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ABSTRACT. Over recent years, several nonlinear time series models have been proposed
in the literature. One model that has found a large number of successful applications is
the threshold autoregressive model (TAR). The TAR model is a piecewise linear process
whose central idea is to change the parameters of a linear autoregressive model according
to the value of an observable variable, called the threshold variable. If this variable is a
lagged value of the time series, the model is called a self-exciting threshold autoregressive
(SETAR) model. In this paper, we propose a heuristic to estimate a more general SETAR
model, where the thresholds are multivariate. We formulate the task of finding multivariate
thresholds as a combinatorial optimization problem. We develop an algorithm based on a
Greedy Randomized Adaptive Search Procedure (GRASP) to solve the problem. GRASP
is an iterative randomized sampling technique that has been shown to quickly produce
good quality solutions for a wide variety of optimization problems. The proposed model
performs well on both simulated and real data.

1. INTRODUCTION AND PROBLEM DESCRIPTION

The most frequently used approaches to time series model building assume that the data
under study are generated from a linear Gaussian stochastic process (Box et al., 1994).
One of the reasons for this popularity is that linear Gaussian models provide a number
of appealing properties, such as physical interpretations, frequency domain analysis, as-
ymptotic results, statistical inference, and many others that nonlinear models still fail to
produce consistently. Despite those advantages, it is well known that real-life systems
are usually nonlinear, and certain features, such as limit-cycles, asymmetry, amplitude-
dependent frequency responses, jump phenomena, and chaos cannot be correctly captured
by linear statistical models.

Over recent years, several nonlinear time series models have been proposed both in
classical econometrics (Tong, 1990; Granger and Ter&svirta, 1993; van Dijk et al., 2000)
and in machine learning theory (Zhang et al., 1998; Kuan and White, 1994; Leisch et al.,
1999). One model that has found a large number of successful applications is the threshold
autoregressive model (TAR), proposed by Tong (1978) and Tong and Lim (1980). The
TAR model is a piecewise linear process whose central idea is to change the parameters of
a linear autoregressive model according to the value of a single observable variable, called
the threshold variable. If this variable is a lagged value of the time series, the model is
called a self-exciting threshold autoregressive (SETAR) model.

In this paper, we propose a heuristic to estimate SETAR models with thresholds defined
by more than one variable. This is a generalization of the procedures described in Tong
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and Lim (1980) and Tsay (1989), where the switching mechanism is controlled by a single
threshold variable.

Multivariate thresholds are useful in describing complex nonlinear behavior and allow
for different sources of nonlinearity. Several papers concerning multiple threshold vari-
ables have appeared in the literature during the past years. However, they assumed that
the threshold was controlled by known linear combination of individual variables. See, for
example, Tiao and Tsay (1994) where the thresholds are controlled by two lagged values
of a transformed US GNP series reflecting the situation of the economy. In the present
framework, we adopt a less restrictive formulation, assuming that the linear combination
of variables is unknown and is jointly estimated with the other parameters of the model.
An alternative approach is the Adaptive Spline AutoRegressive (ASTAR) model proposed
by Lewis and Stevens (1991), which is based on Multivariate Adaptive Regression Splines
(MARS) (Friedman, 1991).

We formulated the task of finding multivariate thresholds as a combinatorial optimiza-
tion problem. Combinatorial optimization is a field of applied mathematics that treats a
special type of mathematical optimization problem where the set of feasible solutions is
finite. We developed an algorithm based on a Greedy Randomized Adaptive Search Pro-
cedure (GRASP), proposed by Feo and Resende (1989) (see also Feo and Resende (1995)
and Resende (1999)), to solve the problem.

The paper is organized as follows. Section 2 gives a general description of threshold
models. Section 3 presents the proposed procedure. Section 4 deals with the specification
of the model. Section 5 briefly describes the GRASP methodology and presents its appli-
cation to our particular problem. Section 6 presents some numerical examples illustrating
the performance of the proposed model. Section 7 shows an application with a real data
set. Concluding remarks are made in Section 8.

2. THRESHOLD AUTOREGRESSIVE MODELS

The Threshold AutoRegressive (TAR) model was first proposed by Tong (1978) and
further developed by Tong and Lim (1980) and Tong (1983). The main idea of the TAR
model is to describe a given stochastic process by a piecewise linear autoregressive model,
where the determination of whether each of the models is active or not depends on the
value of a known variable.

A time series vy is a threshold processiif it follows the model

P h P
Yt :Oéo+zoéjyt7j +Z )\0i+z)\jiyt7j Ii(qt) + e, (1)
j=1 i=1 j=1
where e; ~ NID(0,02). The terms ay, ... ,ap, and Xo;, ... , Api, i = 1,... , h, are real
coefficients. I;(-) is an indicator function, defined by
=0, otherwise,

where {r1,... , 7} isalinearly ordered subset of the real numbers, such that —co < r1 <
re < ... < rp < oco. Usually, the variance of the error term is allowed to change according
to the regime.
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The model can be rewritten in vector notation as

h
Yy = o'z + Z Nz Li(qr) + e, @)
i=1
where o = [, ... , ), A; = [Noiy- -+, Apil, and z, = [1, g1, ..., Ye—yp)-

Model (3) is composed of [ = h + 1 linear autoregressive models of order p, AR(p),
each of which will be active or not depending on the value of ¢;.

