9). Because of this, in the experiments to follow, we compare the
solutions of our heuristic methods with LB as well as several upper bounds.

5.2.2. Integer programming solutions. In this experiment, we investigate the inte-
ger linear programming formulation proposed in Section 2. We solve the integer
programs with CPLEX 11.2. Tables 2 and 3 report, for each instance in the Harwell-
Boeing and grid graph sets, respectively, the number of rows (n), columns (m), and
nonzeroes (nz ) of the integer program, the number of iterations (itrs ×106), the
number of nodes in the branch and bound tree (B&B nodes), the CPU time in
seconds (time), the value of the best solution found (value), and the best known
upper bound (UB). The upper bounds produced by CPLEX are listed when they
are better than both UB1 and UB2. We limit each CPLEX run to at most 24 hours
of CPU time.

Tables 2 and 3 show that CPLEX 11.2 only solves two small instances (high-
lighted in Table 2) out of 24 in the Harwell-Boeing set in the 24 hour limit and
it solves none of the grid graph instances. In the rest of the instances shown in
Tables 2 and 3, we can observe a gap between the value of the best solution found
and the best computed upper bound. For example, for instance bcspwr03, the
best solution found has a value of 22 while the best upper bound is 57. Note also
that on the smaller instances, the dimensions of the integer programs were small
enough to permit CPLEX to explore a large number of branches of the branch and
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Table 3. CPLEX 11.2 integer programming solver on grid graph instances.

dimension of integer program itrs
Problem n m nz (106) B&B nodes time value UB

mesh9x9 531 6787 20835 140. 1686369 ∗ 30 36
mesh50x2 596 10249 31184 113.1 1822105 ∗ 23 49
mesh34x3 640 10674 32548 100.0 1195115 ∗ 37 50
mesh25x4 642 10272 31368 104.4 1008569 ∗ 38 48
mesh20x5 650 10276 31400 100.7 1093909 ∗ 35 48
mesh10x10 660 10281 31440 105.5 1194209 ∗ 24 45
mesh17x6 668 10688 32660 92.3 1278383 ∗ 23 48
mesh13x8 686 11108 33944 106.7 1113069 ∗ 39 48
mesh15x7 691 11319 34579 97.0 1139144 ∗ 27 49
mesh12x9 714 11968 36552 96.0 786289 ∗ 41 50
mesh11x11 803 14983 45683 76.6 762275 ∗ 26 55
mesh12x12 960 21145 64320 57.2 547845 ∗ 23 106

mesh130x7 6096 830694 2497764 0.3 0 ∗ 1 452
mesh120x8 6464 924353 2779136 0.8 0 ∗ 1 476
mesh110x9 6692 982952 2955188 0.6 0 ∗ 2 491
mesh100x10 6780 1002891 3015120 0.6 0 ∗ 2 495
mesh50x20 6860 1002931 3015440 0.7 0 ∗ 2 490
mesh40x25 6870 1002936 3015480 0.4 0 ∗ 1 488
mesh60x17 6986 1043384 3136904 0.5 0 ∗ 1 502
mesh34x30 7012 1043397 3137008 0.6 0 ∗ 1 495
mesh80x13 7094 1084628 3260696 0.4 0 ∗ 1 514

mesh70x15 7180 1105566 3323620 0.3 0 ∗ 1 518
mesh90x12 7356 1169539 3515664 0.3 0 ∗ 1 534
mesh33x33 7491 1189123 3574659 0.3 0 ∗ 1 528

∗ – stopped after 24 hours of CPU time

bound tree while this was not the case for the larger instances. Consequently, as
can be observed in Tables 7 and 8, CPLEX found very poor quality lower bounds
on the larger instances, often finding unit-valued solutions, i.e. the worst possible
solutions for an antibandwidth problem.

5.2.3. Components and parameter tuning. A series of preliminary experiments were
done to set the values of the key search parameters of our heuristic methods. In each
experiment, we compute the following statistics for each method: the average of the
objective function value of the best solutions found (Value), the average percentage
deviation (Dev.) between the solutions found and the best known value (LB), the
number #Best of instances in which the value of the best solution obtained matches
the best known solution, and the average CPU time in seconds (Time).

