
FORTRAN SUBROUTINES FOR COMPUTING APPROXIMATE

SOLUTIONS OF WEIGHTED MAX-SAT PROBLEMS

USING GRASP

MAURICIO G.C. RESENDE, LEONIDAS S. PITSOULIS, AND PANOS M. PARDALOS

Abstract. This paper describes Fortran subroutines for computing approxi-
mate solutions to the weighted MAX-SAT problem using a greedy randomized
adaptive search procedure (GRASP). The algorithm [Resende, Pitsoulis, and
Pardalos, 1997] is briefly outlined and its implementation is discussed. Usage
of the subroutines is considered in detail. The subroutines are tested on a set
of test problems, illustrating the tradeoff between running time and solution
quality.

1. Introduction

Let C1, C2, . . . , Cm be m clauses, involving n Boolean variables x1, x2, . . . , xn,
which can take on only the values true or false (1 or 0). In addition, for each
clause Ci, there is an associated nonnegative weight wi. Define clause i to be

Ci =

ni∨

j=1

lij ,

where ni is the number of literals in clause Ci, and the literals lij ∈ {xi, x̄i | i =
1, . . . , n}. In the weighted Maximum Satisfiability Problem (MAX-SAT), one is to
determine the assignment of truth values to the n variables that maximizes the sum
of the weights of the satisfied clauses. Note that the classical Satisfiability Problem
(SAT) is a special case of the MAX-SAT in which all clauses have unit weight and
one wants to decide if there is a truth assignment of total weight m.

MAX-SAT is known to be NP-complete [6] even when each clause contains ex-
actly two literals (MAX-2SAT). Therefore, it is unlikely that any polynomial time
algorithm exists that can optimally solve MAX-SAT.

Let F ∗ be the optimal solution of a MAX-SAT problem. Then, an ε-approximation
algorithm is an algorithm that produces, in polynomial time, a solution F of the
MAX-SAT problem such that

F ≥ ε F ∗,where 0 < ε < 1.

Johnson [8] described the first ε-approximation algorithm for MAX-SAT with ε = 1
2 .

When each clause has at least k literals, then the algorithm becomes a (1 − 1
2k

)-
approximation. Currently, the best ε-approximation algorithm for the MAX-SAT
is due to Asano, Ono, and Hirata [2], with ε = .76544. In an extension of the

Date: March 1998.
Key words and phrases. MAX-SAT problem, Satisfiability, approximate solution, heuristic,

GRASP, computer implementation, Fortran subroutines.
Research partially supported by DIMACS and NSF.

1

2 M. G. C. RESENDE, L. S. PITSOULIS, AND P. M. PARDALOS

procedure grasp(MaxIter,RandomSeed)
1 BestWeight = 0;
2 do k = 1, . . . , MaxIter →
3 x = ConstructGreedyRandomizedSoln(RandomSeed);
4 x = LocalSearch(x);
5 if BestWeight< w(x) → ;
6 BestSolution = x;
7 BestWeight = w(x);
8 fi;
9 od;
10 return(BestSolution)
end grasp;

Figure 1. GRASP pseudo-code

result in [7], Feig and Goemans [4] derive a .931-approximation algorithm for MAX-
2SAT. Moreover, it is known that there exists a constant c < 1 such that no
c-approximation algorithm exists for MAX-SAT and MAX-2SAT, unless P = NP
[1]. It is known [3] that c = 77

80 for MAX-SAT and that c = 95
96 for MAX-2SAT.

The conclusion that can be drawn from the above discussion of ε-approximation
algorithms is that although the theoretical bound for approximation algorithms for
the MAX-2SAT has been approached, this is not the case for the general MAX-
SAT, justifying the investigation of heuristic algorithms for solving it. One such
heuristic, a greedy randomized adaptive search procedure (GRASP) [5], was pro-
posed by Resende, Pitsoulis, and Pardalos [13]. In this paper, we describe Fortran
subroutines used to implement this heuristic.

The paper is organized as follows. In Section 2, we provide an overview of
the GRASP, including the construction and local search phases. The design and
implementation of the algorithm in Fortran is discussed in Section 3 and the usage of
the subroutines is described in Section 4. In Section 5, we report on computational
results on weighted MAX-SAT instances derived from a set of standard SAT test
problems with randomly generated weights. We show the tradeoff between running
time and solution quality. Concluding remarks are made in Section 6.

2. GRASP for the weighted MAX-SAT

In this section, we following closely the description of the GRASP for MAX-SAT
given in [13]. The GRASP implemented by the Fortran subroutines in this paper
differs slightly from the GRASP in [13]. We point out the differences in this section.

Figure 1 shows a GRASP in pseudo-code. A feasible solution to a MAX-SAT
instance is described by x ∈ {0, 1}n and w(x) is the sum of the weights of the
clauses satisfied by x. The value of the best solution found is initialized in line 1.
The GRASP iterations are repeated in lines 2 through 9. Each GRASP iteration
has a construction phase (line 3), in which a truth assignment is produced, and
a local search phase (line 4), which attempts to improve upon the constructed
assignment. If necessary, the solution is updated in lines 5 through 8. The GRASP
returns the best solution found.

