
A Parallel GRASP for MAX�SAT Problems
�

P� M� Pardalos�� L�Pitsoulis�� and M�G�C� Resende�

� Center for Applied Optimization� Department of Industrial and Systems
Engineering� University of Florida� Gainesville� FL ��������	� USA

� AT
T Research� Florham Park� NJ ��	�� USA

Abstract� The weighted maximum satis
ability �MAX�SAT� problem
is central in mathematical logic� computing theory� and many indus�
trial applications� In this paper� we present a parallel greedy randomized
adaptive search procedure �GRASP� for solving MAX�SAT problems�
Experimental results indicate that almost linear speedup is achieved�
Key words� Maximum Satis
ability� Parallel Search� Heuristics� GRASP�
Parallel Computing�

� Introduction and Problem De�nition

The Satis�ability Problem �SAT� is a central problem in arti�cial intelligence�
mathematical logic� computer vision� VLSI design� databases� automated rea�
soning� computer�aided design and manufacturing� In addition� SAT is a core
problem in computational complexity� and it was the �rst problem shown to be
NP�complete �	
� Since most known NP�complete problems have natural reduc�
tions to SAT ��
� the study of e�cient �sequential and parallel� exact algorithms
and heuristics for SAT can lead to general approaches for solving combinatorial
optimization problems�

In SAT problems we seek to �nd an assignment of the variables that satisfy
a logic formula or the maximum number of clauses in the formula� More specif�
ically� let x�� x�� � � � � xn denote n Boolean variables� which can take on only the
values true or false �
 or ��� De�ne clause i �for i � 
� � � � � n� to be

Ci �

ni�

j��

lij �

where the literals lij � fxi� �xi j i � 
� � � � � ng� In addition� for each clause Ci� there
is an associated nonnegative weight wi� In the weighted Maximum Satis�ability

Problem �MAX�SAT�� one has to determine the assignment of truth values to
the n variables that maximizes the sum of the weights of the satis�ed clauses�
The classical Satis�ability Problem �SAT� is a special case of the MAX�SAT in
which all clauses have unit weight and one wants to decide if there is a truth
assignment of total weight m�

� Invited paper� PARA	� � Workshop on Applied Parallel Computing in Industrial
Problems and Optimization� Lyngby� Denmark �August ������ �		��



We can easily transform a SAT problem from the space of true�false vari�
ables into an optimization problem of discrete ��
 variables� Let yj � 
 if Boolean
variable xj is true and yj � � otherwise� Furthermore� the continuous variable
zi � 
 if clause Ci is satis�ed and zi � �� otherwise� Then� the weighted MAX�
SAT has the following mixed integer linear programming formulation�

max F �y� z� �
mX

i��

wizi

subject to X

j�I
�

i

yj �
X

j�I
�

i

�
� yj� � zi� i � 
� � � � �m�

yj � f�� 
g� j � 
� � � � � n�

� � zi � 
� i � 
� � � � �m�

where I�i �resp� I�i � denotes the set of variables appearing unnegated �resp�
negated� in clause Ci�

Active research during the past decades has produced a variety of exact algo�
rithms and heuristics for SAT problems ��
� Many of these algorithms have been
implemented and tested on parallel computers� E�cient parallel implementa�
tions can signi�cantly increase the size of the problems that can be solved� For
recent advances on parallel processing of discrete optimization problems see the
survey article �

 and the books ��� 


�

One successful heuristic for solving large SAT and MAX�SAT problems is
GRASP �
	� 
�
� A greedy randomized adaptive search procedure �GRASP� is
a randomized heuristic for combinatorial optimization ��
� In this paper� we de�
scribe a parallel implementation of GRASP for solving the weighted MAX�SAT
problem� GRASP is an iterative process� with each GRASP iteration consisting
of two phases� a construction phase and a local search phase� The best overall
solution is kept as the result�

In the construction phase� a feasible solution is iteratively constructed� one
element at a time� At each construction iteration� the choice of the next element
to be added is determined by ordering all elements in a candidate list with
respect to a greedy function� This function measures the �myopic� bene�t of
selecting each element� The heuristic is adaptive because the bene�ts associated
with every element are updated at each iteration of the construction phase to
re�ect the changes brought on by the selection of the previous element� The
probabilistic component of a GRASP is characterized by randomly choosing one
of the best candidates in the list� but not necessarily the top candidate� This
choice technique allows for di�erent solutions to be obtained at each GRASP
iteration� but does not necessarily compromise the power of the adaptive greedy
component of the method�

As is the case for many deterministic methods� the solutions generated by a
GRASP construction are not guaranteed to be locally optimal with respect to
simple neighborhood de�nitions� Hence� it is usually bene�cial to apply a local



procedure grasp�RCLSize�MaxIter�RandomSeed�
� InputInstance���
� InitializeDataStructures���
� BestSolutionFound � ��
� do k � �� � � � � MaxIter �
� ConstructGreedyRandomizedSoln�RCLSize�RandomSeed��
� LocalSearch�BestSolutionFound��
� UpdateSolution�BestSolutionFound��
� od�
	 return�BestSolutionFound�
end grasp�

Fig� �� A generic GRASP pseudo�code

procedure ConstructGreedyRandomizedSoln�RCLSize�RandomSeed�x�
� do k � �� � � � � n �
� MakeRCL�RCLSize��
� s � SelectIndex�RandomSeed��
� AssignVariable�s� x��
� AdaptGreedyFunction�s��
� od�
end ConstructGreedyRandomizedSoln�

Fig� �� GRASP construction phase pseudo�code

search to attempt to improve each constructed solution� Through the use of
customized data structures and careful implementation� an e�cient construction
phase can be created which produces good initial solutions for e�cient local
search� The result is that often many GRASP solutions are generated in the
same amount of time required for the local optimization procedure to converge
from a single random start� Furthermore� the best of these GRASP solutions is
generally signi�cantly better than the solution obtained from a random starting
point�

� GRASP for the weighted MAX�SAT

As outlined in Section 
� a GRASP possesses four basic components� a greedy
function� an adaptive search strategy� a probabilistic selection procedure� and a
local search technique� These components are interlinked� forming an iterative
method that constructs a feasible solution� one element at a time� guided by an
adaptive greedy function� and then searches the neighborhood of the constructed
solution for a locally optimal solution� Figure 
 shows a GRASP in pseudo�
code� Lines 
 and 	 of the pseudo�code input the problem instance and initialize



procedure AdaptGreedyFunction�s�
� if s � � �
� for j � ��

s �
� for k � Lj �k �� j� �
� if xk is unnegated in clause j �
� ��

k � ��

k � fjg� ��k � ��k � wj �
� ��
� if xk is negated in clause j �
� ��k � ��k � fjg� ��k � ��k � wj �
	 ��
�� rof�
�� rof�
�� ��

s � �� ��s � ��
�� ��s � �� ��s � ��
�� ��
�� if s � � �
�� for j � ��

�s �
�� for k � Lj �k �� j� �
�� if xk is unnegated in clause j �
�	 ��

k � ��

k � fjg� ��k � ��k � wj �
�� ��
�� if xk is negated in clause j �
�� ��k � ��k � fjg� ��k � ��k �wj �
�� ��
�� rof�
�� rof�
�� ��

�s � �� ��
�s � ��

�� ��
�s � �� ��

�s � ��
�� ��
�	 return

end AdaptGreedyFunction�

Fig� �� AdaptGreedyFunction pseudo�code

the data structures� The best solution found so far is initialized in line �� The
GRASP iterations are carried out in lines � through �� Each GRASP iteration
has a construction phase �line �� and a local search phase �line ��� If necessary�
the solution is updated in line �� The GRASP returns the best solution found�

Next� we describe the GRASP �based on �
	� 
�
� for the weighted MAX�
SAT� To accomplish this� we outline in detail the ingredients of the GRASP� i�e�
the construction and local search phases� To describe the construction phase� one
needs to provide a candidate de�nition �for the restricted candidate list�� provide
an adaptive greedy function� and specify the candidate restriction mechanism�
For the local search phase� one must de�ne the neighborhood and specify a local
search algorithm�



procedure LocalSearch�x�BestSolutionFound�
� BestSolutionFound � C�x��
� GenerateGains�x�G����
� Gk � maxfGi j i � �� � � � � ng �
� for Gk �� ��
� Flip value of xk�
� GenerateGains�x�G�k��
� rof�
� BestSolutionFound � C�x��
	 return�
end LocalSearch�

Fig� �� The local search procedure in pseudo�code

��� Construction phase

The construction phase of a GRASP builds a solution� around whose neighbor�
hood a local search is carried out in the local phase� producing a locally optimal
solution� This construction phase solution is built� one element at a time� guided
by a greedy function and randomization� Figure 	 describes in pseudo�code a
GRASP construction phase� Since in the MAX�SAT problem there are n vari�
ables to be assigned� each construction phase consists of n iterations� In MakeRCL

the restricted candidate list of assignments is set up� The index of the next vari�
able to be assigned is chosen in SelectIndex� The variable selected is assigned a
truth value in AssignVariable� In AdaptGreedyFunction the greedy function
that guides the construction phase is changed to re�ect the assignment just made�
To describe these steps in detail� we need some de�nitions� Let N � f
� 	� � � � � ng
and M � f
� 	� � � � �mg be sets of indices for the set of variables and clauses� re�
spectively� Solutions are constructed by setting one variable at a time to either 

�true� or � �false�� Therefore� to de�ne a restricted candidate list� we have 	
potential candidates for each yet�unassigned variable� assign the variable to 
 or
assign the variable to ��

We now de�ne the adaptive greedy function� The idea behind the greedy
function is to maximize the total weight of yet�unsatis�ed clauses that become
satis�ed after the assignment of each construction phase iteration� For i � N �
let ��

i be the set of unassigned clauses that would become satis�ed if variable
xi were to be set to true� Likewise� let ��i be the set of unassigned clauses that
would become satis�ed if variable xi were to be set to false� De�ne

��i �
X

j��
�

i

wj and ��i �
X

j��
�

i

wj �

The greedy choice is to select the variable xk with the largest ��k or ��k value�
If ��k � ��k � then the assignment xk � 
 is made� else xk � �� Note that with
every assignment made� the sets ��

i and ��i change for all i such that xi is not



assigned a truth value� to re�ect the new assignment� This consequently changes
the values of ��i and ��i � characterizing the adaptive component of the heuristic�

Next� we discuss restriction mechanisms for the restricted candidate list
�RCL�� The RCL is set up in MakeRCL of the pseudo�code of Figure 	� We con�
sider two forms of restriction� value restriction and cardinality restriction�

Value restriction imposes a parameter based achievement level� that a can�
didate has to satisfy to be included in the RCL� In this way we ensure that a
random selection will be made among the best candidates in any given assign�
ment� Let �� � maxf��i � �

�

i j xi yet unassignedg� Let � �� � � � 
� be the
restricted candidate parameter� We say a candidate xi � true is a potential

candidate for the RCL if ��i � � � ��� Likewise� a candidate xi � false is a
potential candidate if ��i � � � ��� If no cardinality restriction is applied� all
potential candidates are included in the RCL�

Cardinality restriction limits the size of the RCL to at most maxrcl elements�
Two schemes for qualifying potential candidates are obvious to implement� In
the �rst scheme� the best �at most maxrcl� potential candidates �as ranked by
the greedy function� are selected� Another scheme is to choose the �rst �at most
maxrcl� candidates in the order they qualify as potential candidates� The order
in which candidates are tested can determine the RCL if this second scheme
is used� Many ordering schemes can be used� We suggest two orderings� In the
�rst� one examines the least indexed candidates �rst and proceeds examining
candidates with indices in increasing order� In the other� one begins examining
the candidate with the smallest index that is greater than the index of the last
candidate to be examined during the previous construction phase iteration�

Once the RCL is set up� a candidate from the list must be selected and made
part of the solution being constructed� SelectIndex selects at random the index
s from the RCL� In AssignVariable� the assignment is made� i�e� xs � true if
s � � or xs � false if s � ��

The greedy function is changed in AdaptGreedyFunction to re�ect the as�
signment made in AssignVariable� This requires that some of the sets ��

i � �
�

i �
as well as the ��i and ��i � be updated� There are two cases� as described in Fig�
ure �� If the variable just assigned was set to true then ��� ��� �� and �� are
updated in lines �� �� 
	� and 
�� If the variable just assigned was set to false

then ��� ��� �� and �� are updated in lines 
�� 		� 	�� and 	��

��� Local search phase

In general� most heuristics for combinatorial optimization problems terminate
at a solution which may not be locally optimal� The GRASP construction phase
described in Subsection 	�
 computes a feasible truth assignment that is not nec�
essarily locally optimal with respect some neighborhood structure� Consequently�
local search can be applied with the objective of �nding a locally optimal solu�
tion that may be better than the constructed solution� To de�ne the local search
procedure� some preliminary de�nitions have to be made� Given a truth assign�
ment x � f�� 
gn� de�ne the ���ip neighborhood N�x� to be the set of all vectors
y � f�� 
gn such that� if x is interpreted as a vertex of the n�dimensional unit



procedure ParallelGRASP�n�dat�

� GenerateRandomNumberSeeds�s� � � � � � sN��
� do i � �� � � � � N �
� GRASP�n�dat�si�vali�xi��
� od�

� FindBestSolutions�xi�vali�max�x
���

� return�max�x���
end ParallelGRASP�n�dat��

Fig� �� Parallel GRASP for MAX�SAT

hypercube� then its neighborhood consists of the n vertices adjacent to x� If we
denote by C�x� the total weight of the clauses satis�ed by the truth assignment
x� then the truth assignment x is a local maximum if and only if C�x� � C�y��
for all y � N�x�� Starting with a truth assignment x� the local search �nds the
local maximum y in N�x�� If y �� x� it sets x � y� This process is repeated until
no further improvement is possible�

Given an initial solution x de�ne Gi to be the gain in total weight resulting
from �ipping variable xi in x� for all i� Let Gk � maxfGi j i � Ng� If Gk � � then
x is the local maximum and local search ends� Otherwise� the truth assignment
resulting from �ipping xk in x� is a local maximum� and hence we only need to
update the Gi values such that the variable xi occurs in a clause in which variable
xk occurs �since the remaining Gi values do not change in the new truth assign�
ment�� Upon updating the Gi values we repeat the same process� until Gk � �
where the local search procedure is terminated� The procedure is described in
the pseudo�code in Figure �� Given a truth assignment x and an index k that
corresponds to the variable xk that is �ipped� procedure GenerateGains is used
to update the Gi values returned in an array G� Note that� in line 	� we pass
k � � to the procedure� since initially all the Gi values must be generated �by
convention variable x� occurs in all clauses�� In lines � through �� the procedure
�nds a local maximum� The value of the local maximum is saved in line ��

� Parallel Implementation

The GRASP heuristic has an inherent parallel nature� which results in an
e�ective parallel implementation ��� 
�
� Each GRASP iteration can be regarded
as a search in some region of the feasible space� not requiring any information
from previous iterations� Therefore� we can perform any number of iterations
�searches� in parallel� as long as we make sure that no two searches are per�
formed in the same region� The region upon which GRASP performs a search is
chosen randomly� so by using di�erent random number seeds for each iteration
performed in parallel we avoid overlapping searches�

Given N processors that operate in parallel� we distribute to each processor
its own problem input data� a random number seed� and the GRASP procedure�



Each processor then applies the GRASP procedure to the input data using its
random number seed� and when it completes the speci�ed number of iterations
it returns the best solution found� The best solution among all N processors is
then identi�ed and used as the solution of the problem� It is readily seen that the
cost of processor interaction is completely absent since each GRASP procedure
operates independently� resulting in no communication between the processors�
This in turn� results in an almost linear speedup�

Based on the above discussion� the implementation of GRASP to solve the
MAX�SAT in parallel is presented in pseudo code in Figure �� In line 
 the
random numbers seeds s�� � � � � sN are generated for each of the N processors�
while in lines 	 to � the GRASP procedure is distributed into the processors�
Each processor i takes as input the problem size n� the input data data� and
its random number seed si� and returns its best solution found in vali� with the
corresponding truth assignment xi� In line � the best solution among all vali is
found together with the corresponding truth assignment vector x��

The code for the GRASP parallel procedure is written in Fortran �f���� and
was implemented in a Parallel Virtual Machine �PVM� framework ��
� PVM uti�
lizes a network of Unix workstations preferably sharing the same �lesystem� by
treating each workstation as a di�erent processor enabling parallel execution�
The advantages of PVM are its portability� the ease of implementing existing
codes� and the fact that even parallel machines in a network could be used� The
main disadvantage is that network communication could cause slow or problem�
atic execution since the communication between the processors is based on the
network status� But for inherently parallel algorithms with minimal amount of
communication required� PVM presents and ideal framework for implementation
and testing purposes�

� Computational Results

Table �� Solutions for the jnh problem class �error�� is expressed in units of �������

��proc� ��proc� ���proc� ���proc�
name optimal soln error�� soln error�� soln error�� soln error��

jnh��� �	���� �	���� ���� �	���� ���� �	���� ���� �	���� ����
jnh��� �	���� �	���� ���� �	���� ���� �	���� ���� �	���� ����
jnh��� �	���� �	���� ���� �	���	 ���� �	��	� ���� �	��	� ����
jnh��� �	���� �	��	� ���� �	�	�� ���� �	���� ���� �	���� ����
jnh��� �	���� �	���� ���� �	�	�	 ���� �	���� ���� �	��	� ����
jnh��� �	���	 �	��	� ���� �	���� ���� �	���� ���� �	���� ����
jnh��	 �	���� �	�	�	 ���� �	���� ���� �	���� ���	 �	�	�� ����
jnh��� �	���� �	�	�� ���� �	���� ���� �	���� ���� �	���� ����
jnh��� ������ ������ ���� ������ ���� ������ ���� ������ ����
jnh��� �����	 ������ ���� ���	�� ���� ���	�� ���� ���	�� ����



�

�

�


�


	


�


�

� 
� 
�

Average
Speedup

Number of Processors

r

r

r

Fig� 	� Average Speedup

Table �� CPU time �in seconds� and speedup for the jnh problem class

��proc� ��proc� ���proc� ���proc�
name time time speedup time speedup time speedup

jnh��� ����� ���� ��	 ���� ���� ���� ����
jnh��� ����� �	�� ��� ���� ���� ���� ����
jnh��� ����� ���� ��	 ���� ���� ���� ����
jnh��� ����� ���� ��� ���� ���� ���� ����
jnh��� ����� ���� ��� �	�� ���� �	�� ����
jnh��� ����� ���� ��� ���� ���� ���� ���	
jnh��	 ��	�� ���� ��� ���� ���� ���� ����
jnh��� ����� ���� ��� ���� 	�� ���� ����
jnh��� ����� ���� ��	 ���� 	�� ���� ����
jnh��� �	��� ���� ��� ���� ��� ���� ����

In this section� computational experience regarding the parallel implemen�
tation of GRASP for solving MAX�SAT instances is reported� The purpose of
this experiment is not to demonstrate the overall performance of GRASP for
solving MAX�SAT instances� which is reported in �
�
� but rather to show the
e�ciency of the parallel implementation of the heuristic in terms of speedup
and solution quality� A sample of ten test problems was used for calculating the
average speedups of the parallel implementation� which were derived from the
SAT instance class jnh of the 	nd DIMACS Implementation Challenge ��
� These



problems were converted to MAX�SAT problems by randomly assigning clause
weights between 
 and 
���� while their size ranges from ��� to ��� clauses�
Furthermore the optimal solution for each instance is known from �
�
�

The parallel implementation was executed on 
� SUN�SPARC 
� worksta�
tions� sharing the same �le system� and communication was performed using
PVM calls� For each instance we run GRASP in 
� �� 
� and 
� processors� with
maximum number of iterations 
���� 	��� 
�� and �� respectively� The amount
of CPU time required to perform the speci�ed number of iterations� and the best
solution found was recorded�

The computational results are shown in Tables 
 and 	� In Table 
 we can
see that that the parallel GRASP with 
� processors always produces better
solution than the the serial �
 processor� except in one case� On the average the
solutions obtained from the 
� �� 
� and 
� processors are ������ 
���� ���

�

���� ����� � 
��� and ���� � 
��� percent from the optimal solutions� The
solution quality increases on the average� as the number of available processors
increases� Moreover� in Table 	 we can see clearly that the speedup of the parallel
implementation is almost linear� as illustrated in �gure � where the average
speedup for �� 
� and 
� processors is shown�

References

�� G�Y� Ananth� V� Kumar� and P�M� Pardalos� Parallel processing of discrete opti�
mization problems� In Encyclopedia of Microcomputers� volume ��� pages ��	�����
Marcel Dekker Inc�� New York� �		��

�� S�A� Cook� The complexity of theorem�proving procedures� In Proceedings of the

Third annual ACM Symposium on Theory of Computing� pages �������� �	���

�� T�A� Feo and M�G�C� Resende� Greedy randomized adaptive search procedures�
Journal of Global Optimization� ����	����� �		��

�� A� Ferreira and P�M� Pardalos� editors� Solving Combinatorial Optimization Prob�

lems in Parallel� Methods and Techniques� volume ���� of Lecture Notes in Com�

puter Science� Springer�Verlag� �		��

�� M�R� Garey and D�S� Johnson� Computers and intractability� A guide to the theory

of NP�completeness� W�H� Freeman and Company� New York� �	�	�

�� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Mancheck� and V� Sunderam�
PVM� Parallel Virtual Machine A Users Guide and Tutorial for Networked Parallel

Computing� Scienti
c and Engineering Computation� MIT Press� Massachusetts
Institute of Technology� �		��

�� J� Gu� Parallel algorithms for satis
ability �SAT� problems� In P�M� Pardalos�
M�G�C� Resende� and K�G� Ramakrishnan� editors� Parallel Processing of Discrete

Optimization Problems� volume �� of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science� pages �������� American Mathematical Society�
�		��

�� D�S� Johnson and M�A� Trick� editors� Cliques� coloring� and Satis�ability� Second

DIMACS Implementation Challenge� volume �� of DIMACS Series in Discrete

Mathematics and Theoretical Computer Science� American Mathematical Society�
�		��



	� P�M� Pardalos� L� Pitsoulis� T� Mavridou� and M�G�C� Resende� Parallel search for
combinatorial optimization� Genetic algorithms� simulated annealing and GRASP�
Lecture Notes in Computer Science� 	����������� �		��

��� P�M� Pardalos� L�S� Pitsoulis� and M�G�C� Resende� A parallel GRASP implemen�
tation for the quadratic assignment problem� In A� Ferreira and J� Rolim� editors�
Parallel Algorithms for Irregularly Structured Problems � Irregular��	� pages ����
���� Kluwer Academic Publishers� �		��

��� P�M� Pardalos� M�G�C� Resende� and K�G� Ramakrishnan� editors� Parallel Pro�

cessing of Discrete Optimization Problems� volume �� of DIMACS Series in Dis�

crete Mathematics and Theoretical Computer Science� American Mathematical
Society� �		��

��� M� G� C� Resende and T� A� Feo� A GRASP for satis
ability� In M�A� Trick and
D�S� Johnson� editors� The Second DIMACS Implementation Challenge� volume ��
of DIMACS Series on Discrete Mathematics and Theoretical Computer Science�
pages �		����� American Mathematical Society� �		��

��� M�G�C� Resende� L� Pitsoulis� and P�M� Pardalos� Approximate solution of
weighted MAX�SAT problems using GRASP� In DingZu Du� Jun Gu� and
Panos M� Pardalos� editors� Satis�ability Problem� Theory and Applications� DI�
MACS Series in Discrete Mathematics and Theoretical Computer Science� Ameri�
can Mathematical Society� �		��

This article was processed using the LATEX macro package with LLNCS style