In the first preliminary experiment we study the labeling strategy for the first
vertex in construction procedures C1 and C2 described in Subsection 3.1. Specifi-
cally, we compare three variants of each procedure labeled as “1”, “random,” and
“n/2,” indicating that the first vertex selected in each construction is labeled with
1, a random number, or n/2, respectively. Table 4 reports, for the set of 48 instances
and each construction variant, the values of Value, Dev., #Best, and Time.

The results in Table 4 show that the best outcomes are obtained when the
construction method C2 is used along with the “n/2” strategy. Although the
running times employed by C2 are longer than those of C1 , they are still moderate
(less than one minute). Therefore, we use this method in the remaining experiments.
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In the second preliminary experiment, we study the effect of local search pa-
rameter β. We run construction method C2 in combination with the local search
method with different values of β. Table 5 reports, for the set of 48 instances and
each value of β tested, the values of Value, Dev., #Best, and Time.

Results in Table 5 clearly show that much better outcomes are obtained when
the construction method is coupled with the local search. If we compare the average
deviation with respect to the best known solution (Dev.), we observe a significant
reduction from 62.34% (see Table 4) to 5.48% (see Table 5). Furthermore, Table 5
also shows that the quality of the solution obtained with the local search method
improves as the value of the parameter β increases. As expected, CPU time also
increases. As a compromise, we select β = 1.4 since it presents a good trade-off
point between quality and CPU time. Therefore, the GRASP heuristic is formed
with C2 as the construction method and the local search with β = 1.4.

In the third preliminary experiment, we compare the two variants of the path
relinking algorithm described in Section 4. We consider both the static version,
in which PR is applied after GRASP (pseudo-code shown in Figure 6), and the
dynamic version, in which PR is executed within each iteration of GRASP (pseudo-
code shown in Figure 7). The path relinking method depends on the parameter dth
that specifies the minimum difference with respect to the elite solutions required
for a solution (that is not better than the best elite solution) to be accepted as
a member of the elite set. We compute this value as a fraction of the maximum
distance

dmax =

n
∑

i=1

|i− (n− i)| =
n

∑

i=1

|2i− n|

between two solutions (permutations).
Table 6 reports, for the static and dynamic variants of PR and three different

values of dth, the average objective function value (Value), the average percent-
age deviation from the best solution obtained overall (Dev.), the number of best
solutions in this experiment (#Best) and the average CPU time (Time) in seconds.

Table 6 clearly shows that path relinking with its dynamic scheme obtains better
solutions than the static variant, although it uses more CPU time (on average about
431 seconds compared with the 306 seconds for the static version). Moreover, this
table also shows that the best value of dth in the dynamic version is 5dmax/1000,
since the method obtains an average percentage deviation of 4.15% and 42 best
solutions (out of the 48 instances), which compares favorably with the other values

Table 4. Comparison of construction methods C1 and C2 .

C1 C2

random 1 n/2 random 1 n/2

Value 19.12 19.30 25.35 21.06 20.31 27.93
Dev. 66.55% 66.76% 63.52% 64.96% 65.31% 62.34%
#Best 8 8 23 16 14 30
Time 11.4s 11.3s 11.4s 51.7s 53.6s 50.3s
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Table 5. Effect of parameter β on construction with local search.

β 1.5 1.4 1.3 1.2 1.1

Value 170.52 169.73 169.15 168.29 167.63
Dev. 4.05% 5.48% 5.51% 5.99% 6.55%
#Best 32 31 28 22 20
Time 196.92s 184.08s 161.02s 141.76s 97.58s

Table 6. Comparison of static and dynamic path relinking variants.