The choice of the threshold variable ¢;, which determines the dynamics of the process,
allows a number of possible situations. An important case is when ¢, is replaced by y;_ g4,
where the model becomes the self exciting threshold autoregressive model

h
y=a'zy + Z Nizi i (Yi—a) + €t 4)
=1
denoted by the acronym SETAR(!). The scalar d is known as the delay parameter or the
length of the threshold.

Due to the discontinuity at each threshold, the derivative based optimization techniques
cannot be applied to estimate the parameters of model (4). However, once the locations of
the thresholds are determined, the least squares algorithm can be used to estimate each of
the [ linear models. Tong and Lim (1980) proposed a grid search based on Akaike’s infor-
mation criterion (Akaike, 1974) to specify the model and to estimate the parameters. Tsay
(1989) proposed a simple model building procedure based on the residuals of an arranged
autoregression. He suggested a simple statistic to test for the threshold nonlinearity and
to specify the threshold variable. He also proposed graphical techniques to identify the
number and the candidate locations of the thresholds. Both methodologies consider only
thresholds controlled by a single lagged observation of the time series.

3. THE MULTIVARIATE THRESHOLD AUTOREGRESSIVE MODEL

3.1. Model presentation. As stated in Section 2, the dynamics of a SETAR model are
controlled by a partition of the real line R induced by the parameters r;, i = 1,..., h.
However, in a more general situation, it will be interesting to consider a partition of a ¢-
dimensional space, say R?. This paper proposes a procedure to estimate SETAR models
with evolution controlled by a partition of a multidimensional space induced by h separat-
ing hyperplanes.

Consider a g-dimensional Euclidean space and a point x in that space. A hyperplane is
defined by

H= {x € R!|w'x = 3}, ()

where w is a ¢g-dimensional parameter vector and /3 is a scalar parameter. Figure 1 shows
an example in R?. The direction of w determines the orientation of the hyperplane and the
scalar term 3 determines the position of the hyperplane in terms of its distance from the
origin.

A hyperplane induces a partition of the space into two regions defined by the halfspaces

H' = {x € R?|w'x > (3} (6)
and

H ={xeR|wx< 3} 7
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FIGURE 1. Hyperplane defined by w'x = 3 in R2.

With h hyperplanes, a g-dimensional space will be split into several polyhedral regions.
Each region is defined by the nonempty intersection of the halfspaces (6) and (7) of each
hyperplane.

For a given hyperplane, defined by w and (3, denote by I, 3(x) an indicator function

1, ifw'x>p;
I, = - 8
#(x) {07 otherwise. ®

The main idea of the proposed procedure is to use (8) to create a multidimensional thresh-
old structure. Suppose that a g-dimensional space is spanned by ¢ lagged values of a

given stochastic process v, say x; = [y:—1, - - , Yi—q), and suppose we have h functions
L, 3,(x¢), i =1,..., h, each of which defines a threshold. Now consider
h
Yy = a/Zt —+ Z A;thjwi-ﬂi (Xt) —+ Et. (9)
=1

Equation (9) represents a SETAR model with multivariate thresholds, hereafter denoted
by the acronym SEMTAR(h) — Self-Exciting Multivariate Threshold AutoRegressive. The
maximum number of polyhedral regions M (h, q) created by the hyperplanes is defined by
the following recursive formula

M(h,q) =Mh—-1,9) + M(h—-1,¢q-1), (10)

where M(1,q) = 2and M (h,1) = h + 1 are the boundary conditions.

Although a model with a large number of hyperplanes is difficult to interpret, in most
practical situations we expect to have only a small number of separating hyperplanes.

Note that model (9) is, in principle, neither globally nor locally identified. There are
two characteristics of the model which cause the non-identifiability: the first is due to sym-
metries in the model architecture. The likelihood function of the model will be unchanged
if we permute the indicator functions, resulting in h! possibilities for each coefficient of
the model. The characteristic is the relationship I, g,(x:) = 1 — I_.,, —,(x¢). The third
characteristic is the mutual dependence of the parameters A; and w;, i = 1,... ,h. Ifall
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the elements of \; equal zero, the corresponding w; can assume any value without affect-
ing the value of the likelihood function. On the other hand, if w; = 0, then \; can take any
value.

The first problem is solved by imposing the restrictions 5; < ... < 3. The second
problem can be circumvented, for example, by imposing the restriction wy; = 1,4 =
1,..., h. Toremedy the third problem, it is necessary to ensure that the model contains no
irrelevant hyperplanes. This is solved with the techniques described in Section 4.3.

3.2. Estimation of the parameters. Rewrite model (9) as

y =70 +¢, (11)
! ! !/ / / /
wherey’ = [y1,y2,... ,yr], € = [e1,82,... ,e7],0 = [a D VIR ,)\h],

! =/ =/

Zy 7y, Zp 1
! =/ =/

Zy Zyo Zpo
! 5/ 5/

Z= |23 713 Zh3 |,

5/ =/

Zp Zyp Zy T

and Zi,t = Iwhgi (Xt)Zt, i=1,...,h.
Once the parameters w; and 3; have been determined, the parameter vector 6 can be
estimated by

6=(2'2)"7Yy. (12)
The covariance matrix of & conditional on w; and Biyi=1,...,h,can be estimated as
S =52(2'2)", (13)

where 62 is the estimated variance of the residuals. We can thus use (13) to test restrictions
in the autoregressive parameters such as equality of models in different regimes.

