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ABSTRACT. We consider the maximum covering problem, a combinatorial optimization
problem that arises in many facility location problems. In this problem, a potential facility
site covers a set of demand points. With each demand point, we associate a nonnegative
weight. The task is to select a subset ofp> 0 sites from the set of potential facility sites,
such that the sum of weights of the covered demand points is maximized. We describe a
greedy randomized adaptive search procedure (GRASP) for the maximum covering prob-
lem that finds good, though not necessarily optimum, placement configurations. We de-
scribe a well-known upper bound on the maximum coverage which can be computed by
solving a linear program and show that on large instances, the GRASP can produce facility
placements that are nearly optimal.

1. INTRODUCTION

We consider the maximum covering problem (MCP) [11], a combinatorial optimiza-
tion problem that has been applied to numerous facility location problems, including rural
health centers [1], emergency vehicles [6], and commercial bank branches [12], as well as
other applications [2, 4, 5].

The maximum covering problem can be stated as: LetJ = {1,2, . . . ,n} denote the set
of n potential facility locations. Definen finite setsP1,P2, . . . ,Pn, each corresponding to a
potential facility location, such thatI = ∪ j∈JPj = {1,2, . . . ,m} is the set of them demand
points that can be covered by then potential facilities. With each demand pointi ∈ I , we
associate a weightwi ≥ 0. A cover J∗ ⊆ J covers the demand points in setI∗ = ∪ j∈J∗Pj

and has an associated weightw(J∗) = ∑i∈I∗wi . Given the numberp> 0 of facilities to be
placed, we wish to find the setJ∗ ⊆ J that maximizesw(J∗), subject to the constraint that
|J∗|= p.

The MCP has an compact integer programming formulation, first described by Church
and ReVelle [3]. Fori = 1, . . . ,mand j = 1, . . . ,n, let xj andyi be(0,1) variables such that

xj =
{

1 if j ∈ J∗

0 otherwise

and

yi =
{

1 if i ∈ I∗

0 otherwise.

Define the constraint coefficient

ai j =
{

1 if i ∈ Pj

0 otherwise.

Key words and phrases.Maximum covering problem, facility location, heuristic, GRASP, linear program-
ming bound.
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The following is an integer programming formulation for the maximum covering problem:

max
m

∑
i=1

wiyi

subject to:
n

∑
j=1

ai j xj ≥ yi , i = 1, . . . ,m,

n

∑
j=1

xj = p,

xj = (0,1), j = 1, . . . ,n

0≤ yi ≤ 1, i = 1, . . . ,m,

where we observe that the integrality of theyi variables can be relaxed.
The solution to the linear programming relaxation of the above integer program pro-

duces as its optimal objective function value, an upper bound on the maximum coverage.
We shall call this bound, the LP upper bound, denoted by

UB = max{w>y | Ax≥ y, e>x = p, 0≤ x≤ 1, 0≤ y≤ 1},
wherew= (w1,w2, . . . ,wm), y= (y1,y2, . . . ,ym), A= [a·1,a·2, . . . ,a·n], x= (x1,x2, . . . ,xn),
ande= (1,1, . . . ,1) of dimensionn.

We describe a greedy randomized adaptive search procedure (GRASP) for the MCP that
finds approximate, i.e. good though not necessarily optimum, facility placement configura-
tions. GRASP [7] is a metaheuristic that has been applied to a wide range of combinatorial
optimization problems, including set covering [8], maximum satisfiability [10], andp-hub
location [9], all three of which have some similarities with the MCP. GRASP is an iterative
process, with a feasible solution constructed at each independent GRASP iteration. Each
GRASP iteration consists of two phases, a construction phase and a local search phase.
The best overall solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one element
at a time. At each construction iteration, the choice of the next element to be added is
determined by ordering all elements in a candidate list with respect to a greedy function.
This function measures the (myopic) benefit of selecting each element. The heuristic is
adaptive because the benefits associated with every element are updated at each iteration
of the construction phase to reflect the changes brought on by the selection of the previous
element. The probabilistic component of a GRASP is characterized by randomly choosing
one of the best candidates in the list, but not necessarily the top candidate. This choice
technique allows for different solutions to be obtained at each GRASP iteration, but does
not necessarily compromise the power of the adaptive greedy component of the method.