Static PR Dynamic PR

dth dmax

1000

5dmax

1000

dmax

100

dmax

1000

5dmax

1000

dmax

100

Value 169.33 169.73 169.73 170.56 170.88 170.56
Dev. 5.29% 5.48% 5.48% 4.35% 4.15% 4.35%
#Best 16 20 20 36 42 36
Time 302.83s 306.24s 308.80s 425.11s 441.30s 427.70s

shown. We therefore set the value of dth to 5dmax/1000 in our final path relinking
algorithm and restrict our attention to the dynamic variant.

5.2.4. Comparing GRASP heuristics. In our final experiment, we compare the
GRASP with path relinking and GRASP with evolutionary path relinking heuris-
tics with two commercial evolutionary solvers, the Evolver Development Kit and
the Evolutionary Premium Solver (SDK callable library). Both solvers implement
black-box solving methods for different classes of problems. In particular, in the
case of the antibandwidth problem they explore the search space by generating,
improving, and combining permutations.

We ran both GRASP with path relinking heuristics 30 times. GRASP with
path relinking was run for 250 global iterations while GRASP with evolutionary
path relinking was run for four global iterations and 25 local iterations during each
global iterations. Our goal was to try to make both heuristics have about the
same running time. CPLEX was run for a maximum of 24 hours of CPU and both
black-box optimizers used the search parameters suggested by their developers for
combinatorial optimization problems and with a time limit set to 10 seconds for
small instances and 2000 seconds for large instances.

Tables 7 and 8 compare the lower and upper bounds on the Harwell-Boeing
and grid graph instances, respectively. While the lower bounds correspond to the
results obtained with the GRASP heuristics and CPLEX, the upper bounds are
the UB1 , UB2 bounds, and the bounds found by the CPLEX solver. For the grid
graph instances, the optimal solutions (known by construction) are also included.
Both tables show that the GRASP with evolutionary path relinking found the best
or optimal solutions for all instances. Although the GRASP with path relinking
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Table 7. Comparison of lower bounds and upper bounds on
Harwell-Boeing instances. Boldface indicates best (lower and up-
per) bound values.

Lower bounds (solutions) Upper bounds
Problem G+evPR G+PR CPLEX UB1 UB2 CPLEX

bcspwr01 17 17 17 19 29 17

bcspwr02 21 21 21 24 38 22

ibm32 9 9 9 15 19 9

pores1 6 6 6 13 16 8

curtis54 12 12 10 26 38 13

will57 13 13 12 28 41 14

bcsstk01 8 8 6 22 29 11

dwt234 51 51 22 58 99 58

ash85 22 21 12 42 64 27

bcspwr03 39 39 22 59 99 57

impcol.b 8 8 4 29 35 14

nos4 35 34 10 50 78 47

494bus 228 227 12 247 460 410
662bus 220 220 16 331 619 660
685bus 136 136 3 342 634 680
bcsstk06 33 32 1 210 334 372
bcsstk07 33 32 1 210 334 372
can445 85 82 1 221 387 439
can715 121 115 1 357 638 709
dwt503 58 53 1 250 429 497
dwt592 112 108 2 295 525 554
impcol.d 105 104 2 212 375 381
nos6 328 326 4 337 624 674
sherman4 261 261 5 272 494 544

reached almost all the best or optimal solutions on the smaller Harwell-Boeing and
grid graph instances, on the larger problems it only found the best solution on two
of the Harwell-Boeing instances (662bus and 685bus) and the optimal on three of
the grid graph instances (mesh100x10, mesh60x17, and mesh80x13).

CPLEX is far from the best known lower and upper bounds for the larger
Harwell-Boeing and grid graph instances. It is also not tight for the best known
lower and upper bounds for the smaller instances, except for four small Harwell-
Boeing instances (bcspwr01, bcspwr02, ibm32, and pores2).