The problem now is to estimate parameters w; and 3;, i = 1,... , h. As stated earlier
in this section, these parameters define a hyperplane in a g-dimensional space. If we have
N observations of x;, we must consider hyperplanes that separate the observed points. Of
course, these hyperplanes are not unique. All that matters is how the points are partitioned.
In that sense, we only need to consider the hyperplanes defined by combinations of these
points. Consider  the set of observations of x;, then the set of possible hyperplanes is
defined by

T ={(w;,[) | wixt=pFii=1,...  h,x¢ € X} (14)

Hence, if we have N points, there are N!/(n!(N — n)!) possible hyperplanes to search.
One way would be to search all the possible combinations of hyperplanes and choose
the combination that minimizes the sum of squared errors. Of course, for most practical
problems this is infeasible. In Section 5 we propose a procedure based on GRASP that,
given x;, is able to choose the set of h hyperplanes with small cost. In the next section, we
discuss the specification of x; and the selection of A.

4, MODEL SPECIFICATION

In this section, a specific-to-general specification strategy is developed. From equation
(9) two specification problems require special care. The first is variable selection, that is,
the correct selection of elements of z, and x;. The problem of selecting the right subset of
variables is very important because selecting a too small subset leads to misspecification,
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whereas choosing too many variables aggravates the “curse of dimensionality.” The second
problem is the selection of the correct number of separating hyperplanes. The specification
procedure as a whole may be viewed as a sequence consisting of the following three steps:

1. Specifying a linear autoregressive model.
2. Testing linearity and selecting the elements of x;.
3. Determining the number of hyperplanes.

4.1. Specification of the autoregression. The elements of z, are determined with the use
of an information criterion such as the AIC (Akaike, 1974) or the SBIC (Schwarz, 1978).
Given a candidate set of lags, Q = {1,...,Pmaz}, We have to estimate several linear
models and select the variables that minimize the information criteria. If we test each
possible combination of lags, we would need to estimate > > pmaz!/ (2! (Pmaz — 1))
linear models. If p,,.q. is very large, it is not reasonable to test every possible combination.
In that case, the practitioner may only estimate p,,.. autoregressive models ranging from
an AR(1) to an AR(p.q2) Mmodel. However, in most practical situations we expect a low
value for p,,qz.

The main drawback of this approach is that when the true data generating process is
nonlinear, the algorithm tends to select more lags than necessary. Nevertheless, this does
not pose any problem because after estimating the parameters of the nonlinear model, we
can test the null hypothesis that an autoregressive parameter is zero.

4.2. Testing linearity and specifying the threshold variables. In practical nonlinear
time series modeling, testing linearity plays an important role. In the context of model
(9), testing linearity has two objectives. The first is to verify if a linear model is able to
adequately describe the data generating process. If this is true, it is not necessary to fit a
nonlinear model. The second is to determine the elements of x;.

The linearity test used in this paper is the F-test, proposed by Tsay (1989), based on the
recursive least squares estimates of the parameters of an arranged autoregression.

Suppose we have the AR(p) model for y;,. We referto [y;, 1, y¢—1,... ,¥+—p| @S a case
of data. An arranged autoregression is an autoregression with the cases reordered, based
on the values of a particular variable. In the framework of the SETAR model, arranged
autoregression becomes useful if we reorder the cases according to the threshold variable
yi—q. Tsay (1989) proposed running the linearity for different values of d, and choosing
the one that minimize the p-value of the test.

In the present framework it is, in principle, impossible to reorder the autoregression
because we do not know the linear combination of threshold variables. To circumvent this
problem, we adopt the following heuristic. Set x; equal to each possible subset of the
elements of z,, reorder the autoregression according to the first principal component of x,
and run the linearity test. Then, select the threshold variables that minimize the p-value
of the test. Of course, the model builder can also use the other principal components to
reorder the autoregression.

4.3. Determining the number of hyperplanes. In real applications, the number of sep-
arating hyperplanes is not known and should be estimated from the data. One possible
solution is to start estimating a model with only one hyperplane, and then continue adding
one hyperplane at a time to the model until the value of the SBIC (or the AIC) of the fitted
model is not further improved. The SBIC and the AIC are defined as

In(T)

SBIC(h) = In(6?) + T

x[hx(p+qg+1)+p], (15)
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[hx (p+q+1)+p]

T b
where 42 is the estimated residual variance. This means that to choose a model with &
separating hyperplanes, we need to estimate 4 + 1 models.

AIC(R) = In(6?) + 2 x

(16)

5. A GRASP FOR PIECEWISE LINEAR MODELS

A GRASP (Feo and Resende, 1989, 1995; Resende, 1999) is a multi-start iterative ran-
domized sampling technique, with each GRASP iteration consisting of two phases, a con-
struction phase and a local search phase. The best overall solution is kept as the result.

The construction phase of GRASP is essentially a randomized greedy algorithm, where
a feasible solution is iteratively constructed, one element at a time. At each construction it-
eration, the choice of the next element to be added to the solution is determined by ordering
all candidate elements in a candidate list with respect to a greedy function. This function
measures the (myopic) benefit of selecting each element. The heuristic is adaptive because
the benefits associated with every element are updated at each iteration of the construction
phase to reflect the changes brought on by the selection of the previous element. The prob-
abilistic component of a GRASP is characterized by randomly choosing one of the best
candidates in the list, but not necessarily the top candidate. The list of best candidates is
called the restricted candidate list (RCL). This choice technique allows for different so-
lutions to be obtained at each GRASP iteration, but does not necessarily compromise the
power of the adaptive greedy component of the method.

