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Abstract. A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for
combinatorial optimization. In this paper, we describe a GRASP for the graph planarization problem,
extending the heuristic of Goldschmidt and Takvorian [Networks, v. 24, pp. 69–73, 1994]. We review
basic concepts of GRASP: construction and local search algorithms. The implementation of GRASP
for graph planarization is described in detail. Computational experience on a large set of standard
test problems is presented. On almost all test problems considered, the new heuristic either matches
or finds a better solution than previously described graph planarization heuristics. In several cases,
previously unknown optimal solutions are found.
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1. Introduction. A graph is said to be planar if it can be drawn on the plane in
such a way that no two of its edges cross. Given a graph G = (V,E) with vertex set V
and edge set E, the objective of graph planarization is to find a minimum cardinality
subset of edges F ⊆ E such that the graph G′ = (V,E \F ) resulting from the removal
of the edges F from G, is planar. This problem is also known as the maximum planar

subgraph problem. A maximal planar subgraph is a planar subgraph G′ = (V ′, E′) of
G = (V,E), such that the addition of any edge e ∈ E \E′ to G′ destroys the planarity
of the subgraph.

Applications of graph planarization include graph drawing, such as in CASE
tools [29], automated graphical display systems, and numerous layout problems, such
as circuit layout, and layout of industrial facilities [13]. A survey of some of these
applications is given in Mutzel [21].

Graph planarization is known to be NP-hard [20] and most algorithms to date
attempt to find good approximate solutions. Several graph planarization heuristics
have been proposed in the literature. Jayakumar et al. [15] describe two O(|V |2)
planarization algorithms, based on the Lempel, Even, and Cederbaum planarity test-
ing algorithm [19]. The first algorithm constructs a spanning planar subgraph of a
given non-planar graph by embedding one vertex at a time and, at each step, adds
the largest set of edges that does not lead to a non-planar graph. The second algo-
rithm starts from a biconnected spanning planar subgraph and constructs a maximal
planar subgraph containing it. Cai, Han, and Tarjan [3] proposed an O(|E| log |V |)
algorithm for finding a maximal planar subgraph based on the Hopcroft and Tarjan
planarity testing algorithm [14]. Another O(|E| log |V |) algorithm was also proposed
by Di Battista and Tamassia [7], based on an O(log |V |) time-per-operation strategy
to the problem of maintaining a planar graph under edge additions.

Cimikowski [4] proposed a heuristic based on finding, for each biconnected com-
ponent of a non-planar graph, a pair of edge-disjoint spanning trees whose union is
planar. Although no computational results are given by the author, the main interest
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of this approach is due to the fact that, under certain conditions, the number of edges
of the generated planar subgraph is at least 2/3 of the optimum.

Takefuji and Lee [26] described a parallel heuristic for planarization based on neu-
ral networks. They use an arbitrary sequencing of the vertices, placing them along
a line, followed by the use of a neural network for determining two sets of edges
that may be represented without crossings above and below that line, respectively.
The authors claimed superior performance with respect to previously published algo-
rithms [27]. The two-phase approach of Takefuji and Lee was recently extended and
improved by Goldschmidt and Takvorian [11]. We describe this approach in more
detail in Section 2. Some components of this heuristic are used in the construction of
the greedy randomized adaptive search procedure (GRASP) introduced in this paper.

Jünger and Mutzel [16, 17, 21] designed an exact branch-and-cut algorithm for
the maximum planar subgraph problem using facet-defining inequalities. A heuristic
based on the branch-and-cut algorithm stops with a feasible, though not necessarily
optimal, solution. Their code has been used to find good approximate solutions (in
many cases provably optimal solutions) for sparse and very dense graphs having up
to 200 vertices or 700 edges.

Cimikowski [6] performed an empirical evaluation of heuristics for the graph pla-
narization problem. Several heuristics were tested on a large and comprehensive
set of test problems. These included random graphs with unknown maximum pla-
nar subgraph size, non-planar graphs containing a maximum planar subgraph of size
3|V | − 6, random Hamiltonian non-planar graphs, and a few special graphs already
considered in the literature or possessing interesting structures or relevant applica-
tions. Cimikowski’s experiments show that the branch-and-cut heuristic of Jünger
and Mutzel consistently outperformed the other heuristics for the graphs tested. The
two-phase heuristic of Goldschmidt and Takvorian [11] markedly outperforms the re-
maining in terms of solution quality, although its running time makes it prohibitive
for very large graphs. If the computation time is critical, then the approaches based
on planarity testing [15] and edge embedding [3] are recommended.

We next describe the organization of this paper. In Section 2 we review the two-
phase heuristic of Goldschmidt and Takvorian, which we refer to in the description of
our GRASP strategy. Section 3 describes the GRASP for graph planarization. A local
search heuristic that seeks to enlarge a planar subgraph is described in Section 4. In
Section 5, we present computational results on instances used in [6, 11]. Concluding
remarks are made in Section 6.

2. A Two-Phase Heuristic. In this section, we review the main components
of GT, the two-phase heuristic of Goldschmidt and Takvorian [11]. The first phase of
GT consists in devising a sequence Π of the set of vertices V of the input graph G.
The vertices of G are placed on a line according to the sequence Π obtained in the first
phase. Let π(v) denote the relative position of vertex v ∈ V within vertex sequence
Π. Furthermore, let e1 = (a, b) and e2 = (c, d) be two edges of G, such that, without
loss of generality, π(a) < π(b) and π(c) < π(d). These edges are said to cross with
respect to sequence Π if π(a) < π(c) < π(b) < π(d) or π(c) < π(a) < π(d) < π(b).
The second phase of GT partitions the edge set E of G into subsets B, R, and P in
such a way that |B +R| is large (ideally maximum) and that no two edges both in B
or both in R cross with respect to the sequence Π devised in the first phase.

