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Abstract. The weighted maximum satisfiability (MAX-SAT) problem
is central in mathematical logic, computing theory, and many indus-
trial applications. In this paper, we present a parallel greedy randomized
adaptive search procedure (GRASP) for solving MAX-SAT problems.
Experimental results indicate that almost linear speedup is achieved.
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1 Introduction and Problem Definition

The Satisfiability Problem (SAT) is a central problem in artificial intelligence,
mathematical logic, computer vision, VLSI design, databases, automated rea-
soning, computer-aided design and manufacturing. In addition, SAT is a core
problem in computational complexity, and it was the first problem shown to be
NP-complete [2]. Since most known NP-complete problems have natural reduc-
tions to SAT [5], the study of efficient (sequential and parallel) exact algorithms
and heuristics for SAT can lead to general approaches for solving combinatorial
optimization problems.

In SAT problems we seek to find an assignment of the variables that satisfy
a logic formula or the maximum number of clauses in the formula. More specif-
ically, let 1,25, ...,x, denote n Boolean variables, which can take on only the
values true or false (1 or 0). Define clause ¢ (fori =1,...,n) to be

Uz
Ci=\/ 1,
j=1

where the literals [;; € {z;,Z; | i = 1,...,n}. In addition, for each clause C;, there
is an associated nonnegative weight w;. In the weighted Mazimum Satisfiability
Problem (MAX-SAT), one has to determine the assignment of truth values to
the n variables that maximizes the sum of the weights of the satisfied clauses.
The classical Satisfiability Problem (SAT) is a special case of the MAX-SAT in
which all clauses have unit weight and one wants to decide if there is a truth
assignment of total weight m.
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We can easily transform a SAT problem from the space of true-false vari-
ables into an optimization problem of discrete 0-1 variables. Let y; = 1 if Boolean
variable z; is true and y; = 0 otherwise. Furthermore, the continuous variable
z; = 1 if clause C; is satisfied and z; = 0, otherwise. Then, the weighted MAX-
SAT has the following mixed integer linear programming formulation:

m
max F(y,z)= Zwizi
i=1

subject to

Zyj—k Z(l—yj)z,zi, i=1,...,m,

jert jer;
y]E{051}7]:177n7
0<2<1, +=1,...,m,

where I;7 (vesp. I, ) denotes the set of variables appearing unnegated (resp.
negated) in clause C;.

Active research during the past decades has produced a variety of exact algo-
rithms and heuristics for SAT problems [7]. Many of these algorithms have been
implemented and tested on parallel computers. Efficient parallel implementa-
tions can significantly increase the size of the problems that can be solved. For
recent advances on parallel processing of discrete optimization problems see the
survey article [1] and the books [4, 11].

One successful heuristic for solving large SAT and MAX-SAT problems is
GRASP [12, 13]. A greedy randomized adaptive search procedure (GRASP) is
a randomized heuristic for combinatorial optimization [3]. In this paper, we de-
scribe a parallel implementation of GRASP for solving the weighted MAX-SAT
problem. GRASP is an iterative process, with each GRASP iteration consisting
of two phases, a construction phase and a local search phase. The best overall
solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one
element at a time. At each construction iteration, the choice of the next element
to be added is determined by ordering all elements in a candidate list with
respect to a greedy function. This function measures the (myopic) benefit of
selecting each element. The heuristic is adaptive because the benefits associated
with every element are updated at each iteration of the construction phase to
reflect the changes brought on by the selection of the previous element. The
probabilistic component of a GRASP is characterized by randomly choosing one
of the best candidates in the list, but not necessarily the top candidate. This
choice technique allows for different solutions to be obtained at each GRASP
iteration, but does not necessarily compromise the power of the adaptive greedy
component of the method.