We describe in detail the ingredients of the GRASP, i.e. the construction and
local search phases.

FORTRAN SUBROUTINES FOR MAX-SAT USING GRASP 3

procedure ConstructGreedyRandomizedSoln(RandomSeed)
1 α = GenerateRCLParameter(RandomSeed);
2 do k = 1, . . . , n →
3 MakeRCL(α);
4 s = SelectIndex(RandomSeed);
5 AssignVariable(s, x);
6 AdaptGreedyFunction(s);
7 od;
8 return x;
end ConstructGreedyRandomizedSoln;

Figure 2. GRASP construction phase pseudo-code

2.1. Construction phase. The construction phase of a GRASP builds a solution,
around whose neighborhood a local search is carried out in the local search phase,
producing a locally optimal solution. This construction phase solution is built,
one element at a time, guided by a greedy function and randomization. Figure 2
describes in pseudo-code a GRASP construction phase. Since in the MAX-SAT
problem there are n variables to be assigned, each construction phase consists of
n iterations. In GenerateRCLParameter, the restricted candidate list parameter α
is generated. We discuss this in more detail later in this subsection. In MakeRCL

the restricted candidate list of assignments is set up. The index of the next vari-
able to be assigned is chosen in SelectIndex. The variable selected is assigned
a truth value in AssignVariable. In AdaptGreedyFunction the greedy function
that guides the construction phase is changed to reflect the assignment just made.
To describe these steps in detail, we need some definitions. Let N = {1, 2, . . . , n}
and M = {1, 2, . . . ,m} be sets of indices for the set of variables and clauses, re-
spectively. Solutions are constructed by setting one variable at a time to either 1
(true) or 0 (false). Therefore, to define a restricted candidate list, we have 2
potential candidates for each yet-unassigned variable: assign the variable to 1 or
assign the variable to 0.

We now define the adaptive greedy function. The idea behind the greedy function
is to maximize the total weight of yet-unsatisfied clauses that become satisfied after
the assignment of each construction phase iteration. For i ∈ N , let Γ+

i be the set
of unassigned clauses that would become satisfied if variable xi were to be set to
true. Likewise, let Γ−i be the set of unassigned clauses that would become satisfied
if variable xi were to be set to false. Define

γ+
i =

∑

j∈Γ+
i

wj and γ−i =
∑

j∈Γ−i

wj .

The greedy choice is to select the variable xk with the largest γ+
k or γ−k value and

set it to the corresponding truth value. If γ+
k > γ−k , then the assignment xk = 1

is made, else xk = 0. Note that with every assignment made, the sets Γ+
i and

Γ−i change for all i such that xi is not assigned a truth value, to reflect the new
assignment. This consequently changes the values of γ+

i and γ−i , characterizing the
adaptive component of the heuristic.

Next, we discuss the restriction mechanism for the restricted candidate list (RCL)
used in this paper. The RCL is set up in MakeRCL of the pseudo-code of Figure 2.

4 M. G. C. RESENDE, L. S. PITSOULIS, AND P. M. PARDALOS

procedure AdaptGreedyFunction(s)
1 if s > 0 →
2 for j ∈ Γ+

s →
3 for k ∈ Lj (k 6= j) →
4 if xk is unnegated in clause j →
5 Γ+

k = Γ+
k − {j}; γ+

k = γ+
k − wj ;

6 fi;
7 if xk is negated in clause j →
8 Γ−k = Γ−k − {j}; γ−k = γ−k − wj ;
9 fi;
10 rof;
11 rof;
12 Γ+

s = ∅; Γ−s = ∅;
13 γ+

s = 0; γ−s = 0;
14 fi;
15 if s < 0 →
16 for j ∈ Γ−−s →
17 for k ∈ Lj (k 6= j) →
18 if xk is unnegated in clause j →
19 Γ+

k = Γ+
k − {j}; γ+

k = γ+
k − wj ;

20 fi;
21 if xk is negated in clause j →
22 Γ−k = Γ−k − {j}; γ−k = γ−k − wj ;
23 fi;
24 rof;
25 rof;
26 Γ+

−s = ∅; Γ+
−s = ∅;

27 γ+
−s = 0; γ−−s = 0;

28 fi;
29 return
end AdaptGreedyFunction;

Figure 3. AdaptGreedyFunction pseudo-code

A value restriction mechanism is used. It imposes a parameter based achievement
level, that a candidate has to satisfy to be included in the RCL. In this way we
ensure that a random selection will be made among the best candidates in any
given assignment. Let

γ∗ = max{γ+
i , γ

−
i | xi yet unassigned}

and

γ∗ = min{γ+
i , γ

−
i | xi yet unassigned}.

