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Abstract. A GRASP with path-relinking for finding good-quality so-
lutions of the weighted maximum satisfiability problem (MAX-SAT) is
described in this paper. GRASP, or Greedy Randomized Adaptive Search
Procedure, is a randomized multi-start metaheuristic, where at each iter-
ation locally optimal solutions are constructed, each independent of the
others. Previous experimental results indicate its effectiveness for solving
weighted MAX-SAT instances. Path-relinking is a procedure used to in-
tensify the search around good-quality isolated solutions that have been
produced by the GRASP heuristic. Experimental comparison of the pure
GRASP (without path-relinking) and the GRASP with path-relinking
illustrates the effectiveness of path-relinking in decreasing the average
time needed to find a good-quality solution for the weighted maximum
satisfiability problem.

1 Introduction

A propositional formula Φ on a set of n Boolean variables V = {x1, . . . , xn}
in conjunctive normal form (CNF), is a conjunction on a set of m clauses
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C = {C1, . . . , Cm}. Each clause Ci is a disjunction of |Ci| literals, where each
literal lij is either a variable xj or its negation ¬xj . Formally, we write

Φ =
m∧

i=1

Ci =
m∧

i=1

⎛

⎝
|Ci|∨

j=1

lij

⎞

⎠ .

A clause is satisfied if at least one of its literals evaluates to 1 (true), which
means that either one of the unnegated Boolean variables has the value of 1 or
a negated variable has the value of 0. The propositional formula is said to be
satisfied if all of its clauses are satisfied. In the Satisfiability problem (SAT),
one must decide whether there exists an assignment of values to the variables
such that a given propositional formula is satisfied. SAT was the first prob-
lem to be shown to be NP-complete [8]. The Maximum Satisfiability problem
(MAX-SAT) is a generalization of SAT, where given a propositional formula,
one is interested in finding an assignment of values to the variables which maxi-
mizes the number of satisfied clauses. Generalizing even further, if we introduce
a positive weight wi for each clause Ci, then the weighted MAX-SAT prob-
lem consists of finding an assignment of values to the variables such that the
sum of the weights of the satisfied clauses is maximized. The MAX-SAT has
many applications both theoretical and practical, in areas such as complexity
theory, combinatorial optimization, and artificial intelligence [5]. It is an in-
tractable problem in the sense that no polynomial time algorithm exists for
solving it unless P = NP, which is evident since it generalizes the satisfiability
problem [11].

Due to the computational complexity of the MAX-SAT there has been an ex-
tensive research effort devoted to the development of approximation and heuris-
tic algorithms for solving it. An ε-approximate algorithm for the MAX-SAT is
a polynomial time algorithm which finds a truth assignment to the variables
that results in a total weight of the satisfied clauses that is at least ε times the
optimum (0 < ε < 1). We will refer to ε of an approximation algorithm as its
performance ratio. The first approximation algorithms for the MAX-SAT were
introduced in [18], where Johnson presented two algorithms with performance
rations (k − 1)/k and (2k − 1)/2k, where k is the least number of literals in any
clause. For the general case k = 1 they both translate to a 1/2-approximation
algorithm, while it has been shown in [7] that the second algorithm is in fact a
2/3-approximation algorithm. A 3/4-approximation algorithm, based on network
flow theory, was presented by Yannakakis in [32] and also in [14] by Goemans
and Williamson. Currently the best deterministic polynomial time approxima-
tion algorithm for MAX-SAT achieves a performance ratio of 0.758 and is based
on semidefinite programming [15], while there is also a randomized algorithm
with performance ratio 0.77 [3]. Better approximation bounds for special cases
of the problem in which, for instance, we restrict the number of literals per
clause or impose the condition that the clauses are satisfiable have also been
found [9, 20, 31]. With respect to inapproximability results, it is known [17] that
unless P = NP there is no approximation algorithm with performance ratio
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greater than 7/8 for the MAX-SAT in which every clause contains exactly three
literals, thereby limiting the general case as well.

Local search is the main ingredient for most of the heuristic algorithms that
have appeared in the literature for solving the MAX-SAT, where in conjunction
with various techniques for escaping local optima they provide solutions which
exceed the theoretical upper bound of approximating the problem. We can divide
the heuristic algorithms that have appeared in the literature into two main
classes. The first class being those heuristics which use the history of the search
in order to construct a new solution, such as Tabu Search [16], Hsat [12] and
Reactive Search [4], and those that are not history sensitive such as Simulated
Annealing [30], Gsat [29] and GRASP [22, 24]. Surveys of approximation and
heuristic algorithms for solving the MAX-SAT can be found in [5, 16].