As is the case for many deterministic methods, the solutions generated by a
GRASP construction are not guaranteed to be locally optimal with respect to
simple neighborhood definitions. Hence, it is usually beneficial to apply a local



procedure grasp(RCLSize,MaxIter,RandomSeed)
1 InputInstance();

2 InitializeDataStructures();

3 BestSolutionFound = 0);

4 dok=1,..., MaxIter —

5 ConstructGreedyRandomizedSoln (RCLSize,RandomSeed);
6 LocalSearch(BestSolutionFound);

7 UpdateSolution(BestSolutionFound);
8 od;

9 return(BestSolutionFound)

end grasp;

Fig. 1. A generic GRASP pseudo-code

procedure ConstructGreedyRandomizedSoln(RCLSize,RandomSeed,)
1 dok=1,...,n —

2 MakeRCL (RCLSize);

3 s = SelectIndex(RandomSeed);

4 AssignVariable(s, x);

5 AdaptGreedyFunction(s);

6 od;

end ConstructGreedyRandomizedSoln;

Fig. 2. GRASP construction phase pseudo-code

search to attempt to improve each constructed solution. Through the use of
customized data structures and careful implementation, an efficient construction
phase can be created which produces good initial solutions for efficient local
search. The result is that often many GRASP solutions are generated in the
same amount of time required for the local optimization procedure to converge
from a single random start. Furthermore, the best of these GRASP solutions is
generally significantly better than the solution obtained from a random starting
point.

2 GRASP for the weighted MAX-SAT

As outlined in Section 1, a GRASP possesses four basic components: a greedy
function, an adaptive search strategy, a probabilistic selection procedure, and a
local search technique. These components are interlinked, forming an iterative
method that constructs a feasible solution, one element at a time, guided by an
adaptive greedy function, and then searches the neighborhood of the constructed
solution for a locally optimal solution. Figure 1 shows a GRASP in pseudo-
code. Lines 1 and 2 of the pseudo-code input the problem instance and initialize



procedure AdaptGreedyFunction(s)

1 ifs>0 —

2 forjel}t —

3 for ke L; (k#j) —

4 if zj, is unnegated in clause j —

5 LOF =0 = {3y v =7 —wis
6 fi;

7 if z;, is negated in clause j —

8 ry =ry —{% w =7 —ws
9 fi;

10 rof;

11 rof;

12 rf =0, r; =0

14 fi

15 ifs<0 —

16 forjel”, —

17 for ke L; (k#j) —

18 if z; is unnegated in clause j —

19 Of =0 = (% v = —wis
20 fi;

21 if zj, is negated in clause j —

22 Iy =Ty =% v =m —wss
23 fi;

24 rof;

25 rof;

26 rt =0, rt, =0

27 v, =0; v, =0;

28 fi;

29  return

end AdaptGreedyFunction;

Fig. 3. AdaptGreedyFunction pseudo-code

the data structures. The best solution found so far is initialized in line 3. The
GRASP iterations are carried out in lines 4 through 8. Each GRASP iteration
has a construction phase (line 5) and a local search phase (line 6). If necessary,
the solution is updated in line 7. The GRASP returns the best solution found.

Next, we describe the GRASP (based on [12, 13]) for the weighted MAX-
SAT. To accomplish this, we outline in detail the ingredients of the GRASP, i.e.
the construction and local search phases. To describe the construction phase, one
needs to provide a candidate definition (for the restricted candidate list), provide
an adaptive greedy function, and specify the candidate restriction mechanism.
For the local search phase, one must define the neighborhood and specify a local
search algorithm.



procedure LocalSearch(z,BestSolutionFound)
1 BestSolutionFound = C(z);
2 GenerateGains(z,G,0);

3 Gr =max{G; |i=1,...,n};
4 for G, #0 —

5 Flip value of xy;

6 GenerateGains(z,G,k);
7 rof;

8 BestSolutionFound = C(x);
9 return;

end LocalSearch;