Tables 9 and 10 compare the running times for the GRASP heuristics on the
Harwell-Boeing and grid graph instances, respectively. Each table lists the in-
stance name, and for each GRASP heuristic, the minimum, average, and maximum
running times computed over the 30 runs. Even though the number of iterations
for both GRASP heuristics were the same on both classes of problems, the relative
running times of the GRASP heuristics varied greatly. For the Harwell-Boeing in-
stances, the ratios of the GRASP with evolutionary path relinking average running
time to that of the GRASP with path relinking varied from 3.50 (for bcspwr01)
to 6.35 (for can445), while for the grid graph instances this ratio varied from 1.13
(for mesh12x12) to 2.66 (for mesh70x15). This is because the number of pairs com-
bined in the evolutionary path relinking stage was greater for the Harwell-Boeing
instances than for the grid graph instances.
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Table 8. Comparison of lower bounds and upper bounds on grid
graph instances. Boldface indicates best solution value.

Lower bounds (solutions) Upper bounds
Problem G+evPR G+PR CPLEX UB1 UB2 CPLEX OPT

mesh9x9 36 36 30 40 64 54 36

mesh50x2 48 48 23 49 83 71 49

mesh34x3 48 48 37 50 84 61 50

mesh25x4 46 46 38 49 82 70 48

mesh20x5 46 46 35 49 81 68 48

mesh10x10 45 45 24 49 81 64 45

mesh17x6 47 46 23 50 83 68 48

mesh13x8 47 46 39 51 85 69 48

mesh15x7 48 47 27 52 86 67 49

mesh12x9 49 48 41 53 88 74 50

mesh11x11 55 55 26 60 100 79 55

mesh12x12 66 66 23 71 212 106 66

mesh130x7 442 441 1 454 852 909 452

mesh120x8 468 467 1 479 900 958 476

mesh110x9 482 481 2 494 929 998 491

mesh100x10 485 485 2 499 939 998 495

mesh50x20 474 473 2 499 938 998 490

mesh40x25 480 477 1 499 938 998 488

mesh60x17 481 481 1 509 957 1019 502

mesh34x30 491 490 1 509 957 1018 495

mesh80x13 500 500 1 519 977 1039 514

mesh70x15 502 501 1 524 987 1049 518

mesh90x12 522 521 1 539 1016 1079 534

mesh33x33 524 523 1 544 1024 1088 528

Table 11 reports the results obtained with the four methods, GRASP+PR,
GRASP+evPR, Solver, and Evolver on the set of 48 instances. We split this table
into four main rows corresponding to the four subsets of instances according to
their type and size.

The GRASP with evolutionary path relinking consistently produces the best
solutions with percent deviations smaller than those of the competing methods
(and with number of best solutions found larger than the others). GRASP+evPR
presents a marginal improvement when compared with GRASP with path relinking
but requires longer running times (especially for large instances). The results ob-
tained by the black-box optimizers are quite disappointing. They obtain solutions
with a quality similar to the construction procedures but employing larger running
times. This could be partially explained by the fact that they try to diversify the
search exploring unfeasible solutions, and apparently get stuck in the infeasible
region. This is particularly true in the grid graph instances where the results are
really poor. In fact, both procedures present an early termination triggered by their
internal logic when the infeasible solution is not repaired after a certain number of
iterations.

It is worth mentioning that Evolver and Solver are state-of-the-art methods in
black-box optimization, and although it is expected that specialized methods pro-
vide better solutions, they usually obtain reasonably good solutions. For example,
for the max-cut problem (Gortazar et al., 2009) they present an average percent
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Table 9. Comparison of total running times (in seconds) for
GRASP with path relinking and GRASP with evolutionary path
relinking on Harwell-Boeing instances

GRASP+PR GRASP+evPR
Problem min avg max min avg max

bcspwr01 0.17 0.18 0.18 0.61 0.63 0.70
bcspwr02 0.29 0.30 0.30 0.98 1.06 1.18
ibm32 0.24 0.25 0.25 0.84 0.93 1.07
pores1 0.24 0.25 0.25 0.85 0.98 1.12
curtis54 0.56 0.58 0.59 2.02 2.17 2.48
will57 0.63 0.64 0.65 2.25 2.37 2.69
bcsstk01 0.71 0.72 0.73 2.62 2.91 3.26
dwt234 1.97 2.02 2.07 7.73 8.43 9.82
ash85 1.72 1.74 1.77 6.54 7.47 8.79
bcspwr03 2.16 2.22 2.26 8.30 8.62 8.89
impcol.b 1.47 1.51 1.54 5.43 6.10 7.03
nos4 2.39 2.45 2.50 9.13 10.16 11.62