Goldschmidt and Takvorian note that if the vertex sequence Π used in the second
phase corresponds to a Hamiltonian cycle in a maximum planar subgraph H of G or
in some planar edge-augmentation of H , then the planar subgraph it yields has at
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procedure FirstPhaseGT(V ,E,Π)
1 d = minv∈V {degG(v)};
2 RCL = {v ∈ V : degG(v) = d};
3 Select v1 from RCL;
4 V = V \ {v1}; G1 = graph induced on G by V ;
5 do k = 2, . . . , |V | →
6 d = minv∈V{degGk−1

(v)};
7 if ADJGk−1

(vk−1) 6= ∅ →
8 RCL = {v ∈ ADJGk−1

(vk−1) : degGk−1
(v) = d}

9 fi;
10 if ADJGk−1

(vk−1) = ∅ →
11 RCL = {v ∈ V : degGk−1

(v) = d}
12 fi;
13 Select vk from RCL;
14 V = V \ {vk}; Gk = graph induced on G by V;
15 od

16 return Π = (v1, v2, . . . , v|V |)
end FirstPhaseGT;

Fig. 2.1. Pseudo-code of the first phase of (GT greedy) heuristic

least 3/4 of the number of edges of a maximum planar subgraph of G. Accordingly,
the authors attempt to use as the sequence Π linear permutations of the vertices
associated with Hamiltonian cycles of G. Two strategies are used in the first phase:
(i) a randomized algorithm [1] that almost certainly finds a Hamiltonian cycle if one
exists, and (ii) a greedy deterministic algorithm that seeks a Hamiltonian cycle. In the
latter, the first vertex in the sequence Π is a minimum degree vertex in G. After the
first k vertices of the sequence have been determined, say v1, v2, · · · , vk, the next vertex
vk+1 is selected from the vertices adjacent to vk in G having the least adjacencies in the
subgraph Gk of G induced by V \ {v1, v2, · · · , vk}. If there is no vertex of Gk adjacent
to vk in G, then vk+1 is selected as a minimum degree vertex in Gk. Pseudo-code
for the first-phase heuristic is described in Figure 2.1, where degG(v) is the degree of
vertex v with respect to G, d = minv∈V {degG(v)}, and ADJGk−1

(vk−1) is the set of
vertices in Gk−1 adjacent to vk−1 in G.

Let H = (E, I) be a graph where each of its vertices corresponds to an edge of the
input graph G. Vertices e1 and e2 of H are connected by an edge if the corresponding
edges of G cross with respect to sequence Π. A graph is called an overlap graph if
its vertices can be placed in one-to-one correspondence with a family of intervals on
a line. Two intervals are said to overlap if they cross and none is contained in the
other. Two vertices of the overlap graph are connected by an edge if and only if
their corresponding intervals overlap. Hence, the graph H as constructed above is the
overlap graph associated with the representation of G defined by sequence Π.

The second phase of GT consists in two-coloring a maximum number of the
vertices of the overlap graph H such that each of the two color classes B (blue) and
R (red) forms an independent set. Equivalently, the second phase seeks a maximum
induced bipartite subgraph of the overlap graph H , i.e. a bipartite subgraph having
the largest number of vertices. This problem is equivalent to drawing the edges of the
input graphG above or below the line where its vertices have been placed, according to
sequence Π. Since the decision version of the problem of finding a maximum induced
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procedure SecondPhaseGT(V ,E,Π,B,R)
1 BuildOverlapGraph(V,E,Π, I);
2 FindMaxIndependentSet(E, I,B);
3 ReduceOverlapGraph(E, I,B, I ′);
4 FindMaxIndependentSet(E \B, I ′,R);
5 return B,R
end SecondPhaseGT;

Fig. 2.2. Pseudo-code of the second phase of GT heuristic

bipartite subgraph of an overlap graph is NP-complete [24], a greedy algorithm is used
in GT to construct a maximal induced bipartite subgraph of the overlap graph. This
algorithm finds a maximum independent set B ⊆ E of the overlap graph H = (E, I),
reduces the overlap graph by removing from it the vertices in B and all edges incident
to vertices in B, and then finds a maximum independent set R ⊆ E \ B in the
remaining overlap graph H ′ = (E \ B, I ′). The two independent sets obtained induce
a bipartite subgraph of the original overlap graph, not necessarily with a maximum
number of vertices. This procedure has polynomial time complexity, since finding
the maximum independent set of an overlap graph has been shown by Gavril [10]
to be polynomially solvable in time O(|E|3), where |E| is the number of vertices of
the overlap graph H = (E, I) (see also Golumbic [12] for another description of this
algorithm). Pseudo-code for the second phase heuristic of GT is given in Figure 2.2.

As discussed above, this two-phase algorithm is not guaranteed to produce an
optimal planar subgraph. Furthermore, under a simple neighborhood definition, it
does not necessarily produce even a locally optimal solution. In Section 4, we describe
a search procedure that finds a locally optimal planar subgraph, often improving on
the solution found by GT. The first phase of GT is based on a greedy algorithm
to produce a vertex sequence. As noted by Goldschmidt and Takvorian, the vertex
sequence appears to affect the size of the planar subgraph found in the second phase
of GT. Moreover, it is not clear that the sequence produced by the greedy algorithm
is the best. To produce other, possibly better, sequences, randomization and local
search can be introduced in the greedy algorithm. In the following section, we explore
these ideas introducing a greedy randomized adaptive search procedure (GRASP) for
graph planarization.

3. GRASP. In this paper, we apply the concepts of GRASP to the graph pla-
narization problem. A GRASP [8] is an iterative process, where each GRASP iteration
consists of two phases: construction and local search. The construction phase builds
a feasible solution, whose neighborhood is explored by local search. The best solution
over all GRASP iterations is returned as the result.

In the construction phase, a feasible solution is built, one element at a time. At
each construction iteration, the next element to be added is determined by ordering
all elements in a candidate list with respect to a greedy function that measures the
(myopic) benefit of selecting each element. The adaptive component of the heuristic
arises from the fact that the benefits associated with every element are updated at each
iteration of the construction phase to reflect the changes brought on by the selection
of the previous elements. The probabilistic component of a GRASP is characterized
by randomly choosing one of the best candidates in the list, but usually not the top
candidate. This way of making the choice allows for different solutions to be obtained
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procedure GRASP(ListSize,MaxIter,RandomSeed)
1 InputInstance();
2 do k = 1, . . . , MaxIter →
3 ConstructGreedyRandomizedSolution(ListSize,RandomSeed);
4 LocalSearch(BestSolutionFound);
5 UpdateSolution(BestSolutionFound);
6 od;
7 return BestSolutionFound

end GRASP;

Fig. 3.1. A generic GRASP pseudo-code

at each GRASP iteration, but does not necessarily jeopardize the power of GRASP’s
adaptive greedy component.