GRASP is a constructive multi-start metaheuristic which has been applied to
a wide range of well known combinatorial optimization problems with favorable
experimental results [23]. In [24, 25], Resende, Pitsoulis, and Pardalos describe a
GRASP implementation for solving the weighted MAX-SAT, and report exten-
sive computational results on a set of weighted SAT benchmark instances [19]
that indicate that the heuristic produces good quality solutions. Each iteration
consists of two phases: a construction phase where a solution is constructed in
a greedy randomized fashion; and a local search phase where the local optimum
is found in the neighborhood of the constructed solution. GRASP can therefore
be thought of as a memoryless procedure, where past information from previous
solutions is not used for the construction of a new solution. In this paper, we
show how memory can be incorporated in the GRASP for weighted MAX-SAT
proposed in [24]. At each iteration of the GRASP heuristic, a path of feasi-
ble solutions linking the current solution with a solution from a set of elite (or
good-quality) solutions previously produced by the algorithm is explored. Path-
relinking has been used as a memory mechanism in GRASP [27] resulting in
faster convergence of the algorithm.

The remainder of the paper is organized as follows. In Section 2, we briefly
state the implementation of GRASP for the MAX-SAT from [24], while in Sec-
tion 3 we describe how to apply path-relinking for the MAX-SAT. Finally, in
Section 4, computational results are presented which demonstrate empirically
that path-relinking results in faster convergence of GRASP.

2 GRASP for the Weighted MAX-SAT

The construction and local search phase of GRASP are described in detail in [24],
while in [25] a complete Fortran implementation is given along with extensive
computational runs. In this section, we provide a brief description in order to
facilitate the discussion of path-relinking that will follow in the next section.
Given a set of clauses C and a set of Boolean variables V , let us denote by
x ∈ {0, 1}n the truth assignment which corresponds to the truth values assigned
to the variables, while let c(x) denote the sum of the weights of the satisfied
clauses as implied by x. Without loss of generality we can assume that all the
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procedure GRASP(MaxIter,RandomSeed)
1 cbest := 0;
2 do k = 1, . . . , MaxIter →
3 x :=ConstructSolution(RandomSeed);
4 x :=LocalSearch(x);
5 if c(x) > cbest →
6 xbest := x;
7 cbest := c(xbest);
8 endif;
9 od;
7 return xbest

end GRASP;

Fig. 1. Pseudo-code of GRASP for maximization problem

weights wi of the clauses are positive integers. Given any two truth assignments
x,y ∈ {0, 1}n let us denote their difference set

∆(x,y) := {i : xi �= yi, i = 1, . . . , n} (1)

and their distance

d(x,y) := |∆(x,y)| =
n∑

i=1

|xi − yi|. (2)

which is the Hamming distance, and will be used as a measure of proximity
between two solutions. The GRASP procedure is shown in Figure 1. In the
construction phase of the algorithm (line 3), let us denote by γ+

j and γ−
j the

gain in the objective function value if we set the unassigned variable xj to 1 and
0, respectively, and by X ⊆ V the set of already assigned variables. We compute
the best gain

γ∗ := max{γ+
j , γ−

j : j such that xj ∈ V \ X}

and keep only those γ+
j and γ−

j that are greater or equal to α·γ∗ where 0 ≤ α ≤ 1
is a parameter. A random choice γ+

k (γ−
k ) among those best gains corresponds

to a new assignment xk = 1 (xk = 0), which is added to our partial solution
X = X ∪ {xk}. After each such addition to the partial solution, the gains γ+

j

and γ−
j are updated, and the process is repeated until |X| = n. The parameter

α reflects the ratio of randomness versus greediness in the construction process,
where α = 1 corresponds to a pure greedy selection for a new assignment and
α = 0 to a pure random assignment. Having completed a truth assignment x,
we apply local search (line 4) in order to guarantee local optimality. The 1-flip
neighborhood is used in the local search, which is defined as

N1(x) := {y ∈ {0, 1}n : d(x,y) ≤ 1}, (3)
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where a depth-first search approach is employed in the sense that the current
solution is replaced with a solution in the neighborhood which has greater cost.
The search is terminated when the current solution is the local optimum.

3 Path-Relinking

Path-relinking was originally proposed by Glover [13] as an intensification strat-
egy exploring trajectories connecting elite solutions obtained by tabu search or
scatter search. Given any two elite solutions, their common elements are kept
constant, and the space of solutions spanned by these elements is searched with
the objective of finding a better solution. The size of the solution space grows
exponentially with the the distance between the initial and guiding solutions
and therefore only a small part of the space is explored by path-relinking. Path-
relinking has been applied to GRASP as an enhancement procedure in various
problems [1, 2, 6, 21, 26, 28], where it can be empirically concluded that it speeds
up convergence of the algorithm. A recent survey of GRASP with path-relinking
is given in [27].