494bus 66.18 68.42 71.45 333.89 375.61 434.39
662bus 114.52 116.14 118.09 610.17 662.06 736.84
685bus 120.56 121.04 121.68 591.44 594.70 597.75
bcsstk06 212.54 213.91 215.45 1018.4 1184.72 1380.83
bcsstk07 212.75 213.86 215.66 985.24 1160.86 1336.31
can445 102.32 104.53 106.61 527.95 663.90 1005.81
can715 371.99 377.51 381.38 1867.53 2259.50 2810.00
dwt503 189.01 190.31 191.04 888.29 1045.85 1384.71
dwt592 204.61 208.68 211.47 1047.53 1321.90 1808.50
impcol.d 73.64 74.72 76.16 337.57 409.19 489.10
nos6 369.58 380.45 389.98 2145.00 2303.03 2803.00
sherman4 293.35 302.22 312.28 1495.62 1568.87 1672.52

deviation with respect to the best known solutions of 17.11% and 8.10% respec-
tively, and for the maximum diversity problem these values are 9.03% and 2.43%.
It is clear that the max-min nature of the antibandwidth problem makes it partic-
ularly hard to solve for black-box optimizers. The flat landscape of the objective
function provides no information to a black-box solver, making the search process
blind (thus describing a sort of random walk).

6. Summary and concluding remarks

In this paper we propose an integer programming formulation and several heuris-
tics based on GRASP and path relinking for the antibandwidth problem. The pro-
posed GRASP heuristics consist of two randomized greedy construction procedures
and a parameterized local search procedure. A mixed path relinking intensification
algorithm was also proposed and tested in two path relinking schemes. In the static
scheme, path relinking is done once between all pairs of elite set solutions after the
last GRASP iteration. In the dynamic scheme, after each GRASP local search
phase, path relinking is done between the local maximum and a solution selected
at random from the pool. We also proposed a hybrid GRASP with evolutionary
path relinking heuristic which periodically carries out path relinking between all
pairs of solutions in the elite set.

The experimental part of the paper consists of four parts. The benchmark test set
was made up of 48 instances, 24 derived from the Harwell-Boeing matrix collection
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Table 10. Comparison of total running times (in seconds) for
GRASP with path relinking and GRASP with evolutionary path
relinking on grid graph instances

GRASP+PR GRASP+evPR
Problem min avg max min avg max

mesh9x9 1.46 1.48 1.50 2.35 2.54 2.86
mesh50x2 2.12 2.15 2.21 3.46 3.85 4.46
mesh34x3 2.45 2.52 2.67 4.04 4.62 5.27
mesh25x4 2.40 2.43 2.48 3.95 4.44 5.08
mesh20x5 2.39 2.45 2.50 3.95 4.39 4.79
mesh10x10 1.48 2.44 2.48 2.33 4.33 5.32
mesh17x6 2.46 2.51 2.58 4.02 4.66 5.68
mesh13x8 2.59 2.63 2.67 4.06 4.55 5.37
mesh15x7 2.60 2.76 2.84 4.31 5.01 5.81
mesh12x9 2.40 2.90 2.96 4.27 5.08 5.71
mesh11x11 3.90 3.98 4.04 6.16 6.95 8.31
mesh12x12 3.94 9.40 9.99 7.34 10.66 13.85