The solutions generated by a GRASP construction are not guaranteed to be lo-
cally optimal with respect to simple neighborhood definitions. Hence, it is almost
always beneficial to apply a local search to attempt to improve each constructed
solution. A local search algorithm works in an iterative fashion by successively re-
placing the current solution by a better solution from its neighborhood. It terminates
when there is no better solution found in the neighborhood with respect to some cost
function. Success for a local search algorithm depends on the suitable choice of a
neighborhood structure, efficient neighborhood search techniques, and the starting
solution. The GRASP construction phase plays an important role with respect to
this last point, since it produces good starting solutions for local search. Normally, a
local optimization procedure, such as a two-exchange, is employed. While such proce-
dures can require exponential time from an arbitrary starting point, empirically their
efficiency significantly improves as the initial solutions improve [23]. Through the use
of customized data structures and careful implementation, an efficient construction
phase that produces good initial solutions for efficient local search can be created. The
result is that often many GRASP solutions are generated in the same amount of time
required for the local optimization procedure to converge from a single random start.
Furthermore, the best of these GRASP solutions is generally significantly better than
the solution obtained from a random starting point.

Figure 3.1 illustrates a generic GRASP implementation in pseudo-code. The
GRASP takes as input parameters for setting the candidate list size, maximum num-
ber of GRASP iterations and the seed for the random number generator. After reading
the instance data (line 1), the GRASP iterations are carried out in lines 2–6. Each
GRASP iteration consists of the construction phase (line 3), the local search phase
(line 4) and, if necessary, the incumbent solution update (line 5).

As outlined above, a GRASP possesses four basic components: a greedy func-
tion, an adaptive search strategy, a probabilistic selection procedure, and a local
search technique. These components are linked together into an iterative method
that constructs a feasible solution one element at a time and then feeds the solution
to the local search procedure.

As discussed earlier, one variant of the two-phase GT heuristic uses a greedy al-
gorithm to produce the vertex sequencing of its first phase. We show, in the following,
an alternative to the greedy algorithm: a GRASP for the first phase vertex sequencing
problem. The construction phase of this GRASP is described in the pseudo-code of
Figure 3.2. The procedure takes as input the graph G = (V,E) to be planarized, the
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procedure ConstructGreedyRandomizedSolution(α,seed,V ,E,Π)
1 d = minv∈V {degG(v)}; d̄ = maxv∈V {degG(v)};
2 RCL = {v ∈ V : d ≤ degG(v) ≤ α(d̄− d) + d};
3 v1 = random(seed,RCL);
4 V = V \ {v1}; G1 = graph induced on G by V ;
5 do k = 2, . . . , |V | →
6 d = minv∈V{degGk−1

(v)}; d̄ = maxv∈V{degGk−1
(v)};

7 if ADJGk−1
(vk−1) 6= ∅ →

8 RCL = {v ∈ ADJGk−1
(vk−1) : d ≤ degGk−1

(v) ≤ α(d̄− d) + d}
9 fi;
10 if ADJGk−1

(vk−1) = ∅ →
11 RCL = {v ∈ V : d ≤ degGk−1

(v) ≤ α(d̄− d) + d}
12 fi;
13 vk = random(seed,RCL);
14 V = V \ {vk}; Gk = graph induced on G by V;
15 od

16 return Π = (v1, v2, . . . , v|V |)
end ConstructGreedyRandomizedSolution;

Fig. 3.2. Pseudo-code of GRASP construction phase

restricted candidate list (RCL) parameter α (0 ≤ α ≤ 1), and a seed for the pseudo
random number generator. As before, let degG(v) be the degree of vertex v with
respect to G, and let d = minv∈V {degG(v)} and d̄ = maxv∈V {degG(v)}. The first
vertex in the sequence is determined in lines 1–3, where all vertices having degree in
the range [d, α(d̄ − d) + d] are placed in the RCL and a single vertex is selected at
random from the list. The working vertex set V and graph G1 are defined in line 4.

The loop from line 5 to 15 determines the sequence of the remaining |V | − 1
vertices. To assign the k-th vertex (iteration k of the loop) two cases can occur.
Define Gk to be the graph induced on G by V \ {v1, v2, · · · , vk}. Let ADJGk−1

(vk−1)
be the set of vertices of Gk−1 adjacent to vk−1 in G. The RCL is made up of all vertices
in ADJGk−1

(vk−1) having degree in the range [d, α(d̄ − d) + d] in Gk. Otherwise, if
ADJGk−1

(vk−1) = ∅, the RCL is made up of all unselected vertices having degree
in the range [d, α(d̄ − d) + d] in Gk. In line 13, the k-th vertex in the sequence is
determined by selecting a vertex, at random, from the RCL. The greedy function is
adapted in line 14 where the working vertex set and graph is updated. The vertex
sequence Π = (v1, v2, . . . , v|V |) is returned.

The first phase of the GT heuristic seeks a sequence of the vertices, followed by
a second phase minimizing the number of edges that need to be removed to eliminate
all edge crossings with respect to the first-phase sequence. One possible strategy (not
taken in GT) is to attempt to reduce the number of crossing edges by locally searching
a neighborhood of the current vertex sequence prior to the second phase. We next
describe such a local search procedure. To do so, let us define the neighborhood N (Π)
of the vertex sequence Π to be formed by all vertex sequences Π′ differing in exactly
two positions, i.e.

N (Π) = {Π′ = (v′1, v
′
2, . . . , v

′
|V |) : v′i = vi, ∀i 6= j, k, v′j = vk, v

′
k = vj}.

Let χ(Π) be the number of edge-pairs that cross with respect to vertex sequence
Π. The pseudo-code in Figure 3.3 describes the local search procedure used in the
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procedure LocalSearch(V ,E,Π)
1 do Π is not locally optimal →
2 Find Π′ ∈ N (Π) such that χ(Π′) < χ(Π);
3 Π = Π′;
4 od

5 return Π = (v1, v2, . . . , v|V |)
end LocalSearch;

Fig. 3.3. Pseudo-code of GRASP local search phase

procedure GRASPforGP(α,seed,MaxIter,V ,E,Π∗,B∗,R∗)
1 do k = 1, 2, . . . , MaxIter →
2 ConstructGreedyRandomizedSolution(α,seed,V ,E,Π);
3 LocalSearch(V ,E,Π);
4 SecondPhaseGT(V ,E,Π,B,R);
5 UpdateSolution(Π,B,R,Π∗,B∗,R∗);
6 od

7 return Π∗,B∗,R∗

end GRASPforGP;

Fig. 3.4. Pseudo-code of GRASP for graph planarization

GRASP. In our implementation, we use a slightly more restricted neighborhood, in
which only consecutive vertices can be exchanged.