Let α (0 ≤ α ≤ 1) be the restricted candidate parameter. A candidate xi = true

is inserted into the RCL if γ+
i ≥ γ∗+α ·(γ∗−γ∗). Likewise, a candidate xi = false

is inserted if γ−i ≥ γ∗ + α · (γ∗ − γ∗).
In the implementation used to produce the computational results given in [13],

the RCL parameter α was fixed to 0.5 for all GRASP iterations. A more robust

FORTRAN SUBROUTINES FOR MAX-SAT USING GRASP 5

procedure LocalSearch(x)
1 BestSolutionFound = C(x);
2 GenerateGains(x,G,0);
3 Gk = max{Gi | i = 1, . . . , n} ;
4 for Gk 6= 0→
5 Flip value of xk ;
6 GenerateGains(x,G,k);
7 rof;
8 return;
end LocalSearch;

Figure 4. The local search procedure in pseudo-code

implementation uses an RCL parameter that is not fixed. Prais and Ribeiro [12]
describe a reactive GRASP, which dynamically changes the value of the RCL pa-
rameter. In the implementation described in this paper, we select a new value of α
for each GRASP iteration. The parameter is selected, at random, from the uniform
distribution U [0, 1]. This is done in GenerateRCLParameter. The added benefit of
this selection scheme is that this GRASP converges asymptotically to the global
optimum [11], since every solution in the feasible space has positive probability to
be generated by the construction phase.

Once the RCL is set up, a candidate from the list must be selected and made
part of the solution being constructed. SelectIndex selects at random the index s
from the RCL. In AssignVariable, the assignment is made, i.e. xs = true if s > 0
or xs = false if s < 0.

The greedy function is changed in AdaptGreedyFunction to reflect the assign-
ment made in AssignVariable. This requires that some of the sets Γ+

i , Γ−i , as well
as the γ+

i and γ−i , be updated. There are two cases, as described in Figure 3. If
the variable just assigned was set to true then Γ+, Γ−, γ+ and γ− are updated in
lines 5, 8, 12, and 13. If the variable just assigned was set to false then Γ+, Γ−,
γ+ and γ− are updated in lines 19, 22, 26, and 27.

2.2. Local search phase. The GRASP construction phase described in Subsec-
tion 2.1 computes a feasible truth assignment that is not necessarily locally optimal
with respect some neighborhood structure. Consequently, local search can be ap-
plied with the objective of finding a locally optimal solution that may be better
than the constructed solution. In fact, the main purpose of the construction phase
is to produce a diverse set of good initial solutions for the local search.

To define the local search procedure, some preliminary definitions have to be
made. Given a truth assignment x ∈ {0, 1}n, define the 1-flip neighborhood N(x)
to be the set of all vectors y ∈ {0, 1}n such that ‖ x− y ‖2 = 1. If x is interpreted
as a vertex of the n-dimensional unit hypercube, then its neighborhood consists of
the n vertices adjacent to x. If we denote by w(x) the total weight of the clauses
satisfied by the truth assignment x, then the truth assignment x is a local maximum
if and only if w(x) ≥ w(y), for all y ∈ N(x). Starting with a truth assignment x,
the local search finds the local maximum y in N(x). If y 6= x, it sets x = y. This
process is repeated until no further improvement is possible.

6 M. G. C. RESENDE, L. S. PITSOULIS, AND P. M. PARDALOS

Note that a straightforward implementation of the local search procedure de-
scribed above, would require n function evaluations to compute a local maximum,
where for a given assignment, each function evaluation computes the total sum of
the weights of the satisfied clauses. Moreover, this process is repeated until the local
maximum is the initial solution itself, a process that could result in an exponential
number of computational steps [9, 10]. We can, however, exploit the structure of
the neighborhood to reduce the computational effort.

Given an initial solution x define Gi to be the gain in total weight resulting from
flipping variable xi in x, for all i. LetGk = max{Gi | i ∈ N}. IfGk = 0 then x is the
local maximum and local search ends. Otherwise, the truth assignment resulting
from flipping xk in x, is a local maximum, and hence we only need to update the
Gi values such that the variable xi occurs in a clause in which variable xk occurs
(since the remaining Gi values do not change in the new truth assignment). Upon
updating the Gi values we repeat the same process, until Gk = 0 where the local
search procedure is terminated. The procedure is described in the pseudo-code
in Figure 4. Given a truth assignment x and an index k that corresponds to the
variable xk that is flipped, procedure GenerateGains is used to update the Gi
values returned in an array G. Note that, in line 2, we pass k = 0 to the procedure,
since initially all the Gi values must be generated (by convention variable x0 occurs
in all clauses). In lines 4 through 7, the procedure finds a local maximum. The
value of the local maximum is saved in line 8.

3. Design and Implementation

In this section, we discuss several issues related to the design and implementa-
tion of the Fortran subroutines. We describe the design features of the code, the
distribution, as well as data structures implemented. Usage of the code is described
later, in Section 4.

3.1. Code design and distribution. We followed a few guidelines in the design
of the code.

• The subroutines are written in ISO Standard Fortran 77.
• There are no COMMON blocks in the subroutines. All communication be-

tween subroutines is done by parameters.
• The main optimization subroutine is completely controlled by the calling pro-

gram. The calling program specifies maximum instance size, algorithm control
parameters, printing control parameters, and does exception handling upon
receiving an error condition. The user need not modify a single line of code
in the optimization subroutines.
• A minimum description of the problem instance is passed to the main opti-

mization subroutine. The optimization subroutine checks for memory avail-
ability, consistency of the input data, as well as consistency of algorithm and
program control parameters.
• Because the data structure needed to implement the neighborhood data struc-

ture for reduced updating in the local search procedure requires 4(m + n2)
bytes (where m is the number clauses and n is the number of variables), two
versions of the code are distributed: a large memory version (gmsatl), which
implements the neighborhood data structure and a small memory version
(gmsats), which does not use this data structure. gmsats is less efficient than

FORTRAN SUBROUTINES FOR MAX-SAT USING GRASP 7

gmsatl but requires less storage. Both optimizers produce identical solutions
for the same input.