As is the case for many deterministic methods, the solutions generated by a GRASP
construction are not guaranteed to be locally optimal with respect to simple neighborhood
definitions. Hence, it is almost always beneficial to apply a local search to attempt to
improve each constructed solution. Normally, a local optimization procedure, such as a
two-exchange, is employed. While such procedures can require exponential time from
an arbitrary starting point, empirically their efficiency significantly improves as the initial
solution improves. Through the use of customized data structures and careful implemen-
tation, an efficient construction phase can be created which produces good initial solutions
for efficient local search. The result is that often many GRASP solutions are generated in
the same amount of time required for the local optimization procedure to converge from a
single random start. Furthermore, the best of these GRASP solutions is generally signifi-
cantly better than the solution obtained by a local search from a random starting point.

Figure 2 illustrates a generic GRASP in pseudo-code. The GRASP takes as input pa-
rameters for setting the maximum number of GRASP iterations and the seed for the ran-
dom number generator. The GRASP iterations are carried out in lines 1-5. Each GRASP
iteration consists of the construction phase (line 2), the local search phase (line 3) and, if
necessary, the incumbent solution update (line 4).

In the framework of the piecewise linear time series modeling problem, we built a
GRASP to estimate the separating hyperplanes of model (9). The greedy function pro-
posed orders the possible hyperplanes with respect to the mean squared error (MSE) of
the fitted model. As the number of hyperplanes is not known in advance, we build an
outer loop where at each iteration we increase the number of hyperplanes by a unit. We
stop when the SBIC (or the AIC) of the model is not further improved. The estimation is
carried out in a static way, where we keep the estimates of the previous hyperplanes fixed
and estimate only the last one. This is done to speed up the estimation process and does
not have an adverse effect on the quality of the solution. Figure 4 shows the main loop in
pseudo-code.
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procedure gr asp()

1 dok=1,- -, Maxlter —

2 ConstructGreedyRandomizedSolution();
3 LocalSearch();

4 UpdateSolution();

5 end do;

6 return(BestSolutionFound);

end gr asp;

FIGURE 2. Generic GRASP.

procedure mai n()
1 BestSolutionFound=0LS;

2 h =0;

3 RandomSelectCases( );

4 while SBIC is improved —
5 h=h+1,;

6 Gplts();

7 UpdateSolution();

8 ComputeSBIC();

9 end do;

10  return(BestSolutionFound);
end gpt | s;

FIGURE 3. Main loop procedure.

procedure gpl t s()

1 dok=1,- -, Maxlter —

2 ConstructGreedyRandomizedSolution();
3 RotationLocalSearch();

4 TranslationLocalSearch();

5 UpdateSolution();

6 end do;

7 return(BestSolutionFound);

end gpl ts;

FIGURE 4. GRASP procedure.

Because the number of possible hyperplanes can grow very fast as a function of the
number of observed points, before we start the outer loop we randomly select a subset of
the cases and then generate the set of all possible hyperplanes, denoted by C.

We next describe each one of the components in detail.

5.1. Construction phase. In the construction phase each possible hyperplane is ordered
according to the mean squared error (MSE) of the fitted model. To capture the adaptive
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procedure Const ruct Gr eedyRandoni zedSol uti on()
H = max{MSE(H) | H € C};

H = min{MSE(H) | H € C'};

RCL = {H € C | MSE(H) < H + o(H — H)};
SelectHyperAtRandom(RCL);

s = s J{H]};

AdaptCost();

end Const r uct Gr eedyRandoni zedSol uti on;

o0k WwWN

FIGURE 5. Construction phase - Static estimation.

procedure Const ruct Gr eedyRandoni zedSol uti on()
1 s=10;

3 dok =1, ---, MaxHyperSolution —

4 H = max{SSE(H) | H € C};

5 H=min{SSE(H) |H € C};

6 RCL={H e C | SSE(H) < H+ o(H - H)};
7 SelectHyperAtRandom(RCL);

8 s =sU{H};

9 AdaptCost();

9 end do;

end Const r uct Gr eedyRandoni zedSol uti on;

FIGURE 6. Construction phase - Full estimation.

component, at each time a hyperplane is chosen, the remaining hyperplanes are reordered
to reflect the benefits of the selection of the previous ones.

The random component of this GRASP sequentially selects, at random, the hyperplanes
from the restricted candidate list (RCL) until the maximum number of hyperplanes is
reached. In the case of static estimation, this means that only one hyperplane has to be
chosen at each iteration. Otherwise, the construction phase selects h hyperplanes. Let
a € [0, 1] be a given parameter and MSE(H]) the cost of selecting a given hyperplane from
the set of all possible alternatives C, then the RCL is defined as

RCL={H e C |MSE(H) < H + «(H — H)} (17)

where H = min{MSE(H) | H € C} and H = max{MSE(H) | H € C}.

In this implementation at each GRASP iteration the parameter « is randomly chosen
from a uniform distribution between 0 and 1. Figures 5 and 6 illustrate the construction
phase of the GRASP for both static and full estimation. In the case of static estimation,
the construction procedure receives as parameters the previous chosen hyperplanes that
compose the solution s, the RCL parameter « and the subset C' of candidate hyperplanes.
Otherwise, only « and the subset C of candidate hyperplanes are passed to the construction
procedure.