By incorporating the second phase of the GT heuristic to the above GRASP for
vertex sequencing, we have a GRASP for graph planarization, whose pseudo-code is
given in Figure 3.4. The procedure is repeated MaxIter times. In each iteration, a
greedy randomized solution (vertex sequence Π) is constructed in line 2. In line 3, the
local search attempts to produce a vertex sequence that has fewer edge-pair crossings
than the one generated in line 2. The vertex sequence Π is given as input to the
second phase heuristic of GT in line 4 to produce a planar subgraph of G. If the
cardinality of the edge-set of the subgraph found in line 4 is the largest found so far,
it is recorded in line 5.

The computational complexity of phases 1 and 2 of this GRASP is discussed next.
The construction phase takes |V |− 1 iterations, each of which has complexity O(|V |),
resulting in an O(|V |2) procedure. To analyze the local search phase, we need an
upper bound on the number of edge crossings χ(Π) for a given vertex sequence Π.
The number of edge crossings in a complete graph is bounded above by O(|V |4). Each
iteration of the do loop 1–4 reduces the value of χ(Π) by at least one. Consequently,
the number of iterations is bounded above by O(|V |4). Since each iteration has
time complexity O(|E| |V |2), the time complexity for the local search is O(|E| |V |6).
However, in the experiments carried out in this study, phase 2 always converged in a
small number of iterations, as illustrated in Figure 5.5 in Section 5. This is because
a reduction of more than one unit in the value of χ(Π) is often achieved in a single
iteration of the procedure, the number of initial crossings is usually small, and the
minimum number of crossings is usually larger than zero.

4. Enlarging the Planar Subgraph. As pointed out in Section 2, there is no
guarantee that the planar subgraph produced by SecondPhaseGT is optimal. Three
edge sets are output: B (blue edges), R (red edges), and P (the remaining edges,
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procedure EnlargePlanar(B,R,P , V )
1 do p ∈ P →
2 B̂p = ∅;
3 do b ∈ B →
4 if p and b cross →
5 B̂p = B̂p ∪ {b};
6 do r ∈ R →
7 if r and b cross → goto 12 fi;
8 od;
9 fi;
10 od;
11 (B,R,P) = (B ∪ {p} \ B̂p,R∪ B̂p,P \ {p});
12 od;
13 return B,R
end EnlargePlanar;

Fig. 4.1. Pseudo-code of local search procedure to enlarge planar subgraph

which we refer to as the pale edges). By construction, B, R, and P are such that
no red or pale edge can be colored blue. Likewise, pale edges cannot be colored red.
However, if there exists a pale edge p ∈ P such that all blue edges that cross with p
(let B̂p ⊆ B be the set of those blue edges) do not cross with any red edge r ∈ R, then

all blue edges b ∈ B̂p can be colored red and p can be colored blue. This reassignment
of color classes increases the size of the planar subgraph by one edge.

Figure 4.1 shows pseudo-code for procedure EnlargePlanar that seeks pale and
blue edges allowing the above color class reassignment and enlarges the planar sub-
graph when such edges are encountered. The pale edges are scanned in do loop 1–12,
while loop 3–10 scans the blue edges to construct the set B̂p, whose elements are saved

in line 5. If a blue edge b ∈ B̂p crosses any red edge, the set B̂p is discarded (line 7)

and a new pale edge is scanned. If no edge b ∈ B̂p crosses red edges, then all blue

edges b ∈ B̂p are colored red and the pale edge p is colored blue in line 11. This
procedure has time complexity O(|E|3).

Procedure EnlargePlanar can be incorporated into the GRASP described in
Section 3. Figure 4.2 shows pseudo-code for a complete GRASP that incorporates
the local search procedure to enlarge planar subgraphs.

5. Experimental Results. In this section, we present experimental results with
a Fortran implementation of the GRASP for graph planarization GRASPforGP shown
in Figure 4.2. A set of 75 test problems 1 described in the literature [6, 11] was used
in the experiments. Tables 5.1 to 5.3 summarize the test problem statistics. For
each instance the tables list its name, number of vertices, number of edges, the Euler
upper bound (3|V | − 6) on the number of edges in a maximum planar subgraph, the
number of edges in the best known planar subgraph published prior to this paper, and
indications as to whether the best known solution is optimal, and as to whether the
input graph is Hamiltonian. Solutions indicated as optimal are those that have been
solved by exact methods or for which a solution equal to an upper bound has been
found. Graphs for which Hamiltonian cycles were produced using the randomized

1input data: ftp://netlib.att.com/math/people/mgcr/data/planar-data.tar.gz
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procedure GRASPforGP(α,seed,MaxIter,V ,E,Π∗,B∗,R∗)
1 do k = 1, 2, . . . , MaxIter →
2 ConstructGreedyRandomizedSolution(α,seed,V ,E,Π);
3 LocalSearch(V ,E,Π);
4 SecondPhaseGT(V ,E,Π,B,R);
5 P = E \ (B ∪R);
6 EnlargePlanar(B,R,P ,V );
7 UpdateSolution(Π,B,R,Π∗,B∗,R∗);
8 od

9 return Π∗,B∗,R∗

end GRASPforGP;

Fig. 4.2. Pseudo-code of GRASP for graph planarization

Table 5.1

Goldschmidt and Takvorian test problem statistics

graph dimension
name |V | |E| 3|V | − 6 sol’n† optimal? Hamiltonian?
g1 10 22 24 20 yes yes
g2 45 85 82 82 yes yes
g3 10 24 24 24 yes yes
g4 10 25 24 24 yes yes
g5 10 26 24 24 yes yes
g6 10 27 24 24 yes yes
g7 10 34 24 24 yes yes
g8 25 69 69 69 yes yes
g9 25 70 69 69 yes yes
g10 25 71 69 69 yes yes
g11 25 72 69 69 yes yes
g12 25 90 69 69 yes yes
g13 50 367 144 131 no yes
g14 50 491 144 138 no yes
g15 50 582 144 142 no yes
g16 100 451 294 183 no yes
g17 100 742 294 219 no yes
g18 100 922 294 237 no yes
g19 150 1064 444 297 no yes
† best known previously published solution

algorithm of Angluin and Valiant [1] are indicated with a “yes,” while those for which
the algorithm failed have the “no?” indication. We repeated the Angluin and Valiant
algorithm at most 100 times (each using a different pseudo-random number generator
seed), with an inner loop for each repetition in which each of the |V | vertices is used
as the starting node for the algorithm.