The distribution is made up of 8 files.

• A Read.Me file provides basic information on the code.
• A Makefile compiles and links the two versions of the code under the UNIX

Operating System.
• The large memory version is made up of files driverl.f and gmsatl.f.
• The small memory version consists of drivers.f and gmsats.f.
• A sample input file sample.sat, readable by readp.f, is provided, as well as

one output sample.out, produced by the code for this sample input.

The files driver[ls].f contain parameter and array definitions, a driver pro-
gram, and subroutines to read the problem instance (readp), print out error mes-
sages (errmsg), print input summary (iniprt), and output the solution found
(outsol). The driver program also makes the call to the optimizer. Figure 5 il-
lustrates calling sequence for driverl.f. The small memory version drivers.f

differs from driverl.f only in the parameter and array definitions and the call to
the optimizer, which in the small memory version is subroutine gmsats.

Files gmsat[ls].f contain the following subroutines:

• Subroutine chkinp checks for consistency in storage allocation, algorithm and
program control parameters, and input data specification. A nonzero error
condition is returned if an error is identified.
• Subroutines mkds[ls] take the input (that was minimally specified) and cre-

ates the data structures needed by the program. Subroutine mkdsl and mkdss

differ in that mkdsl creates the neighborhood data structure used for reduced
updating in the local search procedure, while mkdss does not.
• Subroutine randp is the pseudo random number generator of Schrage [14].
• The initial restricted candidate list (RCL) at each GRASP iteration is con-

structed by subroutine mkrcl.
• The GRASP construction phase is implemented in subroutine build, which

itself calls subroutine updrcl that updates the RCL as each candidate variable
is assigned a truth value.
• The GRASP local search phase is implemented in two flavors: small memory

(locals) and large memory (locall). locals is called by subroutine gmsats,
while locall is called by gmsatl.
• If an improved assignment is found, subroutine savsol is called to record

the assignment, as well as the total weight of the assignment and the pseudo
random number generator seed at the start of the GRASP iteration in which
the improved solution was found.
• Subroutine copyi4 makes a copy of an integer array.

3.2. Data structures. We now describe the data structures used in the program.
We begin by describing the data structure used to represent the instance, and then
describe additional data structures used to implement the GRASP.

The instance is represented by three integer parameters and three integer arrays.
Parameters n, m, and numlit are, respectively, the number of variables, clauses,
and literals in the MAX-SAT instance. Array w of dimension m contains the clause
weights. Element w(i) is the weight of clause i. The clauses are stored in the integer
arrays headc and lit. Array lit stores the variable indices of the literals. The k-th

8 M. G. C. RESENDE, L. S. PITSOULIS, AND P. M. PARDALOS

program driverl

c --

c parameter and array definitions

c --

integer · · ·
c --

c input problem

c --

call readp(· · ·)
c --

c if input not successful, print error message

c --

if (errcnd .gt. 0) then

call errmsg(errcnd,iout)

endif

c --

c print input report

c --

call iniprt(· · ·)
c --

c run optimizer

c --

call gmsatl(· · ·)
c --

c print solution, or error message

c --

call errmsg(errcnd,iout)

if (errcnd .eq. 0) then

call outsol(· · ·)
endif

c --

stop

end

Figure 5. driver program skeleton (large memory version)

literal xj is represented by lit(k) = j > 0, while the k-th literal xj is represented
by lit(k) = −j < 0. All literals in a given clause are stored consecutively in array
lit. The starting and ending position in array lit of the literals in a specific clause
are stored in array headc. The first literal of clause i is stored in position headc(i)
of array lit, while the last literal is in position headc(i+ 1)−1. Arrays lit and
headc have dimensions numlit and m +1, respectively.

As an example of the instance representation, consider the following MAX-SAT
problem with 3 clauses and 5 variables:

w(1) = 100; x1 ∨ x3 ∨ x5

w(2) = 500; x2 ∨ x4

w(3) = 700; x1 ∨ x3 ∨ x5.

FORTRAN SUBROUTINES FOR MAX-SAT USING GRASP 9

The parameters and arrays to represent this instance are:

n = 5

m = 3

numlit = 8

w = [100, 500, 700]

headc = [1, 4, 6, 9]

lit = [1,−3,−5, 2,−4,−1, 3, 5].

To implement the GRASP efficiently, we use the following data structure.
Each MAX-SAT variable has associated with it two linked lists. The first links

all literals of that variable that occur unnegated, while the second links all literals of
that variable that occur negated. These lists are represented by the integer arrays
headp (of size n), nextp (of size numlit), headm (of size n), and nextm (of size
numlit). Element headp(i) (headm(i)) points to the first element in the list of
unnegated (negated) literals of variable i. Element nextp(k) (nextm(k)) points to
the next element after literal lit(k) in the list of unnegated (negated) literals of
variable i.