Since the solutions generated by a GRASP construction are not guaranteed to be locally
optimal with respect to simple neighborhood definitions, it is usually beneficial to apply
a local search to attempt to improve each constructed solution. While local optimization
can require exponential time from an arbitrary starting point, empirically its efficiency
significantly improves as the initial solutions improve. The result is that many GRASP
solutions can be generated in the same amount of time required for the local optimization
procedure to converge from a single random start. In addition, the best of these GRASP
solutions is generally better than the solution obtained from a random starting point.
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proceduregrasp (α,MaxIter,RandomSeed )
1 BestSolutionFound = /0;
2 do k = 1, . . . , MaxIter →
3 ConstructGreedyRandomizedSoln( α,RandomSeed ,p,J∗ ) ;
4 LocalSearch( J∗ ) ;
5 if w(J∗)> w(BestSolutionFound)→ BestSolutionFound= J∗;
6 od;
7 return (BestSolutionFound )
end grasp ;

FIGURE 1. A generic GRASP pseudo-code

procedureConstructGreedyRandomizedSoln (α,RandomSeed,p,J∗ )
1 J∗ = /0;
2 do k = 1, . . . , p →
3 RCL= MakeRCL(α,J,J∗,γ);
4 s = SelectFacility(RCL,RandomSeed, J∗ ) ;
5 J∗ = J∗ ∪{s};
6 AdaptGreedyFunction( s,J,J∗ ,Γ,Γ−1,γ) ;
7 od;
end ConstructGreedyRandomizedSoln ;

FIGURE 2. GRASP construction phase pseudo-code

The paper is organized as follows. In Section 2, we describe the GRASP. In Section 3,
we show how the GRASP solution is better than the pure random or pure greedy alterna-
tives. On a large instance arising from a real-world application, we show how the GRASP
solution is near optimal. Parallelization of GRASP is also illustrated. Concluding remarks
are made in Section 4.

2. GRASPFOR MAXIMUM COVERING

As outlined in Section 1, a GRASP possesses four basic components: a greedy func-
tion, an adaptive search strategy, a probabilistic selection procedure, and a local search
technique. These components are interlinked, forming an iterative method that, at each it-
eration, constructs a feasible solution, one element at a time, guided by an adaptive greedy
function, and then searches the neighborhood of the constructed solution for a locally op-
timal solution. Figure 1 shows a GRASP in pseudo-code. The best solution found so far
(BestSolutionFound ) is initialized in line 1. The GRASP iterations are carried out in
lines 2 through 6. Each GRASP iteration has a construction phase (line 3) and a local
search phase (line 4). If necessary, the solution is updated in line 5. The GRASP returns
the best solution found.

In the remainder of this section, we describe in detail the ingredients of the GRASP for
the MCP, i.e. the GRASP construction and local search phases. To describe the construc-
tion phase, one needs to provide a candidate definition (for the restricted candidate list)
and an adaptive greedy function, and specify the candidate restriction mechanism. For the
local search phase, one must define the neighborhood and specify a local search algorithm.
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procedureMakeRCL(α,J,J∗,γ)
1 RCL= /0;
2 γ∗ = max{γ j | j ∈ J\J∗};
3 do s∈ J\J∗ →
4 if γs≥ α× γ∗ →
5 RCL= RCL∪{s};
6 fi;
7 od;
8 return (RCL);
end MakeRCL;

FIGURE 3. MakeRCLpseudo-code

procedureAdaptGreedyFunction (s,J,J∗ ,Γ,Γ−1,γ)
1 do i ∈ Γs →
2 do j ∈ Γ−1

i ∩{J\J∗} ( j 6= i) →
3 Γ j = Γ j −{i};
4 γ j = γ j −wi ;
5 od;
6 od;
end AdaptGreedyFunction ;

FIGURE 4. AdaptGreedyFunction pseudo-code

procedureLocalSearch (J0,N(·),w(·),J∗)
1 J∗ = J0;
2 do ∃ J+ ∈ N(J∗) 3 w(J+)> w(J∗) →
3 J∗ = J+;
4 od;
end LocalSearch ;