Table 5.1 summarizes problem statistics for instances g1 to g19. These are Hamil-
tonian graphs proposed by Goldschmidt and Takvorian [11] to test their two-phase
heuristic. We were unable to obtain the instances g20 and g21 that were also included
in [11]. Table 5.2 summarizes seven classes of test problems proposed in [6]. Graphs
cimi-g1 to cimi-g6 are special graphs collected by Cimikowski, either presented in
other papers or relevant to applications. Instances rg50.1 to rg300.5, generated by
Cimikowski, are random non-planar graphs with unknown optimal solution. Table 5.3
summarizes another class of graphs introduced in [6], in which instances tg100.1 to
tg200.10 are non-planar graphs having a known maximum planar subgraph of size
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Table 5.2

Cimikowski test problem statistics – part 1

graph dimension
name |V | |E| 3|V | − 6 sol’n† optimal? Hamiltonian?
cimi-g1 10 21 24 19 yes yes
cimi-g2 60 166 174 165 yes yes
cimi-g3 28 75 78 73 yes yes
cimi-g4 10 22 24 20 yes yes
cimi-g5 45 85 129 82 yes yes
cimi-g6 43 63 123 59 yes no?
rg50.1 50 123 144 91 ? no?
rg50.2 50 145 144 94 no yes
rg50.3 50 157 144 100 no no?
rg50.4 50 171 144 102 no yes
rg50.5 50 183 144 105 ? yes
rg75.1 75 196 219 129 no no?
rg75.2 75 202 219 137 ? no?
rg75.3 75 215 219 135 ? no?
rg75.4 75 256 219 136 no no?
rg75.5 75 266 219 140 no no?
rg100.1 100 261 294 161 no no?
rg100.2 100 271 294 163 no no?
rg100.3 100 297 294 164 no no?
rg100.4 100 334 294 171 no no?
rg100.5 100 373 294 186 no no?
rg150.1 150 387 444 231 ? no?
rg150.2 150 402 444 227 ? no?
rg150.3 150 453 444 229 no no?
rg150.4 150 473 444 234 no no?
rg150.5 150 481 444 241 no no?
rg200.1 200 514 594 284 ? no?
rg200.2 200 519 594 283 no no?
rg200.3 200 644 594 295 no no?
rg200.4 200 684 594 297 no no?
rg200.5 200 701 594 300 no no?
rg300.1 300 814 594 398 no no?
rg300.2 300 1159 594 420 no no?
rg300.3 300 1176 594 428 no no?
rg300.4 300 1474 594 469 no no?
rg300.5 300 1507 594 472 no no?
† best known previously published solution

3|V | − 6.

Procedure GRASPforGP is compared to results published in [6, 11, 21] as well
as our implementation (procedure 2PhaseImpl, illustrated in Figure 5.1) of the (UT
greedy) two-phase heuristic [11]. Our Fortran implementation of 2PhaseImpl uses the
code for our GRASP construction phase with parameter α set to 0, forcing a greedy
construction as described in [11]. Ties are broken at random. No local search is used.
The portable pseudo random number generator of Schrage [25] was used, with the
initial seed 270001 to generate the pseudo random number stream used to select the
candidates from the restricted candidate list.

The experiment was conducted on a Silicon Graphics Challenge computer (250
MHz MIPS M4400 processor), whose hardware configuration is summarized in Fig-
ure 5.2. The code was compiled on the SGI Fortran compiler f77 using compiler flags
-O2 -Olimit 800 -static. Processes were limited to a single processor. CPU times
in seconds were computed by calling the system routine etime(). Reported CPU
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Table 5.3

Cimikowski test problem statistics – part 2

graph dimension
name |V | |E| 3|V | − 6 sol’n† optimal? Hamiltonian?
tg100.1 100 304 294 294 yes no?
tg100.2 100 314 294 294 yes no?
tg100.3 100 324 294 294 yes no?
tg100.4 100 334 294 294 yes no?
tg100.5 100 344 294 292 no no?
tg100.6 100 354 294 287 no no?
tg100.7 100 364 294 279 no no?
tg100.8 100 374 294 281 no no?
tg100.9 100 384 294 279 no no?
tg100.10 100 394 294 277 no no?
tg200.1 200 604 594 594 yes no?
tg200.2 200 614 594 594 yes no?
tg200.3 200 624 594 594 yes no?
tg200.4 200 634 594 591 no no?
tg200.5 200 644 594 567 no no?
tg200.6 200 654 594 572 no no?
tg200.7 200 664 594 543 no no?
tg200.8 200 674 594 550 no no?
tg200.9 200 684 594 537 no no?
tg200.10 200 694 594 536 no no?
† best known previously published solution

procedure 2PhaseImpl(seed,MaxIter,V ,E,Π∗,B∗,R∗)
1 do k = 1, 2, . . . , MaxIter →
2 ConstructGreedyRandomizedSolution(α= 0,seed,V ,E,Π);
3 SecondPhaseGT(V ,E,Π,B,R);
4 UpdateSolution(Π,B,R,Π∗,B∗,R∗);
5 od

6 return Π∗,B∗,R∗

end 2PhaseImpl;

Fig. 5.1. Pseudo-code of our implementation of the two-phase heuristic for graph planarization

times exclude problem input time, which is negligible for these test problems.

The performance of most heuristics depends on parameter setting. GRASP re-
quires few parameters to be set. To facilitate reproducibility, as well as to investigate
the robustness of the approach, we limit our runs in this experiment to two sets of
parameter settings. We use MaxIter = 10, 000 and two settings for the RCL parame-
ter: α = 0.1 and α = 0.5. In the tables, we report on the GRASP runs corresponding
to the α settings that produced the largest planar subgraph. In general, α = 0.1
produced the best results. However, on several of the smaller instances, α = 0.5 did
better.