We now describe the integration of path-relinking into the pure GRASP
algorithm described in Section 2. Path-relinking will always be applied to a pair
of solutions x,y, where one is the solution obtained from the current GRASP
iteration, and the other is a solution from an elite set of solutions. We call x
the initial solution while y is the guiding solution. The set of elite solutions will
be denoted by E and its size will not exceed MaxElite. Let us denote the set of
solutions spanned by the common elements of x and y as

S(x,y) := {w ∈ {0, 1}n : wi = xi = yi, i /∈ ∆(x,y)} \ {x,y}, (4)

where it is evident that |S(x,y)| = 2n−d(x,y) − 2. The underlying assumption
of path-relinking is that there exist good-quality solutions in S(x,y), since this
space consists of all solutions which contain the common elements of two good
solutions x,y. Taking into consideration that the size of this space is exponen-
tially large, we will employ a greedy search where a path of solutions

x = w0,w1, . . . ,wd(x,y),wd(x,y)+1 = y,

is built, such that d(wi,wi+1) = 1, i = 0, . . . , d(x,y), and the best solution
from this path is chosen. Note that since both x,y are local optima in some
neighborhood N1 by construction1, in order for S(x,y) to contain solutions
which are not contained in the neighborhoods of x or y we must have d(x,y) > 3.
Therefore we need not apply path-relinking between any two solutions which are
not sufficiently far apart, since it is certain that we will not find a new solution
that is better than both x and y.

The pseudo-code which illustrates the exact implementation for the path-
relinking procedure is shown in Figure 2. We assume that our initial solution will

1 here the same metric d(x,y) is used.W
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procedure PathRelinking(y, E)
1 Randomly select a solution x ∈ {z ∈ E : d(y, z) > 4};
2 w0 := x;
3 w∗ := x;
4 for k = 0, . . . , d(x,y) − 2 →
5 max:= 0
6 for each i ∈ ∆(wk,y) →
7 w :=flip(wk, i);
8 if c(w) > max →
9 i∗ := i;
10 max:= c(w);
11 fi;
12 rof ;
13 wk+1 :=flip(wk, i∗);
14 if c(wk+1) > c(w∗) → w∗ := wk+1;
15 endfor;
16 return (w∗);
end PathRelinking;

Fig. 2. Pseudo-code of path-relinking for maximization problem

always be the elite set solution while the guiding solution is the GRASP iterate.
This way we allow for greater freedom to search the neighborhood around the
elite solution. In line 1, we select at random among the elite set elements, an
initial solution x that differs sufficiently from our guiding solution y. In line 2,
we set the initial solution as w0, and in line 3 we save x as the best solution. The
loop in lines 4 through 15 computes a path of solutions w1,w2, . . . ,wd(x,y)−2,
and the solution with the best objective function value is returned in line 16.
This is achieved by advancing one solution at a time in a greedy manner, as
illustrated in lines 6 through 12, while the operation flip(wk, i) has the effect
of negating the variable wi in solution wk. It is noted that the path of solutions
never enters the neighborhood of y.

The integration of the path-relinking procedure with the pure GRASP is
shown in Figure 3, and specifically in lines 6 through 11. The pool of elite
solutions is initially empty, and until it reaches its maximum size no path re-
linking takes place. After a solution y is found by GRASP, it is passed to the
path-relinking procedure to generate another solution. Note here that we may
get the same solution y after path-relinking. The procedure AddToElite(E ,y)
attempts to add to the elite set of solutions the currently found solution. A
solution y is added to the elite set E if either one of the following conditions
holds:

1. c(y) > max{c(w) : w ∈ E},
2. c(y) > min{c(w) : w ∈ E} and d(y,w) > βn, ∀w ∈ E , where β is a

parameter between 0 and 1 and n is the number of variables.
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procedure GRASP+PR(MaxIter,RandomSeed)
1 cbest := 0;
2 E := ∅;
3 do k = 1, . . . , MaxIter →
4 x :=ConstructSolution(RandomSeed);
5 x :=LocalSearch(x);
6 if |E| =MaxElite →
7 x :=PathRelinking(x, E);
8 AddToElite(E ,x);
9 else
10 E := E ∪ {x};
11 endif;
12 if c(x) > cbest →
13 xbest := x;
14 cbest := c(xbest);
15 endif;
16 od;
17 return xbest

end GRASP+PR;

Fig. 3. Pseudo-code of GRASP with path-relinking for maximization problem

If y satisfies either of the above, it then replaces an elite solution z of weight
not greater than c(y) and most similar to y, i.e. z = argmin{d(y,w) : w ∈
E such that c(w) ≤ c(y)}.