FIGURE 5. A generic local search algorithm

procedureLocalSearch (J∗)
1 do local maximum not found→
2 do s∈ J∗ →
3 do t ∈ J\J∗ →
4 if WeightGain(J∗,t)> WeightLoss(J∗,s) →
5 J∗ = J∗ ∪{t}\{s};
6 fi;
7 od;
8 od;
9 od;
end LocalSearch ;

FIGURE 6. The local search procedure in pseudo-code
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2.1. Construction phase. The construction phase of a GRASP builds a solution, around
whose neighborhood a local search is carried out in the local phase, producing a locally op-
timal solution. This construction phase solution is built, one element at a time, guided by a
greedy function and randomization. Figure 2 describes in pseudo-code a GRASP construc-
tion phase. Since in the MCP there arep facility locations to be chosen, each construction
phase consists ofp iterations, with one location chosen per iteration. InMakeRCL the re-
stricted candidate list of facility locations is set up. The index of the next facility location to
be chosen is determined inSelectFacility . The facility location selected is added to the
setJ∗ of chosen facility locations in line 5 of the pseudo-code. InAdaptGreedyFunction
the greedy function that guides the construction phase is changed to reflect the choice just
made. As before, letJ = {1,2, . . . ,n} be the set of indices of the sets of potential facility
locations. Solutions are constructed by selecting one facility location at a time to be in the
setJ∗ of chosen facility locations. To define a restricted candidate list, we must rank the
yet unchosen facility locations according to an adaptive greedy function.

The greedy function used in this algorithm is the total weight of yet-uncovered demand
points that become covered after the selection in each construction phase iteration. LetJ∗

denote the set (initially empty) of chosen facility locations being built in the construction
phase. At any construction phase iteration, letΓ j be the set of additional uncovered demand
points that would become covered if facility locationj (for j ∈ J\J∗) were to be added to
J∗. Define thegreedy function

γ j = ∑
i∈Γ j

wi

to be the incremental weight covered by the choice of facility locationj ∈ J \ J∗. The
greedy choice is to select the facility locationk having the largestγk value. Note that with
every selection made, the setsΓ j , for all yet unchosen facility location indicesj ∈ J\ J∗,
change to reflect the new selection. This consequently changes the values of the greedy
functionγ j , characterizing the adaptive component of the heuristic.

We describe next the restriction mechanism for the restricted candidate list (RCL) used
in this GRASP. The RCL is set up inMakeRCLof the pseudo-code of Figure 3. A value
restriction mechanism is used. Value restriction imposes a parameter basedachievement
level, that a candidate has to satisfy to be included in the RCL. Let

γ∗ = max{γ j | facility location j is yet unselected, i.e.j ∈ J\J∗}

andα be the restricted candidate parameter (0≤ α≤ 1). We say a facility locationj is a
potential candidate, and is added to the RCL, ifγ j ≥ α× γ∗. MakeRCLreturns the setRCL
with the indices of all potential facility locations that have greedy function values within
α× 100% of the value of the greedy choice. Note that by varying the parameterα the
heuristic can be made to construct a set ofp random facility locations (α = 0) or act as a
greedy algorithm (α = 1).

Once the RCL is set up, a candidate from the list must be selected and made part of
the solution being constructed.SelectFacility selects, at random, the facility location
indexs from the RCL. In line 5 ofConstructGreedyRandomizedSoln , the choice made
in SelectFacility is added to the set of facility locationsJ∗.

The greedy functionγ j is changed inAdaptGreedyFunction to reflect the choice made
in SelectFacility . This requires that some of the setsΓ j as well as the valuesγ j be
updated. LetΓ−1

i denote the set of facility locations that cover demand pointi. Let sbe the
newly added facility location. The potential facility locationsj whose elementsΓ j need to
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be updated are those not yet in the facility location setJ∗ for which demand points inPs

are covered by facility locationj.