Statistics of the runs 2 are displayed in Tables 5.4 to 5.6. For GRASP and our
implementation 2PhaseImpl of the greedy variant of the two-phase heuristic, each ta-
ble lists instance name, iteration on which the best solution was found, running time
until the best solution was found, and the number of edges in the largest planar sub-
graph produced. In addition, for GRASP the tables also indicate the RCL parameter

2GRASP solution: ftp://netlib.att.com/math/people/mgcr/sol/planar-soln.tar.gz
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12 250 MHZ IP19 Processors

CPU: MIPS R4400 Processor Chip Revision: 6.0

FPU: MIPS R4010 Floating Point Chip Revision: 0.0

Data cache size: 16 Kbytes

Instruction cache size: 16 Kbytes

Secondary unified instruction/data cache size: 4 Mbyte

Main memory size: 2560 Mbytes, 2-way interleaved

Fig. 5.2. Hardware configuration (partial output of system command hinv)

Table 5.4

Run statistics on Goldschmidt and Takvorian instances

GRASP two-phase heuristic J-M‡

name α itr time sol’n itr time sol’n sol’n† time sol’n
g1 0.5 1 0.0 20 1 0.0 20 20 0.3 20
g2 0.5 37 1.0 82 37 0.6 82 82 10.2 82
g3 0.5 1 0.0 24 14 0.0 22 24 0.1 24
g4 0.5 16 0.0 24 4 0.0 22 24 0.0 24
g5 0.5 43 0.0 24 1 0.0 22 24 0.5 24
g6 0.5 37 0.1 24 14 0.0 23 24 0.1 24
g7 0.5 1 0.0 24 10 0.0 24 24 0.2 24
g8 0.5 1306 10.3 69 3 0.0 60 68 0.1 69
g9 0.5 1306 10.5 69 7 0.0 60 69 0.1 69
g10 0.5 2129 18.5 69 6 0.0 60 68 0.6 69
g11 0.5 134 1.2 69 13 0.1 61 68 0.6 69
g12 0.5 7 0.1 67 871 13.3 65 67 1000.0 68
g13 0.1 569 1146.7 135 411 508.2 134 131 1000.0 125
g14 0.1 29 136.7 143 29 84.2 143 138 1000.0 133
g15 0.1 27 225.4 144 6 51.2 144 142 1000.0 138
g16 0.1 8468 28848.6 196 1187 2481.9 192 183 1000.0 187
g17 0.1 6286 10805.7 236 4796 47725.2 234 219 1000.0 213
g18 0.1 4432 83508.1 246 12 226.6 246 237 1000.0 223
g19 0.1 3428 97939.4 311 7832 224113.8 313 297 1000.0 290
† best solution published in [11]
‡ best solution found by Jünger and Mutzel [18]

used for the reported run. The average running time per iteration multiplied by the
total number of iterations gives an accurate estimate of the total running time of the
heuristic. See also Figure 5.5 which shows running time for 1000 GRASP iterations
as a function of the number of edges of the input graph. Tables 5.4 to 5.6 also list
the sizes of the largest planar subgraphs using both the GT heuristic [11] and the
branch-and-cut approach of Jünger and Mutzel [16, 18], as reported in [18, 21].

Table 5.4 lists results on the Hamiltonian graphs g1 to g19. The GRASP code
found provably optimal solutions for problems g1 to g11, and g15. The results re-
ported in [11] indicate that the two-phase heuristic found provably optimal solutions
for these problems with the exception of g8, g10, g11, and g15. On the 11 instances
that GT did not produce a provably optimal solution (g8, g10 to g19), the GRASP
code found better solutions, of which four are provably optimal. Run statistics for
problems cimi-g1 to cimi-g6 are given in Table 5.5. On four of the six instances,
GRASP improved upon the best known solution found by GT in [6], matching GT’s
solution on the remaining two problems. Table 5.5 also summarizes results for test
problems rg50.1 to rg300.5. On all 30 instances, the GRASP improved upon the
best known solution found by GT in [6]. Runs on test problems tg100.1 to tg200.10
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Table 5.5

Run statistics on Cimikowski instances – part 1

GRASP two-phase heuristic J–M
name α itr time sol’n itr time sol’n sol’n† sol’n‡

cimi-g1 0.5 1 0.0 19 1 0.0 19 19 19
cimi-g2 0.5 31 2.9 165 31 1.8 165 149 165
cimi-g3 0.5 388 2.5 73 152 0.8 63 73 73
cimi-g4 0.5 1 0.0 20 2 0.0 20 19 20
cimi-g5 0.5 37 1.0 82 37 0.6 82 80 82
cimi-g6 0.1 1672 20.6 59 456 3.6 58 54 59
rg50.1 0.1 377 28.1 90 4720 206.2 90 83 91
rg50.2 0.1 1956 223.2 95 8247 575.7 95 86 94
rg50.3 0.1 1797 914.9 103 1797 172.2 103 96 100
rg50.4 0.5 1977 257.5 102 4001 538.9 101 92 102
rg50.5 0.1 243 57.7 105 1400 203.2 105 96 105
rg75.1 0.1 2215 579.3 130 2215 358.1 128 115 129
rg75.2 0.1 965 331.3 131 965 158.3 131 124 137
rg75.3 0.1 4881 1718.5 134 4037 907.4 133 128 135
rg75.4 0.1 4453 2660.4 143 4453 1572.5 143 134 136
rg75.5 0.1 1107 768.9 143 1032 432.2 138 129 140
rg100.1 0.1 9583 5795.2 162 856 317.4 161 153 161
rg100.2 0.1 809 565.0 164 1578 888.3 164 157 163
rg100.3 0.1 4149 3912.6 166 485 287.9 167 156 164
rg100.4 0.1 7893 11098.4 175 9794 8286.8 175 163 171
rg100.5 0.1 118 222.3 187 118 138.5 185 171 186
rg150.1 0.1 4365 8593.7 228 1074 1281.5 228 210 231
rg150.2 0.1 3652 8098.9 225 4251 5813.9 225 213 227
rg150.3 0.1 882 2829.6 237 2547 5028.9 237 222 229
rg150.4 0.1 4314 15999.0 238 5258 11780.4 238 223 234
rg150.5 0.1 2877 11821.5 244 5642 13395.3 244 227 241
rg200.1 0.1 1122 3059.7 284 4057 11297.5 283 268 284
rg200.2 0.1 5906 16776.1 288 2324 6685.4 285 278 283
rg200.3 0.1 5544 30753.1 307 1809 10090.7 306 286 295
rg200.4 0.1 4182 28377.8 311 2298 15622.3 310 296 297
rg200.5 0.1 4606 32395.3 315 819 5622.3 313 296 300
rg300.1 0.1 9615 179813.1 414 2828 31176.9 415 395 398
rg300.2 0.1 3951 131783.9 453 8506 285278.3 451 431 420
rg300.3 0.1 4720 165583.8 457 4720 165679.1 457 439 428
rg300.4 0.1 3864 279249.1 484 8325 602284.3 483 458 469
rg300.5 0.1 4547 365024.2 487 6364 509469.0 483 467 472
† solution published in [6]
‡ solution published in [21]