5.2. Local search. Fora given problem, a local search algorithm works in a iterative fash-
ion by successively replacing the current solution by a better solution in the neighborhood
of the current solution with respect to some cost function. It terminates when there is no
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procedure Local Sear ch()
1 do s is not locally optimal in N(s) —

2 FindBetterSolution();
3 ReplaceSolution();
4 end do;

end Local Sear ch;

FIGURE 7. Local search phase.

FIGURE 8. Rotation local search.

better solution in the neighborhood. Figure 7 shows the pseudo-code of a general local
search.

The local search implemented in this GRASP is a two-exchange local search, where a
hyperplane that is in the solution set is replaced by another hyperplane that is not in the
solution set. The local search is divided into two main blocks. The first rotates each hyper-
plane in the solution set. The rotation is carried out by substituting a point that generate the
hyperplane by another point from the sample. Figure 8 illustrates the procedure in R?. The
initial hyperplane (bold line) is defined by two points (white circles). The rotation local
search consists of substituting the original points, one at a time, by all the other points in
the sample (black circles), defining new hyperplanes. The possible hyperplanes are shown
by the dashed lines. We finally select the hyperplane with the smallest cost.

The second block translates each hyperplane. This is accomplished by substituting, for
each hyperplane, ; by the elements of the projection w’x;, @ = 1,...,h and choosing
the hyperplane with the smallest cost. See Figure 9 for details. The initial hyperplane
is represented by the bold line. The grey circles are the projection of the points in the
sample (black circles) in the direction of the vector w. The hyperplanes generated by the
translation local search are represented by the dashed lines.

Note that in the local search we consider all the points in the sample, and not only the
subset of points that initially generated the hyperplanes.
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FIGURE 9. Translation local search.

6. MONTE-CARLO EXPERIMENT

In this section, we report the results of a simulation study designed to study the be-
havior of the proposed algorithms. The experiments were done on a Pentium Il 266 MHz
computer with 128 Mbytes of RAM. All the algorithms were programmed in MatLab.

We simulated several models, discarding the first 500 observations to avoid any initial-
ization effects. The first 2 models are variations of the following basic model

Yy = 0.5+ 0.8yt71 - O.2yt72 + (705 — 1~2yt71 +
0.7y1—2) 1w, 5, (Xt) + €1, & ~NID(0,1%), (18)

where x; = [y;_1,y: 2] .
e Model I: w; =[1,0]"and 3; = 0.5
e Model ll: w; =[1,—-1]and 8; =1
The last 2 models are based on the following specification
Yy = 05 =+ 0.8yt,1 — 0-2yt72 + (705 — 1.22/7571 + O.7yt72)1“,1_ﬂ1 (Xt)
+ (1.5 +0.6y:—1 — 0.3ys—2) L, 5, (Xt) + 21, & ~ NID(0,1?),
where x; = [yi—1, yr—2].

e Model lll: wy = [1, 1], ws = [1,1]’, 81 = —0.5,and Bz = 1.6.
e Model IV: wy = [1,—-1], w2 =[1,-1), /1 = —1,and Bz = 1.

(19)

6.1. Estimation algorithm. To evaluate the performance of the estimation algorithm in
small samples, we simulated 100 replications of the last three models, each with 100 and
300 observations. We estimated the parameters for each replication, with z, and x; cor-
rectly specified and assuming that the number of hyperplanes was known. The GRASP is
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TABLE 1. Mean and standard deviation of the estimates of the parame-
ters based on 10 GRASP iterations over 100 replications of the models.
True values between parentheses.

100 observations

Model Il Model I11 Model IV
Parameter Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
w11 1 - 1 - 1 -
(1) (1) (1)
) - - 1 - 1 -
“ 5 5
w12 —0.9959 0.3400 0.0200 3.1300 —0.9914 0.2538
(=1) (=D (=1)
w22 - - 2.3800 26.1600 —0.9519 0.2886
R (1) (—1)
51 0.8641 0.4212 —1.0757 3.3367 —0.9375 1.0216
A (1) (—0.5) (=1)
B2 - - 3.7917 12.7735 1.1140 0.6558
(1.6) (1)
300 observations
Model Il Model 11 Model IV
Parameter Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
w11 1 - 1 - 1 -
(1) (1) (1)
w21 - - 1 - 1 -
(1) (1)
w12 —0.9973 0.0711 —0.5572 3.5463 —1.0028 0.0482
(=1) (=1 (=1)
w2 - - 0.6772 2.1848 —0.9996 0.0413
. (1) (—1)
B 0.9946 0.0668 —0.3749 0.4538 —0.9940 0.1771
. (1) (—0.5) (—1)
B2 - - 2.0941 1.5065 0.9971 0.0991
(1.6) (1)

based on the static estimation, where each hyperplane is estimated one at a time. Tables
1 and 2 show the mean and the standard deviation of the estimates based respectively on
10 and 20 GRASP iterations. The true value of the parameters are shown between paren-
theses. Table 3 shows solution quality. For Models II, 111, and 1V, the table shows the
minimum, maximum, and mean (over 100 runs) MSE of the best solution found. If the
models are correctly estimated we expect that the MSE of all the fitted models is around
one, because in all the simulated models the error term is a normally distributed indepen-
dent random variable with zero mean and variance one. Table 4 shows solution times. For
Models 11, 111, and 1V, the table shows the minimum, maximum, and mean (over 100 runs)
total running time.