Fig. 4. The local search procedure in pseudo-code

2.1 Construction phase

The construction phase of a GRASP builds a solution, around whose neighbor-
hood a local search is carried out in the local phase, producing a locally optimal
solution. This construction phase solution is built, one element at a time, guided
by a greedy function and randomization. Figure 2 describes in pseudo-code a
GRASP construction phase. Since in the MAX-SAT problem there are n vari-
ables to be assigned, each construction phase consists of n iterations. In MakeRCL
the restricted candidate list of assignments is set up. The index of the next vari-
able to be assigned is chosen in SelectIndex. The variable selected is assigned a
truth value in AssignVariable. In AdaptGreedyFunction the greedy function
that guides the construction phase is changed to reflect the assignment just made.
To describe these steps in detail, we need some definitions. Let N = {1,2,...,n}
and M = {1,2,...,m} be sets of indices for the set of variables and clauses, re-
spectively. Solutions are constructed by setting one variable at a time to either 1
(true) or 0 (false). Therefore, to define a restricted candidate list, we have 2
potential candidates for each yet-unassigned variable: assign the variable to 1 or
assign the variable to 0.

We now define the adaptive greedy function. The idea behind the greedy
function is to maximize the total weight of yet-unsatisfied clauses that become
satisfied after the assignment of each construction phase iteration. For ¢ € IV,
let I';" be the set of unassigned clauses that would become satisfied if variable
x; were to be set to true. Likewise, let I, be the set of unassigned clauses that
would become satisfied if variable z; were to be set to false. Define

+_ - _
v = ijand'yi = ij.
jery Jer;

The greedy choice is to select the variable xj with the largest v,j or v, value.
It 'yk+ > vy , then the assignment z; = 1 is made, else zx = 0. Note that with
every assignment made, the sets Fi+ and I; change for all ¢ such that z; is not



assigned a truth value, to reflect the new assignment. This consequently changes
the values of 7i+ and v, , characterizing the adaptive component of the heuristic.

Next, we discuss restriction mechanisms for the restricted candidate list
(RCL). The RCL is set up in MakeRCL of the pseudo-code of Figure 2. We con-
sider two forms of restriction: value restriction and cardinality restriction.

Value restriction imposes a parameter based achievement level, that a can-
didate has to satisfy to be included in the RCL. In this way we ensure that a
random selection will be made among the best candidates in any given assign-
ment. Let v* = max{y;",7;, | z; yet unassigned}. Let a (0 < a < 1) be the
restricted candidate parameter. We say a candidate x; = true is a potential
candidate for the RCL if fy;'“ > a - v*. Likewise, a candidate z; = false is a
potential candidate if v;7 > o - *. If no cardinality restriction is applied, all
potential candidates are included in the RCL.

Cardinality restriction limits the size of the RCL to at most maxrcl elements.
Two schemes for qualifying potential candidates are obvious to implement. In
the first scheme, the best (at most maxrcl) potential candidates (as ranked by
the greedy function) are selected. Another scheme is to choose the first (at most
maxrcl) candidates in the order they qualify as potential candidates. The order
in which candidates are tested can determine the RCL if this second scheme
is used. Many ordering schemes can be used. We suggest two orderings. In the
first, one examines the least indexed candidates first and proceeds examining
candidates with indices in increasing order. In the other, one begins examining
the candidate with the smallest index that is greater than the index of the last
candidate to be examined during the previous construction phase iteration.

Once the RCL is set up, a candidate from the list must be selected and made
part of the solution being constructed. SelectIndex selects at random the index
s from the RCL. In AssignVariable, the assignment is made, i.e. zs = true if
s>0orz, = falseif s <O0.

The greedy function is changed in AdaptGreedyFunction to reflect the as-
signment made in AssignVariable. This requires that some of the sets Fj, I,
as well as the fyi* and v; , be updated. There are two cases, as described in Fig-
ure 3. If the variable just assigned was set to true then I't, I', v+ and v~ are
updated in lines 5, 8, 12, and 13. If the variable just assigned was set to false
then I'™, I'", vT and v~ are updated in lines 19, 22, 26, and 27.