2.2. Local search phase.Given a solution neighborhood structureN(·) and a weight
function w(·), a local search algorithm takes an initial solutionJ0 and seeks a locally
optimal solution with respect toN(·). For a maximization problem, such as the MCP, a
local optimum is a solutionJ∗ having weightw(J∗) greater than or equal to the weight
w(J+) for anyJ+ ∈ N(J∗). The local search algorithm examines a sequence of solutions
J0,J1, . . . ,Jk = J∗, whereJi+1 ∈N(Ji), i.e. immediately after examining solutionJi , it can
only examine a solutionJi+1 that is a neighbor ofJi . Figure 5 illustrates a generic local
search algorithm that finds a local maximum of the functionw(·). If in line 2 there exists a
solutionJ+ in the neighborhood of the current solutionJ∗ with a weight greater than that
of the current solution, then in line 3 the improved solution is made the current solution.
The loop from line 2 to 4 is repeated until no local improvement is possible.

A combinatorial optimization problem can have many different neighborhood struc-
tures. For the MCP, a simple structure is 2-exchange. Two solutions (sets of facility loca-
tions)J1 andJ2 are said to be neighbors in the 2-exchange neighborhood if they differ by
exactly one element, i.e.| J1∩∆J | = | J2∩∆J | = 1, where∆J = (J1∪J2) \ (J1∩J2).
The local search starts with a setJ∗ of p facility locations, and at each iteration attempts
to find a pair of locationss∈ J∗ andt ∈ J\J∗ such thatw(J∗ \ {s}∪{t})> w(J∗). If such
a pair exists, then locations is replaced by locationt in J∗. A solution is locally optimal
with respect to this neighborhood if there exists no pairwise exchange that increases the
total weight ofJ∗. This local search algorithm is described in the pseudo-code in Fig-
ure 6. Though it is not the objective of this paper to delve into implementation details, it
is interesting to observe that the total weight of the neighborhood solutions need not be
computed from scratch. Rather, in line 4 of the pseudo-code, proceduresWeightGain and
WeightLoss compute, respectively, the weight gained byJ∗ with the inclusion of facility
location j and the weight loss byJ∗ with the removal of facility locationi from J∗. The
weight gained can be computed by adding the weights of all demand points not covered
by any facility location inJ∗ that is covered byj, while the weight loss can be computed
by adding up the weights of the demand points covered by facility locationi and no other
facility location inJ∗.

The GRASP construction phase described in Subsection 2.1 computes a feasible set of
chosen facility locations that is not necessarily locally optimal with respect the 2-exchange
neighborhood structure. Consequently, local search can be applied with the objective of
finding a locally optimal solution that may be better than the constructed solution. In fact,
the main purpose of the construction phase is to produce a good initial solution for the
local search. It is empirically known that simple local search techniques perform better if
they start with a good initial solution. This is illustrated in Section 3, where experiments
indicate that local search applied to a solution generated by the construction phase, rather
than random generation, produces better overall solutions, and GRASP converges faster to
an approximate solution.

3. COMPUTING LARGE COVERINGS WITHGRASP

In this section, we illustrate the use of GRASP on a large real facility location problem
from the telecommunications industry as well as randomnly generated test problems. All
runs were carried out on a Silicon Graphics Challenge computer (196MHz IPS R10000
processor) running the IRIX 6.2 operating system. The GRASP code is written in Fortran
and was compiled with the SGI Fortran compilerf77 using compiler flags-O3 -r4 -64 .
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procedureLocalSearch (indin ,indout )
1 flag= 1;
2 while flag == 1 →
3 flag= 0;
4 do i = 1, . . . , p →
5 wloss = ComputeWeightLoss (indin (i));
6 do j = 1, . . . ,n− p →
7 wgain = ComputeWeightGain (indout ( j));
8 if wgain − wloss > 0 →
9 tmp = indin (i);
10 indin (i) = indout ( j);
11 indout ( j) = tmp ;
12 flag= 1;
13 goto7;
14 fi;
15 od;
16 od;
17 elihw;
end LocalSearch ;

FIGURE 7. A local search algorithm used in experiments

Before we describe the experimental results, we must comment on the implementation
of the local search, since the local search described in Section 2 can be implemented in
many ways. For these experiments we have adopted the following strategy. Two arrays
store the facility location indices:indin has thep indices of the chosen facilties, and
indout has then− p indices of the unchosen facilities. An arrayncov is used to count
the number of chosen facilities that cover a specific demand region, i.e.ncov(i) is the
number of chosen facilities that cover demand regioni . With ncov it is easy to compute
weight loss and gain due to a facility swap. Figure 7 illustrates the local search used in the
experiments described in this section.