To access the clause in which a literal occurs, array clause is used. Element
clause(k) indicates the clause number of the literal lit(k).

The adaptive component of the GRASP makes use of the additional weight
gained by yet unsatisfied clauses that would become satisfied if a particular assign-
ment were to be made. This is implemented with four arrays. The i-th element
of array minus0 (plus0) contains the weight gained by clauses that would become
satisfied if variable xi were to be set to 1 (0). These two arrays are setup once and
do not change. They are copied at the start of each GRASP iteration to arrays
minus and plus which are updated as the GRASP construction phase proceeds.
At any stage in the construction phase, the i-th element of array minus (plus)
contains the additional weight gained by yet unsatisfied clauses that would become
satisfied if variable xi were to be set to 1 (0).

Array satcl (of size m) indicates with a 0 or 1 whether a clause is satisfied or
not. satcl(i) = 1 indicates that clause i is satisfied, while satcl(i) = 0 indicates
that clause i is not yet satisfied.

The restricted candidate list is represented by array rcl (of maximum size 2 n).
Element rcl(k) = j > 0 represents the assignment xj = 1, while rcl(k) = −j < 0
represents the assignment xj = 0. The number of elements in the RCL is given by
nrcl.

The current solution is kept in array x (of size n). Element x(j) = 1 represents
the assignment xj = 1, while x(j) = −1 represents the assignment xj = 0. The
incumbent solution is stored in array xopt.

Both local search versions use array gainx (of size n) to store the weight gain
achieved by flipping the assignment of a variable. Element gainx(j) represents
the weight gain achieved by flipping the value of variable xj , i.e. making xj = 1 if
xj = 0, or making xj = 0 if xj = 1.

The large memory version of local search also uses the neighborhood data struc-
ture. This data structure indicates, for each variable index i, the set of variable
indices that appear in at least one of the clauses where variable xi appears. The
indices are stored consecutively in an integer array xx (of size at most n × n),

10 M. G. C. RESENDE, L. S. PITSOULIS, AND P. M. PARDALOS

with integer array xptr (of size n +1) used to indicate the start and end of the
neighborhoods of each variable.

Suppose, once again, we have the following clauses in the MAX-SAT instance:

x1 ∨ x3 ∨ x5

x2 ∨ x4

x1 ∨ x3 ∨ x5.

Then, xx and xptr will be

xx = [1, 3, 5, 2, 4, 3, 1, 5, 4, 2, 5, 1, 3]

xptr = [1, 4, 6, 9, 11].

Note that, by convension, each xi is in the neighborhood of itself. In the local
search, each time a flip is done, the potential weight gain (gainx) of the other vari-
ables must be recomputed. The neighborhood data structure allows us to restrict
our updates only to variables that are in the neighborhood of the flipped variable,
thus improving the efficiency of the updates.

4. Usage

In this section, we describe usage of the subroutine. We show to compile the
codes, run the codes with the driver programs, and use the optimizers without the
driver programs that are provided.

The memory requirements to store the arrays in the small and large memory
versions are, respectively, 4(11n+ 2m+ 4l) and 4(n2 + 12n+ 2m+ 4l), where n is
the number of variables, m is the number of clauses, and l is the number of literals.

4.1. Making an executable. As described in Section 3, the distribution contains
8 files, 5 of which are needed to prepare an executable: Makefile, drivel.f,
gmsatl.f, drives.f, and gmsats.f. Before compiling the two programs, the user
may have to adjust a few parameters in the driver programs. We describe this later
in this section.

After editing the Makefile and adjusting it to the environment that the exe-
cutable will run on, simply type:

make gmsatl

to produce a large memory version executable (gmsatl), or

make gmsats

to produce a small memory version executable (gmsats).
To test the executable, use the input data file sample.sat in the distribution

and type

gmsatl < sample.sat

to run the large memory version, or type

gmsats < sample.sat

to run the small memory version. With either case, the output produced should be
exactly what is in the distribution file sample.out.

FORTRAN SUBROUTINES FOR MAX-SAT USING GRASP 11

program driverl

· · ·
c --

parameter (nmax=1000,mmax=5000,lmax=20000)

· · ·
parameter (in=5,iout=6)

c --

· · ·
look4=2147483647

niter=100

prttyp=1

seed=177890629

· · ·
c --

stop

end

Figure 6. Parameter adjusting in driver program

4.2. Using the driver programs. The subroutines can be run with the driver
programs provided in the distribution. Before compiling the code, the user should
edit the corresponding driver file and adjust the lines in Figure 6. The integer pa-
rameters nmax, mmax, and lmax are, respectively, the maximum number of variables,
maximum number of clauses, and maximum number of literals that the code can
handle. Parameters in and iout are, respectively, the Fortran input and output
device numbers.