mesh130x7 777.19 806.29 830.17 1655.74 1816.21 2011.33
mesh120x8 878.53 917.44 942.75 1692.03 1968.86 2195
mesh110x9 941.84 976.41 1008.18 1825.23 2146.27 2549.00
mesh100x10 958.01 991.9 1041.29 1785.98 2227.91 2687.00
mesh50x20 923.79 947.07 968.64 1576.15 1809.99 2163.00
mesh40x25 948.02 975.17 1006.61 1651.47 1866.68 2129.00
mesh60x17 936.38 977.75 1017.15 1606.77 2030.33 2586.00
mesh34x30 1002.99 1040.2 1070.88 1653.04 1751.98 1990.57
mesh80x13 1012.27 1049.39 1084.07 2275 2609.57 3237.00
mesh70x15 1027.08 1061.48 1093.15 2276 2826.23 3418.00
mesh90x12 1130.42 1180.82 1228.47 2443 2829.1 3398.00
mesh33x33 1339.43 1398.09 1435.88 8488 1968.86 9740.00

and 24 on grid, or two dimensional mesh, graphs. Each set of 24 instances had 12
smaller and 12 larger instances. The grid graph instances have optimal solution
values known by construction.

In the first part of the experiments, both upper bounds proposed by Yixun and
Jinjiang (2003) were computed for all instances. Bound UB1 was clearly better than
bound UB2, in spite of the fact that it was only tight for two of the 48 instances.

In the second part of the experiments, we attempted to solve each of the 48
instances with the CPLEX 11.2 integer programming solver. Each run was limited
to at most 24 hours of CPU time. CPLEX was only able to provably solve two
of the 48 instances (two smaller Harwell-Boeing problems). The upper bounds
produced by CPLEX were better than those of UB1 in the smaller Harwell-Boeing
instances but worse than UB1 for the smaller grid graph instances. However, for
the 24 larger instances, the CPLEX bounds were worse than both UB1 and UB2,
with the exception of one instance.

In the third part of the experiments, we determined the GRASP and path re-
linking strategies used for testing the GRASP with path relinking heuristics. The
chosen construction scheme was the sampled greedy heuristic which sets the initial
label at random to n/2. The selected path relinking procedure uses the dynamic
scheme. Local search is used since, on average, it improved the constructed solu-
tions.
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Table 11. Comparison of heuristics methods. Each instance is run 30 times by each GRASP heuristic. For each
instance the minimum, average, and maximum solution values, percent deviation from best solution value, and running
times are computed. These values are averaged over the 12 instances in each of the four problem groups and are shown
in the table. For each of the four problem groups and for each of the two GRASP heuristics, the table also shows the
minimum and the maximum number of times that the 30 runs found the best or optimal solution, as well as %best, the
total number of runs that found the best or optimal solution for problems in the group divided by the total number
of runs (12 instances× 30 runs). The table shows results of a single run for both Solver and Evolver.

GRASP+PR GRASP+evPR SOLVER EVOLVER
min avg max min avg max

(%best) (%best)

12 Smaller grid graph Value 45.4 46.1 46.6 45.7 46.3 46.9 5.25 1.0
Dev. 2.9% 3.8% 5.9% 2.2% 3.4% 4.8% 88.8% 97.9%
Time 2.4s 2.6s 2.7s 4.0s 4.7s 5.4s 9.9s 16.0s
#Best 0 (23%) 30 0 (25%) 30 0 0

12 Larger grid graph Value 483.7 486.5 490.8 484.7 487.7 491.7 1 1
Dev. 2.4% 3.3% 3.8% 2.2% 3.0% 3.6% 99.8% 99.8%

Time 1009.0s 1046.8s 1081.6s 2479.3s 2822.1s 3281.1s 0.2s 0.2s
#Best 0 (0%) 0 0 (0%) 0 0 0

12 Smaller Harwell-Boeing Value 18.9 19.3 19.9 18.9 19.5 20.1 4.1 3.5
Dev. 0.6% 3.8% 5.9% 0.0% 3.1% 5.9% 75.7% 78.0%
Time 1.0s 1.1s 1.1s 3.9s 4.3s 4.9s 5.8s 10.0s
#Best 0 (51%) 30 1 (57%) 30 0 0

12 Larger Harwell-Boeing Value 138.5 139.8 141.3 139.3 140.9 143.3 2.0 3.2
Dev. 1.0% 2.7% 3.9% 0.0% 2.1% 3.4% 98.1% 97.4%
Time 194.3s 197.6s 200.9s 987.4s 1129.2s 1371.6s 25.9s 500.0s
#Best 0 (12%) 30 1 (17%) 30 0 0
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Figure 9. Time to target plots (run time distributions) for
GRASP+PR and GRASP+evPR on dwt503 with target solution
56 or more.