Observing Tables 1 and 2 we can see that the estimates of the hyperplanes in Models
Il and IV are rather precise in all cases considered. The performance is improved when
we increase the sample size. The results presented in Table 3 show that the MSE of the
fitted models is around one (as expected). Considering the solution times, the speed of the
algorithm can be increased (up to 30%) if the code is implemented in C. Compiling the
Matlab code is also a possibility.

6.2. Model selection tests.

6.2.1. Variable selection. Table 5 shows the results of the variable selection procedure
based on 1000 replications of each model. The selection was made among the first five lags
of y;. The column C indicates the relative frequency of correctly selecting the elements of
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TABLE 2. Mean and standard deviation of the estimates of the parame-
ters based on 20 GRASP iterations over 100 replications of the models.
True values between parentheses.

100 observations

Model Il Model I11 Model IV
Parameter Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
w11 1 - 1 - 1 -
(1) (1) (1)
w2t 1) )
w12 —0.9588 0.2966 —1.0185 5.9265 —0.9984 0.9845
(=1) (=1) (=1)
w2 - - 1.9920 22.8731 —1.0090 0.5848
(1) (=1)
Bl 0.8561 0.3825 —2.5887  11.5999 —1.0922 1.5785
(1) (—0.5) (=1)
Bg - - 3.7791 13.3591 1.4848 3.0249
(1.6) (1)
300 observations
Model Il Model 11 Model IV
Parameter Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
w11 1 - 1 - 1 -
(1) (1) (1)
w21 - - 1 - 1 -
(1) (1)
w12 —1.0167 0.0975 0.1061 1.2249 —0.9984 0.0470
(=1) (=1 (=1)
w2 - - —0.0426 2.3131 —1.0001 0.0477
R (1) (=1)
B 0.9826 0.1413 —0.4099 0.6778 —0.9720 0.2025
&) (—0.5) (=1
B2 - - 1.8328  0.7254 0.9974  0.0891
(1.6) (1)
TaBLE 3. Solution quality based on 100 runs.
100 observations
10 GRASP iterations 20 GRASRP iterations
Model Min. Max. Mean  Std. Dev. Min Max. Mean  Std. Dev.
1 0.5907 1.2096 0.9015 0.1174 0.6091 1.4795 0.8836 0.1416
1l 0.5487 1.1549 0.8054  0.1310 0.5560 1.1887 0.8020  0.1293
v 0.5879 1.2260 0.8911 0.1224 0.5723 1.2814 0.8453 0.1359
300 observations
10 GRASP iterations 20 GRASRP iterations
Model Min. Max. Mean  Std. Dev. Min Max. Mean  Std. Dev.
1} 0.7889 1.1957 0.9692  0.0860 0.8135 1.3008 0.9799  0.0755
11 0.7863 1.2179 0.9727 0.0968 0.7602 1.2617 0.9743 0.0882
v 0.8069 1.1805 0.9630  0.0795 0.7558 1.1996 0.9694  0.0845

z;. The columns U and O indicate, respectively, the relative frequency of underfitting and
overfitting the dimension of z;.

Observing Table 5, we can see that the SBIC strongly underfits the models while the
AIC tends to select more lags than necessary. With the exception of Model 111, the perfor-
mance of the variable selection procedure is improved, as it should, when we increase the

sample size.
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TABLE 4. Solution times based on 100 runs (in minutes).

100 observations

10 GRASP iterations 20 GRASRP iterations
Model Min. Max. Mean  Std. Dev. Min Max. Mean Std. Dev.
1} 0.4880 0.9355 0.6797  0.0832 0.9198 2.0119 1.3360 0.1597
1l 1.2488 1.7941 1.4720  0.1058 22209  3.4525  2.8549 0.1965
v 1.2930 1.8525 1.5309  0.1072 1.9211  3.4680 2.9214 0.2481

300 observations

10 GRASP iterations 20 GRASRP iterations
Model Min. Max. Mean  Std. Dev. Min Max. Mean Std. Dev.
1} 2.8259 4.8039 3.8499  0.4224 5.9120 10.8464  7.9806 0.9111
1l 7.3928 10.9424 8.7800  0.7447 147106 22.9912 17.7978 1.2776
v 7.6323 12.4441 9.3979  0.8337 15.1007 22.2525 18.5962 1.3210

TABLE 5. Relative frequency of selecting correctly the variables of the
model at sample sizes of 100 and 300 observations based on 1000 repli-
cations among the first 5 lags.