The local search tries to improve the covering defined by arraysindin andindout by
seeking a swap of a facility index inindin with one inindout . The search ends only when
no swap can improve the solution. For each facility indexindin(i) in the current solution,
the weight loss (wloss ) by removingindin(i) from the covering is computed. For each
facility index indout(j) not in the covering, the weight gained (wgain ) is computed and
compared withwloss . If the gain is greater than the loss, the swap improves the solution.
After a swap is made, the search continues from the same position in arrayindin . We
exprimented with several other implementations of this local search. Some were more
efficient in reaching a local minimum, but none produced local optimal solutions as good
as those produced with this implementation.

3.1. Large telecommunications facility location problem. The telecommunications fa-
cility location problem has over 18 thousand demand regions and over 27 thousand loca-
tions to which locate facilities. The sum of the weights over all demand regions is over 27
million. We compare an implementation of the GRASP described in Section 2 with im-
plementations of an algorithm having a purely greedy construction phase and one having
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FIGURE 8. Phase 1 solution distribution for random algorithm (RCL
parameterα = 0), GRASP (α = 0.85), and greedy algorithm (α = 1)

purely random construction. All three algorithms use the same local search procedure, de-
scribed in Section 2.2. Furthermore, since pure greedy and pure random are special cases
of GRASP construction, all three algorithms are implemented using the same code, simply
by setting the RCL parameter valueα to appropriate values. For GRASP,α = 0.85, while
for the purely greedy algorithm,α = 1, and for the purely random algorithm,α = 0.

Two experiments are done. In the first, the number of facilities to be place is fixed at
p = 146 and the three implementations are compared. Each code is run on 10 processors,
each using a different random number generator seed for 500 iterations of the build–local
search cycle, thus each totaling 5000 iterations. Because of the long processing times
associated with the random algorithm, the random algorithm processes were interrupted
before completing the full 500 iterations on each processor. They did 422, 419, 418, 420,
415, 420, 420, 412, 411, and 410 iterations on each corresponding processor, totaling
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FIGURE 9. GRASP phase 1 and phase 2 solutions, sorted by phase 2,
then phase 1 solutions. RCL parameterα = 0.0 (purely random con-
struction)

4167 iterations. In the second experiment, GRASP was run 300 times on facility location
problems defined by varyingp, the number of facilities, from 1 to 300 in increments of 1.
Instead of running the algorithm for a fixed number of iterations, the LP upper bound was
computed for each instance and the GRASP was run until it found a facility assignment
within one percent of the LP upper bound.

Figure 8 illustrates the relative behavior of the three algorithms. The top and middle
plots in Figure 8 show the frequency of the solution values generated by the purely random
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then phase 1 solutions. RCL parameterα = 0.85

construction and GRASP construction respectively. The plot on the bottom of Figure 8
compares the constructed solutions of the three algorithms. As can be observed, the purely
greedy algorithm constructs the best quality solution, followed by the GRASP, and then by
the purely random algorithm. On the other hand, the purely random algorithm produces the
largest amount of variance in the constructed solutions, followed by the GRASP and then
the purely greedy algorithm, which generated the same solution on all 5000 repetitions.
High quality solutions as well as large variances are desirable characteristics of constructed
solutions. Of the three algorithms, GRASP captures these two characteristics in its phase
1 solutions. As we will see next, the tradeoff between solution quality and variance plays
an important role in designing a GRASP.

The solutions generated by the purely random algorithm and the GRASP are shown in
Figures 9 and 10, respectively. The solution values on these plots are sorted according to
local search phase solution value. As one can see, the differences between the values of
the construction phase solutions and the local search phase solutions are much smaller for
the GRASP than for the purely random algorithm. This suggests that the purely random
algorithm requires greater effort in the local search phase than does GRASP. This indeed
is observed and will be shown next. Figures 11 and 12 illustrate how the three algorithms
compare in terms of best solution found so far, as a function of the algorithm’s iteration
and running time. Figure 11 shows local search phase solution for each algorithm, sorted
by increasing value for each algorithm. The solution produced by applying local search
to the solution constructed with the purely greedy algorithm is constant. Its value is only
better than the worst 849 GRASP solutions and the worst 2086 purely random solutions.
This figure illustrates well the effect of the tradeoff between greediness and randomness in
terms of solution quality as a function of the number of iterations.