are listed in Table 5.6. On all 20 instances, GRASP found solutions that were better
than those found by GT in [6].

The implementation of the two-phase heuristic used in [6, 11] applies the algorithm
of Angluin and Valiant [1] at most |V | times (starting from a different vertex each time)
trying to find a Hamiltonian cycle to induce a vertex sequencing for the first phase.
If no cycle is found, the greedy algorithm described earlier is used. That algorithm is
deterministic, with ties broken up lexicographically [28]. Our implementation of the
greedy variant of the two-phase heuristic (2PhaseImpl) uses only the greedy algorithm
and is randomized, since ties are broken at random. We compared it with the GRASP
on all of the instances, running 10,000 iterations on both codes. Of all 75 instances,
GRASP found a better solution in 34 instances, while on 17 (14 of which from the
tg100 and tg200 problem classes) 2PhaseImpl produced a better solution.

Our implementation of the greedy variant of the two-phase heuristic can be com-



14

Table 5.6

Run statistics on Cimikowski instances – part 2

GRASP two-phase heuristic J–M
name α itr time sol’n itr time sol’n sol’n† sol’n‡

tg100.1 0.1 380 197.0 258 9480 5284.5 264 235 294
tg100.2 0.1 236 221.6 265 4699 2612.1 257 223 294
tg100.3 0.1 3286 3498.6 264 2897 1883.8 265 224 294
tg100.4 0.1 1863 2467.5 262 8868 7154.3 257 228 294
tg100.5 0.1 5271 7279.1 259 5946 5001.4 258 234 292
tg100.6 0.1 2012 3124.8 253 3794 3535.1 255 242 287
tg100.7 0.1 1588 2710.3 246 4864 4955.3 248 239 279
tg100.8 0.1 2663 5210.5 252 1967 2906.4 250 221 281
tg100.9 0.1 4376 8879.3 249 5630 7405.9 245 235 279
tg100.10 0.1 5878 13149.8 247 7188 10499.0 239 224 277
tg200.1 0.1 7871 28047.2 504 8764 42741.5 512 461 594
tg200.2 0.1 1836 7823.7 488 7186 42496.5 509 439 594
tg200.3 0.1 5279 20127.3 516 9835 55318.9 519 451 594
tg200.4 0.1 5526 25155.7 494 5561 59987.4 504 464 591
tg200.5 0.1 6285 29727.1 491 5596 25158.2 498 439 567
tg200.6 0.1 2416 12456.0 488 8809 42130.8 511 411 572
tg200.7 0.1 1749 9712.3 466 5264 27785.1 470 408 543
tg200.8 0.1 351 2036.7 492 677 3796.1 500 423 550
tg200.9 0.1 2927 18362.9 477 3977 24616.6 480 417 537
tg200.10 0.1 8331 55375.8 476 4735 32445.6 478 461 536
† solution published in [6]
‡ solution published in [21]
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Fig. 5.3. Ratio (log scale) of number of edges in planar subgraphs found by GT and 2PhaseImpl
as a function of the number of edges in the input graph

pared with results reported in [6, 11]. In [11] two variants of the two-phase heuristic
are tested on instances g1 to g19. The first is the greedy variant described in Sec-
tion 2. Because ties are broken lexicographically, the code is run a single iteration.
The second variant generates 20 Hamiltonian cycles and uses each of them to induce
a vertex sequence for phase one. Table 5.7 shows the best solutions found by each
variant of GT, as well as the solution value found by 2PhaseImpl after 1, 20, 100,
1000, and 10,000 iterations. After 10,000 iterations 2PhaseImpl was able to produce
solutions at least as good as the greedy variant of GT on all 19 instances. Even with
a single iteration 2PhaseImplmatched or produced a better solution than greedy GT
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Table 5.7

Comparing 2PhaseImpl with GT.

GT solution 2PhaseImpl solution at iteration
name greedy† hamilt‡ 1 20 100 1000 10000
g1 20 20 20 20 20 20 20
g2 80 82 80 80 82 82 82
g3 21 24 21 22 22 22 22
g4 21 24 21 22 22 22 22
g5 21 24 22 22 22 22 22
g6 21 24 22 23 23 23 23
g7 22 24 23 24 24 24 24
g8 60 68 58 60 60 60 60
g9 60 69 58 60 60 60 60
g10 59 68 59 60 60 60 60
g11 59 68 59 61 61 61 61
g12 62 67 61 63 64 65 65
g13 131 129 126 130 131 134 134
g14 136 138 137 141 143 143 143
g15 142 142 141 144 144 144 144
g16 180 183 180 186 188 190 192
g17 219 215 225 227 230 233 234
g18 237 234 240 246 246 246 246
g19 297 291 299 306 306 310 313
† greedy variant
‡ Hamiltonian cycles variant

on 14 of the 19 instances. Likewise, after 10,000 iterations 2PhaseImpl produced so-
lutions at least as good as those found by the Hamiltonian cycle variant of GT on 10
of the 19 instances. However, after 20 iterations (the number of cycle-induced vertex
orderings used by GT) 2PhaseImpl was better than the Hamiltonian cycle variant of
GT on only 9 of the 19 instances. We should note that on all of the larger instances
g13 to g19, the Hamiltonian cycle variant of GT produced smaller planar subgraphs
than 2PhaseImpl did after only 20 iterations. On the remaining instances we com-
pare with the GT runs described in [6]. For those runs, GT attempted to construct
a Hamiltonian cycle starting from each vertex [5]. If no cycle is produced, a vertex
sequence is determined with the greedy algorithm. On all but one of the instances
cimi-g1 to cimi-g6 the code 2PhaseImpl either matched or improved on the value
reported for GT in [6]. On all of the instances rg50.1 to rg300.5, 2PhaseImpl pro-
duced larger planar subgraphs than what was reported for GT in [6]. Finally, on test
problems tg100.1 to tg200.10, 2PhaseImpl improved upon all of the GT solutions.
Figure 5.3 depicts the ratio of edges in the planar subgraphs found by 2PhaseImpl to
edges in the planar subgraphs found by GT.