100 observations
C U] [¢]
Model  SBIC AlIC SBIC AlIC SBIC AIC
| 0.0280 0.0780 0.5970 0.4230 0.3750  0.4990
1 0.0430 0.1250 0.6320 0.3510 0.3250 0.5240
1 0.5490 0.3450 0.1330 0.0460 0.3180 0.6090
v 0.1210 0.2740 0.6800 0.2420 0.1990 0.4840

300 observations
C U [e)
Model  SBIC AlIC SBIC AlIC SBIC AIC
| 0.0960 0.2370 0.6910 0.2820 0.2130 0.4810
I 0.2780 0.2430 0.3930 0.0930 0.3290 0.6640
1 0.5090 0.2000 0.0010 0 0.4900 0.8000
v 0.4190 0.4340 0.4370 0.0460 0.1440 0.5200

6.2.2. Linearity tests and threshold variable selection. In this section, we show results
concerning the power of the linearity test and the selection of the threshold variables. Fig-
ures 10 and 11 show the size-power curve based on, respectively, 100 and 300 observations
of 1000 replications of each one of the models using different lags of y, as threshold vari-
ables. In power simulations we assume that z; is correctly specified and we also tested
the ability of the linearity test to identify the correct set of elements of x;. We expect that
when x; is correctly defined, the power increases. Table 6 shows the minimum, maximum,
mean, and standard deviation of the F-statistic for each of the models based on 1000 repli-
cations. For each model, the first line indicates the results setting x; = ¥;_1, the second
line refers to x; = y:—2, and the third line concerns x; = [y:—1, y+—2]’. As we can see, the
F-statistic is a useful tool to identify the threshold variables.

6.2.3. Selecting the number of hyperplanes. Here we present the results concerning the
selection of the number of hyperplanes. Table 7 shows the results using the SBIC and the
AIC to select the number of hyperplanes. For models II, 111, and IV, the table shows the
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FIGURE 10. Power-size curve of the linearity tests at sample size of 100
observations based on 1000 replications.
TABLE 6. Results of the linearity test over 1000 replications of each model.
F-statistic
100 observations 300 observations
Model Min. Max. Mean Std. Dev. Min Max. Mean Std. Dev.
1 1.4259 27.7415 8.8306  3.8273 10.1949 52.1402 25.1747 6.3151
0.0209 7.9549 1.2486 1.0375 0.0135 12.8424 15743 1.3101
0.0142 25.1537  6.6123 3.5042 1.6805 38.5694  19.3797 5.5554
I 0.3635 18.8093  5.7503 2.8052 53294 37.9985 15.7418  4.7390
0.0255 10.7039  2.7226 1.6893 1.0323  20.1099  6.6388 2.8829
0.0484 28.0097 10.5415  4.4804 14.1164 57.5102 31.4149  7.0637
1] 0.1182 181091  3.5234 25165 0.6327 36.5506  8.3836 43773
0.0226 16.1936  2.1128 1.8736 0.0494  26.6049  4.3220 3.2329
0.1513 15.7074 4.7543  2.8791 2.6213 28.8574 13.0340  4.5432
\Y; 0.3207 148957  4.5251 2.0066 46570 21.6156 12.2263 2.9986
1.0746 x 10~%  6.6403 1.6398 1.0258 0.2203 10.4931  3.6886 1.5507
6.4409 32.8783 16.3745  4.5413 27.8204 77.7052 48.1796  7.3982
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FIGURE 11. Power-size curve of the linearity tests at sample size of 300
observations based on 1000 replications.

TABLE 7. Frequency of of accepting the second hyperplane (over 100
runs). The hyperplanes are estimated with 10 GRASP iterations.

100 observations 300 observations
Model  SBIC AlIC SBIC AlIC
1 0 0.8200 0 0.95
i 0.0500 0.9200 0.8600 1
\V 0.3300 1 1 1

frequency (over 100 runs) of selecting the second hyperplane based on 10 GRASP itera-
tions. As we can see, the AIC overfits the model (model I1). In that sense we recommend
the use of the SBIC to select the number of hyperplanes.

7. EXAMPLES

In this section we present an illustration of the modeling techniques discussed in this
paper.
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FIGURE 12. Time series generated by model (20)

7.1. Example 1: Simulated data. The first time series is generated by the following data
generating process.

Yy = 1.54+0.5y—1 — 0.8y;—2 + 0.5y —3 +
(—4.0 = 0.4y,—1 + 0.5y,—2 — 0.2y;_2) L, g, (%x¢) +
(34 0.2y;—1 +0.2y;—2 + 0.1yt —3) 1w, g, (X¢) + €4,
g; ~ NID(0,0.25%), (20)

where x; = [ys—1,yt—2), w1 = [1,—1), w2 = [1,—-1), f1 = —1,and 5> = 1. The time
series is illustrated in Figure 12.

To estimate the parameters we ran the GRASP described in Section 5 with 30 iterations
and using 50 sample points to generate the initial hyperplanes. The estimated residual
standard deviation is 6 = 0.251, &1 = [1,—1.185)', @y = [1,—1.069], B; = —1.114,
and B, = 1.022. Figure 13 shows the scatter plot of the transition variables, the true
(dashed lines) and estimated (solid lines) hyperplanes. As we can see, the algorithm has
successfully estimated the separating hyperplanes.

7.2. Example 2: Simulated data. The second time series is generated by the following
data generating process.

Yy = —0.2 + 0.5yt71 — O.Sytfz + 0-5yt73 +
(08 —0.4y;—1 4+ 0.5y4—o — O-2yt73)Iw1,ﬁ1 (Xt) +
(—0.4 +0.2y;—1 +0.2y;_o + 0~1yt—3)Iw2762 (Xt) + &¢,
e: ~ NID(0,0.25%), (21)

where x; = [y1—1, yt—2], w1 = [1,0), wa = [1, -1}, 51 = 0, and 32 = 0. The time series
is illustrated in Figure 14.