Parameters look4, niter, prttyp, and seed control the optimizer and the code.
If the GRASP finds a truth assignment at least as large as look4, then optimization
is concluded and control returns to the calling program. The optimizer executes at
most niter GRASP iterations. Parameter prttyp controls what is printed by the
optimizer. If prttyp = 0, subroutine gmsatl (gmsats) is silent, i.e. prints nothing.
If prttyp = 1, subroutine gmsatl (gmsats) prints only iteration summaries for
GRASP iterations in which the incumbent is improved. Finally, if prttyp = 2,
subroutine gmsatl (gmsats) prints iteration summaries for all GRASP iterations.
The pseudo random number generator seed (seed) is an integer between 1 and
231 − 1. Different seeds will lead to different GRASP runs. On multiprocessor
computers, the user may want to run multiple copies of GRASP, each running on a
different processor. To do this, all that is needed are different seeds to each GRASP
copy such that the seed sequences are nonoverlapping.

Subroutine readp reads the instance given as follows. Input is not formatted.
In line 1, n (number of variables) and m (number of clauses), are read. Then, for
each clause i, the input file specifies the number of literals in that clause litcl,
the clause weight (w(i)), and the literal indices with a negative sign if the literal is
negated (lit). Consider again our example:

w(1) = 100; x1 ∨ x3 ∨ x5

w(2) = 500; x2 ∨ x4

w(3) = 700; x1 ∨ x3 ∨ x5.

The input file for this example is given in Figure 7.

12 M. G. C. RESENDE, L. S. PITSOULIS, AND P. M. PARDALOS

5 3

3 100 1 -3 -5

2 500 2 -4

3 700 -1 3 5

Figure 7. Sample input file for readp

Figure 8 illustrates the ouput produced by running the code with print option
prttyp = 1, stopping parameter look4 = 420238, and maximum iteration pa-
rameter niter = 100000, and random number generator seed parameter seed =

1778090629 on problem instance jnh201 [13].

4.3. Calling the optimizers. In some situations, the user may not want to use
the drivers provided, but rather call the optimizers from the user’s own program.
To do this, we specify in this section, what parameter and array definitions need to
be made in the calling program, the calling sequence to the optimizer, and provide
the list of possible error conditions.

For both subroutines gmsatl and gmsats, the following integer array dimension
parameters must be defined:

integer lmax, mmax, mp1max, nmax, nt2max

parameter (lmax=10000, mmax=100, nmax=100)

parameter (mp1max=mmax+1, nt2max=nmax*2)

where the values of lmax, nmax, and mmax should be set according to the size of
the MAX-SAT instance to be solved. Furthermore, for subroutine gmsatl, the
following additional parameter is needed:

integer np1max, ntnmax

parameter (np1max=nmax+1, ntnmax=nmax*nmax)

Output device parameter iout must be specified:

integer iout

parameter (iout=6)

where, if required, the value “6” can be changed.
The following integer parameters that are either input to or output from gmsatl

(gmsats) must be defined:

integer bestv, bests, errcnd, iter, look4, m, n, niter

integer numlit, prttyp, seed

The integer arrays

integer clause(lmax), gainx(nmax), headc(mp1max)

integer headm(nmax), headp(nmax), lit(lmax)

integer minus(nmax), minus0(nmax), nextm(lmax)

integer nextp(lmax), plus(nmax), plus0(nmax)

integer rcl(nt2max), satcl(mmax), w(mmax)

integer x(nmax), xopt(np1max)

must be defined for both gmsatl and gmsats. In addition, for subroutine gmsatl,
the following arrays are required:

integer xptr(np1max), xopt(ntnmax)

FORTRAN SUBROUTINES FOR MAX-SAT USING GRASP 13

GRASP/MAX-SAT:

number of variables : 100

number of clauses : 800

number of literals : 4154

iteration limit : 100000

initial seed : 1778090629

print option : 1

look for : 394238

iter alpha ph-1-soln ph-2-soln best-soln

1 0.99 390251 393033 393033 <<<<improvement

6 0.56 387156 393061 393061 <<<<improvement

11 0.63 388393 393187 393187 <<<<improvement

12 0.13 378433 393498 393498 <<<<improvement

23 0.17 382773 394121 394121 <<<<improvement

1641 0.26 381044 394145 394145 <<<<improvement

9236 0.13 380218 394155 394155 <<<<improvement

10937 0.19 383461 394227 394227 <<<<improvement

53158 0.36 386673 394238 394238 <<<<improvement

Execution terminated with no error.

GRASP/output :

number of iterations : 53158

seed best iteration : 1579194944

best solution : 394238

truth assignment : 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 1 1

truth assignment : 0 1 0 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 1 0

truth assignment : 1 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0

truth assignment : 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1 1 0 0 1 0 1

truth assignment : 0 0 1 1 1 1 0 1 0 0 1 0

Figure 8. Sample output file for jnh12

Before calling the optimizer, the problem instance must be placed in the variables
and arrays n, m, numlit, headc, and lit, as was described in Subsection 3.2, and
control parameters look4, niter, prttyp, and seed must be set, as described in
Subsection 4.2.