Figures 13 and 14 correspond to the second experiment, where GRASP was run until a
solution within one percent of the LP upper bound was produced. For all 300 problems, the
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FIGURE 13. Percentage off of LP upper bound when stopping with a
solution at most 1% off of bound

GRASP produced a design within 1% of the LP upper bound. Figure 13 shows the error
of the GRASP solution as a percentage off of the LP upper bound when the algorithm was
terminated. As can be observed, GRASP found tight solutions (GRASP solution equal to
LP upper bound) for several instances and almost always produced a solution less than .5%
off of the LP upper bound the first time it found a solution less than 1% of the upper bound.
Figure 14 shows CPU times for each of the runs. CPU time grows with the complexity of
the problem, as measured by the number of facilities in the assignment. For up to about 50
facilities (a number of facilties found in practical incremental designs) the GRASP solution
takes less than 30 seconds on a 196MHz Silicon Graphics Challenge. The longest runs took
a little less than 3 minutes to conclude.

3.2. Randomly generated maximum covering problems.We next focus on randomly
generated test problems to evaluate the performance of GRASP on problems with different
characteristics.

We first describe the problem generator. The dimension of the problem is determined
by:

• m: the number of demand points,
• n: the number of potential facility locations.

We assume that facility locations are limited to demand point locations and hence require
thatm≥ n. Three other parameters are input to the generator:

• wmin: smallest possible demand point weight,
• wmax: largest possible demand point weight,
• rmax: maximum distance between a facility location and any demand point covered

by the facility location.

Demand point weights are distributed uniformly in the interval[wmin,wmax] and demand
points are located uniformly in the unit square.n of them demand points are selected at



GRASP FOR MAXIMUM COVERING 13

20

40

60

80

100

120

140

160

50 100 150 200 250 300

cpu time
(secs)

number of facilities

FIGURE 14. CPU time to stop when stopping with a solution at most
1% off of bound

TABLE 1. Randomly generated test problems

demand sum of
prob rmax points % density weights
r11 0.01 3381 0.04071 16819721
r12 3402 0.04113 17001325
r13 3411 0.04079 16961172
r14 3412 0.04105 16919527
r15 3443 0.04046 17250082
r21 0.02 7401 0.13139 36668594
r22 7419 0.13662 37181210
r23 7420 0.13236 36937682
r24 7425 0.13459 37498327
r25 7455 0.13267 37434928
r51 0.05 9980 0.75190 49775404
r52 9985 0.75879 49683624
r53 9991 0.76406 50478996
r54 9994 0.75665 49957445
r55 9996 0.75653 50314787

random to be potential facility locations. A potential facility location located at(xf ,yf )
covers a demand point located at(xd,yd) if they are within a distancermax of each other,
i.e. if

√
(xf −xd)2 +(yf −yd)2≤ rmax.

The experiment was done on problems of dimensionn= 1000 andm= 10000. Demand
point weights were generated at random uniformly in the interval[1,10000]. To allow for
different levels of coverage, 3 levels ofrmax were used: .01, .02, and .05. Five instances



14 M. G. C. RESENDE

TABLE 2. Summary of results on randomly generated test problems

avg itr avg time % proven max
rmax p to best to best optimal % error
0.01 10 1.0 0.07 100

100 1.0 0.19 100
250 1.4 0.43 100
500 30.0 9.89 100
750 2.6 0.71 80 0.0007
900 1.2 0.22 100

0.02 10 1.0 0.21 100
100 2.6 1.54 100
250 246.2 314.14 20 0.0474
500 150.8 261.26 0 0.1949
750 135.6 137.98 0 0.0113
900 1.0 0.35 100

0.05 10 1.0 1.46 100
100 337.8 3670.61 0 1.6832
250 1.0 5.50 100
500 1.0 3.83 100
750 1.0 3.00 100
900 1.0 1.76 100

were generated for each problem combinationn,m, andrmax, totalling 15 instances. Each
instance was solved for six levels of the numberp of facilities to be located: 10, 100,
250, 500, 750, and 900. Therefore, the total number of test problems considered is 90.
Table 3.2 summarizes the problems used. For each problem, the table reports its name, the
rmax value used to generate it, the number of demand points (of the total of 10,000) that can
be covered by at least one potential facility site, the density (average percentage of demand
points covered by a potential facility site), and the sum of weights over all demand points.
These test problems as well as the generator are available from the author.