The estimated residual standard deviationis 6 = 0.25, w; = [1,0.015]", @9 = [1, —1.037]',
(1 = 0.013, and B> = 0.015. Figure 15 shows the scatter plot of the transition variables,

the true (dashed lines) and estimated (solid lines) hyperplanes. The algorithm has success-
fully estimated the hyperplanes.
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FIGURE 13. Estimated hyperplanes

15
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FIGURE 14. Time series generated by model (21)

7.3. Example 3: Annual sunspot numbers. In this example we consider the annual
sunspot numbers over the period 1700-1998. The observations for the period 1700-1979
were used to estimate the model and the remaining were used to forecast evaluation. We

adopted the same transformation as in Tong (1990), y; = 2 [ (14 Ny) — 1}, where Ny

is the sunspot number. We selected lags 1, 2, and 9 using SBIC, among the first 12 lags.
Linearity was rejected and the p-value of the linearity test was minimized (0.0044) with
lags 1 and 2 as threshold variables.

The final estimated model is

= —0.727 + 0.829y,_; — 0.039y, 5 + 0.162y; g
(0.504)  (0.105) (0.106) (0.030)
(22)

3.605 + 0.267 — 0. 451 0.035 xI. ; 2
* <(0 874) + 01201 T (0 1eey 2 +( ik 9) o.5(Xt) + €t
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FIGURE 15. Estimated hyperplanes

where x; = [yt_l,yt_g]l, @ = [1,-1.021)', and B = 0.216. The estimated in-sample
residual standard deviation is 6. = 1.916. It is important to notice that the estimated linear
combination of threshold variables is almost the first difference of y;_;.

We continue considering the out-of-sample performance of the estimated model. We
compare our results with the ones obtained by the SETAR model fitted by Tong (1990,p.
420) and the model estimated by Chen (1995), a Threshold Autoregression System with
Open-loop (TARSO) (Tong, 1990,p. 101) where the threshold variable is a nonlinear func-
tion of lagged values of the time series. The estimated model is

0.490 + 1.453y;—1 — 0. 790yt 2+ 0. 300yt 3 — 0. 150yt 4+
(0.866)  (0.098) (0.165) (0.176) (0.125)
0.217yt_8, if g, <0;
Y = (0.056) (23)
0.133 + 1.010y:—1 — 0. 255yt 2+ 0. O36yt 7 — 0. 158yt s+
(0.649)  (0.060) (0.068) (0.061) (0.097)
0.2954, o, otherwise,
(0.066)

where ¢; = (y;—1 — 10)? — 10y,_3 — 113.

Table 8 shows the results of the one-step ahead forecast computed by the SETAR model
estimated in Tong (1990,p. 420), the TARSO fitted by Chen (1995), and model (22).
The table shows the one-step ahead forecasts, their root mean square errors, and mean
absolute errors for the transformed annual number of sunspots for the period 1980-1998.
Both the root mean squared errors (RMSE) and the mean absolute errors (MAE) of the
SEMTAR with variables selected by SBIC are lower than the ones of the SETAR and
TARSO specifications.

8. CONCLUSIONS

In this paper we consider a generalization of the SETAR model to deal with a flexible
specification of the threshold variables. We propose a heuristic to estimate SETAR models
with thresholds defined by more than one variable. A model specification procedure based
on statistical inference is developed and the results of a simulation experiment showed
that the proposed methodology works well. A GRASP has been developed to estimate the
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TABLE 8. One-step ahead forecasts, their root mean square errors, and
mean absolute errors for the annual number of sunspots for the period

1980-1998.

Year Observation SETAR Model TARSO model SEMTAR Model
Forecast  Error Forecast  Error Forecast  Error

1980 154.6 160.96 -6.36 134.33 20.27 148.40 6.20
1981 140.4 137.21 3.19 125.39 15.01 117.75 22.65
1982 115.9 99.04 16.86 99.30 16.60 100.45 15.45
1983 66.6 75.96 -9.36 85.03 -18.43 82.78 -16.18
1984 45.9 35.66 10.24 41.16 4,74 44.42 147
1985 17.9 24.22 -6.32 29.82 -11.92 30.82 -12.92
1986 134 10.72 2.68 9.76 3.64 14.11 -0.72
1987 29.4 20.11 9.29 16.54 12.86 16.89 12.50
1988 100.2 54.49 45,71 66.44 33.76 67.57 32.63
1989 157.6 155.72 1.88 121.84 35.76 153.13 4.46
1990 142.6 156.39  -13.78 152.47 -9.87 164.12 -21.51
1991 145.7 93.25 52.44 123.71 21.99 117.47 28.23
1992 94.3 111.27  -16.97 115.98 -21.68 111.25  -16.95
1993 54.6 67.77 -13.17 69.22 -14.62 69.87 -15.27
1994 29.9 27.03 2.87 35.74 -5.84 37.34 -7.44
1995 175 18.36 -0.87 18.91 -1.41 20.33 -2.83
1996 8.6 18.04 -9.44 11.64 -3.04 14.43 -5.83
1997 215 12.31 9.17 11.82 9.68 12.82 8.68
1998 64.3 46.70 17.60 58.54 5.76 59.76 4,54
RMSE 18.71 16.94 15.28
MAE 13.06 14.05 12.45

parameters of the model. Both the simulation study and the real examples suggest that the
theory developed here is useful and the proposed model thus seems to be a useful tool for
the time series practitioner. Finally, the results presented here can be easily generalized
into a regression framework with exogenous variables.
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