The calling sequence to the large memory version optimizer (gmsatl) is

call gmsatl (bestv, bests, clause, gainx, headc, headm,

+ headp, iout, iter, lit, look4, lmax,

+ m, minus, minus0, mmax, n, nextm,

+ nextp, niter, nmax, numlit, plus, plus0,

+ prttyp, rcl, satcl, seed, w, x,

14 M. G. C. RESENDE, L. S. PITSOULIS, AND P. M. PARDALOS

Table 1. Error conditions

errcnd description

0 No error.
1 Error in n. n < 1 or n > nmax.
2 Error in m. m < 1 or m > mmax.
3 Error in numlit. numlit < 1 or numlit > lmax.
4 Error in weight array w. w(i) < 0 or w(i) > 231 − 1.
5 Error in stopping parameter look4. look4 < 1 or look4 > 231 − 1.
6 Error in maximum iteration parameter niter. niter < 1 or niter > 231 − 1.
7 Error in print option parameter prttyp. prttyp 6= 0, 1 or 2.
8 Error in random number generator seed. seed < 1 or seed > 231 − 1.
9 Error in input. headc(i) > lmax.
10 Error in input. headc(i) = headc(i+ 1).
11 Error in input. headc(i) > headc(i+ 1).
12 Error in input. lit(i) < −n or lit(i) > n.

+ xopt, xptr, xx)

while the calling sequence to the small memory version (gmsats) is

call gmsats (bestv, bests, clause, gainx, headc, headm,

+ headp, iout, iter, lit, look4, lmax,

+ m, minus, minus0, mmax, n, nextm,

+ nextp, niter, nmax, numlit, plus, plus0,

+ prttyp, rcl, satcl, seed, w, x,

+ xopt)

If no inconsistency is detected by the optimizer, an error condition code errcnd =
0 is returned and, the best found assignment is returned in the 0-1 array xopt, with
the total weight of the best found in bestv, the iteration in which the best solution
was found in iter, and the seed at the start of the iteration in which the best
solution was found in bests.

If an error is found, the error condition parameter returned errcnd > 0. Ta-
ble 4.3 lists the error conditions.

5. Computational results

In this section, we report on experiments using the Fortran subroutines. We
limit our experiments to the instances reported in [13] for which, in that paper, no
optimal solution was found in 100,000 GRASP iterations. These instances (jnh1,
jnh10, jnh11, jnh12, jnh201, jnh202, jnh212, jnh304, jnh305, and jnh306) are
available at http://www.research.att.com/~mgcr/data/maxsat.tar.gz. They
have 100 variables and 800 clauses (jnh1, jnh10, jnh11, and jnh12), 100 variables
and 850 clauses (jnh201, jnh202, and jnh212), and 100 variables and 900 clauses
(jnh304, jnh305, and jnh306). All instances have known optimal solutions.

The experiments were done on a Silicon Graphics Challenge computer with 20
196MHz MIPS R10000 processors and 6.8 Gbytes of memory. The codes were
compiled on the SGI Fortran compiler using flags -O3 -64 -static -u. Running
times were measured using the system call etime. All times reported are user times.

For each instance, we ran the code in parallel on 10 processors, using ini-
tial seeds such that the seed sequences in each processor are disjoint from each
other. To do this, we ran the pseudo random number generator [14] for 231 − 1
iterations, recording the seeds every (231 − 1)/10 iterations. The initial seeds

FORTRAN SUBROUTINES FOR MAX-SAT USING GRASP 15

Table 2. Quality of best GRASP solution as a function of iterations

GRASP iterations
name 1000 100,000 1,000,000 10,000,000 optimal
jnh1 420410 420739 420819 420925 420925
jnh10 419754 420357 420754 420758 420840
jnh11 419717 420516 420740 420753 420753
jnh12 419921 420871 420920 420925 420925

jnh201 393905 394222 394238 394238 394238
jnh202 393483 393870 394044 394170 394170
jnh212 393414 394006 394227 394227 394238
jnh304 443501 444125 444533 444533 444533
jnh305 442696 443815 444112 444112 444112
jnh306 444145 444692 444774 444838 444838

0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

0.01 0.1 1 10 100 1000 10000 100000

ε

time (seconds)

jnh1 �

��

�

� �

� �
�

� � �
� �

� � �

jnh10 ?

?

??

?
?? ? ??

?
?

? ?
? ??

? ?

jnh11 4

44

4 4 4 4

4 444 44 44

jnh12 ×

×

× ×

× ×
×
× × × × ×

Figure 9. ε-approximate solution as a function of time: jnh1,
jnh10, jnh11, and jnh12

used are 1778090629, 43183541, 1178123378, 1211176980, 1962386846, 1265238465,
1930924806, 470197762, 1701589954, and 220430966. For each run, the number of
GRASP iterations was set to niter = 1000000.

The experiments were done using the large memory version (gmsatl) of the
Fortran subroutines.

In 8 of the 10 instances tested, the GRASP found the optimal solution. In the
two instances were optimal solutions were not found, the percentage relative errors
were 0.01948% (for jnh10) and 0.00279% (for jnh212), which for most practical pur-
poses are as good as optimal. Perhaps more importantly, in all runs ε-approximate
solutions with ε > .99 were found in less than 0.05 seconds.