2.2 Local search phase

In general, most heuristics for combinatorial optimization problems terminate
at a solution which may not be locally optimal. The GRASP construction phase
described in Subsection 2.1 computes a feasible truth assignment that is not nec-
essarily locally optimal with respect some neighborhood structure. Consequently,
local search can be applied with the objective of finding a locally optimal solu-
tion that may be better than the constructed solution. To define the local search
procedure, some preliminary definitions have to be made. Given a truth assign-
ment z € {0,1}", define the 1-flip neighborhood N(x) to be the set of all vectors
y € {0,1}" such that, if = is interpreted as a vertex of the n-dimensional unit



procedure ParallelGRASP(n,dat)

GenerateRandomNumberSeeds (si,...,5N);

doi=1,...,N —
GRASP(n,dat,s;,val;,x;);

od;

FindBestSolutions (z; ,val; ,max,z");

return (max,z”);

end ParallelGRASP(n,dat);

SO W N

Fig. 5. Parallel GRASP for MAX-SAT

hypercube, then its neighborhood consists of the n vertices adjacent to x. If we
denote by C(z) the total weight of the clauses satisfied by the truth assignment
x, then the truth assignment z is a local maximum if and only if C(z) > C(y),
for all y € N(z). Starting with a truth assignment z, the local search finds the
local maximum y in N(z). If y # z, it sets © = y. This process is repeated until
no further improvement is possible.

Given an initial solution x define GG; to be the gain in total weight resulting
from flipping variable z; in z, for all i. Let G}, = max{G; | i € N}.If G}, = 0 then
x is the local maximum and local search ends. Otherwise, the truth assignment
resulting from flipping z in z, is a local maximum, and hence we only need to
update the G; values such that the variable x; occurs in a clause in which variable
x, occurs (since the remaining G; values do not change in the new truth assign-
ment). Upon updating the G; values we repeat the same process, until G, = 0
where the local search procedure is terminated. The procedure is described in
the pseudo-code in Figure 4. Given a truth assignment x and an index k that
corresponds to the variable zj that is flipped, procedure GenerateGains is used
to update the G; values returned in an array G. Note that, in line 2, we pass
k = 0 to the procedure, since initially all the G; values must be generated (by
convention variable zy occurs in all clauses). In lines 4 through 7, the procedure
finds a local maximum. The value of the local maximum is saved in line 8.

3 Parallel Implementation

The GRASP heuristic has an inherent parallel nature, which results in an
effective parallel implementation [9, 10]. Each GRASP iteration can be regarded
as a search in some region of the feasible space, not requiring any information
from previous iterations. Therefore, we can perform any number of iterations
(searches) in parallel, as long as we make sure that no two searches are per-
formed in the same region. The region upon which GRASP performs a search is
chosen randomly, so by using different random number seeds for each iteration
performed in parallel we avoid overlapping searches.

Given N processors that operate in parallel, we distribute to each processor
its own problem input data, a random number seed, and the GRASP procedure.



Each processor then applies the GRASP procedure to the input data using its
random number seed, and when it completes the specified number of iterations
it returns the best solution found. The best solution among all N processors is
then identified and used as the solution of the problem. It is readily seen that the
cost of processor interaction is completely absent since each GRASP procedure
operates independently, resulting in no communication between the processors.
This in turn, results in an almost linear speedup.

Based on the above discussion, the implementation of GRASP to solve the
MAX-SAT in parallel is presented in pseudo code in Figure 5. In line 1 the
random numbers seeds si,...,sy are generated for each of the N processors,
while in lines 2 to 4 the GRASP procedure is distributed into the processors.
Each processor ¢ takes as input the problem size n, the input data data, and
its random number seed s;, and returns its best solution found in val;, with the
corresponding truth assignment x;. In line 5 the best solution among all val; is
found together with the corresponding truth assignment vector z*.

The code for the GRASP parallel procedure is written in Fortran (£77), and
was implemented in a Parallel Virtual Machine (PVM) framework [6]. PVM uti-
lizes a network of Unix workstations preferably sharing the same filesystem, by
treating each workstation as a different processor enabling parallel execution.
The advantages of PVM are its portability, the ease of implementing existing
codes, and the fact that even parallel machines in a network could be used. The
main disadvantage is that network communication could cause slow or problem-
atic execution since the communication between the processors is based on the
network status. But for inherently parallel algorithms with minimal amount of
communication required, PVM presents and ideal framework for implementation
and testing purposes.