To solve each instance, we initially compute the linear programming upper bound and
stop GRASP if a covering with the weight of the linear programming bound is found. A
maximum of 500 GRASP iterations are done.

Table 3.2 summarizes the runs. We take averages over the 5 instances in each density
class. All running times are given in CPU seconds. We make the following observations
about the experiment:

• The LP bound is tight on the majority of the test problems. Of the 90 problems
considered in the experiment, the LP bound was tight (i.e. equal to the optimal
integer solution) in at least 70 cases.
• GRASP found provably optimal solutions in 70 of the 90 test problems.
• For the most sparse problems in the test set (those withrmax = .01), in only one

instance (r15 with p = 750) did GRASP not find a provably optimal solution.
• For the most dense problems in the test set (those withrmax = .05), GRASP found

provably optimal solutions for all values ofp, exceptp = 100.
• In each density class, varying the value ofp affects the difficulty of the problem for

GRASP. In the class withrmax = .01, the hardest instances were forp = 500 and
p= 750. For the class withrmax = .02, the difficult instances hadp = 250,500, and
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TABLE 3. Solutions found (on randomly generated test problems) not
proven to be optimal.

iters time total
prob rmax p to best to best time % error
r15 0.01 750 1 0.30 105.05 0.0007
r22 0.02 250 286 373.85 641.03 0.0232
r23 400 506.80 621.00 0.0372
r24 44 55.40 625.94 0.0211
r25 182 240.70 644.29 0.0475
r21 0.02 500 1 1.82 796.45 0.1803
r22 320 552.26 844.12 0.0656
r23 114 216.60 942.19 0.1949
r24 300 503.78 818.57 0.0864
r25 19 31.85 828.48 0.1099
r21 0.02 750 215 181.15 400.51 0.0044
r22 12 14.27 566.54 0.0024
r23 5 5.63 538.72 0.0047
r24 123 139.00 536.26 0.0053
r25 323 349.84 519.77 0.0113
r51 0.05 100 343 3947.98 5675.26 1.0180
r52 256 2762.40 5275.84 1.2225
r53 418 4427.86 5269.05 1.6832
r54 249 2614.62 5193.63 1.2620
r55 423 4600.17 5380.23 1.3924

750. In the most dense class, withrmax = .05, the hardest instances hadp = 100.
This indicates that as the problems become more dense, the more difficult problems
are those with small values ofp.
• The percentage error is defined as

(LP upper bound− GRASP solution)
LP upper bound

×100.

Optimal solutions have 0% error. The average percentage error increased with prob-
lem density. Of the instances on which GRASP did not find an optimal solution, the
percentage error never exceeded 1.68%. On thermax = .02 instances, the maximum
percentage error was 0.19%, while for thermax = .01 instances it was .0007%.
• Table 3.2 lists all test problems for which GRASP did not find provably optimal

solutions. Besides iterations and CPU time to find the best solution, the table lists
the total time to run the 500 iterations, as well as the percentage error in the GRASP
solution.
• It should be noted that the percentage error is actually a maximum percentage error,

since the LP bound may not be tight and the GRASP solutions found may be closer
to the optimal than to the LP bound.

4. CONCLUDING REMARKS

In this paper, we have studied the maximum covering problem.
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A heuristic method for solving this problem was proposed. The method, a GRASP or
greedy randomized adaptive search procedure, was described in detail.

The quality of the heuristic solutions can be measured with an upper bound produced by
solving a linear programming problem. Computational results on both a real-world facility
location problem, as well as on randomly generated test problems, indicate that the method
finds solutions of very good quality. In fact, on the majority of the problems tested, the
GRASP found solutions that could be verified to be optimal by the LP upper bound. On
those that were not verifiable, the error never exceeded 2%.
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