In addition to CPLEX, we compared a GRASP with dynamic path relinking,
a GRASP with dynamic and evolutionary path relinking, and two off-the-shelf
solvers, Solver and Evolver, on the 48 test problems.

In addition to optimally solving the two smaller Harwell-Boeing instances, CPLEX
found near-optimal solutions for about half of the smaller Harwell-Boeing instances.
However, CPLEX found poor-quality solutions on all larger Harwell-Boeing and
grid graph instances, including many unit-valued solutions. This is probably due
to the fact that for all larger Harwell-Boeing instances CPLEX explores few branch
and bound nodes, while for all larger grid graph instances it did not go beyond the
root node of the branch and bound tree. CPLEX found no optimal solution for the
instances in the set of grid graph problems.

The two off-the-shelf solvers performed very poorly.
GRASP with evolutionary path relinking found solutions that were as good or

better than those found by GRASP with path relinking, but at the expense of
longer running times. GRASP with path relinking found the best known solutions
for almost all of the smaller Harwell-Boeing and grid graph instances. In five of the
24 larger instances, GRASP with path relinking produced the best found solution.
It found provably optimal solutions for two of the smaller Harwell-Boeing test set
and three of the smaller grid graph instances. GRASP with evolutionary path
relinking found all best known solutions in the Harwell-Boeing test set and all best
found solutions in the grid graph test set. GRASP with evolutionary path relinking
found better solutions than GRASP with path relinking in 21 of the 48 instances and
solutions that were of equal quality in the remaining 27 instances. It found provably
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optimal solutions for five of the 48 instances, being two in the set of smaller Harwell-
Boeing instances and three in the set of smaller grid graph instances. However,
running times for GRASP with evolutionary path relinking were about 3 to 6 times
longer than GRASP with path relinking on the Harwell-Boeing instances and about
1.1 to 2.7 times longer on the grid graph instances. Times could be be equalized by
either giving more global iterations to GRASP with path relinking, having fewer
local or global iterations in GRASP with evolutionary path relinking, or limiting
path relinking in the evolutionary stage to only pairs where one solution is one of
the two or three top-quality solutions. However, consider the following experiment
on the Harwell-Boeing instance dwt503. We ran GRASP with PR and GRASP with
evPR 50 times on this instance, stopping when a solution with objective 56 or more
was found. For each run we recorded the running time. Each run was independent
of the other, using a different initial seed for the random number generator. For
these runs, GRASP with evPR was configured to carry out 100 local iterations
(instead of the 25 carried out before) during each global iteration. With these 50
running times, we plot the time-to-target plots (run time distributions), shown in
Figure 9.

In the experiments with fixed number of iterations, GRASP+evPR found a solu-
tion with objective value 58 while GRASP+PR only found a 53. However, in those
experiments, GRASP+evPR took, on average, 5.5 times longer than GRASP+PR.
By running GRASP+PR for more iterations, it manages to find better solutions.
In particular, in all 50 runs carried out, it found a solution of objective 56. How-
ever, as the figure shows, the running times were much longer and GRASP+PR
was no longer faster than GRASP+evPR to find a solution with the target value.
For example, half of the runs of GRASP+evPR took less than 2853s while about
41% of the runs of GRASP+PR took less than that. Let TG+evPR and TG+PR

be random variables representing the times required for GRASP with evPR and
GRASP with PR, respectively, to find solutions with objective function value at
least 56. Using the methodology proposed in Ribeiro et al. (2009), we compute
Prob(TG+evPR ≤ TG+PR) = 0.5048.
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