4 Computational Results

In this section, we report on an experiment designed to determine the effect
of path-relinking on the convergence of the GRASP for MAX-SAT described
in [25]2. After downloading the Fortran source code, we modified it to enable
recording of the elapsed time between the start of the first GRASP iteration and
when a solution is found having weight greater or equal to a given target value.
We call this pure GRASP implementation grasp. Using grasp as a starting
point, we implemented path-relinking making use of the local search code in
grasp. The GRASP with path-relinking implementation is called grasp+pr. To
simplify the path-relinking step, we use β = 1 when testing if a solution can be
placed in the elite set. This way only improving solutions are put in the elite set.
We were careful to implement independent random number sequences for the
pure GRASP and the path-relinking portions of the code. This way, if the same
random number generator seeds are used for the GRASP portion of the code,

2 The Fortran subroutines for the GRASP for MAX-SAT described in [25] can be
downloaded from http://www.research.att.com/∼mgcr/src/maxsat.tar.gz.

http://www.research.att.com/~mgcr/src/maxsat.tar.gz
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Table 1. Test problems used in experiment. For each problem, the table lists its name,

number of variables, number of clauses, the target weight used as a stopping criterion,

and the percentage deviation of the target from the optimal solution

problem variables clauses target rel. error

jnh1 100 800 420739 0.044%
jnh10 100 800 420357 0.115%
jnh11 100 800 420516 0.056%
jnh12 100 800 420871 0.013%

jnh201 100 850 394222 0.047%
jnh202 100 850 393870 0.076%
jnh212 100 850 394006 0.059%

jnh304 100 900 444125 0.092%
jnh305 100 900 443815 0.067%
jnh306 100 900 444692 0.032%

the GRASP solutions produced in each iteration are identical for the GRASP
and GRASP with path-relinking implementations. Consequently, GRASP with
path-relinking will never take more iterations to find a target value solution than
the pure GRASP. Since the time for one GRASP with path-relinking iteration is
greater than for one pure GRASP iteration, we seek to determine if the potential
reduction in number of iterations of GRASP with path-relinking will suffice to
make the total running time of GRASP with path-relinking smaller than that
of pure GRASP.

The Fortran programs were compiled with the g77 compiler, version 3.2.3
with optimization flag -O3 and run on a SGI Altix 3700 Supercluster running
RedHat Advanced Server with SGI ProPack. The cluster is configured with 32
1.5-GHz Itanium-2 processors (Rev. 5) and 245 Gb of main memory. Each run
was limited to a single processor. User running times were measured with the
etime system call. Running times exclude problem input.

We compared both variants on ten test problems previously studied in [25] 3.
Optimal weight values are known for all problems. The target weight values used
in the experiments correspond to solutions found in [25] after 100,000 GRASP it-
erations and are all near-optimal. Table 2 shows test problem dimensions, target
values, and how close to optimal the targets are.

Since grasp and grasp+pr are both stochastic local search algorithms, we
compare their performance by examining the distributions of their running times.
For each instance, we make 200 independent runs of each heuristic (using dif-
ferent random number generator seeds) and record the time taken for the run

3 The test problems can be downloaded from http://www.research.att.com/∼mgcr/

data/maxsat.tar.gz.
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to find a solution with weight at least as large as the given target value. For
each instance/heuristic pair, the running times of each heuristic are sorted in
increasing order. We associate with the i-th sorted running time (ti) a probability
pi = (i− 1

2 )/200, and plot the points zi = (ti, pi), for i = 1, . . . , 200. These plots
are called the time to target plots and were first introduced in [10]. These plots
display the empirical probability distributions of the random variable time to
target solution. Figures 4 and 5 are time to target plots for a subset of the test
instances.4

We make the following observations about the experiments.

– Each heuristic was run a total of 2000 times in the experiments.
– Though the maximum number of GRASP iterations was set to 200,000,

both algorithms took much less than that to find truth assignments with
total weight at least as large as the target weight on all 200 runs on each
instance.

– On all but one instance, the time to target curves for grasp+pr were to the
left of the curves for grasp.

– The relative position of the curves implies that, given a fixed amount of
computing time, grasp+pr has a higher probability than grasp of finding
a target solution. For example, consider instance jnh1 in Figure 4. The
probabilities of finding a target at least as good as 420750 in at most 50
seconds are 48% and 97%, respectively, for grasp and grasp+pr. In at most
100 seconds, these probabilities increase to 73% and 99%, respectively.

– The relative position of the curves also implies that, given a fixed probability
of finding a target solution, the expected time taken by grasp to find a
solution with that probability is greater than the time taken by grasp+pr.
For example, consider instance jnh306 in Figure 5. For grasp to find a
target solution with 50% probability we expect it to run for 329 seconds,
while grasp+pr we expect a run of only 25 seconds. For 90% probability,
grasp is expected to run for 984 seconds while grasp+pr only takes 153
seconds.

– The only instance on which the time to target plots intersect was jnh305,
where grasp+pr took longer to converge than the longest grasp run on 21
of the 200 runs, Still, two thirds of the grasp+pr were faster than grasp.
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