4 Computational Results

Table 1. Solutions for the jnh problem class (error-% is expressed in units of x107%).

1-proc. 5-proc. 10-proc. 15-proc.
name optimal| soln error-% soln error-% soln error-% soln error-%
jnh201 394238 (394154 0.21 394238 0.00 394171 0.17 394238 0.00
jnh202 394170 (393680 1.24 393708 1.17 393706 1.17 393883 0.72
jnh203 393881 (393446 1.10 393289 1.50 393695 0.47 393695 0.47
jnh205 394063 (393890 0.43 393958 0.26 394060 0.07 394060 0.07
jnh207 394238 (394030 0.52 393929 0.78 393813 1.07 394090 0.37
jnh208 394159 (393893 0.67 393585 1.45 393622 1.36 393483 1.71
jnh209 394238 (393959 0.70 393805 1.10 393884 0.89 393985 0.64
jnh210 394238 (393950 0.73 394238 0.00 394238 0.00 394238 0.00
jnh301 444854 (444403 1.01 444577 0.62 444577 0.62 444577 0.62
jnh302 444459 (443555 2.03 443911 1.23 443911 1.23 443911 1.23
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Fig. 6. Average Speedup

Table 2. CPU time (in seconds) and speedup for the jnh problem class

1-proc. 5-proc. 10-proc. 15-proc.
name | time time speedup time speedup time speedup
jnh201| 3104 62.8 4.9 30.5 10.2 222 14.0
jnh202| 312.2 59.8 5.2 31.2 10.0 234 13.3
jnh203| 351.2 72.3 4.9 352 10.0 23.2 15.1
jnh205| 327.8 634 5.2 321 10.2 225 14.6
jnh207| 304.7 56.7 5.4 29.6 103 198 154
jnh208| 355.2 65.6 5.4 33.2 10.7 21.0 16.9
jnh209( 339.0 60.5 5.6 33.6 10.1 21.6 15.7
jnh210( 318.5 57.6 5.5 325 9.8 208 15.3
jnh301| 4145 853 4.9 452 9.2 283 14.6
jnh302| 398.7 88.6 4.5 482 83 270 14.7

In this section, computational experience regarding the parallel implemen-
tation of GRASP for solving MAX-SAT instances is reported. The purpose of
this experiment is not to demonstrate the overall performance of GRASP for
solving MAX-SAT instances, which is reported in [13], but rather to show the
efficiency of the parallel implementation of the heuristic in terms of speedup
and solution quality. A sample of ten test problems was used for calculating the
average speedups of the parallel implementation, which were derived from the
SAT instance class jnh of the 2nd DIMACS Implementation Challenge [8]. These



problems were converted to MAX-SAT problems by randomly assigning clause
weights between 1 and 1000, while their size ranges from 800 to 900 clauses.
Furthermore the optimal solution for each instance is known from [13].

The parallel implementation was executed on 15 SUN-SPARC 10 worksta-
tions, sharing the same file system, and communication was performed using
PVM calls. For each instance we run GRASP in 1, 5, 10 and 15 processors, with
maximum number of iterations 1000, 200, 100 and 66 respectively. The amount
of CPU time required to perform the specified number of iterations, and the best
solution found was recorded.

The computational results are shown in Tables 1 and 2. In Table 1 we can
see that that the parallel GRASP with 15 processors always produces better
solution than the the serial (1 processor) except in one case. On the average the
solutions obtained from the 1, 5, 10 and 15 processors are 0.864 x 1073,0.811 x
1072,0.705 x 1073 and 0.58 x 1073 percent from the optimal solutions. The
solution quality increases on the average, as the number of available processors
increases. Moreover, in Table 2 we can see clearly that the speedup of the parallel
implementation is almost linear, as illustrated in figure 6 where the average
speedup for 5, 10 and 15 processors is shown.
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