16 M. G. C. RESENDE, L. S. PITSOULIS, AND P. M. PARDALOS

0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

0.01 0.1 1 10 100 1000 10000 100000

ε

time (seconds)

jnh201 �

�

�

�

�
�

�
�

�

�

� �

jnh202 ?

??

?

??
?
?

?? ?
??

? ?
??

? ?
?

jnh212 4

4
4

4 4 4

4 4 4 4 4 44 4444

Figure 10. ε-approximate solution as a function of time: jnh201,
jnh202, and jnh212

0.990

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

0.01 0.1 1 10 100 1000 10000

ε

time (seconds)

jnh304 �

�

�

�

� �

�
�

�

� �

�

�
� � �

�
�

�
� � �

�

jnh305 ?

?

?
? ?

?

?
?

??
? ?

??
?? ?

?

jnh306 4

44
4
44
4444

4

44
4 4 4 4 4 44

Figure 11. ε-approximate solution as a function of time: jnh304,
jnh305, and jnh306

FORTRAN SUBROUTINES FOR MAX-SAT USING GRASP 17

Table 5 illustrates the quality of the best solution found as a number of GRASP
iterations (added over all processors) and Figures 9–11 illustrate the performance
of the subroutines. The plots on those figures, show how the ratio ε of the best
solution found so far to the optimal solution improves with running time. Observe
that the subroutines produced almost optimal solutions in a fraction of a second
and that all runs produced solutions with ε > 0.999.

6. Concluding remarks and discussion

In this paper, we describe a set of Fortran subroutines for finding approximate
solutions of weighted MAX-SAT instances using GRASP. Two versions of the sub-
routines are distributed. The first version, the large memory version, makes use of
a neighborhood data structure to speed up the local search phase of GRASP. The
second version, which does not use this data structure, is more memory efficient,
but is less time efficient.

The subroutines can be used with a driver program that is provided in the
distribution or can be called from any other subroutine. We describe how to use
the subroutines in detail.

To illustrate the effectiveness of the subroutines, we report on computational
experience with the large memory version of the code. Our experiments show that
the subroutines can produce high-quality solutions in a fraction of a second and
optimal or almost optimal solutions if allowed to run longer.

The codes can be downloaded from http://www.research.att.com/~mgcr-

/src/maxsat.tar.gz.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness
of approximation problems. In Proceedings of the 33rd Annual Symposium on Foundations
of Computer Science, pages 14–23, 1992.

[2] T. Asano, T. Ono, and T. Hirata. Approximation algorithms for the maximum satisfiability
problem. Nordic Journal of Computing, 3:388–404, 1996.

[3] M. Bellare, O. Goldreich, and M. Sudan. Free bits, pcp and non-approximability — towards
tight results. Unpublished manuscript, 1995.

[4] U. Feige and M.X. Goemans. Approximating the value of two proper proof systems, with
applications to MAX-2SAT and MAX-DICUT. In Proceeding of the Third Israel Symposium
on Theory of Computing and Systems, pages 182–189, 1995.

[5] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6:109–133, 1995.

[6] M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory of NP-
completeness. W.H. Freeman and Company, New York, 1979.

[7] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum cut
and satisfiability problems using semidefinite programming. Journal of Association for Com-
puting Machinery, 42(6):1115–1145, 1995.

[8] D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, 9:256–278, 1974.

[9] D.S. Johnson, C.H. Papadimitriou, and M. Yannakakis. How easy is local search? Journal of
Computer and System Sciences, 37:79–100, 1988.

[10] M.W. Krentel. The complexity of optimization problems. Journal of Computer and System
Sciences, 36, 1988.

[11] J. Mockus, W. F. Eddy, A. Mockus, L. Mockus, and G. Reklaitis. Bayesian Heuristic Ap-

proach to Discrete and Global Optimization. Kluwer Academic Publishers, Dordrecht, 1997.
[12] M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decomposition

problem in TDMA traffic assignment. Technical report, Department of Computer Science,
Catholic University of Rio de Janeiro, Rio de Janeiro, RJ 22453-900 Brazil, 1998.

18 M. G. C. RESENDE, L. S. PITSOULIS, AND P. M. PARDALOS

[13] M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of weighted MAX-
SAT problems using GRASP. In D.-Z. Du, J. Gu, and P.M. Pardalos, editors, Satisfiability
Problem: Theory and Applications, volume 35 of DIMACS Series on Discrete Mathematics
and Theoretical Computer Science, pages 393–405. American Mathematical Society, 1997.

[14] L. Schrage. A more portable Fortran random number generator. ACM Transactions on Math-
ematical Software, 5:132–138, 1979.

(M. G. C. Resende) Information Sciences Research, AT&T Labs Research, Florham
Park, NJ 07932 USA.

E-mail address: mgcr@research.att.com

(L. S. Pitsoulis) Center for Applied Optimization, Department of Industrial and Sys-
tems Engineering, University of Florida, Gainesville, FL 32611 USA.

E-mail address: leonidas@deming.ise.ufl.edu

(P. M. Pardalos) Center for Applied Optimization, Department of Industrial and Sys-
tems Engineering, University of Florida, Gainesville, FL 32611 USA.

E-mail address: pardalos@ufl.edu