Mutzel [18, 21] ran a heuristic variant (JM) of the exact branch-and-cut algorithm
of Jünger and Mutzel [16], on all of the test problems. A time limit of 1000 seconds
(on a SUN SPARCstation 10/41) was imposed on the runs and the best feasible
integer solution found was returned as the heuristic solution. We were unable to
obtain the branch-and-cut code from the authors to reproduce the experiment on our
computer and therefore rely on the results published by Mutzel. A comparison of
GRASP with JM depends heavily on the instances. On 49 of the 55 instances g1

to g19, cimi-g1 to cimi-g6 and rg50.1 to rg300.5, the GRASP either matched or
produced better solutions than JM. On 30 of those 55 instances, the GRASP solution
was strictly better than JM. However, on the instances tg100.1 to tg200.10, JM
performs remarkably better than on the other instances, and outperforms all other
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Fig. 5.4. Ratios (log scale) of number of edges in planar subgraphs found by GRASP and
2PhaseImpl, GT, and JM as a function of the number of edges in the input graph

algorithms on all 20 instances.

Figure 5.4 compares solutions found by GRASP with those found by 2PhaseImpl,
GT, and JM, showing ratios of number of edges in the planar subgraphs found by each
algorithm. The figure shows that GRASP consistently found better solutions except
for test problem class tg, for which the branch-and-cut code consistently found the
largest planar subgraphs.

The GRASP construction phase ConstructGreedyRandomizedSolution is not
guaranteed to produce locally optimal solutions, even for simple neighborhood struc-
tures. This is observed in GRASPforGP, where procedure LocalSearch frequently
reduces the number of edge crossings induced by the vertex sequence. Perhaps of
greater interest, is the effect of LocalSearch on the size of the planar subgraphs out-
put by GRASPforGP. It turned out that on 16 instances (out of 75) the planar graphs
produced by GRASP construction followed by LocalSearch were larger or a solution
of the same size was obtained in fewer iterations, with respect to GRASP construction
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Fig. 5.5. Average CPU time for 1000 GRASP iterations as a function of the number of edges
of the input graph: vertex sequencing, two-coloring, and subgraph enlargement

without local search. On the other hand, on only six instances, the solutions were
worse or a solution of the same size was obtained in more iterations. This tradeoff,
along with the fact that the observed running times for LocalSearch are negligible
compared to the times taken by the two-coloring SecondPhaseGT (see Figure 5.5),
recommends the use of LocalSearch in the GRASP for vertex sequencing.

Procedure EnlargePlanar in GRASPforGP not always improves the solution pro-
duced by SecondPhaseGT. Sometimes, however, it does produce subgraphs that im-
prove the current best known solution. Since the observed running times for the
graph enlargement phase are negligible compared to the times taken by the two-
coloring SecondPhaseGT (see Figure 5.5), it is recommended that EnlargePlanar be
used as described in GRASPforGP (Figure 4.2).

Both variants of the two-phase heuristic, as well as the GRASP, require at each
iteration the solution of two maximum independent set problems on interval graphs.
Though these problems can be solved exactly in polynomial time using Gavril’s al-
gorithm [10], the complexity of doing so is cubic in the number of edges of the input
graph. As can be seen in Figure 5.5, this two-coloring accounts for most of the work
in these algorithms.
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Fig. 5.6. Ratio (log scale) of number of edges in planar subgraph found by GRASP and GT on
Hamiltonian and possibly non-Hamiltonian input graphs as a function of the number of edges in the
input graph

In [11], the two-phase heuristic based on Hamiltonian cycles almost always out-
performed the deterministic greedy variant of the same heuristic. Figure 5.6 compares
GRASP with GT on Hamiltonian and possibly non-Hamiltonian input graphs. Our
data does not suggest that Hamiltonian input graphs favor GT over GRASP. This
may be because the GRASP produces good approximate Hamiltonian cycles, the
Hamiltonian graphs are generally the smallest in the test set, or the fact that the
deterministic greedy variant in [11] was limited to a single iteration.

6. Concluding remarks. In this paper we described a GRASP for finding ap-
proximate solutions to the graph planarization problem. Extensive experimental re-
sults indicate that the GRASP is consistently better than the greedy two-phase heuris-
tic described by Goldschmidt and Takvorian [11]. On all instances considered in the
experiment, the GRASP matched or outperformed the Hamiltonian cycle variant of
the two-phase heuristic. On most of the instances, the GRASP found solutions at
least as good as those produced by Mutzel [18, 21] using the branch-and-cut method
of Jünger and Mutzel [17, 16]. The exception was on the tg test problem class, on
which the solutions found by GRASP were worse than those of the branch-and-cut
method.

The experiments indicate that approximate solutions of the two-coloring maxi-
mum independent set problems, obtained with the GRASP for maximum independent
set of [9], is not sufficient to obtain high quality solutions. We use the exact algorithm
of Gavril [10] in the current version of this code. This algorithm is responsible for a
large portion of the running time of our code. A more efficient algorithm is described
by Asano, Imai, and Mukaiyama [2]. Replacing the algorithm of Gavril by this new
algorithm will probably lead to a much more efficient GRASP code.

GRASP can be easily implemented on a parallel computer since different GRASP
iterations can be assigned to each processor [9, 22]. A parallel GRASP for graph
planarization will probably achieve a speedup that, on average, is linear in the number
of processors, making it possible to find yet larger planar subgraphs.
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